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Barcelona, Cerdanyola del Vallès, Barcelona, Spain

Abstract

The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for
survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the
regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium
concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range.
We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical
forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method (‘‘the reverse
tracking algorithm’’) we predicted and then verified experimentally that the main regulators under conditions of potassium
starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show
that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to
achieve homeostasis.
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Introduction

Potassium is an essential cation required for many cellular

processes including the regulation of cell volume, intracellular pH,

protein synthesis, activation of enzymes, and maintenance of the

plasma membrane potential [1–4]. In their natural environment,

most cell types have to accumulate intracellular potassium against

a strong concentration gradient. Animal cells utilize the energy

stored in ATP to directly pump potassium ions into the cell via the

Naz/Kz ATPase. This enzyme is absent in most fungi and plants

[2], which have developed alternative mechanisms to control the

intracellular potassium concentration. Saccharomyces cerevisiae (S.c.)

cells can grow in media with a potassium concentration ranging

from 10mM to 2:5M. Despite extensive knowledge about the

identity and function of most potassium transporters in this

organism [3], a systems level understanding of the interplay and

regulation of the various transport pathways is still lacking.

In S.c., uptake of potassium across the plasma membrane is

driven by the membrane potential, which itself is generated by

proton pumping via the Hz-ATPase, Pma1 [5,6]. The high

affinity and high velocity transporter, Trk1, is the major uptake

system for potassium. The expression levels of the other Trk

protein, Trk2, are low, compared to Trk1, and therefore

considered of minor importance [7,8]. A low affinity uptake

observed by electrophysiological techniques in trk1,2 double

mutants has been attributed to the putative calcium blocked

channel Nsc1, though the gene responsible for this transport

activity has not been found yet [9,10]. Efflux of potassium is

strongly pH-dependent and coupled to sodium toxicity. The

antiporter Nha1 extrudes Naz or Kz ions in exchange for

protons under acidic environmental conditions and contributes to

the continuous cyclic flux of potassium ions across the plasma

membrane and to pH regulation [11,12]. It is only at higher

external pH that potassium or sodium is actively extruded by the

Ena1 ATPase [13–15]. Another potassium efflux system is the

voltage gated channel, Tok1. Electrophysiological studies revealed

that Tok1 opens at positive membrane potentials, which do not

occur under normal physiological conditions [16]. Potassium is

also stored in intracellular compartments, in particular in the

vacuole. The effect of intracellular transport is, however, not

sufficiently characterized yet [3,17].

Besides protons, a number of other ions are associated with the

transport of potassium. The anion bicarbonate was shown to be

important for potassium accumulation [18]. Decarboxylation

reactions produce carbon dioxide, which is quickly converted to

carbonic acid (H2CO3), by carbonic anhydrase. Carbonic acid can
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either diffuse freely across the cell membrane or dissociate into

bicarbonate (HCO3
{), and protons. While protons can be

extruded via Pma1, the permeability of bicarbonate is very low

compared to that of carbonic acid. The resulting accumulation of

bicarbonate provides the link to potassium homeostasis; the

negative charges carried by bicarbonate can be balanced by

potassium cations. In principle, other weak acids could contribute

in a similar way to potassium accumulation, but our results below

and previous investigations suggest that the bicarbonate reaction

plays an important role [18]. Potassium transport is also related to

ammonium toxicity [19]. Under low external potassium condi-

tions, ammonium leaks into the cells, presumably via potassium

transporters. Toxic concentrations of ammonium are counteracted

by increased production and excretion of amino acids [19].

The maintenance of a minimal potassium concentration

requires the orchestration of the different transport systems under

the constraints of various thermodynamic forces. In this article, we

use a mathematical model in conjunction with a novel inference

algorithm (the reverse tracking algorithm) and model-driven

experimentation to identify the key transport mechanisms that

must be regulated under the conditions of potassium shortage. We

show that the activation of the proton pump, Pma1, and the

activation of the bicarbonate reaction sequence are the regulators

of potassium homeostasis. We also show that potassium homeo-

stasis is an example of non-perfect adaptation: The intracellular

potassium concentration depends on the external potassium

concentration and is only regulated to keep minimal levels of

potassium required for survival. This is different from other

homeostatic systems such as osmoregulation [20], where certain

stationary systems characteristics perfectly adapt, irrespective of

the external conditions.

Results

Potassium starvation experiments
To study the response of S.c. cells to an abrupt decrease of

external potassium, we performed potassium starvation experi-

ments using Kz and Naz free media. Cells grown in non-limiting

potassium (50mM KCl) were washed with Kz-free YNB medium

(YNB without amino acids and ammonium sulphate, Formedium

UK, CYN7505 plus 2% glucose, traces of KCl left: 15 mM,

hereafter referred to as Translucent Kz-free medium [21]) and

resuspended in the same medium [12]. The time course for

changes in intracellular potassium concentrations for the wild type

strain exhibits two different phases (Figure 1A). In the first hour of

starvation there is a large net efflux of potassium indicated by the

rapid decrease in the intracellular concentration. Loss of potassium

slows down in the second phase and the internal concentration

slowly approaches a new stationary state (Table 1). Although the

cells cannot perfectly adapt to the large concentration gradients

they are able to keep a certain amount of potassium required for

survival (approx. 30mM). Interestingly, the second phase of

potassium loss is slower for the trk1,2 double mutant than for the

wild type (wt). This is surprising, because it is believed [3] that

increased uptake of potassium via Trk1 even at very low external

potassium concentrations is a major mechanism of potassium

homeostasis. Thus, one would have expected the concentration of

internal potassium in the trk1,2 mutant to be lower than in the wild

type. The time course for the nha1 mutant is not significantly

different from the trk1,2 mutant (see also Figure S7 in Text S1).

