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1. Introduction 
 

Coenzyme Q (Q) is a prenylated benzoquinone present in all eukaryotes organisms. It is 

localized mainly in mitochondria but is also present in all cellular membranes. This 

molecule, apart from participates as electron carrier in the electron transport chain, has a 

role in numerous important cellular functions such as metabolism, antioxidant protection 

and signal regulation. The biosynthesis of Q is a not completely characterized process 

that can be divided into three main steps: the synthesis of the polyisoprenoid tail through 

the mevalonate pathway in eukaryotes, the attachment of the tail to the benzoquinone ring 

precursor and, finally, the subsequent modifications of the ring to yield the final product. 

The prenylated chain is produced by a trans-polyprenyl transferase (called PDSS1-PDSS2 

in mammals), which is specie-specific giving the different lengths of the isoprenoid side 

chain. For example, S. cerevisiae produce Q6 while bacteria produce Q8 and rodents and 

humans produced both, Q9 and Q10. The well-known ring precursor of Q, 4-

hydroxybenzoic acid (4HB), is derived from tyrosine and phenylalanine in mammals, 

although other phenolic compounds are also able to serve as Q ring precursors. The 

enzyme COQ2 mediates the condensation of the isoprenoid tail with a quinone ring 

precursor generating a membrane-bound Q precursor, which is modified by COQ proteins 

(COQ3-COQ11) in a sequence of enzymatic reactions that includes one decarboxylation, 

three hydroxylations, two O-methylations and one C-methylation to form the final 

product. It is well known that tissue levels of Q are regulated in response to a number of 

physiological, experimental and pathological alterations. Given the essential functions of 

Q, a deficit in this molecule leads to a number of mitochondrial disorders with 

heterogeneous clinical symptoms. Q10 deficiency is unique among mitochondrial 

disorders because oral supplementation with exogenous Q10 can improve clinical 

symptoms, however, oral Q has low bioavailability and its final destination is not the 

inner mitochondrial membrane as in the case of endogenous Q. For these reasons, recent 

research is focus on alternative procedures able to induce endogenous Q biosynthesis. 

The mevalonate pathway, which involve the biosynthesis of the polyisoprenoid side chain 

of Q, also produces other isoprenoids compounds that are of vital importance for diverse 

cellular functions. Several regulators of this pathway have been described, being the most 

important: statins and bisphosphonates. Statins inhibit the HMG-CoA reductase, an 

upstream enzyme of the pathway, resulting in a depletion of all the downstream 
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metabolites of the pathway, especially cholesterol, making these compounds a main 

therapy to lower cholesterol levels. Moreover, numerous studies in animals and humans 

have stablished the statin-induced Q depletion as a well-documented event. On the other 

hand, nitrogen-containing bisphosphonates (NBPs) have been used as primary therapy 

for bone disorders, due their ability to selectively bind bone and impaired the bone 

reabsorption. NBPs inhibit mainly the so-called branch point enzyme of the mevalonate 

pathway, farnesyl diphosphate synthase (FDPS), but also inhibit other enzymes such as 

geranylgeranyl diphosphate synthase (GGDPS) and squalene synthase (SQS). The 

evidence of the role of NBPs on the regulation of Q is limited to a few studies. A decrease 

of this lipid is described in mice macrophages, in Hep G2 cells treated with risendronate 

as well as in human plasma of postmenopausal women with osteoporosis treated with 

zoledronic acid. 

Phenolic compounds are secondary metabolites in plants with a common aromatic ring 

bearing one or more hydroxyl groups. Focusing on their structure, they are classified 

broadly into simple and complex phenolics (or polyphenols) or, by abundance, in two big 

groups: flavonoids and non-flavonoids compounds. Polyphenols, which are widely 

present in foods and beverages of plant origin, have received great interest during the last 

years due to their positive effects on human health. The beneficial properties of dietary 

polyphenols have been partially attributed to their antioxidant role as well as to their 

ability to modulate molecular targets and signaling pathways. Phenolic acids such as 

4HB, vanillic acid, protocatechuic acid and p-coumarate as well as the stilbenoid 

resveratrol function as Q ring precursors in yeast and mammals. Moreover, a large list of 

phenolic acids display an inhibitory effect on upstream enzymes of the mevalonate 

pathway, when present at high concentrations. Apart from the role that some phenolic 

compounds play in the biosynthesis of Q, little is known about the possible interaction 

between more complex polyphenols and the metabolism or regulation of Q.  

Fatty acids are biomolecules composed by a carboxyl group linked to a long hydrocarbon 

chain. They are rarely free in nature but, rather, are found taking part of complex lipid 

molecules and being the fundamental components of biological membranes. Attending to 

the presence of double bounds between the carbons of the lateral chain, fatty acids can be 

classified into saturated (no double bond is present in the hydrocarbon chain) and 

unsaturated fatty acids (at least one double bound is present between two carbons of the 
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chain). Within the unsaturated fatty acids, two groups are stablished according to the 

number of double bonds present in the molecule: monounsaturated fatty acids (MUFA) 

and polyunsaturated fatty acids (PUFA). Cells are not able to produce all types of fatty 

acids it requires, but some of them must come from diet. These fatty acids are called 

“essential fatty acids”. There are two known families of essential fatty acids, the n-3 and 

the n-6 series. Due to essential fatty acids are obtained directly from the diet, it fat and oil 

composition has important long-term consequences for health. Some studies have 

described the ability of biological membranes to adapt its phospholipid composition 

according to the major lipid source present in the diet, so a modification in the lipid pattern 

could produce biochemical alterations in cells, especially mitochondrial membranes. 

PUFA sources, such as soybean or fish oil, will generate membranes more susceptible to 

oxidative stress than a SFA or a MUFA source, like animal fat and olive oil, respectively. 

Some studies revealed that different dietary fats influenced the mitochondrial levels of Q9 

and Q10 in rat liver, being the n-6 PUFA the one that produced the biggest increase. 

Moreover, previous studies in our group revealed a fast regulation of mice Q biosynthesis, 

which involved COQ genes and COQ proteins, after 1 month of dietary intervention with 

different fat sources. Concretely, a n-3 PUFA rich diet (based on fish oil) induced the 

differential expression of COQ genes in liver, kidney, skeletal muscle, brain and heart. 

Additional studies revealed that Q plays an important role in protecting eukaryotic cells 

from the autoxidation products of PUFA. 

Therefore, the main objective of the present Doctoral Thesis was deepen into the 

regulation of the Q system through nutritional (polyphenols and different fatty acid 

sources) and pharmacological (statins and NBPs) interventions.  

 

2. Materials and Methods 
 

Different cellular lines of different origins were used, being the two most important Hepa 

1.6 (derived from mouse liver hepatoma) and Tkpts (derived from mouse kidney proximal 

tube epithelium). Mouse embryonic fibroblast (MEFs), human cervical cancer cells 

(HeLa), human promyelocytic leukemia cells (HL-60), human liver hepatoma cells (Hep 

G2) and human embryonic kidney cells 293 (HEK 293) were used to complement some 

results along the whole study. 
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In order to study the effect of different polyphenols in the Q system we treated the cells 

with kaempferol, resveratrol, apigenin, quercetin, piceatannol, luteolin, naringenin, 

curcumin, ferulic acid or 4HB. Three different lipid emulsions were added to the cells to 

test the influence of fatty acids over Q metabolism: Lipofundin MCT/LCT 20% (source 

of n-6 PUFA), Lipoplus 20% (source of n-3 PUFA) and ClinOleic 20% (source of n-9 

MUFA) Trolox and butylated hydroxytoluene (BHT) were used to discard possible 

effects of the oxidation of the lipid emulsions used in our studies. Inhibitors of the 

pathways on study were used. Thus, p-Aminobenzoic acid (PABA) was used to depress 

Q biosynthesis and nicotinamide were used to inhibited sirtuin activity. Lovastatin and 

zoledronic acid were the selected compounds of the family of statin and NBPS, 

respectively, to study the influence that a regulation in the mevalonate pathway could 

produce in Q metabolism. Additionally, direct inhibition of FDPS was carried out using 

specific siRNAs against this enzyme. The most suitable concentration of all these 

compounds was stablished after measuring cell viability in a MTT assay. The duration of 

the treatments was 48 hours. 

Additionally, animal models were used to complement some studies. To test the effect of 

different fat sources we used samples from an experimental mice model with four dietary 

groups: one control group fed 95 % of a pre-determined ad libitum intake (control) and 

three calorie restriction (CR) groups fed 40 % less than the control. Lipid source for the 

control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two 

remaining CR groups were fed with diets enriched in fish oil (high in n-3 PUFA) or lard 

(high in saturated and monounsaturated fatty acids). To study the possible relationship 

between Sirt3 and Q metabolism we used frozen tissues from Sirt3 knockout mice (Sirt3-

/-). 

In terms of lipid analysis, non saponifiable lipids from the different samples were 

extracted using SDS, ethanol-isopropanol and hexane, and analyze in HPLC with 

electrochemical detection, in the case of Q, or HPLC connected to a diode array detector, 

in the case of cholesterol. Q biosynthesis was indirectly determined using 14C-4HB. This 

radioactive precursor was synthetized essentially as described by Clarke et al. and given 

to the cells during 48 h. Incorporation of radioactive precursor was determined after 

precipitation of the samples using 5% trichloroacetic acid and solubilization with 1M 

NaOH. Radioactivity was quantified in a scintillation counter by mixing with scintillation 
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liquid. Direct biosynthesis of Q were measured using 13C-4HB and 13C-kaempferol. Q 

(non-labelled and 13C-labelled) was extracted using methanol and petroleum ether, and 

measured by HPLC coupled to tandem mass spectrometry (MS/MS).  

Additional methodologies were performed to determine levels of intermediary products 

on Q metabolism study. An adaptation of the protocol developed by Holstein et al., which 

used a GCVLS peptide linked to a fluorescent dansyl group, was used to measure the 

amount of GPP or FPP in cellular extracts. Relevant enzymes and proteins as COQ2, 

FDPS, OXPHOS complex, unprenylated Rap1A, total Rap1A, Sirt3, acetylated lysine 

and VDAC were measured by immunodetection in western blotting. In all cases, protein 

concentration was determined using the variation introduced by Stoscheck of the 

traditional protein assay protocol described by Bradford. Planimetric and stereological 

mitochondrial measurements were performed using electron microscopy micrographs to 

study the ultrastructure of mitochondria in cells treated with lipid emulsions.  

