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Abstract—The goal of this paper is to identify individuals
by analyzing their gait. Instead of using binary silhouettes
as input data (as done in many previous works) we propose
and evaluate the use of motion descriptors based on densely
sampled short-term trajectories. We take advantage of state-of-
the-art people detectors to define custom spatial configurations
of the descriptors around the target person. Thus, obtaining a
pyramidal representation of the gait motion. The local motion
features (described by the Divergence-Curl-Shear descriptor [1])
extracted on the different spatial areas of the person are combined
into a single high-level gait descriptor by using the Fisher Vector
encoding [2]. The proposed approach, coined Pyramidal Fisher
Motion, is experimentally validated on the recent ‘AVA Multiview
Gait’ dataset [3]. The results show that this new approach
achieves promising results in the problem of gait recognition.

I. INTRODUCTION

The term gait refers to the way each person walks.
Actually, humans are good recognizing people at a distance
thanks to their gait [4], what provides a good (non invasive)
way to identify people without requiring their cooperation, in
contrast to other biometric approaches as iris or fingerprint
analysis. One potential application of gait recognition is video
surveillance, where it is crucial to identify dangerous people
without their cooperation. Although great effort has been put
into this problem in recent years [5], it is still far from solved.

Popular approaches for gait recognition require the com-
putation of the binary silhouettes of people [6], usually, by
applying some background segmentation technique. However,
this is a clear limitation in presence of dynamic backgrounds
and/or non static cameras, where noisy segmentations are
obtained. To deal with these limitations, we propose the use
of descriptors based on the local motion of points. These kind
of descriptors have become recently popular in the field of
human action recognition [7]. The main idea is to build local
motion descriptors from densely sampled points. Then, these
local descriptors are aggregated into higher level descriptors
by using histogram-based techniques (e.g. Bag of Words [8]).

Therefore, our research question is: could we identify
people by using only local motion features as represented in
Fig. 1? We represent in Fig. 1 the local trajectories of image
points belonging to four different people. Our goal is to use
each set of local trajectories to build a high-level descriptor
that allows to identify individuals. In this paper we introduce

a new gait descriptor, coined Pyramidal Fisher Vector, that
combines the potential of recent human action recognition
descriptors with the rich representation provided by Fisher
Vectors encoding [2]. A thorough experimental evaluation is
carried out on the recent ‘AVA Multiview Gait’ dataset showing
that our proposal contributes to the challenging problem of gait
recognition by using a modern computational approach.

Fig. 1. Who are they? The goal of this work is to identify people by using
their gait. We build the Pyramidal Fisher Motion descriptor from trajectories
of points. We represent here the gait motion of four different subjects.

This paper is organized as follows. After presenting the
related work, we describe our proposed framework for gait
recognition in Sec. II. Sec. III is devoted to the experimental
results. And, finally, the conclusions and future work are
presented in Sec. IV.

A. Related work

Many research papers have been published in recent years
tackling the problem of human gait recognition. For example,
in [5] we can find a survey on this problem summarizing some
of the most popular approaches. Some of them use explicit
geometrical models of human bodies, whereas others use only
image features. A sequence of binary silhouettes of the body
is adopted in many works as input data. In this sense, the
most popular silhouette-based gait descriptor is the called Gait
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Fig. 2. Pipeline for gait recognition. a) The input is a sequence of video frames. b) Densely sampled points are tracked. c) People detection helps to remove
trajectories not related to gait. d) A spatial grid is defined on the person bounding-box, so features are spatially grouped to compute a descriptor per cell. Then,
those descriptors are concatenated into a single descriptor.

Enery Image (GEI) [9]. The key idea is to compute a temporal
averaging of the binary silhouette of the target subject. Liu
et al. [10], to improve the gait recognition performance,
propose the computation of HOG descriptors from popular
gait descriptors as the GEI and the Chrono-Gait Image (CGI).
In [11], the authors try to find the minimum number of gait
cycles needed to carry out a successful recognition by using the
GEI descriptor. Martin-Felez and Xiang [6], using GEI as the
basic gait descriptor, propose a new ranking model for gait
recognition. This new formulation of the problem allows to
leverage training data from different datasets, thus, improving
the recognition performance. In [12], Akae et al. propose a
temporal super resolution approach to deal with low frame-rate
videos for gait recognition. They achieve impressive results by
using binary silhouettes of people at a rate of 1-fps.