A mathematical model for potassium transport
Multiple signaling pathways modulate the activity of the various

transport systems involved in potassium homeostasis [2–

6,14,15,22–24]. However, it is not entirely clear which of these

signals are essential to achieve homeostasis and how they are

acting under the constraints set by the thermodynamics of ion

transport. To study these constraints, we developed a minimalistic

mathematical model which incorporates the essential parts known

to be important for potassium homeostasis. The model describes

the dynamic coupling between the intracellular potassium

concentration ½Kz�i, internal pH (pHi ), carbon dioxide concen-

tration ½CO2�, membrane voltage Vm, and cell volume V . A

complete description of the equations and parameter values is

given in the Materials and Methods section and derivations can be

found in the Text S1. Here, only the basic model structure is

given:

d

dt
½Kz�i~{ JTrk1,2

K zJNha1
K zJTok1

K zJleak
K

� �
ð1Þ

d

dt
½CO2�~{ J

transport
H2CO3

zJ
transport
HCO{

3
zJ

prod
CO2

� �
ð2Þ

d

dt
½pHi�~

1

b
JPma1

H zJNha1
H zJleak

H z(1{a)J
transport
H2CO3

zaJ
transport
HCO{

3

� � ð3Þ

Vm~{
F :V

cm
:A

b:pHi{½Kz�iz½HCO{
3 �i{½Z�

� �
ð4Þ

d

dt
½V �~Lp

:A: Pi{P0{Ptð Þ: ð5Þ

Equation (1) links the temporal change of the intracellular

potassium concentration to the various potassium transport fluxes

Author Summary

Without potassium, all living cells will die; it has to be
present in sufficient amounts for the proper function of
most cell types. Disturbances in potassium levels in animal
cells result in potentially fatal conditions and it is also an
essential nutrient for plants and fungi. Cells have devel-
oped effective mechanisms for surviving under adverse
environmental conditions of low external potassium. The
question is how. Using the eukaryotic model organism,
baker’s yeast (Saccharomyces cerevisiae), we modeled how
potassium homeostasis takes place. This is because,
through mathematical modeling and experimentation,
we found that the electro-chemical forces regulating
potassium concentrations are coupled to proton fluxes,
which respond to external conditions in order to maintain
a viable potassium level within the cells. Our results
challenge the current understanding of potassium ho-
meostasis in baker’s yeast, and could potentially be
extended to other microorganisms, including non-conven-
tional yeasts such as the pathogenic Candida albicans, and
plant cells. In the future, the fundamental bases for this
descriptive and predictive model might contribute to the
development of new treatments for fungal infections, or
developments in crop sciences.

Potassium Starvation in Yeast
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JK (Figure 1B). The model comprises the Trk1,2 system

(abstracted as a single system, JTrk1,2
K ), the Nha1 antiporter

(JNha1
K ), and the Tok1 channel (JTok1

K ). To mimic the joint

contribution of other, mainly non-specific transport pathways for

potassium (e.g. Nsc1) we added a potassium leak current Jleak
K to

the model. The Ena1 ATPase is neglected because it is known to

be inactive at the relatively low external pH used in the

experiments [15].

The dynamics of carbon dioxide (Equation (2)) is coupled to the

transport fluxes of bicarbonate J
transport
HCO{

3
and carbonic acid

J
transport
H2CO3

. These transport rates are given in the Materials and

Methods section (Equations (18–19)) and a detailed derivation of

the bicarbonate model [25] is given in the Text S1. Carbon

dioxide is produced in various metabolic processes such as the

TCA cycle or pyruvate decarboxylation. It is impossible to model

all these processes explicitly, but we incorporate them in the

effective metabolic carbon dioxide production flux J
prod
CO2

. This flux

is an input to the model and was initially assumed to be constant.

The change in pH (Equation (3)) per change in proton

concentration is described by the buffering capacity b. In

principle, b is a function of the internal pH, but due to the

combined action of various buffering species [26] it can be

approximated by a constant for a wide range of intracellular pH

values. In addition to the proton fluxes via the Hz-ATPase Pma1

(JPma1
H ) and the Nha1 antiporter (JNha1

H ) there are many other

proton transport pathways in yeast. The corresponding net flux is

subsumed in the proton leak current Jleak
H . The effective proton

flux originating from the bicarbonate reaction sequence is given by

the term (1{a)J
transport
H2CO3

zaJ
transport
HCO{

3
, where a is the pH-dependent

fraction of dissociated carbon dioxide.

The membrane potential (Equation (4)) is modeled as a charge

balance equation (cm, specific membrane capacitance; F , Faraday

constant; A, surface area of the cell) [27]. We explicitly modeled

the charges carried by potassium, total protons (b:pHi) and

bicarbonate. The remaining net charges contributing to the

membrane potential are subsumed in ½Z�, which is determined by

the initial conditions of the dynamic variables in the model.

The cell volume (Equation (5)) depends on the balance between

internal osmotic pressure Pi, external osmotic pressure Po and

turgor pressure Pt [28]. Ion transport processes change the intra-

and extracellular solute concentrations and thus have an osmotic

effect (Equations (24–26)) in Materials and Methods). The

resistance against volume changes is given by the hydraulic

permeability parameter Lp [29].

The concentration and voltage dependent kinetics of all

transport systems were described by simple thermodynamic

consistent relationships. The driving force for the transport fluxes

of ions across the plasma membrane can be written as the

difference Vm{E of the membrane potential and the equilibrium

potential E. The equilibrium potential depends on the concen-

trations and stoichiometry of the ions transported, see Equations

(12–14) in the Materials and Methods section. For the potassium

fluxes in Equation (1) and the proton leak in Equation (3) we

assumed linear relations (Ohm’s law) of the form

J!I~g(Vm{E) between the driving force and the transport

flux J, or the corresponding electrical current I , respectively. For

the leak currents I leak
K and I leak

H we initially assumed constant

conductivity parameters g (Equations (9) and (11) in Materials and

Methods). The conductivity of the transport proteins Trk1,2,

Nha1 and Tok1 was modeled as a function of the membrane

voltage, see Equations (6–8) in Materials and Methods.