 

3. Results and Discussion 
 

Plant polyphenols, present in the human diet, are redox active molecules and modulate 

numerous cellular pathways. In the present study, we tested whether treatment with 

polyphenols affected the content or biosynthesis of Q. Tkpts cells and HEK 293 were 

treated with several types of polyphenols, being kaempferol the one that produced the 

largest increase in Q levels. The increase of Q was related with upregulation of its 

biosynthetic rate because it was totally inhibited by PABA, a well-characterized inhibitor 

of COQ2 activity in mammalian cells. Additionally, we studied the role of kaempferol in 

Q biosynthesis by a competitive assay using radiolabelled 14C-4HB. Kaempferol 

competed with 14C-4HB as ring precursor of Q and inhibited incorporation of 14C-4HB 

while simultaneously increasing Q levels. Moreover, our studies with 13C-kaempferol 

demonstrated a previously unrecognized role of this flavonol as an aromatic ring 

precursor in Q biosynthesis. The metabolism of kaempferol responsible for its 

incorporation into the Q biosynthetic pathway remains to be established, although two 

possibilities can be proposed: (1) kaempferol could act directly as Q precursor being itself 

a substrate for the COQ2 transferase and would be subsequently metabolized and 

modified by different COQ proteins until it reaches the final structure of Q; or 

alternatively (2) kaempferol could be cleaved in the cell to yield potential precursors 
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which would be then integrated into this pathway. Investigations of the structure-function 

relationship of related flavonols, derived from the utilization of different products in our 

cellular model, demonstrated the importance of two hydroxyl groups, located at C3 of the 

C ring and C4’ of the B ring, both present in kaempferol, as important determinants of 

kaempferol as a Q biosynthetic precursor. Concurrently, our results confirmed the 

kaempferol mediated increased of the mitochondrial sirtuin Sirt3 through a mechanism 

not related to the enhancement of Q biosynthesis in Tkpts cells. Determinations of Q 

levels from different tissues (skeletal muscle, liver, kidney and brain) of Sirt3-KO mice 

and their respective controls had no significant variation and thus indicated that Q 

metabolism is not related with Sirt3 activity.  

Whatever the metabolic route involved, an increase of alternative Q ring precursors in 

cells will only turn into higher Q levels if cells have low availability of endogenous 4HB. 

Tkpts, HEK 293, Hepa 1.6, HL-60, Hep G2 and MEFs were treated with increased 

amounts of 4HB, to observe whether increased levels of precursor have any effect on Q 

levels. The increase of Q observed in Tkpts and HEK 293, but not in cells of different 

origin, confirms that the endogenous availability of this precursor is very low in mouse 

and human kidney cells. These results indicated that 4HB is a limiting step in the 

biosynthesis of Q specifically in renal derived cells. A previous report related maximal 

levels of COQ2 polypeptide with those organs displaying the highest Q concentrations. 

In accordance, our results showed that Tkpts cells presented higher levels of both Q and 

COQ2 polypeptide than those encountered in Hepa 1.6 cells. Higher levels of the COQ2 

transferase might maintain low cellular concentrations of the ring precursor 4HB due to 

its rapid use by the COQ2 prenyltransferase activity. Measurements of inner and outer 

mitochondrial membrane markers suggested that Tkpts cells, in comparison with Hepa 

1.6 cells, might have less or smaller mitochondria, but they contain more surface of 

mitochondrial cristae inside this organelle that could explain the highest levels of Q 

observed. Increasing the availability of Q precursors in cells, supplementing with 4HB or 

kaempferol, could move the metabolic flux in favor of the synthesis of Q, helping to 

ameliorate the phenotype associated with certain Q deficiencies, at least for some organs 

such as kidney.  

Unsaturated fatty acids are basic components of the diet and have, among others, several 

targets in the mevalonate pathway. Using Hepa 1.6 cells treated with lipid emulsions of 
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different composition, we have shown that unsaturated fatty acids were able to increase 

Q and decrease cholesterol levels. The increment of Q is not related with lipid 

peroxidation because Hepa 1.6 cells displayed the same results to the emulsions in 

absence and presence of BHT or Trolox, two antioxidants that inhibit oxidation. In the 

case of PUFA, increased Q levels are directly related with an increment of Q biosynthesis. 

Moreover, our results indicate that PUFA regulates the different Q isoforms in a different 

way, promoting the biosynthesis of Q10 over Q9 and decreasing Q9/Q10 ratio. However, 

MUFA did not alter Q biosynthesis. The regulation of the ratio could be influenced by 

the decrease of FDPS produced by these lipid sources, which might lead to the 

accumulation of IPP and DMAPP within the cell. The accumulation of IPP would 

promote the biosynthesis of Q10 over Q9, a mechanism already proposed for HepG2 cells. 

However, additional targets of unsaturated fatty acids are necessary to understand the 

different regulation of cholesterol and Q. GPP and FPP, the two metabolites produced by 

FDPS, are accumulated in presence of PUFA indicating that FDPS directly do not 

regulate its metabolites but possibly this is in charge of GPP/FPP-consuming enzymes. 

Measurements of the prenylated form of Rap1A, a protein that is specifically 

geranylgeranylated, indirectly indicated that GGDPS, a FPP-consuming enzyme, was not 

affected by PUFA. Therefore, high levels of FPP in the cells could be the result of a 

PUFA-mediated inhibition of SQS, the major FPP-consuming enzyme, or other enzyme 

involved in the cholesterol branch. Decreased levels of cholesterol confirmed this 

hypothesis but additional experiments will be needed to point the concrete enzyme. 

Possibly isopentenyl-diphosphate isomerase, the enzyme that convert IPP to its highly 

nucleophilic isomer dimethylallyl diphosphate (DMAPP), could be a target of fatty acids 

and its regulation could enhance DMAPP levels that might inhibit the second catalytic 

reaction of FDPS producing an accumulation of GPP. Taken together these results 

indicates that PUFA, and to a lesser extent MUFA, were able to increase Q levels but 

only PUFA acting as regulators of Q biosynthesis. The regulation may involves different 

steps in the mevalonate pathway, such as FDPS, but possibly a direct target in the 

biosynthesis branch of Q is also needed to exert the described effects. 

A model of calorie-restricted animals of different ages allowed us to study the effect of a 

different fat type supplementation as well as the effect of aging in vivo. We observed that 

calorie restriction abolished these age-induced changes of Q levels in liver and skeletal 
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muscle from mice fed PUFA-enriched diets. In a calorie restriction context, liver and 

skeletal muscle tissues were able to adapt to a PUFA-enriched diet by increasing Q levels 

and decreasing Q9/Q10 ratio. Taken together, these observations agree with the described 

protective effect of a saturated fat source in calorie-restricted conditions previously 

described by our research group. Additionally, it was observed that FDPS is also regulated 

by a calorie restriction intervention and influenced by the different fat sources, but in a 

different way from how it is regulated in the hepatocellular model. Further experiments 

will be needed to fully understand the exact regulation that fatty acids exerts in, both, 

cellular and animal models. 

To deepen into the regulation of Q system through the regulation of FDPS we used two 

additional approaches: one genetic and one pharmacologic. In the genetic strategy, we 

utilized specific siRNAs against FPDS and showed that an inhibition of this enzyme is 

sufficient to increase Q10 levels and decrease the Q9/Q10 ratio, without altering Q9 or total 

Q levels. This Q regulation might be mediated by an increase of some upstream 

metabolites in the mevalonate pathway such as IPP. The inhibition of this enzyme did not 

change the level of its products, GPP and FPP, even when the enzyme levels were very 

low. Indirect measurement of GGDPS revealed that an inhibition of FDPS did not affect 

the function of this downstream enzyme.  

On the other hand, in the pharmacological approach, we used zoledronic acid (ZOL) to 

inhibit FDPS. The specific inhibition of FDPS mediated by ZOL is widely described in 

the literature. We studied the effect of ZOL on Q system in several cell lines, including 

two murine and two human lines. The inhibition of FDPS due to ZOL is not at the 

transcriptional level, as we previously described for treatments with PUFA and siRNAs, 

but it is due to a slow, tight binding process that results in the inactivation of FPDS 

activity. However, FDPS is not the unique molecular target of this compound. ZOL also 

inhibits other enzymes in the mevalonate pathway such as SQS and GGDPS. Measuring 

the unprenylated form of Rap1A we confirmed the inhibition of ZOL over GGDPS in 

Tkpts and Hepa 1.6 cells. Lower cholesterol levels in Tkpts gave us an indirect proof of 

the inhibition of SQS but the response in Hepa 1.6 is not the same. However, all the cells 

treated with ZOL (Tkpts, Hepa 1.6, HeLA and HEK 293) generally decreased Q 

biosynthesis and Q levels, but also decreased the ratio Q9/Q10. The same upregulation of 

IPP seems to be the cause of the regulation of the ratio, however, an additional target in 
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the Q biosynthetic branch of the pathway should be necessary to explain low levels of Q. 

GPP and FPP were also measured in ZOL treated cells showing an increase of GPP but 

no changes in FPP levels. The effect of ZOL in the GPP levels of Hepa 1.6 is higher than 

in the kidney-derived cell line indicating that the mevalonate pathway is differentially 

regulated in cells lines from different origins. ZOL binds and remains the DMAPP/GPP 

site during FDPS inhibition impairing the binds of GPP and possibly leading to the 

accumulation of this metabolite that could contribute to the cellular functions described 

for NBPs. However, the general decrease of Q levels cannot be explained by the inhibition 

of FPDS nor the inhibition of GGDPS. Based on these results, we suggest that ZOL might 

have an additional target in the biosynthesis branch of Q of the mevalonate pathway, 

similarly to unsaturated fatty acids, despite their effects are totally opposite. Guo et al. 

described NBPs as inhibitors of hexaprenyl diphosphate synthase (from Sulfolobus 

solfataricus) and octaprenyl diphosphate synthase (from E. coli). Whether these long-

chain prenyltransferases are potently inhibited by bisphosphonates, PDSS1-PDSS2 

become a strong candidate to be the additional target of ZOL that inhibit Q levels in 

mouse and human cells.  