On the other hand, human action recognition (HAR) is
related to gait recognition in the sense that the former also
focuses on human motion, but tries to categorize such motion
into categories of actions as walking, jumping, boxing, etc.
In HAR, the work of Wang et al. [7] is a key reference.
They introduce the use of short-term trajectories of densely
sampled points for describing human actions, obtaining state-
of-the-art results in the HAR problem. The dense trajectories
are described with the Motion Boundary Histogram. Then,
they describe the video sequence by using the Bag of Words
(BOW) model [8]. Finally, they use a non-linear SVM with χ2-
kernel for classification. In parallel, Perronnin and Dance [13]
introduced a new way of histogram-based encoding for sets of
local descriptors for image categorization: the Fisher Vector
(FV) encoding. In FV, instead of just counting the number of
occurrences of a visual word (i.e. quantized local descriptor)
as in BOW, the concatenation of gradient vectors of a Gaussian
Mixture is used. Thus, obtaining a larger but richer represen-
tation of the image.

Borrowing ideas from the HAR and the image categoriza-
tion communities, we propose in this paper a new approach for
gait recognition that combines low-level motion descriptors,
extracted from short-term point trajectories, with a multi-
level gait encoding based on Fisher Vectors: the Pyramidal
Fisher Motion (PFM) gait descriptor. We have discovered at
submission time of this paper a very recent publication that
shares some of our ideas, the work of Gong et al. [14]. It
is similar to ours in the sense that they propose a method
that uses dense local spatio-temporal features and a Fisher-
based representation rearranged as tensors. However, there are
some significant differences: (i) instead of using all the local

features available in the sequence, we use a person detector
to focus only on the ones related to the target subject; (ii) the
information provided by the person detector enables a richer
representation by including coarse geometrical information
through a spatial grid defined on the person bounding-box;
and, (iii) instead of dealing with a single camera viewpoint,
we integrate in our system several camera viewpoints.

II. PROPOSED FRAMEWORK

In this section we present our proposed framework to
address the problem of gait recognition. Fig. 2 summarizes
the pipeline of our approach. We start by computing local
motion descriptors from tracklets of densely sampled points
on the whole scene (Fig. 2.b – Sec. II-A). Since, we do
not assume a static background, we run a person detector to
remove the point trajectories that are not related to people
(Fig. 2.c –Sec. II-B). In addition, we spatially divide the person
regions to aggregate the local motion descriptors into mid-
level descriptors (Fig. 2.d –Sec. II-C). Finally, a discriminative
classifier is used to identify the subjects (Sec. II-D).

A. Motion-based features

The first step of our pipeline is to compute densely sampled
trajectories. Those trajectories are computed by following the
approach of Wang et al. [7]. Firstly, dense optical flow F =
(ut, vt) is computed [15] on a dense grid (i.e. step size of 5
pixels and over 8 scales). Then, each point pt = (xt, yt) at
frame t is tracked to the next frame by median filtering as
follows:

pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ F )|(x̄t,ȳt) (1)

where M is the kernel of median filtering and (x̄t, ȳt) is
the rounded position of pt. To minimize drifting effect, the
tracking is limited to L frames. We use L = 15 as in [1]. As a
postprocessing step, noisy and uninformative trajectories (e.g.
excessively short or showing sudden large displacements) are
removed.

Once the local trajectories are computed, they are described
with the Divergence-Curl-Shear (DCS) descriptor proposed by



Jain et al. [1], which is computed as follows:



div(pt) =
∂u(pt)

∂x
+
∂v(pt)

∂y

curl(pt) =
−∂u(pt)

∂y
+
∂v(pt)

∂x

hyp1(pt) =
∂u(pt)

∂x
− ∂v(pt)

∂y

hyp2(pt) =
∂u(pt)

∂y
+
∂v(pt)

∂x

(2)

As described in [1], the divergence is related to axial
motion, expansion and scaling effects, whereas the curl is
related to rotation in the image plane. From the hyperbolic
terms (hyp1, hyp2), we can compute the magnitude of the shear
as:

shear(pt) =

√
hyp2

1(pt) + hyp2
2(pt) (3)

B. People detection and tracking

We follow a tracking-by-detection strategy as in [16]: we
detect full bodies with the detection framework of Felzen-
szwalb et al. [17]; and, then, we apply the clique partitioning
algorithm of Ferrari et al. [18] to group detections into tracks.
Short tracks with low-scored detections are considered as false
positives and are discarded for further processing. In addition,
to remove false positives generated by static objects, we
measure the displacement of the detection along the sequence.
Thus, discarding those tracks showing a static behaviour.