This minimalistic model captures the essential biophysical and

thermodynamic constraints under which control of potassium

homeostasis operates. Despite the simplicity of the model, the

experimental data was not sufficient to uniquely identify all the

parameters. We decided to use this flexibility to explore the

Figure 1. Homeostatic response to potassium starvation. (A) Experimental time courses of internal potassium concentrations in wild-type
(WT) cells, trk1,2 double mutants and nha1 mutants (symbols). Cells were grown in 50 mM KCl and resuspended in Translucent Kz-free medium at
t = 0. Solid lines (‘‘sim’’) are fits to the model using the reverse tracking approach (see text). (B) The components of the minimal biophysical model.
doi:10.1371/journal.pcbi.1002548.g001

Table 1. Optical densities during starvation.

Strain Time of starvation (hours)

1 2 3 4 5

wt 0.3 0.39 0.45 0.5 0.5

trk1,2 0.3 0.35 0.4 0.42 0.43

Optical densities for the wild type and the trk1,2 double mutant corresponding
to the potassium starvation experiments of Figure 1A.
doi:10.1371/journal.pcbi.1002548.t001

Potassium Starvation in Yeast
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parameter space for regions that are consistent with the data and

performed extensive parameter scans and sensitivity analysis

simulations. However, we were unable to identify a single

parameter combination which reproduced the experimental time

courses for the wild type strain observed in Figure 1A. In the

model, all potassium inside the cell was rapidly and completely lost

upon starvation (Figure S4A in Text S1). Based on our model

simulations, this believed to be caused by a strong efflux via the

Nha1 antiporter driven by the large concentration gradient across

the plasma membrane. This model behavior is robust against

various model variations, including the incorporation of an

intracellular potassium storage mechanism that mimics the

contribution of intracellular compartments to potassium retention.

Thus, we conclude that further dynamic mechanisms counteract-

ing the strong potassium gradient are essential for homeostasis.

Importantly, the model described so far incorporates only the

biophysics of transport but does not account for gene regulatory,

signal transduction or metabolic events affecting the transporter

activity.

Predicting the regulators with the reverse tracking
algorithm

The fact that the minimal model is not able to reproduce the

experimental time courses for potassium starvation means that

there are some unmodeled dynamics that are not captured by the

model. Under the working hypothesis that the model covers the

major biophysical effects of potassium transport we assumed that

there are additional regulatory responses to a shortage of

potassium. Available knowledge [2,3] and data is currently not

sufficient to develop exhaustive models for the metabolic, signal

transduction and gene regulatory responses to potassium starva-

tion. It is not even clear which of the transporters or other

components are activated or deactivated for the maintenance of

homeostasis. In engineering terms [30], neither the regulators nor

the signals triggering their action are sufficiently characterized.

To overcome this limitation, we combined our minimal

biophysical model with an inference algorithm for unmodeled

dynamics. We assumed that the unknown regulatory events

modulate the activity of the transport systems or other components

in the model. Mathematically this means that a constant

parameter in the model might in fact not be constant, but a

function of time. For example, the maximum conductivity gTrk1,2

(see Equation 6) of the Trk1,2 transport system could be

influenced by signal transduction events [3,31] in response to

low potassium. Any attempt to explicitly model this regulation by

additional equations is hindered by insufficient knowledge of the

structure and dynamics of the regulatory networks involved.

However, one might recoin the question and ask: ‘‘Is there a

function gTrk1,2(t) such that the given experimental time course

½Kz�exp
i (t) of intracellular potassium and the time course ½Kz�i(t)

predicted by the model are in sufficient agreement?’’. If such a

function gTrk1,2(t) would exist we would regard the modulation of

the Trk1,2 transporter as one potential regulatory mechanism and

Trk1,2 as a potential regulator of potassium homeostasis. However,

there might be another parameter h (e.g. gNha1,gTok1,Imax
Pma1, . . .)

associated with a transporter or another component in the model

for which a time course h(t) exists such that experimental data can

be reproduced. Our strategy was now to test different parameters

and corresponding processes for being potential regulators, see

Figure 2A. We define a transporter or any other component in the

model to be a potential regulator if a tracking control signal h(t)
exists which changes the activity of the component in such a way

that the experimental time course and stationary data can be

reproduced. We refer to this inference approach as the reverse

tracking algorithm, a more detailed mathematical explanation is

given in Materials and Methods.

We used the reverse tracking algorithm to test the transporters

Trk1,2, Ena1, Nha1, Tok1 and Pma1 and the activity of the

bicarbonate reaction for being potential regulators of potassium

homeostasis and then compared the predicted tracking control

signals to experimental observations. There is no tracking control

signal for the major uptake system Trk1,2; see Figure S1 in the

Text S1. This is in contrast to the prevailing view that increased

uptake of potassium via Trk1 is essential for potassium homeostasis

under starvation conditions. The loss of potassium after starvation

is slower in trk1,2 double mutants (see Figure 1A) than in wild type

cells. It was experimentally observed [12] that these double

mutants have a more negative membrane potential than wild type

cells under starvation conditions and also when external potassium

is plentiful. This stronger membrane potential (see also Figure S3

in the Text S1) counteracts the outwardly directed potassium

concentration gradient and thus explains the higher potassium

levels after starvation. Taken together, these results show that the

uptake of potassium via Trk1,2 is not the primary mechanism to

prevent excessive loss of potassium under starvation conditions.

Although we found a tracking control signal for the Nha1

antiporter, we excluded it from our list of potential regulators

based on two observations. First, as indicated in Figure 1A, the

time course of potassium loss in nha1 mutants is slower than in the

wild type and similar to the trk1,2 mutants. Secondly, it was

demonstrated that the influence of Nha1 on the internal potassium

concentrations decreases with time [11]. This is in contradiction to

our predicted tracking signal (Figure S2 in Text S1), which is

nonmonotonic in time.