In order to compare an upstream inhibition of the mevalonate pathway with the 

downstream inhibition describe above we use lovastatin, an inhibitor of the HMG-CoA 

reductase. Cells treated with lovastatin decrease Q9, Q10 and total Q but did not alter the 

Q9/Q10 ratio in Tkpts and Hepa 1.6 cells. Moreover, lovastatin treatment decreased 

cholesterol levels in Tkpts cells. In this context, the whole pathway is inhibited all, thus, 

all the downstream metabolites are decreased, including IPP which is proposed to be 

determinant in the regulation of the Q9/Q10 ratio. 4HB, apart from being a well-known Q 

precursor, is described to act as an upstream inhibitor of the mevalonate pathway. In Hepa 

1.6 cells, in which 4HB is not considered a limiting step of Q biosynthesis, 100 µM of 

4HB produced a decrease in Q levels possibly acting as inhibitor of the whole route. Our 

results would indicate that an upstream inhibition of the mevalonate pathway, as that 

caused by lovastatin, have has different effects of Q system comparing with a downstream 

inhibition, as that caused by ZOL, fatty acids or specific siRNA against FDPS. Additional 

research is needed to understand the mechanisms underlying the differential cell-specific 

effects of several inhibitors on the products of different branches of the mevalonate 

pathway as Q and cholesterol.  
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1. Introducción 
 

El coenzima Q (Q) es una benzoquinona prenilada presente en todos los organismos 

eucariotas. Se localiza principalmente en la mitocondria pero está presente en todas las 

membranas celulares. Esta molécula, además de participar como transportador de 

electrones en la cadena de transporte de electrones mitocondrial, está implicada en el 

metabolismo, la protección antioxidante y la regulación de señales celulares. La 

biosíntesis del Q, mecanismo que aún no ha sido elucidado por completo, se divide en 

tres pasos: la síntesis de la cola isoprenoide, la unión de esta cola al anillo benzoquinónico 

y, finalmente, las consecutivas modificaciones del anillo hasta llegar al producto final. La 

cola isoprenoide es producida por una trans-poliprenil transferasa específica de especia 

(llamada PDSS1-PDSS2 en mamíferos), que determina las diferentes longitudes de la 

cadena lateral en los diferentes organismos. Por ejemplo, S. cerevisiae produce Q6, las 

bacterias producen Q8 y los roedores y humanos dos isoformas, Q9 y Q10. El precursor 

más conocido del Q es el ácido 4-hidroxibenzoico (4HB), que deriva de la tirosina y la 

fenilalanina en mamíferos, aunque recientemente otros compuestos fenólicos han sido 

descritos como precursores alternativos del anillo. La enzima COQ2 media la 

condensación de la cola isoprenoide con el anillo benzoquinónico generando el primer 

precursor del Q anclado en membrana, que será modificado a continuación por las 

diferentes proteínas COQ (COQ3-COQ11) mediante una serie de reacciones secuenciales 

que incluyen una descarboxilación, tres hidroxilaciones, dos O-metilaciones y una C-

metilación hasta formar el producto final. Bajo diferentes condiciones fisiológicas, 

experimentales y patológicas los niveles tisulares de Q pueden estar elevados o 

disminuidos. Dadas las funciones esenciales del Q, un déficit en esta molécula puede 

desencadenar varios desórdenes mitocondriales con síntomas de distinta índole. La 

deficiencia de Q10 es única entre los diferentes desórdenes mitocondriales ya que la 

suplementación oral con Q10 exógeno es capaz de mejorar algunos de los síntomas. Sin 

embargo, el Q tomado de forma oral tiene muy baja biodisponibilidad y su destino final 

no es la membrana mitocondrial interna, como en el caso del Q endógeno. Por esta razón, 

en la actualidad las investigaciones están enfocadas hacia procedimientos alternativos 

capaces de inducir la síntesis endógena de esta molécula. 

La ruta del mevalonato, involucrada en la biosíntesis de la cola isoprenoide del Q, produce 

además otros lípidos isoprenoides muy importantes en diversas funciones celulares. 
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Varios reguladores de la ruta del mevalonato han sido descritos, siendo los más 

importantes las estatinas y los bisfosfonatos. Las estatinas inhiben a la HMG-CoA 

reductasa, una de las primeras enzimas de la ruta, provocando una disminución de todos 

los metabolitos que se localicen aguas abajo. Uno de los compuestos más inhibidos es el 

colesterol, propiciando así el uso de éstos compuestos como terapia primaria para bajar 

los niveles de colesterol en sangre. Numerosos estudios realizados en animales y humanos 

han documentado el descenso de los niveles de Q como efecto secundario del tratamiento 

con estatinas. Por otro lado, los bisfosfonatos que contienen nitrógeno (NBPs) han sido 

utilizados como terapia en enfermedades óseas gracias a su habilidad de unirse 

selectivamente el hueso e impedir la reabsorción del mismo. Los NBPs inhiben 

principalmente la enzima central de la ruta del mevalonato, la farnesil difosfato sintasa 

(FDPS), pero también son capaces de inhibir otras enzimas de la ruta como la 

geranilgeranil difosfato sintasa (GGDPS) o la esqualeno sintasa (SQS). Las evidencias de 

la regulación del Q por los NBPs están limitadas a unos cuantos estudios. Un descenso 

de este lípido está descrito en macrófagos de ratón tratados con ácido zoledrónico, en 

células Hep G2 tratadas con risendronato y en muestras de plasma de mujeres 

postmenopáusicas con osteoporosis tratadas con ácido zoledrónico. 

Los compuestos fenólicos son metabolitos secundarios vegetales con un anillo aromático 

común que contiene uno o más grupos hidroxilos. Centrándonos en su estructura, se 

clasifican en compuestos fenólicos simples o complejos (también llamados polifenoles). 

Sin embargo, atendiendo a su abundancia podemos clasificarlos en dos grandes grupos: 

flavonoides y no flavonoides. Durante los últimos años, los polifenoles, que son 

ampliamente presentes en comidas y bebidas de origen vegetal, han recibido gran 

atención debido a sus efectos positivos sobre la salud humana. Sus propiedades 

beneficiosas han sido parcialmente atribuidas a su actividad antioxidante así como a su 

habilidad como moduladores de diferentes dianas moleculares y vías de señalización. Los 

ácidos fenólicos como el 4HB, el ácido vanílico, el ácido protocatéquico y el ácido p-

coumárico, así como el estilbeno resveratrol pueden funcionar como precursores del 

anillo del Q en levaduras y mamíferos. Además, una larga lista de ácidos fenólicos, usados 

a altas concentraciones, han sido descritos como inhibidores de las primeras enzimas de 

la ruta del mevalonato. Aparte del papel que desempeñan algunos compuestos fenólicos 

como precursores del Q, se conoce poco acerca de la posible interacción de estos 

compuestos con el metabolismo y la regulación de este antioxidante.  
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Los ácidos grasos son biomoléculas compuestas con un grupo carboxilo unido a una 

cadena larga lateral hidrocarbonada. Estos compuestos no se suelen encontrar libres en la 

naturaleza sino que se encuentran como componentes fundamentales de las membranas 

biológicas. Atendiendo a la presencia de dobles enlaces entre carbonos de la cadena 

lateral, los ácidos grasos pueden ser clasificados en saturados (en los que no hay presencia 

de dobles enlaces) o insaturados (en los que por lo menos un doble enlace está presente 

en la cadena). Dentro de los ácidos grasos insaturados se establecen dos grupos según el 

número de dobles enlaces presentes en la molécula: monoinsaturados (MUFA) o 

poliinsaturados (PUFA). Las células no son capaces de producir todos los tipos de ácidos 

grasos que necesitan sino que algunos de ellos se obtienen directamente de la dieta. Estos 

ácidos grasos son los llamados “ácidos grasos esenciales”, y se clasifican principalmente 

en dos familias: la serie n-3 y la serie n-6. Debido a que los ácidos grasos esenciales se 

obtienen directamente de la dieta, la composición de grasa y aceite de la misma tiene 

importantes consecuencias a largo plazo para la salud humana. Algunos estudios han 

descrito la habilidad de las membranas de adaptar su composición lipídica en función de 

la grasa predominante en la dieta, por lo que una modificación del patrón lipídico puede 

producir alteraciones bioquímicas en las células, especialmente en las membranas 

mitocondriales. Las fuentes de PUFA, como el aceite de soja o el aceite de pescado, 

generarán membranas más susceptibles al daño oxidativo que las fuentes ricas en ácidos 

grasos saturados o MUFA, como la grasa animal o el aceite de oliva, respectivamente. 

Algunos estudios han descrito que las diferentes grasas de las dieta aumentan los niveles  

mitocondriales de Q9 y Q10 en el hígado de rata, siendo los PUFA n-6 los que producen 

el mayor incremento. Estudios previos realizados en nuestro grupo de investigación con 

ratones alimentados durante un mes con diferentes fuentes grasas, mostraron una 

regulación rápida de la biosíntesis del Q, tanto a nivel génico como a nivel de proteína. 

Concretamente, dietas enriquecidas en aceite de pescado (y, por tanto, enriquecidas en n-

3) inducen la expresión de los genes COQ en hígado, riñón, músculo esquelético, cerebro 

y corazón. Estudios adicionales mostraron que el Q juega, además, un papel fundamental 

en la protección de las células eucariotas de la autooxidación de los PUFA.  

Por tanto, el objetivo principal de la presente Tesis Doctoral es profundizar en la 

regulación del sistema del Q a través de intervenciones nutricionales (como son el uso de 

polifenoles o diferentes fuentes grasas) y farmacológicas (como el uso de estatinas y 

NBPs). 
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2. Materiales y métodos 
 

Líneas celulares de diferentes orígenes han sido utilizadas a lo largo del estudio, siendo 

las más importantes: Hepa 1.6 (derivadas de hepatoma de ratón) y Tkpts (derivadas de 

túbulo contorneado proximal de riñón de ratón). Fibroblastos embrionarios de ratón 

(MEFs) así como células humanas derivadas de cáncer de cérvix (HeLa), células de 

leucemia promielocítica humana (HL-60), células derivadas de hepatoma humano (Hep 

G2) y células embrionarias de riñón humano (HEK 293) se utilizaron para complementar 

diferentes resultados a lo largo de todo el estudio. 

Para estudiar los efectos que diferentes compuestos fenólicos pueden tener sobre el 

sistema del Q las células fueron tratadas con kaempferol, resveratrol, apigenina, 

quercetina, piceatannol, luteolina, naringenina, curcumina, ácido ferúlico o 4HB. 

Además, tres emulsiones lipídicas de diferente composición fueron añadidas a los cultivos 

para evaluar la influencia que las diferentes fuentes de ácidos grasos pueden tener sobre 

el metabolismo del Q. Las tres emulsiones son: Lipofundina MCT/LCT 20% (fuente de 

PUFA n-6), Lipoplus 20% (fuente de PUFA n-3) y ClinOleic 20% (fuente de MUFA n-

9). Tratamientos con Trolox e hidroxitolueno butilado (BHT) fueron usados para 

descartar una posible influencia de la peroxidación lipídica en los resultados obtenidos 

con las emulsiones lipídicas. Varios inhibidores de las rutas de estudio fueron utilizados: 

el ácido p-aminobenzoico (PABA) para inhibir la biosíntesis de Q y la nicotinamida para 

inhibir la actividad de sirtuinas. La lovastatina y el ácido zoledrónico fueron 

seleccionados como representantes de la familia de las estatinas y los NBPs, 

respectivamente, para estudiar la influencia que una regulación sobre la ruta del 

mevalonato puede tener sobre el sistema del Q. Adicionalmente, una inhibición específica 

de la FDPS fue llevada a cabo usando siRNAs diseñados específicamente para esta 

enzima. La concentración adecuada de cada uno de los compuestos se definió después de 

medir la viabilidad celular en un ensayo MTT. La duración de los tratamientos fue, en 

todos los casos, de 48 horas.  

Diferentes modelos animales fueron utilizados para complementar algunos de los estudios 

llevados a cabo. Para evaluar el efecto de la composición de varias fuentes grasas se usó 

un modelo animal compuesto de cuatro grupos dietéticos: un grupo control alimentado 

con el 95% de la previamente calculada ingesta ad libitum de los ratones y tres grupos en 
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40 % de restricción calórica (RC). La fuente grasa del grupo control y de uno de los 

grupos en RC fue aceite de soja (rica en PUFA n-6), mientras que las fuentes grasos de 

los otros dos grupos en RC fueron aceite de pescado (rico en PUFA n-3) y manteca (rica 

en ácidos grasos saturados y MUFA n-9). Para estudiar la posible relación entre la sirtuina 

mitocondrial Sirt3 y el metabolismo del Q usamos tejidos congelados de ratones Sirt3 

knockout (Sirt3-/-). 