The tracks finally kept are used to filter out the trajectories
that are not related to people: we only keep the trajectories
that pass through, at least, one bounding-box of any track. In
this way, we can focus on the trajectories that should contain
information about the gait.

C. Pyramidal Fisher Motion

Fisher Vector encoding. As described above, our low-level
features are based on motion properties extracted from person-
related local trajectories. In order to build a person-level
gait descriptor, we need to summarize the local features. We
propose here the use of Fisher Vectors (FV) encoding [2].

The FV, that can be seen as an extension of the Bag of
Words (BOW) representation [8], builds on top of a Gaussian
Mixture Model (GMM), where each Gaussian corresponds to a
visual word. Whereas in BOW, an image is represented by the
number of occurrences of each visual word, in FV an image
is described by a gradient vector computed from a generative
probabilistic model.

Assuming that our local motion descriptors {xt ∈ RD, t =
1 . . . T} of a video V are generated independently by a GMM
p(x|λ) with parameters λ = {wi, µi,Σi, i = 1 . . . N}, we can
represent V by the following gradient vector [13]:

Gλ(V ) =
1

T

T∑
t=1

∇λ log p(xt|λ) (4)

L0

L1

L2

PFM

Fig. 3. Pyramidal Fisher Motion descriptor. Fisher Vector encoding is used
at each spatial region on the Divergence-Curl-Shear descriptors computed on
the dense trajectories enclosed in the person bounding-box. All Fisher Vectors
are concatenated to obtain the final PFM gait descriptor.

Following the proposal of [2], to compare two videos V
and W , a natural kernel on these gradients is the Fisher Kernel:
K(V,W ) = Gλ(V )TF−1

λ Gλ(W ), where Fλ is the Fisher
Information Matrix [19].

As Fλ is symmetric and positive definite, it has a Cholesky
decomposition F−1

λ = LTλLλ, and K(V,W ) can be rewrit-
ten as a dot-product between normalized vectors Γλ with:
Γλ(V ) = LλGλ(V ). Then, Γλ(V ) is known as the Fisher
Vector of video V. As stated in [2], the capability of description
of the FV can be improved by applying it a signed square-root
followed by L2 normalization. So, we adopt this finding for
our descriptor.

The dimensionality of FV is 2ND, where N is the number
of Gaussians in the GMM, and D is the dimensionality of
the local motion descriptors xt. For example, in our case, the
dimensionality of the local motion descriptors is D = 318, if
we use N = 100 Gaussians, then, the FV would have 63600
dimensions. In this paper, we will use the term Fisher Motion
(FM) to refer to the FV computed on a video from low-level
motion features.

Pyramidal representation. We borrow from [20] the idea
of building a pyramidal representation of the gait motion.
Since each bounding-box covers the whole body of a single
person, we propose to spatially divide the BB into cells. Then,
a Fisher vector is computed inside each cell of the spatio-
temporal grid. We can build a pyramidal representation by
combining different grid configurations. Then, the final feature
vector, used to represent a time interval, is computed as the
concatenation of the cell-level Fisher vectors from all the levels
of the pyramid. This idea is represented in Fig.3, where each
colored segment of the PFM descriptor comes from a different
level of the pyramid.



Fig. 4. AVAMVG dataset. Different people recorded from six camera viewpoints. The dataset contains both female and male subjects performing different
trajectories through the indoor scenario. Note that cameras 3rd and 6th (from left to right) are prone to show people partially occluded.

D. Classification

The last stage of our pipeline is to train a discriminative
classifier to distinguish between the different human gaits.
Since, this is a multiclass problem, we train P binary linear
Support Vector Machines (SVM) [21] (as many as different
people) in a one-vs-all strategy. Although the χ2 kernel [22] is
a popular choice for BOW-based descriptors, a linear kernel is
typically enough for FV, due to the rich feature representation
that it provides.

E. Implementation details

For people detection, we use the code published by the
authors of [17]. For computing the local motion features, we
use the code published by the authors of [1]. The Fisher Vector
encoding and the classification is carried out by using the code
included in the library VLFeat 1.