Similarly, the unspecific transport pathways (leak currents) were

excluded, because it is not plausible that unspecific transporters

are regulated for the specific purpose of potassium homeostasis.

This is based on the well founded assumption that all potassium

specific transporters are active under our experimental conditions

are known [3] and included in the model. The non-specific cation

uptake system NSC1 can be excluded, because our medium

contains enough calcium to render NSC1 inactive [32]. The

proton flux Jleak
H includes many co-transport mechanisms with

nutrients and other molecules. It is thus unlikely, that one of these

transport mechanisms is specifically regulated in response to

potassium starvation.

The remaining parts in our model are the Pma1 Hz-ATPase

and the bicarbonate reaction sequence. For both of them, the

reverse tracking approach predicts a rapid burst of activity in

response to the rapid removal of external potassium (Figure 2B

and 2C). Activation of proton pumping by Pma1 (Figure 2B)

hyperpolarizes the plasma membrane, which counteracts the

large concentration gradient of potassium and thus limits

potassium efflux. An increased reaction flux (see Figure 2C)

through the bicarbonate system has a similar effect: The negative

charges carried by bicarbonate increase the magnitude of the

membrane potential and thereby compensate the potassium

gradient.

Experimental validation of the predicted regulators
To test the prediction that Pma1 is activated after potassium

starvation, we measured Pma1 activity from crude membrane

preparations [33] using an in vitro method that has been

extensively established as a faithful measure of in vivo Pma1

function [6,33,34]. Indeed, the activity measurements confirm the

prediction of the reverse tracking algorithm that Pma1 activity

increases rapidly (timescale of 10 minutes) and slowly declines

during the first hours of potassium starvation (Figure 2D). Control

Potassium Starvation in Yeast
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experiments revealed that Pma1 protein levels do not change

under these conditions. Moreover, we also observe, as predicted by

the model, that the Pma1 activity is higher in the trk1,2 mutant

than in the wild type strain throughout the time course of

potassium starvation (Figures 2B and D). To further substantiate

that the activation of Pma1 is essential for the response to low

potassium, we measured growth for Pma1 mutants pma1–204 and

pma1–205 [35] with decreased expression and ATPase activity (33

Figure 2. Regulation of potassium starvation. (A) The tracking approach to detect potential regulators of homeostasis. Parameters which are
constant in the minimal model are now considered as input functions. A parameter is called a potential regulator if it can be chosen to recover
(‘‘track’’) the experimental time courses. (B,C) The predicted activity changes for Pma1 (B) and the bicarbonate reaction system (C) in response to
potassium starvation. (D) Time course of ATPase activity for Pma1. (E) Time course of gene expression for the NCE103 gene encoding carbonic
anhydrase in the wild type strain. Confirmatory qRT-PCR measurements yield a 4:31+0:58 fold increase of the mRNA level in the wild type after
60 minutes of potassium starvation. For comparison, the expression in non-starved trk1,2 double mutant with respect to the wild type strain is
depicted. The mRNA levels for NCE103 in trk1,2 double mutants growing at 50mM Kz are higher by a factor of 4:1+0:82 compared to the wild type
strain (qRT-PCR measurements).
doi:10.1371/journal.pcbi.1002548.g002

Potassium Starvation in Yeast
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and 50% of wild type). Figure 3 shows that the ratio of the growth

rates at 1 mM and 50 mM external potassium is much lower for

the mutant strains than that of the wild type. These results are in

line with the recent finding that the brp1 mutant, which is a PMA1

promotor deletion, that leads to decreased Pma1 protein levels,

presents markedly decreased growth in low potassium medium

and defective rubidium uptake [36].

The second prediction from the reverse tracking approach was

an increased reaction flux for the bicarbonate system (Figure 2C).

This prediction is supported experimentally by an increased

mRNA expression of the NCE103 gene coding for carbonic

anhydrase, the enzyme catalyzing the bicarbonate reaction

(Figure 2E). This result was part of a genome-wide transcriptomic

analysis, using DNA microarrays, of the response to potassium

starvation (0–120 min) to be published elsewhere (Barreto et al.,

submitted). It was shown earlier that protein and mRNA levels of

carbonic anhydrase are highly correlated [37]. A qRT-PCR

measurement confirmed the increase in NCE103 expression in

wild type cells shifted to Kz free medium. After 60 minutes of

potassium starvation, the NCE103 mRNA levels increase more

than four-fold (4:31+0:58,n~3 independent experiments). These

results show that activation of both Pma1 and the bicarbonate

reaction sequence are essential for the control of internal

potassium concentrations. In non-starved cells the expression of

NCE103 is higher for the trk1,2 double mutant than for the wild

type (single dot in Figure 2E). A confirmatory semi-quantitative

RT-PCR measurement using the same RNA sample as in the

microarray experiment and one RNA sample from independent

cultures yielded a mean expression ratio of 4:1+0:82 (n~4 data

points) for trk1,2 relative to the wild type. These results suggest a

simple explanation for the reported hyperpolarization of the

trk1,2 double mutant [12]: A high activity of the bicarbonate

reaction sequence means that many protons and many bicar-

bonate ions are produced. Together with a more active proton

pump (Figures 2B and D), this results in a more negative

membrane potential that counteracts the outwardly directed

potassium gradient. The consequence is a higher intracellular

concentration of potassium (Figure 1A) in trk1,2 double mutants

than wild type cells.