Los lípidos no saponificables de las diferentes muestras fueron extraídos usando SDS, 

una mezcla de etanol-isopropanol y hexano, y analizados en HPLC con detección 

electroquímica, en el caso del Q, o con HPLC conectado a un detector diode array, en el 

caso del colesterol. La biosíntesis del Q fue medida de forma indirecta usando 14C-4HB. 

Este precursor radioactivo fue sintetizado previamente usando el protocolo descrito por 

Clarke et al., y añadido a las células durante 48 horas. La incorporación del precursor 

radiactivo de determinó tras la precipitación de las muestras con ácido tricloroacético al 

5% y la solubilización de las mismas con NaOH 1M. La radiactividad se cuantificó en un 

contador de centelleo tras añadir cóctel de centelleo. A su vez, la biosíntesis del Q fue 

determinada de forma directa usando 13C-4HB y 13C-kaempferol. El Q (no marcado y 

marcado con 13C) fue extraído usando metanol y éter de petróleo, y medido mediante 

HPLC acoplado a espectrometría de masas.  

Metodologías adicionales fueron llevadas a cabo para complementar los estudios 

centrados en elucidar el metabolismo del Q en diferentes contextos. Una adaptación del 

protocolo desarrollado por Holstein et al., que utiliza un péptido de secuencia GCVLS 

unido a un grupo dansilo fluorescente, fue llevada a cabo para determinar los niveles de 

GPP y FPP en extractos celulares. Los niveles de varias enzimas y proteínas relevantes 

como COQ2, FDPS, los diferentes complejos de la cadena de transporte de electrones 

mitocondrial, Rap1A prenilado y total, Sirt3, lisina acetilada y VDAC se midieron 

mediante inmunodetección por western-blot. En todos los casos, la concentración proteica 

de las muestras se determinó usando la variación descrita por Stoscheck del método 

tradicional de determinación de proteína descrito por Bradford. Medidas planimétricas y 

estereológicas de la mitocondria fueron llevadas a cabo usando imágenes tomadas 

mediante microscopía electrónica para estudiar la ultraestructura de este orgánulo en 

células tratadas con las diferentes emulsiones lipídicas. 
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3. Resultados y discusión 
 

Los polifenoles vegetales presentes en la dieta humana son moléculas redox muy activas 

capaces de modular numerosas rutas celulares. En nuestro estudio, hemos evaluado el 

efecto de diferentes polifenoles sobre los niveles y la biosíntesis del Q. Células Tkpts y 

HEK 293 fueron tratadas con diferentes polifenoles, siendo kaempferol el que produce el 

mayor incremento en los niveles de este antioxidante. Este aumento de los niveles de Q 

mediado por kaempferol está relacionado con el incremento de la tasa de biosíntesis de 

esta molécula ya que es totalmente inhibido por PABA, un inhibidor muy conocido de la 

actividad COQ2 en células de mamífero. Además, el papel del kaemperol en la regulación 

de la biosíntesis de Q se estudió de forma indirecta en un ensayo competitivo con 14C-

4HB, en el que se observó que este polifenol compite con el 14C-4HB como precursor del 

anillo benzoquinómico del Q inhibiendo la incorporación del precursor radiactivo. A 

modo de confirmación, los estudios llevados a cabo usando 13C-kaempferol demostraron 

una nueva función de este flavonol como precursor del anillo aromático en la biosíntesis 

de Q. El metabolismo del kaempferol responsable de su incorporación en la ruta de 

biosíntesis del Q aún no ha sido establecido, sin embargo, podemos proponer dos 

posibilidades: (1) el kaempferol puede actuar directamente como precursor del Q siendo 

él mismo sustrato de la transferasa COQ2 para ser, a continuación, modificado por las 

diferentes proteínas COQ hasta llegar a la estructura final del Q; o alternativamente (2) el 

kaempferol puede ser metabolizado en la célula dando lugar a precursores potenciales del 

Q que pueden integrarse en la ruta de biosíntesis. Investigaciones que relacionan la 

estructura y la función de los flavonoles, derivadas de la utilización de diferentes 

productos en nuestro modelo celular, han demostrado la importancia de los dos grupos 

hidroxilos (localizados en las posiciones C3 del anillo C o C4’ del anillo B) como 

estructuras determinantes en la actuación del kaempferol como precursor del Q. 

Paralelamente, nuestros resultados han confirmado que el incremento de la sirtuina 

mitocondrial Sirt3 producido por el kaempferol es independiente del aumento de la 

biosíntesis del Q producido por este flavonol en células Tkpts. Determinaciones de los 

niveles de Q en tejidos (músculo esquelético, hígado, riñón y cerebro) de ratones Sirt3 

knockout y en sus correspondientes controles, no presentan variaciones de ningún tipo 

indicando de nuevo que el metabolismo del Q no está relacionado con Sirt3. 
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Independientemente de la ruta involucrada, un aumento de los precursores de anillo en 

las células solo tendrá efecto sobre los niveles de Q si esas células tienen una baja 

disponibilidad de 4HB. Las células Tkpts, HEK 293, Hepa 1.6, HL-60, Hep G2 y MEFs 

fueron tratadas con cantidades crecientes de 4HB, para ver el efecto que un aumento del 

precursor podía tener sobre los niveles de Q. El incremento de los niveles de Q observado 

en Tkpts y HEK 293, pero no en células de otros orígenes, confirma que la disponibilidad 

endógena de este precursor es muy baja en células de riñón, tanto humanas como de ratón. 

Nuestros resultados indican que el 4HB es un paso limitante en la biosíntesis del Q 

específicamente en células derivadas de riñón. Estudios previos relacionan los niveles 

máximos de COQ2 con aquellos órganos que poseen los mayores niveles de Q. En 

consecuencia, nuestros resultados mostraron que las Tkpts presentaban mayores niveles 

tanto de Q como de COQ2 en comparación con las células hepáticas Hepa 1.6. Unos 

niveles altos de COQ2 pueden ayudar a mantener niveles bajos de precursores como el 

4HB debido a una elevada tasa de consumo de sustrato por esta enzima. Las medidas de 

marcadores de membrana mitocondrial interna y externa sugieren que las células Tkpts, 

en comparación con las células Hepa 1.6, poseen menos mitocondrias o más pequeñas 

pero con una mayor superficie de crestas dentro del orgánulo que puede explicar los 

elevados niveles de Q observados. Incrementando la biodisponibilidad de precursores del 

Q en las células, suplementando con 4HB o kaempferol, podría derivar flujo metabólico 

a favor de la biosíntesis del Q, ayudando a mejorar el fenotipo asociado con ciertas 

deficiencias de Q al menos en algunos órganos como el riñón. 

Los ácidos grasos insaturados son componentes básicos de la dieta y tienen, entre otras, 

varias dianas en la ruta del mevalonato. Usando células Hepa 1.6 tratadas con emulsiones 

lipídicas de diferente composición, observamos que los ácidos grasos insaturados son 

capaces de incrementar el Q y de disminuir los niveles de colesterol. Este incremento no 

está influenciado por la peroxidación lipídica ya que las células Hepa 1.6 muestran los 

mismo resultados en respuesta a las emulsiones lipídicas en ausencia o presencia de BHT 

o Trolox, dos antioxidantes capaces de inhibir la oxidación de las moléculas. En el caso 

de los PUFA, el incremento de los niveles de Q está directamente relacionado con un 

aumento de la tasa de biosíntesis de este antioxidante. Además, nuestros resultados 

indican que los PUFA regulan de forma independiente las diferentes isoformas del Q, 

promoviendo la biosíntesis de Q10 sobre la de Q9 y, por tanto, disminuyendo el ratio 

Q9/Q10. Sin embargo, los MUFA no alteran la biosíntesis de Q. La regulación del ratio 
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Q9/Q10 puede estar influenciada por el descenso de la FDPS producido por los ácidos 

grasos insaturados, que promueve la acumulación de IPP y DMAPP, metabolitos aguas 

arriba en la ruta, dentro de la célula. La acumulación de IPP puede estimular la biosíntesis 

de Q10 sobre la de Q9, como ya ha sido descrito para células Hep G2. Sin embargo, los 

ácidos grasos insaturados deben tener dianas adicionales que justifiquen la diferente 

regulación observada para el colesterol y para el Q. GPP y FPP, los dos metabolitos 

producidos por la FDPS, se acumulan en presencia de PUFA indicando que la FDPS no 

regula directamente sus metabolitos sino que probablemente se regulen por las enzimas 

que los consumen. Las medidas que hemos realizado  de la forma no prenilada de Rap1A, 

una proteína que es específicamente geranilgeranilada, indican de forma indirecta que la 

GGDPS, una de las enzimas consumidoras de FPP, no se afecta por los PUFA. Por tanto, 

los  niveles altos de FPP observados en las células pueden ser el resultado de una 

inhibición mediada por PUFA de la SQS, la principal enzima consumidora de FPP, o de 

otra enzima involucrada en la rama de biosíntesis del colesterol. El hallazgo de un 

descenso de los niveles de colesterol confirma esta hipótesis aunque serán necesarios 

experimentos adicionales para indicar la enzima concreta. La isopentenil difosfato 

isomerasa, la enzima que convierte el IPP en su isómero DMAPP, puede ser diana de los 

ácidos grasos y su regulación puede desencadenar un incremento de los niveles de 

DMAPP que inhiba la segunda reacción de la FDPS produciendo la acumulación de GPP. 

En conjunto, nuestros resultados indican que los PUFA, y en menos medida los MUFA, 

son capaces de incrementar los niveles de Q, pero solamente los PUFA actúan como 

reguladores de la biosíntesis de esta molécula. Esta regulación involucra diferentes 

niveles de la ruta del mevalonato, como la FDPS, aunque la existencia de una diana 

adicional en la rama de biosíntesis del Q se hace necesaria para explicar algunos de los 

resultados descritos.  

El modelo de animales en RC de diferentes edades nos permitió estudiar el efecto de la 

suplementación con distintos tipos de grasas así como el efecto de estas intervenciones 

dietéticas sobre el envejecimiento in vivo. Se observó que la RC elimina los cambios 

inducidos por la edad en los niveles de Q en hígado y músculo esquelético de ratones 

alimentados con dietas enriquecidas con PUFA n-6. En un contexto de RC, el hígado y el 

músculo esquelético son capaces de adaptarse a dietas enriquecidas en PUFA 

incrementando los niveles de Q y disminuyendo el ratio Q9/Q10. De forma conjunta, 

nuestras observaciones están de acuerdo con el efecto protector, descrito previamente por 
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nuestro grupo, de las fuentes grasas saturadas en condiciones de RC. Además, hemos 

observado que la FDPS es también regulada en condiciones de RC y se influencia por las 

diferentes fuentes grasas, aunque de una manera diferente a la que hemos descrito en el 

modelo celular. Serán necesarios experimentos adicionales para entender la regulación 

exacta que los ácidos grasas ejercen tanto en modelos animales como celulares.  