III. EXPERIMENTAL RESULTS

We carry out diverse experiments in order to validate
our approach. With these experiments we try to answer the
following questions: a) is the combination of trajectory-based
features with FV a valid approach for gait recognition?; b) can
we learn different camera viewpoints in a single classifier?; c)
can we improve the recognition rate by spatially dividing the
human body region?; d) what is the effect of using PCA-based
dimesionally reduction on the recognition performance?; and,
e) can the proposed model generallize well on unrestricted
walk trajectories?

A. Dataset

We perform our experiments on the “AVA Multi-View
Dataset for Gait Recognition” (AVAMVG) [3]. In AVAMVG
20 subjects perform 10 walking trajectories in an indoor
environment. Each trajectory is recorded by 6 color cameras
placed around a room that is crossed by the subjects during the
performance. Fig. 4 shows the scenario from the six available
camera viewpoints. Note that depending on the viewpoint and
performed trajectory, people appear at diverse scales, even
showing partially occluded body parts. In particular, the 3rd
and 6th camera viewpoints represented in Fig. 4 are more likely
to show partially visible bodies most of the time than the other
four cameras. Therefore, in our experiments, and without loss
of generality, we will use only four cameras (i.e. {1, 2, 4, 5}).
Trajectories 1 to 3 follow a linear path, whereas the remaining
seven trajectories are curved. The released videos have a
resolution of 640 × 480 pixels. Each video has around 375
frames, where only approximately one third of the frames
contains visible people.

1VLFeat 0.9.17 is available at http://www.vlfeat.org/

B. Experimental setup

Since we have multiple viewpoints of each instance (i.e.
pair subject–trajectory), we assign a single label to it by
majority voting on the viewpoints. This approach helps to deal
with labels wrongly assigned to individual viewpoints. Note
that instead of training an independent classifier (see Sec. II-D)
per camera viewpoint, we train a single classifier with samples
obtained from different camera viewpoints, allowing the clas-
sifier to learn the relevant gait features of each subject from
multiple viewpoints. In order to increase the amount of training
samples, we generate their mirror sequences, thus, doubling
the samples during learning.

We describe below the different experiments performed to
give answer to the questions stated at the beginning of this
section.

Experiment A: baseline. We use the popular Bag of Words
approach (BOW) [8] as baseline, which is compared to our
approach. For this experiment, we use trajectories 1, 2 and
3 (i.e. straight path). We use a leave-one-out strategy on the
trajectories (i.e. two for training and one for test). We sample
dictionary sizes in the interval [500, 4000] for BOW 2, and in
the interval [50, 200] for PFM. Both BOW and PFMs have a
single level with two rows and one column (i.e. concatenation
of two descriptors: half upper-body and half lower-body).

Experiment B: half body features. Focusing on PFM, we
compare four configurations of the PFM on trajectories 1, 2
and 3: a) no spatial partition of the body; b) using only the top
half of the body; c) using only the bottom half of the body;
and, d) using the concatenation of the top and bottom half of
the body.

Experiment C: dimensionality reduction. Since the dimen-
sionallity of PFM is typically large, we evaluate in this
experiment the impact of dimensionality reduction on the
final recognition performance. We run Principal Component
Analysis (PCA) both on the original low-level features (318
dimensions), and on the PFM vectors. We use the PFM
descriptor, as in experiment A, on trajectories 1, 2 and 3.

Experiment D: training on straight paths and testing on
curved paths. In this experiment, we use the PFM descriptor
as in experiment A. We use trajectories 1 to 3 for training,
and trajectories 4, 7 and 10 for testing. Note that in the
latter sequences, the subjects perform curved trajectories, thus,
changing their viewpoint (with regard to a given camera).

2Larger dictionary sizes for BOW did not show any significative improve-
ment. In contrast, the computational time increased enormously.

http://www.vlfeat.org/


TABLE I. COMPARISON OF RECOGNITION RESULTS. EACH ENTRY CONTAINS THE PERCENTAGE OF CORRECT RECOGNITION IN THE MULTIVIEW
SETUP AND, IN PARENTHESIS, THE RECOGNITION PER SINGLE VIEW. EACH ROW CORRESPONDS TO A DIFFERENT CONFIGURATION OF THE GAIT

DESCRIPTOR. K IS THE GMM SIZE USED FOR FM. BEST RESULTS ARE MARKED IN BOLD. (SEE MAIN TEXT FOR FURTHER DETAILS.)