Non-perfect adaptation to external potassium
concentrations

Homeostatic control of a cellular function in response to a

changing environment is often mediated by a negative feedback

loop. A change in the input signal (e.g. the external potassium

concentration) is counteracted by this feedback loop in order to

keep an essential cellular quantity (e.g. the intracellular potassium

concentration) in a range sufficient for the cell’s function. One

particular type of feedback is integral control, where the control

signal is the time integral of the difference between the reference

and the actual quantity [30]. Integral control was observed for a

number of cellular processes including bacterial chemotaxis

[38,39] and osmoregulation [20]. A characteristic property of

integral control is perfect adaptation, where the steady state input

is independent of the steady state output. For potassium this would

mean, that the same intracellular potassium concentration (output)

is approached irrespective of the extracellular potassium concen-

tration (input).

The activation of proton transport by Pma1 and the activation

of the bicarbonate system counteracting low external potassium

indicate the existence of a negative feedback loop. To further

investigate this feedback, we have modified the potassium

starvation experiment. As before, cells were grown at 50mM
external potassium, but now resuspended in media with different

external potassium concentrations. The potassium efflux and the

stationary internal concentrations are different for the different

external concentrations, which is also reflected by the model

(Figure 4A). To test whether these stationary intracellular

concentrations are characteristic for the external potassium, we

grew cells overnight in media with different external potassium

concentrations (Figure 4B). When external potassium is plentiful

(w1mM), the internal concentration attains an upper limit of

approx. 300mM. For low external potassium (v1mM), the

internal concentration is proportional to the external and agrees

with the stationary states of Figure 4A. These experiments show,

that perfect adaptation by integral control is not a characteristic of

potassium homeostasis for low external potassium. The molecular

function and characteristics of this feedback have to be further

explored.

Discussion

In summary, we found that direct regulation of potassium

transport proteins is not sufficient for the maintenance of viable

potassium levels inside the cell. Although the presence of Trk1,2

influences the dynamics of potassium loss under conditions of low

potassium, the regulation of their activity is not the main

regulatory process. Cells lacking these proteins have higher

intracellular potassium concentrations and the loss of potassium

after a rapid shift to low external potassium is slower than in wild

type cells. The adaptation to low potassium requires a rapid

modulation of proton fluxes as a rescue operation via the increased

production of bicarbonate and the activation of the Hz-ATPase

Pma1 (Figure 5). The observation that the internal steady state

potassium concentration is determined by the external concentra-

tion indicates, that potassium homeostasis is an example of non-

perfect adaptation, excluding the existence of integral control. The

detailed sensing and signaling mechanisms remain to be elucidated

and currently we cannot distinguish whether changes in internal or

external potassium are sensed directly or indirectly, e.g., as

changes of the membrane potential.

Although we cannot completely rule out the possibility that

other transport systems not considered in the model contribute to

homeostasis, we have reason to believe that our model covers the

Figure 3. PMA1 mutants with decreased expression and
ATPase activity. Strains RS514 (wild type, WT), RS515 (pma1–204)
and RS516 (pma1–205) were grown in YNB-based medium (supple-
mented with adenine and histidine) with 2% galactose to maintain
Pma1 activity from plasmid pYCp50-GALp::PMA1. Cells were diluted to
an OD600 of 0.04 in Translucent Kz-free medium (plus with 2%
glucose) containing 1 mM or 50 mM KCl. Growth was monitored for
17 h. Data represent the growth ratio at 1 and 50 mM KCl and are mean
+ SEM from 3 determinations.
doi:10.1371/journal.pcbi.1002548.g003
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dominant effects required for the maintenance of viable potassium

levels under starvation conditions. All experiments were per-

formed in the presence of calcium, which renders the activity of

the calcium blocked non-selective cation pathway Nsc1 unlikely.

In addition, non-specific transport of potassium is covered in the

model by the leak current. The information about potassium

storage in intracellular compartments in the literature is limited.

To test the influence of intracellular potassium fluxes originating

from an intracellular storage mechanism, we added a hypothetical

compartment which can release potassium in response to

starvation. This modification did not change the qualitative

behavior of the model and was not sufficient to explain the slow

efflux of potassium and the maintenance of sufficient intracellular

potassium after starvation. Thus, we excluded this modification

from the model.

Many cation transporters are evolutionarily conserved in other

yeast species and even in higher plants [1–3]. However, the

current knowledge for these organisms is not as detailed.

Considering the importance of ion homeostasis for some

pathogenic yeasts [40] and for the growth and development of

plants, the question of whether the regulation of proton fluxes

plays a similar dominant role as in S.c. is an interesting starting

point for future research.

The development of dynamic mathematical models requires a

compilation of all parts and processes which could potentially be

important for a cellular mechanism under consideration. Other

processes believed to be negligible are often lumped together in the

parameter values of the model. The decision of which processes to

incorporate or to neglect is often hampered by insufficient

biological knowledge. Incorporating too many details is imprac-

tical and leads to overly complex models with many parameters

and little predictive power. On the other extreme are simplistic

models which potentially neglect important processes and cannot

reproduce the experimental data. We believe that our strategy to

start with such a minimal model and to infer unmodeled dynamics

with a reverse tracking approach might be of broader interest in

systems biology. The reverse tracking algorithm provides (i)

candidate points of applications for regulatory signals not explicitly

captured by the model and (ii) an estimate of the corresponding

time dependent regulatory signal. We emphasize that these

potential regulatory signals have to be checked for biological

plausibility and have to be validated by experiments. It can be

applied when the core model for the process of interest is

‘‘underfitted’’, i.e. when it can not sufficiently reproduce the

experimental data because other regulatory process influence the

parameters in the model. Its main advantage is that it can be

applied even when an explicit modeling of the processes

generating these regulatory inputs is beyond reach. On the other

hand, the algorithm can be used as a tool for prioritizing

experiments. In combination with experiments, it also may also

help to indicate which model extensions are most promising.