Para profundizar en la regulación del sistema del Q a través de la regulación de la FDPS 

hemos utilizado dos aproximaciones: una genética y otra farmacológica. En la estrategia 

genética, utilizamos siRNAs específicos diseñados contra la FDPS y observamos que la 

disminución en los niveles de esta enzima es suficiente para incrementar los niveles de 

Q10 y bajar el ratio Q9/Q10 ratio, sin afectar a los niveles de Q9 o de Q total. Todo ello 

posiblemente debido a la acumulación de precursores aguas arriba en la ruta del 

mevalonato, como el IPP. La inhibición de esta enzima no altera sus productos (GPP y 

FPP), incluso cuando los niveles de la enzima son muy bajos. Medidas indirectas de la 

GGDPS revelan que la inhibición de la FDPS no afecta a su función de 

geranilgeranilación. 

Por otro lado, en la aproximación farmacológica, hemos usado ácido zoledrónico (ZOL) 

para inhibir la FDPS. La inhibición de la FDPS mediada por ZOL es ampliamente descrita 

en la bibliografía. Hemos estudiado el efecto del ZOL en el sistema del Q en varias líneas 

celulares, incluyendo dos líneas humanas así como dos líneas murinas. La inhibición de 

la FPDS mediada por ZOL no ocurre a nivel transcripcional, como en el caso de los 

tratamientos con PUFA o con el uso de siRNAs, sino que es debida a una inhibición lenta 

y estrecha que resulta en la inactivación de la actividad de la FDPS. Sin embargo, la FDPS 

no es la única diana de este compuesto. El ZOL inhibe también otras enzimas de la ruta 

del mevalonato como la SQS y la GGDPS. Medidas de la forma no prenilada de Rap1A 

nos permitieron confirmar la inhibición del ZOL sobre la GGDPS en células Tkpts y Hepa 

1.6. Los bajos niveles de colesterol en presencia de ZOL en células Tkpts nos indican de 

forma indirecta una regulación sobre la SQS. En células Hepa 1.6 los niveles de colesterol 

no se afectan con el tratamiento de ZOL. Sin embargo, en todas las células tratadas con 

ZOL (Tkpts, Hepa 1.6, HeLA and HEK 293) se observa un descenso generalizado de la 

biosíntesis y de los niveles de Q, disminuyendo a su vez el ratio Q9/Q10. De nuevo, el 

incremento de los niveles de IPP parece ser la causa de la regulación del ratio aunque, sin 

embargo, una diana adicional en la rama de biosíntesis del Q es necesaria para explicar 
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los bajos niveles observados de esta molécula. Medidas de los niveles de GPP y FPP 

mostraron que el ZOL incrementa los niveles de GPP sin afectar a los niveles de FPP. El 

efecto del ZOL sobre los niveles de GPP en Hepa 1.6 es mayor que el observado en la 

línea celular derivada de riñón, lo que sugiere que la ruta del mevalonato es regulada de 

forma diferencial en líneas celulares de diferentes orígenes. El ZOL se une al sitio de 

unión del DMAPP/GPP durante la inhibición de la FDPS propiciando la acumulación de 

GPP en la célula, el cual posiblemente pueda contribuir a las funciones celulares descritas 

para este fármaco. Sin embargo, el descenso general de Q no se explica mediante la 

inhibición de la FDPS o de la GGDPS, por lo que es posible que este fármaco tenga una 

diana adicional en la rama de biosíntesis del Q de igual forma similar a los PUFA aunque 

sus efectos sean completamente opuestos. Guo et al. describen los NBPs como 

inhibidores de la hexaprenil difosfato sintasa (de Sulfolobus solfataricus) y la octaprenil 

difosfato sintasa (de E. coli), lo que nos lleva a pensar en que si estas preniltransferasas 

de cadena larga son reguladas por NBPs, la PDSS1-PDSS2 podría ser una diana potencial 

del ZOL, inhibiendo así los niveles de Q en células de mamífero.   

Para comparar una inhibición aguas arriba de la ruta del mevalonato con la previamente 

descrita inhibición aguas abajo se usó la lovastatina, un inhibidor de la HMG-CoA 

reductasa. Las células Tkpts y Hepa 1.6 tratadas con este fármaco disminuyeron sus 

niveles de Q9, Q10 y Q total, sin afectar el ratio Q9/Q10. Además, el tratamiento con 

lovastatina disminuye los niveles de colesterol en Tktps. En este contexto, toda la ruta del 

mevalonato está inhibida así como todos sus metabolitos, incluyendo el IPP, que se ha 

propuesto como determinante en la regulación del ratio Q9/Q10. Por otro lado, el 4HB, 

además de ser bien conocido como precursor del Q, se describe como inhibidor de las 

primeras enzimas de la ruta del mevalonato. En las células Hepa 1.6, en las que el 4HB 

no es considerado un paso limitante en la biosíntesis del Q, una concentración de 100 µM 

de este compuesto produce un descenso en los niveles de Q, posiblemente actuando como 

inhibidor de la ruta. Nuestros resultados indican que una regulación aguas arriba de la 

ruta del mevalonato causada por la lovastatina tiene efectos diferentes sobre el sistema 

del Q al de una inhibición sobre la FDPS (observada con PUFAs, siRNA y ZOL). Será 

necesaria una  experimentación adicional para entender los efectos específicos del tipo 

celular observados con los diferentes inhibidores sobre diferentes ramas de la ruta del 

mevalonato, como la del Q o la del colesterol.  
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1. Coenzyme Q 

 

1.1. Structure and chemical properties 

 

Coenzyme Q (also named ubiquinone, 2,3-dimethoxy-5-methyl-6-polyprenyl-1,4-

benzoquinone or simply Q) was firstly discovered by Festenstein et al. in 1955 [1] and 

then isolated by Crane et al. in 1957, who also described its redox capacity as well as its 

presence in the complexes of the electron transport chain [2]. One year later, Wolf and 

collaborators determined the complex structure of Q, being a lipid composed by a 

benzoquinone ring connected to a long isoprenoid side chain (Figure I1) [3], which 

required a specific position in the biological membranes. In living organisms, Q exists in 

a number of different forms depending on the length of the isoprenoid side chain. For 

example, Saccharomyces cerevisiae produces Q6, Candida utilis produces Q7, 

Escherichia coli produces Q8, Candida albicans, Arabidopsis thaliana and rodents 

produce Q9 and Schizosaccharomyces pombe and humans produce Q10 [4-6]. One type of 

Q is dominant in each organism, but (a) minor type(s) of Q can be also detected. This 

happens, for example, in rodents and humans where Q9 and Q10 are synthetized, or in the 

lung pathogen Pneumocystis which synthetizes the novo Q7, Q8, Q9 and Q10 [7]. 

 

 

 

Figure I1. Coenzyme Q chemical structure. Chemical structure of Q in its three possible redox states: 

ubiquinone (fully oxidized), ubisemiquinone (intermediate) and ubiquinol (fully reduced). The 

benzoquinone ring is represented in black while the isoprenoid side chain is represented in red. 

 

As a redox compound, Q can exist in three different redox states and a different name is 

given in each case. Fully oxidized Q is called ubiquinone (Q) and possesses two ketone 

groups in para position. However, when one of the ketone groups is reduced we have 
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partially reduced Q or ubisemiquinone (Q•–), and when the molecule is fully reduced we 

named it ubiquinol (QH2) which bears two hydroxyl groups instead (Figure I1) [8].  

 

1.2. Cellular, tissue and species distribution 

 

Biosynthesis of Q occurs in all tissues and cells in the organism, and the lipid is present 

in all cellular membranes. However, several studies have described that Q distribution is 

not homogenous neither in membranes nor in tissue or among different species [9, 10].  

In membranes, polyisoprenoid chains of Q are present in the central hydrophobic region, 

between the double layers of phospholipid fatty acids, while the benzoquinone ring turn 

out to the outer or inner surface of the membrane depending on the functional 

requirements. The effective ordering effect of Q is the consequence of the methoxy 

groups on the benzoquinone ring and also of the interaction between quinone head groups 

and phospholipid molecules by hydrogen bonds [11]. This central localization of Q in the 

membranes results in an increased fluidity and permeability [10], contrary to the effect 

that cholesterol exerts in the membranes. Membranes need to be saturated with the 

appropriate lipids to develop optimal functions and, thus, the deficiency of one of them 

will have deleterious consequences. If the lipid exceeds the optimal amount, a non-

membranous distribution will be needed. Despite Q is synthetized in mitochondria, this 

organelle it is not its unique destination. Q is reported to be present in Golgi apparatus, in 

similar concentrations to the ones found in mitochondria, but also in microsomes, plasma 

membrane, nuclear envelope and peroxisomes. Approximately 30% of the membrane-

located Q of rat liver appears to be associated with extra-mitochondrial membrane 

compartments [10, 12, 13]. 

Moreover, Q distribution is not uniform among the various tissues and organs, indicating 

that Q levels are adapted to the particular physiology of the tissue. Due to its short half-

life, a coordinated balance between synthesis and degradation, processes that occur in all 

tissues, probably determines Q levels in the different tissues. In mice, rats and humans, 

maximal Q concentrations are present in kidney, liver and especially in heart, whereas 

lower amounts can be detected in brain and skeletal muscle. Others organs possess small 

amounts of Q, for instance, lung and spleen with only the 10 % of the levels detected in 

heart [12, 14]. Because Q redistribution between organs seems insignificant, tissue-

specific mechanisms must exist to determine actual levels of Q in any given tissue.  
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In rodents and humans, the same isoforms, Q9 and Q10, are present but the total amount 

of Q changes within the two species. In brain, spleen and lung, total Q levels are the same 

in human and rats but, in most of the other organs, human amount of Q is 2 to 5 fold lower 

than the observed in rats. Moreover, the proportion between the different isoforms also 

varies among species. In rats Q9 is the major isoform, however, a relative high amount of 

Q10 is detected. In brain, spleen and intestine as much as one-third and, in other tissues, 

10-20 % of the total Q is Q10. In contrast, the major isoform in humans is Q10 and only a 

smaller portion (2-7 %) of the total Q has an isoprenoid chain length of nine units [11, 

14, 15]. 

 

1.3. Biological functions 

 

Several functions have been described for Q from its discovery to the present, including 

mitochondrial and extramitochondrial ones: 

 

 1.3.1. Mitochondrial functions 

  1.3.1.1. Electron transport 

 

The first role described to Q was its capacity to serve as electron carrier in the electron 

transport chain, thus, participating in the generation of ATP, the energetic molecule in the 

cell [16]. The electron transport chain consists of four major multi-subunit complexes 

designated NADH-ubiquinone oxidoreductase (complex I), succinate-Q dehydrogenase 

(complex II), QH2-cytochrome c reductase (complex III), cytochrome c oxidase 

(complex IV), and two connecting redox-active molecules: Q and cytochrome c. Finally, 

a mitochondrial ATP synthase (also called complex V) create ATP while using the proton 

motive force created by the electron transport chain as a source of energy (Figure I2) [17]. 