Experiment K Trj=1+2 Trj=1+3 Trj=2+3 Avg

BOW 4000 95 (78.8) 85 (62.5) 100 (84.4) 93.3 (75.2)

PFM-FB 150 100 (98.8) 100 (95) 100 (100) 100 (97.9)

PFM-H1 150 100 (95) 100 (87.5) 100 (97.5) 100 (93.3)

PFM-H2 150 100 (97.5) 95 (93.8) 100 (97.5) 98.3 (96.3)

PFM 150 100 (98.8) 100 (96.2) 100 (97.5) 100 (97.5)

PFM+PCAL50 150 100 (100) 100 (97.5) 100 (98.8) 100 (98.8)

PFM+PCAH256 100 100 (100) 100 (97.5) 100 (98.8) 100 (98.8)

PFM+PCAL100+PCAH256 150 100 (100) 100 (97.5) 100 (98.8) 100 (98.8)

PFM+PCAL50+PCAH256+pyr 100 100 (100) 100 (97.5) 100 (98.8) 100 (98.8)

C. Results

We present here the results of the experiments described
above.

The results shown in Tab. I correspond to experiments A,
B and C (see Sec. III-B) and have been obtained by training
on two of the three straight trajectories ({1, 2, 3}) and testing
on the remaining one (e.g. ‘Trj=1+2’ indicates training on
trajectories #1 and #2, then, testing on trajectory #3). There-
fore, each model is trained with 160 samples (i.e. 20 subjects
× 4 cameras × 2 trajectories) and tested on 80 samples.
Each column ‘Trj=X+Y’ contains the percentage of correct
recognition per partition at instance level (i.e. combining the
four viewpoints) and, in parenthesis, at video level; column
‘Avg’ contains the average on the three partitions. Column
K refers to the number of centroids used for quantizing
the low-level features in each FM descriptor. Row ‘BOW’
corresponds to the baseline approach (see Sec. III-B). Row
‘PFM-FB’ corresponds to the PFM on the full body (no
spatial partitions). Rows ‘PFM-H1’and ‘PFM-H2’ correspond
to PFM on the top half and on the bottom half of the body,
respectively. Row ‘PFM’ corresponds to a single-level PFM
obtained by the concatenation of the descriptors extracted from
both the top and bottom half of the body. Row ‘PFM+PCAL50’
corresponds to our proposal but reducing with PCA the di-
mensionality of the low-level motion descriptors to 50 before
building our PFM (i.e. final gait descriptor with K = 150
is 15000-dimensional). Row ‘PFM+PCAH256’ corresponds to
our proposal but reducing with PCA the dimensionality of our
final PFM descriptor to 256 dimensions before learning the
classifiers (i.e. final gait descriptor is 256-dimensional). Row
‘PFM+PCAL100+PCAH256’ corresponds to our proposal but
reducing both the dimensionality of the low-level descriptors
and the final PFM descriptor (i.e. final gait descriptor is
256-dimensional). Row ‘PFM+PCAL50+PCAH256+pyr’ cor-
responds to a two-level pyramidal configuration where the first
level has no spatial partitions and the second level is obtained
by dividing the bounding box in two parts along the vertical
axis, as done previously. In addition, PCA is applied to both
the low-level descriptors and the final PFM vector.

The results shown in Tab. II correspond to experiment
D (see Sec. III-B) and have been obtained by training on
trajectories {1, 2, 3} (all in the same set), and testing on
trajectories {4, 7, 10} (see corresponding columns). As done
in the previous experiments, different configurations of PFM

TABLE II. COMPARATIVE OF RECOGNITION RESULTS ON CURVED
TRAJECTORIES. TRAINING ON TRAJECTORIES 1 + 2 + 3. EACH COLUMN
INDICATES THE TESTED TRAJECTORY AND EACH ROW CORRESPONDS TO A

DIFFERENT CONFIGURATION OF THE GAIT DESCRIPTOR. K IS THE GMM
SIZE USED FOR FM. BEST RESULTS ARE MARKED IN BOLD.