Materials and Methods

Mathematical model
The basic structure of the mathematical model is given by

Equations (1–5) in the Results section. Here we report the details

Figure 4. Relationship of external and internal potassium. (A) Cells grown in 50 mM KCl were resuspended in 0.1, 0.2 and 0.5 mM KCl and the
time course of internal potassium was monitored. The lines show the data fit obtained from the reverse tracking algorithm. (B) Internal potassium
concentration in cells grown overnight at different external potassium concentrations. The steady state concentrations from (A) are indicated as
squares.
doi:10.1371/journal.pcbi.1002548.g004

Figure 5. Proposed mechanism of potassium homeostasis.
Changes of the external potassium concentration are sensed by an
unidentified sensor system either directly or indirectly, e.g, via the
membrane potential, internal potassium or pH changes. The sensor
signal triggers a modulation of proton fluxes using the bicarbonate
reaction system and the Pma1 proton pump as regulators.
doi:10.1371/journal.pcbi.1002548.g005
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of the kinetic relationships. Parameter values, initial conditions

and derivations are provided in the Text S1. In the following F , R

and T denote the Faraday constant, the gas constant and the

temperature.

Passive and secondary active potassium and proton

transport. The concentration and voltage dependent transport

currents of the passive or secondary active potassium and proton

transporters (Equations (6–11) below) are described by the

Ohmian relation I~g(Vm{E), where the conductivity g is either

constant (I leak
K and I leak

H ) or a function of the membrane voltage

(Trk1,2, Nha1, Tok1). The voltage dependent conductivity of the

transporter X[fTrk1,2,Nha1,Tok1g was described by the

function

g(Vm)~
gX

1zexp d|
zF

RT
Vm{V

1=2
X

� �� � ,

which can be derived from a simple model for the stochastic

opening and closing of a transporter or channel [27,29,41]. The

parameters d,V
1=2
X and gX for Tok1 were taken from the literature

[42]; for Trk1,2 we estimated them from electrophysiological data

[43]; see Figure S6 in Text S1. For Nha1 we assumed this voltage-

dependent conductivity on the basis of [44]. This approach leads

to the following transport kinetics (here z~1)

ITrk1,2
K ~

gTrk1,2|S

1ze
dTrk1,2| zF

RT
(Vm{V

1=2
Trk1,2

)
| Vm{ETrk1,2ð Þ ð6Þ

INha1
K ~{

gNha1|S

1ze
dNha1| zF

RT
(Vm{V

1=2
Nha1

)
| Vm{ENha1ð Þ ð7Þ

ITok1
K ~

gTok1|S

1ze
dTok1| zF

RT
(Vm{V

1=2
Tok1

)
| Vm{ETok1ð Þ ð8Þ

IK ,leak
K ~gK,leak|S| Vm{EK ,leakð Þ ð9Þ

INha1
H ~{2|INha1

K ð10Þ

IH,leak
H ~gH,leak|S| Vm{EH,leakð Þ ð11Þ

with the equilibrium potentials

ETrk1,2~EK ,leak~ETok1~
RT

zF
ln
½Kz�o
½Kz�i

ð12Þ

ENha1~{
RT

zF
ln
½Kz�i
½Kz�o

|
½Hz�2o
½Hz�2i

 !
ð13Þ

EH,leak~EH~
RT

zF
ln
½Hz�o
½Hz�i

: ð14Þ

The electric currents I are related to the mass fluxes J by

I~zF
V

A
J: ð15Þ

and the factor S~A(0)=A(t) was introduced to correctly

incorporate the dependence of the conductance parameters on

the surface area A of the cell.

The transport current for Pma1 depends on the free energy

DGATP of ATP hydrolysis and was modeled as [45]

IPma1
H ~Imax

Pma1|S|tanh
zF

2RT
Vm{ EHz

DGATP

F

� �� �� �
: ð16Þ

Bicarbonate reaction. The model in [25] for the bicarbon-

ate reaction sequence was supplemented by an effective metabolic

carbon dioxide production or consumption flux J
prod:
CO2

. The

production rate J
prod:
CO2

is an input to the model. Note that the

production changes with the volume even if the amount of

produced CO2 does not change. This is taken into account by the

relationship

J
prod:
CO2

~~JJprod:
CO2

|
V (0)

V (t)
, ð17Þ

where V (0) denotes the initial volume and ~JJprod:
CO2

is the volume

independent rate, which is input to the model.

The dynamics of CO2 in Equation (2) depends also on the

transport fluxes for carbonic acid and bicarbonate

J
transport
H2CO3

~
PH2CO3

{R ½H2CO3�o{½H2CO3�i
� �

ð18Þ

J
transport
HCO{

3
~

PHCO{
3

{R
Vm F

RT
|
½HCO{

3 �o{½HCO{
3 �ie

{Vm F
R T

1{e
{Vm F

R T

: ð19Þ

The parameters PH2CO3
and PHCO{

3
are permeabilities for

carbonic acid and bicarbonate respectively, and R is the volume

to surface ratio of the cell, see Text S1. The assumption behind

Equation (18) is that the flux of carbonic acid is proportional to its

concentration gradient. Equation (19) is a Goldman-Hodgkin-

Katz flux equation for the electrodiffusive transport of ions across

the membrane [25,41].

The fraction of total undissociated carbon dioxide

a~
½Hz�i

½Hz�iz10{pKA
ð20Þ

(pKA of carbonic anhydrase) enters the rate of proton production

in Equation (3), see Text S1 for a detailed derivation. The

production fluxes of carbonic acid and bicarbonate

J
prod:
H2CO3

~a|J
prod:
CO2

ð21Þ

J
prod:
HCO{

3
~(1{a)|J

prod:
CO2

ð22Þ

depend on a and on the production rate of carbon dioxide J
prod:
CO2

.
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Cell volume. For the dynamics of the cell volume (Equation

(5)) we used a model from the literature [28] which is based on the

balance of internal and external osmotic pressure (Pi and Po) and

turgor pressure (Pt):

Po~ ½Kz�oz½Hz�oz½Cl{�oz½CO2�oz½X �o
� �

|RT ð23Þ

Pi~
V

V{fV|V (0)
| ½Kz�iz½Hz�iz½CO2�iz½X �i
� �

|RT ð24Þ

Pt~Pt(0)|
V{kV |V (0)

V (0){kV |V (0)
ð25Þ

Pt(0)~Pi(0){Po(0): ð26Þ

Here, kV is the fraction of the non-osmotic cell volume and fV

determines the elasticity of the cell wall. The internal and external

concentration ½X �i,o of other osmotically active substances are

constant (see Text S1). A cell volume simulation for wildtype and

trk1,2 mutant can be found in Figure S5 in Text S1.