Q is the unique compound that transfers electrons between either Complex I or Complex 

II to Complex III by receiving electrons from NADH or succinate, respectively. Other 

minor sources of electrons are dihydroorotate dehydrogenase, electron transfer 

flavoprotein dehydrogenase and glycerol-3-phosphate dehydrogenase, enzymes that 

support key aspects of the metabolism [18]. 

For many years, mitochondrial respiratory complexes were supposed to move freely in 

the membrane linked by the two connecting molecules. However, in recent years, this 

https://en.wikipedia.org/wiki/NADH_dehydrogenase_(ubiquinone)
https://en.wikipedia.org/wiki/Succinate_dehydrogenase
https://en.wikipedia.org/wiki/Cytochrome_c_oxidase
https://en.wikipedia.org/wiki/Electrochemical_potential
https://en.wikipedia.org/wiki/Electrochemical_potential
https://en.wikipedia.org/wiki/Electron_transfer_chain
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fluid model has changed due to the demonstration that all the complexes, except complex 

II, were able to associate in supercomplexes. Nowadays, it is proposed that the 

respirasome (formed by complexes I, III, and IV), other supercomplexes (I + III or III + 

IV), as well as free respiratory complexes coexist and allow a better adaptation of cells to 

the environment [17, 19, 20]. In this context, two distinct Q pools were defined: one 

dedicated to reduce equivalents coming from NADH and trapped in the supercomplexes 

that contains complexes I + III, and an independent second Q pool dedicate to reduce 

equivalents coming from FADH2, freely located along the inner mitochondrial membrane 

[8, 20]. These pools compete for the delivery of electrons to complex III. 

 

 

Figure I2. Central role of Q in the electron transport chain. Schematic representation of the different 

components of the respiratory chain as well as the electron sources of Q. The figure do not show the real 

structural organization of the respiratory chain. Adapted from [18].  

 

  1.3.1.2. Uncoupling proteins 

 

Uncoupling proteins (UCPs) are present in plants and animals constituting a subfamily of 

the mitochondrial carrier family. Situated in the inner mitochondrial membrane they can 

translocate H+ from the outside to the inside of the mitochondria and, thus, in a controlled 

process the proton gradient built by the electron transport chain is uncoupled from 

oxidative phosphorylation, and heat rather energy is produced [10]. These protons are 

delivered from fatty acids to the H+ acceptor group of the uncoupling proteins with the 

assistance of oxidized Q, which is an obligatory cofactor in this process [21]. In addition 

to thermogenesis, UCPs could be involved in suppression of oxygen radicals. 
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1.3.1.3. Mitochondrial transition permeability pore 

 

In order to facilitate the trans-membranous transport, the inner mitochondrial membrane 

contains a number of macromolecule transporters and ion channels. These are necessary 

because this membrane has a low permeability to solutes and ions to permit energy 

conservation in form of an electron and a pH gradient [10]. Under conditions of increased 

Ca2+ loading, especially when accompanied by oxidative stress and a fall in adenine 

nucleotides, mitochondria undergo a phenomenon known as permeability transition 

(mPT). The mPT is traditionally defined as a phenomenon associated with the opening of 

a proteinaceous permeability transition pore (PTP) located in the inner mitochondrial 

membrane allowing solutes with molecular masses of up to 1,500 Da to enter or exit the 

mitochondrial matrix [22]. However, the translocation of these large molecules leads to a 

collapse of mitochondrial functions. Several analogues of Q as well as Q10 are some of 

the compounds that prevent the opening of the PTP counteracting apoptotic events such 

as ATP depletion, release of cytochrome c into the cytosol or caspase activation [21]. 

 

1.3.1.4. Final acceptor in the novo synthesis of pyrimidines 

 

The conversion of dihydroorotate to orotate, catalyzed by dihydroorotate dehydrogenase 

is the single redox reaction in the biosynthesis of pyrimidine nucleotides. Dihydroorotate 

dehydrogenase is located in the inner mitochondrial membrane and linked to the electron 

transport chain through Q, which acts as electron acceptor receiving the two electrons 

released in the production of orotate and being thus reduced to ubiquinol [23]. 

 

 1.3.2. Extramitochondrial functions 

  1.3.2.1. Plasma membrane redox system 

 

Analogously to mitochondria, plasma membrane develops active redox functions [24]. 

The plasma membrane redox system (PMRS) transfers  electrons  from  either  intra- or 

extracellular donors to extracellular  acceptors. It is based principally in the participation 

of three components: (1) one or more NADH-Q reductase enzymes located on the 

cytosolic side of the plasma membrane (as NADH-cytochrome b5 oxidoreductase and 

DT-diaphorase), which regulate the cytosolic NAD+/NADH ratio and ascorbate reduction 

[25], (2) the Q present in the plasma membrane and (3) hydroquinone oxidases (ECTO-
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NOX or ENOX proteins) located on the outer surface of the plasma membrane that 

function as terminal oxidases involved in the regulation of cell growth and differentiation 

[26]. PMRS plays a key role in maintaining the levels of NAD+/NADH and oxidized and 

reduced Q in cells. Moreover, in mitochondria-deficient cells, survival is dependent on 

PMRS activity because under these conditions this system is largely responsible for the 

life sustaining regeneration of NAD+ from NADH required for glycolytic ATP 

production, an important pathway even in cells containing mitochondria [13]. 

 

  1.3.2.2. Antioxidant function 

 

Mitochondria are considered the mayor source of reactive oxygen species (ROS) in the 

cells. The production of these molecules is important because it underlies oxidative 

damage in many pathologies and contributes to retrograde redox signalling from the 

organelle to the cytosol and nucleus [8, 27]. Superoxide (O2·
−) generation results from 

single-electron premature reduction of oxygen by electrons moving through the electron 

transport chain. Complex I generates O2·
− within the mitochondrial matrix only, whereas 

complex III generates O2·
− both in the intermembrane space and in the matrix [28]. 

Another source of ROS is the production of H2O2 by monoamine oxidases in the 

mitochondrial outer membrane, the various flavin oxidases in peroxisomes and the 

leakage of electrons from cytochrome P-450 in the endoplasmic reticulum (ER) [10]. 

Other ROS producers are plasma membrane NADPH oxidases, a family of enzymes that 

are distinguished by their membrane-spanning catalytic “NOX” or dual oxidase 

(“DUOX”) subunit that it uses to transfer electrons from NADPH to molecular oxygen. 

Seven members of the NADPH oxidase family have been identified in mammals, 

including NOX1- through 5- as well as DUOX1- and DUOX2-containing oxidases [29, 

30]. Unlike NOX2 and NOX1, which produce superoxide and then H2O2 after 

dismutation of superoxide by SOD, NOX4, DUOX1, and DUOX2 enzymes generate 

H2O2 directly [31].  

Free radicals formed in the cells are able to damage lipids, proteins and DNA, a concept 

known as oxidative stress. The oxidative stress is defined as an imbalance between the 

systemic manifestation of ROS and a biological system’s ability to readily detoxify the 

reactive intermediates or to repair the resulting damage [32, 33]. Lipid peroxidation starts 

when a hydrogen atom is subtracted from a polyunsaturated fatty acid (PUFA) and results 
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in the formation of carbon-centered free radical, peroxyl radical, lipid hydroperoxide, 

alkoxyl radical and degradation to hydrocarbons, ethers, alcohols, aldehydes and 

epoxides. Protein oxidation affects to certain amino acid residues of a particular protein 

generating hydroxyl radicals that progress within the same protein or to another proteins 

or lipids. Meanwhile, DNA is also affected by ROS, especially mitochondrial DNA which 

is more sensitive due to the lack of protective histones and its limited repairing capacity 

[10]. To protect against the oxidative damage caused by ROS cells produce antioxidants, 

which include enzymes and non-enzymatic agents that can prevent the formation ROS or 

can directly eliminate them [34]. Superoxide dismutase, glutathione peroxidase, catalase, 

thioredoxin reductase and peroxiredoxin are part of the antioxidant enzyme group. On the 

other hand, within the non-enzymatic antioxidants agents we found vitamin C and E, 

carotenoids, glutathione, α-lipoic acid, flavonoids and ubiquinol [10].  

Several studies described the role of Q as an endogenous antioxidant protecting against 

lipid peroxidation, protein carbonylation and DNA damage. Q inhibits lipid peroxidation 

by preventing the production of peroxyl radicals and, moreover, ubiquinol reduces the 

initial perferryl radical forming the ubisemiquinone and H2O2. The removal of the 

initiating perferryl radical protects both lipids and proteins from oxidation. In addition, 

the reduced form of Q regenerates vitamin E from α-tocopheroxyl radicals [8, 21]. 

Complementary studies reveals that the administration of ubiquinol, in vitro or in vivo, 

prevents the DNA oxidation and breakdown in mouse liver and human lymphocytes [35, 

36].  

Ascorbate is another antioxidant that protects cellular components from oxidative damage 

by a direct quenching of various soluble free radicals or by reducing tocopheroxyl radicals 

to tocopherol. As humans and different animals cannot synthetize this vitamin, the 

mechanisms to maintain the ascorbate obtained from the diet are a basic objective for 

cells [37]. Participation of Q in the plasma membrane NADH-ascorbate free radical 

reductase indicated a similar role in ascorbate stabilization by whole cells. This activity has 

been demonstrated in yeast and some animal cell types [38-40]. Q also contribute to 

ascorbate regeneration in endomembranes [37]. However, ascorbate it is not the only 

cellular antioxidant protected by Q. α-Tocopherol (or vitamin E), present in membranes 

and lipoproteins, is known to scavenge free radicals providing antioxidant protection in 

cells. Previous studies showed that Q protect α-tocopherol against oxidation in a 
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concentration-dependent manner, and take part in the recycling of α-tocopherol from its 

phenoxyl radical [41, 42].  

 

1.4. Biosynthesis 

 

The biosynthesis of Q is still a not completely characterized process. It is divided into 

three steps: the synthesis of the polyisoprenoid tail, the attachment of the tail to the 

benzoquinone ring precursor and, finally, the subsequent modifications of the ring to yield 

the final product [21, 43]. 

 

  1.4.1. Synthesis of polyisoprenoid tail of Q. The mevalonate pathway 

 

The isoprenoid tail of Q is synthetized through the mevalonate pathway, which represents 

the initial steps in a series of enzymatic reactions that have been established to account 

for production of polyisoprenoids (e.g. dolichol) and sterols. 