Experiment K Test=04 Test=07 Test=10

PFM 150 90 (75) 95 (91.3) 95 (81.0)

PFM+PCAL100 150 90 (72.5) 95 (92.5) 80 (77.2)

PFM+PCAL100+PCAH256 150 90 (73.8) 95 (90) 85 (81.1)

PFM+PCAL50+PCAH256+pyr 100 95 (80) 90 (88.8) 85 (82.3)

PFM+PCAL50+PCAH256+pyr 150 90 (75) 95 (90) 90 (87.3)

PFM+PCAL100+PCAH256+pyr 150 85 (71.3) 95 (92.5) 85 (82.3)

have been evaluated. Each entry of the table contains the
percentage of correct recognition in the multiview setup and,
in parenthesis, the recognition per video.

D. Discussion

The results presented in Tab. I indicate that the proposed
pipeline is a valid approach for gait recognition, obtaining
a 100% of correct recognition on the multiview setup. In
addition, the FV-based formulation surpasses the BOW-based
one, as stated by other authors in the problem of image
categorization [2]. In addition, the large dimensionality of the
PFM can be drastically reduced by applying PCA, without
worsening the final performance. Actually, reducing the di-
mensions of the low-level motion descriptors to 100, and the
final PFM to 256, allows to achieve a similar recognition
rate but decreasing significantly the computational complexity
(≈ ×370 smaller with K = 150).

If we focus on the idea of spatially dividing the human
body for computing different gait descriptors, the results show
that the most discriminant features are localized on the lower-
body (row ‘PFM-H2’), what confirms our intuition (i.e. gait is
mostly defined by the motion of the legs). In addition, although
in a slight manner (see values in parenthesis), the upper-body
features (row ‘PFM-H1’) contribute to the definition of the gait
as well.

Focusing on Tab. II, we can observe that PFM generalizes
fairly well, as derived from the results obtained when testing
on curved trajectories. From the three tested trajectories, the
number #04 resulted to be the hardest when trying to classify
per individual cameras (i.e. values in parenthesis). However,



the use of the majority voting strategy on the multiview setup
clearly contributed to boost the recognition rate (e.g. from 80
to 95).

With regard to the use of more than one level in PFM,
we can see in Tab. I that similar results are obtained with
the single- and two-level configurations. However, in the two-
levels case, the number of needed GMMs is lower (i.e. 100 vs
150) than with single-level, as well as the low-level features
can be reduced to half size (i.e. 50 vs 100). In addition, in the
experiment on the curved trajectories (Tab. II), we can find in
many cases an improvement at video level (e.g. 75 to 80 in
trajectory #04). Although we tried an additional third level in
the pyramid, the recognition rate did not increase.

In addition to the reported experiments, we also experi-
mented with splitting the curved video sequences along the
temporal axis to try to find nearly linear trajectories that could
be better classified. However, the results did not show any
improvement.

In summary, we can conclude that the proposed PFM
allows to identify subjects by their gait by using as basis
local motion (i.e. short-term trajectories) and coarse structural
information (i.e. spatial divisions on the person bounding-box).
Moreover, PFM does not need either segmenting or aligning
the gait cycle of each subject as done in previous works.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a new approach for recognizing human
gait in video sequences. Our method builds a pyramidal
representation of the human gait based on the combination
of densely sampled local features and Fisher vectors: the
Pyramidal Fisher Motion.

The results show that PFM allows to obtain a high recog-
nition rate on a multicamera setup: the AVAMVG dataset. In
particular, a perfect identification of the individuals is achieved
when we combine information from different cameras and
the subjects follow a straight path. In addition, our pipeline
shows a good behaviour on unconstrained paths, as shown by
the experimental results – the model is trained on subjects
performing straight walking trajectories and tested on curved
trajectories. With regard to the PFM configuration, we have
observed that it is beneficial to decorrelate (by using PCA)
both the low-level motion features and the final PFM de-
scriptor in order to achieve high recognition results and, in
turn, decreasing the computational burden at test time – the
classification with a linear SVM is extremely fast on 256-
dimensional vectors. Since we use a person detector to localize
the subjects, the proposed system in not restricted to deal
with scenarios with static backgrounds. Moreover, the motion
features used in this paper can be easily adapted to non static
cameras by removing the global affine motion as proposed
recently by Jain et al. [1].

In conclusion, PFM enables a new way of tackling the
problem of gait recognition on multiple viewpoint scenarios,
removing the need of using people segmentation as mostly
done so far.

As future work, we intend to evaluate the proposed method
on additional multiview datasets that include both people
carrying objects and impostors (i.e. people external to the

learnt subjects). With regard to the latter issue, as we use the
continous output of the SVM to decide the identity, we could
eventually discard impostors by thresholding such value.
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