Potassium starvation. The external potassium concentra-

tion ½Kz�o is an input to the model. The shift from a medium

containing 50 mM KCl to the starvation medium was described

by

½Kz�o(t)~½Cl{�o(t)~
0:05

mmol

cm3
, for tv0sec,

15|10{6z 0:05{15|10{6
� �

|exp { t
s

� �2
� �mmol

cm3
, otherwise

8>><
>>: ð27Þ

with s~0:04|602 sec.

Reverse tracking algorithm
Equations (1–5) have the form of a differential algebraic control

system

_xx~f (x(t),u(t),h), g(x(t),u(t),h)~0 ð28Þ

with f ,g : Rn|R|Rp?Rn. Here, x denotes the dynamical

variables (x~(½Kz�i,pHi,½CO2�i,V )) and Equation (4) for the

membrane potential corresponds to the algebraic equation

g(x,u,h)~0. The scalar input function u is given by the external

potassium concentration u(t)~½Kz
o �(t). The solution of this

system for given values of the parameters h[Rp and a given input

function u(t) is denoted by x(t,u(t),h). Assume now, that we can

observe mƒn of the components xi of x experimentally. We

collect the experimentally observable components in y[Rm. This

can be written as y~Cx with a m|n matrix C with binary

elements cij[f0,1g. For an experimentally observable variable

xi~yj the i-th column of C has a single entry cji~1 andP
j cji~1. A zero column with

P
j cjk~0 indicates that xk can not

experimentally be observed and is thus excluded from y.

Assume further, that we have experimental data yexp(tk) for

certain time points tk in response to the known input function u(t).
Most parameter estimation techniques aim to minimize the

squared error

E(u,h)~
X

k

yexp(tk){y(tk)k k2 with

yexp(tk){y(tk)k k2
~
Pn
j~1

(y
exp
j (tk){yj(tk))2

over the parameter vector h in order to bring the model prediction

y(tk)~y(tk,u(t),h) for a given input u(t) close to the experimental

data yexp(tk). However, it might be the case that the minimum error

E(u(t),h?)~ minh E(u(t),h) is still too large so that the model cannot

be regarded as a reasonable description of the data. This could mean

that a dynamical process not explicitly accounted for renders at least

one component hl of the parameter vector h to be a time dependent

function instead of being constant. The reverse tracking algorithm

aims (i) to identify, which of the components hl of h are potentially time

dependent and (ii) to predict the time course hl(t) which minimizes

the error. Although the unmodeled dynamical process might effect

more than one component, we consider for simplicity each

component hl separately and solve the problem

min
hl (t)

E(u,hl(t),h
?
\l) ð29Þ

subject to the constraints

_xx~f x,u(t), hl(t),h
?
\l

� �� �
, g x,u(t), hl(t),h

?
\l

� �� �
~0, y~Cx

for each component hl separately. Here, h\l denotes the parameter

vector h with the l-th component excluded. We then regard hl(t) as a

potential regulatory input, if the problem (29) has a solution with a

minimum error smaller than a predefined threshold ew0:

minhl (t) E(u,hl(t),h
?
\l)ve. There might be more than one potential

regulatory input hl(t) and the decision of which of these are real can

only be made from biological considerations or from additional

validation experiments. For example, it might be

that hl(t) has a huge magnitude or takes unrealistic values which

could be used to exclude hl(t) from the list of potential regulatory

inputs.

Mathematically, problem (29) is an optimal tracking problem,

which often can be solved by a feedback control law [46]. This

means that the function hl(t) is updated according to the local

error y(t){yexp(t) at time t. For a scalar y we found the integral

controller [30]

d

dt
hl~g y(t){yexp(t)ð Þ ð30Þ

to be a good solution. During a reverse tracking run, this equation

is numerically integrated in parallel with the dynamic equations

(28). Here, yexp(t) is a least squares spline fit to the experimental

data points yexp(tk). Details and suitable parameter values for g
are provided in the Text S1.

Strains and medium
Details about the wildtype strain BY4741, the related trk1,2

mutant and the Translucent Kz free medium can be found in

[12,21].

Potassium starvation experiments and concentration
measurements

Cells were grown in Translucent Kz-free medium supplement-

ed with the indicated amount of KCl to an OD600 of 0.4–0.6.
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Intracellular potassium concentrations were measured by atomic

emission spectrometry after extracting the cells with acid as

previously described [12]. The time course of internal potassium

was obtained by growing the cells in 50mM KCl, then cells were

washed with Translucent Kz-free medium (traces of KCl left:

15mM) and resuspended to the same Kz free medium or

containing the indicated KCl concentrations. Apart from the

washing procedure the medium contains 2% glucose.

Gene expression measurements for NCE103 coding for
carbonic anhydrase

Data for NCE103 expression changes upon potassium starvation

was obtained in the context of a genome-wide transcriptomic

analysis by DNA microarray (Barreto et al., Manuscript submitted).

Microarray data has been deposited at NCBI’s Gene Expression

Omnibus [47] and are accessible through GEO Series accession

numbers GSE24711 (trk1 trk2 data) and GSE24712 (time-course

data). Briefly, wild-type strain BY4741 cells were grown in

Translucent medium supplemented with 50 mM KCl to OD 0.8.