In eukaryotes, the first step of this pathway involves the condensation of two acetyl-CoA 

molecules to form acetoacetyl-CoA catalyzed by acetoacetyl-CoA thiolase. Then, HMG-

CoA synthase condenses another unit of acetyl-CoA with acetoacetyl-CoA synthetizing 

3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA). Successive reduction steps, 

catalyzed by HMG-CoA reductase, produce mevalonate as a final product. Mevalonate is 

subsequently phosphorylated in two steps by mevalonate kinase and phosphomevalonate 

kinase. Then, ATP dependent decarboxylation of mevalonate-5-diphosphate, mediated 

by mevalonate diphosphate decarboxylase, yields isopentenyl pyrophosphate (IPP), 

which is the building block for the biosynthesis of isoprenoids. IPP can isomerize giving 

dimethylallyl pyrophosphate (DMAPP) by the isopentenyl pyrophosphate isomerase. A 

head-to-tail condensation of IPP to DMAPP results in the formation of geranyl 

pyrophosphate (GPP) and the addition of another IPP unit gives farnesyl pyrophosphate 

(FPP). In mammals, the same enzyme, farnesyl diphosphate synthase (FDPS), catalyses 

these last two steps (Figure I3) [43-45]. All enzymes responsible for the conversion of 

mevalonate to FPP are greatly enriched in the cytoplasm with the exception of HMG-

CoA reductase, that is an integral component of the ER membrane with the C-terminal 

catalytic region located completely in the cytosol. Therefore, mevalonate pathway occurs 

mainly in the cytosol but it is closely linked to the ER [46].  
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Figure I3. Schematic representation of the mevalonate pathway in eukaryotes. We summarize the 

different steps of the mevalonate pathway as well as its principal final products. The enzymes involves are 

represented in blue and the chemical structure of some important metabolites in red. A schematic 

representation of isoprenylated protein is represented in green. 
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FPP represent the branch point metabolite of the pathway being substrate of multiple 

enzymes. As substrate of squalene synthase, FPP will ultimately be converted to sterols, 

such as cholesterol. Long-chain E-isoprenyl synthases use FPP as primer for the 

formation  of the side  chain of Q. FPP  also  serves  as  a  substrate  for  dehydrodolichyl 

diphosphate synthases whose products function as sugar carriers in the formation of 

glycoproteins and glycolipids. Moreover, FPP is also used as a primary substrate for the 

synthesis of geranylgeranyl diphosphate (GGPP), mediated by geranylgeranyl 

diphosphate synthase (GGDPS). GGPP and FPP are respectively substrates of protein 

geranylgeranyl or farnesyl transferase  that catalyze lipid  isoprenylation of proteins  with 

a CAAX box at their C-terminus [47]. All these enzymes are considered to be rate-

limiting in the terminal part of their biosynthetic process [10]. 

 

 

 

Figure I4. Classification of trans-prenyl diphosphate synthase in eukaryotes. While in S. pombe, mice 

and humans these enzymes are heterotetrameric, in S. cerevisiae the equivalent enzyme is believed to be 

homodimeric. Adapted from [48]. 

 

Focusing on Q, its long isoprenoid side-chain is synthetized by trans-polyprenyl 

diphosphate synthase that condense FPP or GGPP with several molecules of IPP, all in 

trans configuration [21, 48]. Additionally, GPP is observed to serve as precursor in the 

polyisoprenoid synthesis in in vitro studies with rat liver microsomes, but no evidences 

of this fact are observed in vivo [10, 49]. Trans-polyprenyl transferase in S. cerevisiae is 

a homodimer called Coq1p (encoded by COQ1 gene) whereas in mammals the enzyme 

is a heterotetramer called PDSS1-PDSS2 (encoded by PDSS1 and PDSS2 genes) (Figure 

I4) [48]. The mature Coq1 protein is localized at the mitochondrial matrix peripherally 
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associated with the inner mitochondrial membrane and, therefore, the elongation of the 

polyisoprenoid chains starting from FPP or GGPP occurs in the mitochondria. Trans-

polyprenyl transferases are species-specific enzymes and responsible for determining the 

correspondent tail length of Q in each organism [50]. 

 

1.4.2. The benzoquinone ring and its attachment to the isoprenoid tail 

 

Little is known about the biosynthesis of the ring of Q in non-plant organisms. 4-

Hydroxybenzoic acid (4HB) was considered to function as the main ring precursor of Q 

for more than 40 years. In mammals, this phenolic compound is derived from tyrosine 

and phenylalanine, two essential amino acids in cells [51]. During these years, only a 

study in 1976 described vanillic acid and protocatechuic acid as alternative precursors in 

Q biosynthesis in mammals [52]. However, in the last decade several alternative 

compounds have been described to serve as Q ring precursors. In 2010, two independent 

studies identified p-aminobenzoic acid (PABA) as a novel Q precursor in yeasts [53, 54]. 

PABA differs from 4HB only by one substituent of benzoic acid, an amine (NH2) rather 

than a hydroxyl group (OH). PABA is converted into Q via the same Q biosynthetic 

pathway, but needs an additional step(s) to replace NH2 by OH at C4 [55]. Then, in 2014, 

Block et al. described that Arabidopsis is able to use p-coumarate, but not PABA, as 

another ring precursor in Q biosynthesis [51]. Recently, in 2015, Xie et al. have described 

that human and E. coli cells do not utilize PABA as precursor in the biosynthesis of Q 

while both p-coumarate and resveratrol, another polyphenol structurally similar to p-

coumarate, can serve as a ring precursors of Q biosynthesis in E. coli, yeasts and human 

cells [56] (Figure I5). Interestingly, unnatural compounds analogues of 4HB (such as 2,4-

diHB or 3,4-diHB) are also able to serve as alternative precursors in Q synthesis in yeast 

as well as in mammalian, both human and mouse, cells [57-59]. 

The COQ2 gene encodes for the enzyme 4-hydroxybenzoate polyprenyl transferase 

(Coq2 or COQ2 in yeast and mammals, respectively) which mediates the second step in 

Q biosynthesis: the condensation of the isoprenoid tail with a quinone ring precursor 

generating the first membrane-bound Q precursor that resembles the final product of the 

pathway (Figure I5). Genetic and biochemical analyses have revealed that this enzyme 

has broad substrate specificity [6]. COQ2 is located inside the mitochondria, concretely 

in the inner mitochondrial membrane [60], therefore, this step of Q biosynthesis is  
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Figure I5. Biosynthesis of Q in mammals. COQ2 mediates the 

condensation between the polyisoprenoid tail, synthetized in the 

mevalonate pathway, with the benzoquinone ring. In this figure, we 

exemplify the biosynthesis starting from 4HB but the known 

alternative precursor are shown in a dashed box. COQ6 adds the first 

hydroxyl group to the C5 position of the aromatic ring, followed by a 

O-methylation catalyzed by COQ3. An undetermined enzyme 

catalyzes the decarboxylation step and COQ5 catalyzes the C-

methylation at the C2 position of the ring. Then, COQ7 adds the 

second OH group to the C6 position and COQ3 catalyzes the second 

O-methylation to synthetize ubiquinol. COQ4, COQ9, COQ10, and 

COQ11 are required for efficient Q biosynthesis, but their functions 

are yet to be determined.  
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supposed to take place in the mitochondria. However, a recent study has reported the 

existence of a new decaprenyl diphosphate transferase named UBIAD1 that synthesizes 

Q10 and is present in the Golgi complex of humans [61]. Loss of UBIAD1 apparently 

reduces the cytosolic pool of CoQ10. As most of other enzymes involved in Q biosynthesis 

are located in mitochondria, the mechanism by which UBIAD1 assists with Q production 

in the  Golgi is  still unclear [6]. Moreover, the role of  UBIAD1 is controversial since in 

vivo studies have identified this enzyme as responsible for the synthesis of vitamin K2, 

but not Q9 or Q10 in mice [62]. 

 

1.4.3. Modifications of the benzoquinone ring 
 

After the condensation of the polyisoprenid chain with the quinone ring precursor, a 

number of additional reactions take place to produce the final molecule of Q (Figure I5). 

These reactions take place only in mitochondria based on the presence of mitochondrial 

targeting signals in COQ genes and the products of these genes in mitochondria. The use 

of 14C-labelled 4HB reveals that, after its biosynthesis in mitochondria, Q will be transport 

to other membranes and blood lipoproteins [13, 18]. 

This sequence of enzymatic steps is not yet completely understood in mammals but 

includes one decarboxylation, three hydroxylations, two O-methylations and one C-

methylation to form the final product. The major part of the studies carried out to elucidate 

the genes involved in this final step of Q biosynthesis were performed using S. cerevisiae 

coq mutants, and thus, the family of COQ genes was established. The proteins encoded 

by COQ genes are in charge of these reactions [6, 43]. All COQ genes have mammalian 

homologues and, some of them, more than one. A briefly description of its function is 

made below.  

COQ3 gene encodes for an O-methyltransferase (Coq3p/COQ3, refers to yeast and 

mammals, respectively) that catalyzes two O-methylation steps at positions 5 and 6 of the 

ring structure, an activity that is regulated by phosphorylation. COQ5 gene encodes a C-

methyltransferase (Coq5p/COQ5) that catalyzes the C-methylation step in the Q 

biosynthetic pathway. Coq5p, additionally, have a role in the structural integrity of the Q 

biosynthetic complex through the stabilization of Coq3p and Coq4p polypeptides. The 

COQ6 gene encodes for one monooxygenases required for Q biosynthesis, Coq6p/COQ6, 

which catalyzes both the C5 and C1 hydroxylation steps. The mitochondrial ferredoxin 
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Yah1p and the ferredoxin reductase Arh1p (FDX1L and FDXR in mammals [43]) have 

been found to be required for the C5 hydroxylation as electron donors. The COQ7 gene 

encodes for the other monooxygenase required in Q biosynthesis, which is responsible 

for the C6 hydroxylation step. Moreover, Coq7p has an important function in the 

stabilization of the biosynthesis complex. PKA-mediated phosphorylation and Ptc7-

mediated dephosphorylation of Coq7p and other Coq proteins have been reported in S. 

cerevisiae [6, 43, 60].  

If functions of COQ3, COQ5, COQ6 and COQ7 are well stablished, the functions of the 

rest of proteins involved in Q biosynthesis are still partially obscure. COQ4 gene encodes 

for a protein with an unknown function that apparently plays a regulatory role in the 

assembly of the Q biosynthetic complex in yeast. S. cerevisiae Coq8p and H. sapiens 

ADCK3 (or ADCK4) (encoded by COQ8 and ADCK3 genes, respectively) are atypical 

protein kinases involved in Q synthesis. It is hypothesized that Coq8p phosphorylates 

Coq3p, Coq5p and Coq7p stabilizing them in the Q biosynthetic complex. Coq9p/COQ9 

(the protein encoded by COQ9 gene) is a lipid-binding protein described as a component 

of the biosynthetic complex that directly interacts with Coq4p, Coq5p, Coq6p and Coq7p. 

A role controlling the deamination of Q intermediates that derive from PABA is also 

proposed [63]. Coq10p/COQ10 (encoded by COQ10 gene in yeast and COQ10A and B 

gene in mammals) is a START polypeptide that binds Q and facilitates both de novo Q 

biosynthesis and respiratory electron transport probably directing the localization of Q 

within the mitochondrial membrane [64]. Coq11p (encoded by COQ11 gene) appears to 

be necessary for de novo Q synthesis in yeast, with a predicted role as a FMN-dependent 

decarboxylase but it has no clear human orthologue [65]. Finally, there are three more 

genes (ADCK1, ADCK2, and ADCK5) which have been postulated to participate in the 

biosynthetic process but there is currently no experimental proof of their involvement. 