Cells were centrifuged and resuspended either in fresh Translucent

medium with 50 mM KCl or without potassium. Samples (20 ml)

were taken at 10, 20, 40, 60 and 120 min by rapid filtration from 4

biological replicates. Total RNA was extracted by using the Ribo

PureTM Yeast kit (Ambion) following the manufacturers instruc-

tions. cDNA was prepared and indirectly labeled with Cy3 and Cy5.

Images with a resolution of 10 mm were analyzed with the GenePix

Pro 6.0 software (Molecular Devices).

Microarray data was confirmed by qRT-PCR using indepen-

dent RNA samples. To this end, 60 ng of RNA were amplified

using oligonucleotides RT_ NCE103_5 (TCATTACCTGTCG-

CACTG) and RT_ NCE103_3 (CACAAAAGTTACCCCAAAA)

and the QuantiTect SYBR Green PCR Kit (Quiagen).

Membrane isolation and determination of Pma1 activity
Cell cultures were grown at 280C in Translucent YNB medium

containing 50mM KCl to OD660 0.6, then washed with

Translucent Kz- free medium and resuspended in the same

medium without KCl. At the indicated times, cell samples were

pelleted by centrifugation, resuspended in 100ml of fresh media

(with KCl for t = 0 and without KCl for the remaining samples),

incubated for 5 minutes and frozen in liquid nitrogen. For the crude

membrane purification, 100ml of 36extraction buffer (0.3 M Tris-

HCl pH 8.0, 180 mM KCl, 30 mM EDTA, 6 mM DTT and

Protease Inhibitor Cocktail (Roche)) was added to the thawed

samples and cells were broken by vortexing in the presence of an

equal volume of glass beads. 600ml of GTED20 buffer (20%

glycerol, 10 mM Tris-HCl pH 7.6, 1 mM EDTA and 1 mM DTT)

were added to the crude extract, which was then centrifuged

5 minutes at 2000 rpm. The supernatant was transferred to a new

tube and centrifuged 20 minutes at 13000 rpm. The insoluble

fraction was resuspended and homogenized in 100ml of GTED20.

The total amount of protein present was estimated using the

Bradford assay (BioRad). The amount of Pma1 present in this

protein fraction was estimated by comparing the amount of Pma1 to

a protein standard curve separated in SDS-PAGE gels stained with

Coomassie Blue. In a microtiter plate, 6mg of total protein (which

corresponds to 0:3mg of Pma1) were assayed in the presence and

absence of a Pma1-specific inhibitor, dietilstylbestrol (DES, final

concentration 0.2 mM). The reaction was started by adding 65ml of

the reaction buffer (50 mM MES-Tris pH 5.7, 5 mM MgSO4,

50 mM KNO3, 5 mM Na Azide, 0.3 mM Molybdate, 2 mM ATP)

and the plate was incubated for 20 minutes at 300C. The reaction

was stopped by adding 130ml of detection solution (2% sulphuric

acid, 0.5% ammonium molybdate, 0.5% SDS, 0.1% ascorbic acid)

and the color was allowed to develop for 5 minutes before reading

the absorbance in microplate reader (BioRad) at 750 nm. Residual

activity values in the presence of DES were subtracted from the

absolute activity values to obtain the Pma1 activity measurements.

The results represent the average of at least 4 measurements at each

time point and essentially identical results were observed in two

separate experiments. Measurements of Pma1 activity are expressed

in mmol/min/g Pma1. Error bars represent the standard deviation.

Supporting Information

Text S1 Supporting text containing additional information

about the mathematical model.

(PDF)
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A genomewide screen for tolerance to cationic drugs reveals genes important for

potassium homeostasis in Sac charomyces cerevisiae. Eukaryot Cell 10: 1241–

1250.

37. Amoroso G, Morell-Avrahov L, Müller D, Klug K, Sültemeyer D (2005) The

gene NCE103 (YNL036w) from Saccharomyces cerevisiae encodes a functional

carbonic anhydrase and its tran scription is regulated by the concentration of

inorganic carbon in the medium. Mol Microbiol 56: 549–558.

38. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature

387: 913–917.

39. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in

bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A

97: 4649–4653.

40. Miranda M, Bashi E, Vylkova S, Edgerton M, Slayman C, et al. (2009)

Conservation and dispersion of sequence and function in fungal TRK potassium

transporters: focus on Candida albicans. FEMS Yeast Res 9: 278–292.

41. Hille B (2001) Ion channels of excitable membranes. Sunderland: Sinauer.

42. Johansson I, Blatt M (2006) Interactive domains between pore loops of the yeast

K+ channel Tok1 associate with extracellular K+ sensitivity. Biochem J 393:

645–655.

43. Kuroda T, Bihler H, Bashi E, Slayman C, Rivetta A (2004) Chloride channel

function in the yeast Trk-potassium transporters. J Membr Biol 198: 177–192.

44. Ohgaki R, Nakamura N, Mitsui K, Kanazawa H (2005) Characterization of the

ion transport activity of the budding yeast Na+/H+ antiporter, Nha1p, using

isolated secretory vesicles. Biochim Biophys Acta 1712: 185–196.

45. Endresen LP, Hall K, Hoye JS, Myrheim J (2000) A theory for the membrane

potential of living cells. Eur Biophys J 29: 90–103.

46. Xian B, Dawson DM, de Queiroz MS, Chen J (2003) A continuous asymptotic

tracking control strategy for uncertain multi-input nonlinear systems. In:

Proceedings of Intelligent Control 2003 IEEE Int Symp; 8 October 2003. pp.

52–57. doi:10.1109/ISIC.2003.1253913.

47. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: Ncbi gene

expression and hybridization array data repository. Nucleic Acids Res 30: 207–

210.

Potassium Starvation in Yeast

PLoS Computational Biology | www.ploscompbiol.org 11 June 2012 | Volume 8 | Issue 6 | e1002548