 
 

 1.4.4. Multifunctional protein complex in Q biosynthesis 

 

In yeast Coq1 to Coq9 polypeptides are localized in the mitochondrial matrix associated 

to the inner mitochondrial membrane and in mammals we observed a mitochondrial 

localization for most of their orthologues [43]. Coq proteins in yeast assemble in a multi-

subunit complex (termed the Q-synthome) (Figure I6), which is destabilized by the 

absence of a single Coq polypeptide [66]. In this complex, Coq2p spans the inner 
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membrane and the other enzymes are peripherally associated with this membrane on the 

matrix side. Coq3p, Coq4p, Coq5p, Coq6p, Coq7p and Coq9p take part in this complex. 

Moreover, Coq8p is observed to have a closer associating with Coq6 helping to stabilize 

the complex and Coq11 is shown in association with Coq4p, Coq5p, and Coq7p. Coq1p 

and Coq2 function separately. It has been shown that Q itself and the latest metabolites 

of the pathway can associate to the Q-synthome playing a role in it stability [67]. Some 

evidences of complex association have been described to some human COQ genes 

orthologues and due to the majority of complexed proteins retained their interactions from 

yeast to human, it is expected Q complex to be conserved in mammalian cells [65]. 

 

 
 

Figure I6. Model of the Q-synthome in S. cereviasie proposed by Allan et al. [65]. In the proposed 

model Coq3, Coq4, Coq5, Coq6, Coq7, Coq8, Coq9 and Coq11 take part in the complex while Coq1, Coq2 

and Coq10 do not associate with the rest of polypeptides. Adapted from [65]. 

 

1.5. Coenzyme Q regulation 

 

A coordinated balance between the synthetic and catabolic enzymes of Q determines its 

levels in the different tissues. However, despite the advances in the understanding of the 

Q biosynthetic pathway, there are still few data concerning its regulation. Studies suggest 

that phosphorylation and dephosphorylation of Coq proteins represent key events in the 

modulation of Q biosynthesis, a notion supported with the discovery of the putative kinase 

Coq8 [43, 68]. The expression of the proteins involved is also regulated by transcriptional 

factors. In addition, due to the polyisoprenoid tail of Q is synthetized via the mevalonate 

pathway, the regulation of this pathway, at any level, may have a direct effect on Q levels. 

On the other hand, this lipid is rapidly broken down, as reflected it short half-life of 49-

125 hours, and the initial steps in this degradation involve ω-oxidation and subsequent 

oxidation of the side chain.  
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Under a number of physiological, experimental and pathological conditions tissue levels 

of Q are either elevated or depressed. For instance, Q levels are enhanced in cold 

adaptation or exercise, due to squalenes and epoxides, thyroxin, PPARα and LXRα 

agonists, vitamin E treatments or in diseases such as Alzheimer’s, diabetes or prion 

diseases. Moreover, Q levels are decreased in aging, with treatments with vitamin A, 

statins treatments or RXRα deficiency or in diseases such as liver cancer, cardiomyopathy 

or Parkinson’s disease [21]. 

 

1.6. Human coenzyme Q10 deficiencies 

 

Q10 deficiency is a biochemical finding first described in 1989 [69]. Given the essential 

functions of Q, a deficit in this molecule leads to a number of mitochondrial disorders 

with an unexplained heterogeneous clinical spectrum that encompasses at least five major 

phenotypes: (1) an encephalomyopathy, characterized by recurrent myoglobinuria, (2) a 

severe infantile multisystem disorder with encephalopathy, (3) an ataxic syndrome with 

cerebellar atrophy, (4) an isolated myopathy, and (5) a steroid-resistant nephrotic 

syndrome (SRNS) [70]. The identification of the underlying genetic defects has allowed 

to distinguish primary or secondary forms of deficiency. Primary Q10 disorders are rare 

conditions with an autosomal recessive mode of inheritance. These disorders are caused 

by disruption of genes involved directly in the biosynthetic pathway of Q. Mutations in 

PDSS1, PDSS2, COQ2, COQ4, COQ6, COQ9, ADCK3 and ADCK4 have been identified 

to date [43]. On the other hand, secondary Q10 disorders are associated to mutations 

caused in genes not directly involved in Q biosynthesis or to other disorders such as 

mitochondrial DNA depletion, dietary insufficiency or the use of pharmacotherapeutic 

agents such as statins [70]. Moreover, this type of deficiency could also be a secondary 

effect of a disease already present in the patient.  

Primary Q10 deficiency is unique among mitochondrial disorders because oral 

supplementation with exogenous Q10 can improve clinical symptoms. Moreover, in some 

secondary deficiencies Q10 supplementation is also effective. Renal, CNS, and muscular 

symptoms respond very well to treatment. However, it should be noted that Q10 should 

be administered as soon as possible because although the treatment can stop the 

progression of the clinical manifestations, once severe kidney or CNS damage is 

established, it cannot be recovered [71]. Many different aspects may influence the 
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variability of the clinical response to Q10 supplementation. Obvious factors are the 

therapeutic dosages, the pharmaceutical formulation employed, the severity of the 

underlying illness and the progression of tissue damage [72], but there are probably many 

other components, genetic, environmental, and even epigenetic [73], that modulate the 

response to treatment.  

However, the long polyisoprenoid chain renders Q10 highly lipophilic and difficult to 

absorb by cells, so due to its low bioavailability, other treatments are being investigated. 

Reactivation of endogenous synthesis is a promising approach because endogenously 

produced Q10 will be delivered to the appropriate subcellular compartments, while with 

exogenous supplementation the distribution of Q10 is not controlled and it may have 

difficulties to efficiently reach mitochondria. As examples, we can highlight the bypass 

of the enzymatic defect achieved in yeast expressing a human COQ6 mutation using 

vanillic acid [74] or the restoration of Q biosynthesis in patient fibroblast cells completely 

lacking the enzymatic activity of COQ7 using the unnatural biosynthesis precursor 2,4-

dihydroxybenzoate [57]. However, due to the existence of high variability of mutations 

not all the treatment are effective for all the patients. 

 

2. Inhibitors of the mevalonate pathway  
 

As we described above, the mevalonate pathway produces isoprenoids that are vital for 

diverse cellular functions, ranging from the cholesterol or Q biosynthesis to mechanisms 

of growth control. Several regulators of this pathway have been described, being the most 

important: statins and bisphosphonates. While statins inhibit the HMG-CoA reductase, 

an upstream enzyme of the pathway, bisphosphonates inhibit mainly the so-called branch 

point enzyme, FDPS.  

 

2.1. Statins 

 

2.1.1. Structure and classification 
 

Structurally, statins are characterized by the presence of a conserved lactone ring. This 

family of compounds can be divided into two broad classes: type 1 and 2. Type 1 statins 

are lipophilic and possess a butyryl side chain. Lovastatin, pravastatin, and simvastatin 

are examples of type 1 statins. Type 2 statins are are distinguished from type 1 by the 
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replacement of the butyryl side chain with a fluorophenol group and, typically, possess 

larger side chains. Atorvastatin, cerivastatin, fluvastatin, pitavastatin and rosuvastatin are 

examples of type 2 statins [75]. In Figure I7 some statins examples of both classes were 

represented, all of them licensed for clinical treatments. 

 

 
 

Figure I7. Statins chemical structure. The conserved lactone ring of statins is represent in blue. A butyryl 

side chain (represented in red), which is different in each statin, characterizes type 1 statins. Type 2 statins 

differ from type 1 statins due to the replacement of the butyryl side chain with a fluorophenyl group (green). 

 

2.1.2. Functions and molecular targets 

 

Statins competitively inhibit HMG-CoA reductase, one of the most relevant enzyme of 

the mevalonate pathway, blocking the conversion of HMG-CoA to mevalonic acid by a 

catalytic mechanism. In other words, statins molecules occupy the catalytic portion of 

HMG-CoA reductase, specifically the binding site of HMG-CoA, thus blocking access of 

this substrate to the active site [76]. The inhibition of this enzyme results in a depletion 

in all the downstream metabolites of the mevalonate pathway, especially cholesterol, 

making these compounds a primary therapy to lower cholesterol levels. Therefore, statins 

have shown strong evidence-based proved capacity of decreasing the cardiovascular 

morbidity and mortality.  

However, statins present cholesterol-independent or pleiotropic effects because of the 

inhibition of the synthesis of important isoprenoid intermediates of the mevalonate 

pathway, such as FPP or GGPP. Between the observed pleiotropic effects we found: 

improvement of endothelial function, atherosclerotic plaque-stabilizing effects, anti-

inflammatory and immunomodulatory effects, antithrombotic properties, effects on bone 
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metabolism, on risk of dementia, induction of apoptosis and anti-proliferative effects [76]. 

All these functions make statins to be potential treatments of some disorders such as 

autoimmune diseases, rheumatoid arthritis or cancer. 

 

2.1.3. Statins and Q 

 

Q derives its isoprenyl tail from the mevalonate pathway so the depletion of metabolic 

intermediates caused by statins may affect the levels of this antioxidant leading to some 

adverse events. From 1990 up to now, numerous studies in animals (involving six 

different species) and humans stablished the statin-induced Q depletion as a well-

documented event [60, 70, 77-81]. Q depletion was observed in plasma as well as in 

different tissues such as liver, heart and muscle. Some of these studies also looked 

specifically the adverse consequences of this stain-induced Q depletion: decreased ATP 

production and impairment in mitochondrial bioenergetics events, increased production 

of free radicals with consecutive damage of mitochondrial DNA, increased injury after 

ischemia/reperfusion, defective activity of cells division, increased mortality in 

cardiomyopathy and heart failure, and skeletal muscle injury and dysfunction.  Moreover, 

statin-induced Q depletion is also considered one of the mechanisms responsible for 

statin-therapy related new onset diabetes [80]. Therefore, Q supplementation is widely 

used and studied as a treatment of choice for preventing this induced deficiency. 

 

2.2. Bisphosphonates 

  2.2.1. Structure and classification 

 

Structurally, bisphosphonates are chemically stable derivatives of inorganic 

pyrophosphate. In their structure, a non-hydrolyzable carbon atom has substituted the 

central oxygen of pyrophosphates, but the phosphate groups flanking this central carbon 

are maintained (Figure I8). The flanking phosphate groups provide bisphosphonates with 

a strong affinity for hydroxyapatite crystals in bone. Linked to the central carbon we 

found the long side-chain (R2 in the diagram), which determines the chemical properties, 

the mode of action and the strength of bisphosphonate drugs, and the short side-chain (R1) 

that mainly influences binding process and pharmacokinetics. A hydroxyl group in the R1 

position is highly recommendable in bisphosphonates used for medical treatments 

because it highly increases their ability to bind calcium. Moreover, the presence of a 

https://en.wikipedia.org/wiki/Substituent
https://en.wikipedia.org/wiki/Pharmacokinetics
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nitrogen or amino group in the R2 position increases bisphosphonate’s potency by 10 to 

10,000 relative to early non–nitrogen-containing bisphosphonates. Early non–nitrogen-

containing bisphosphonates, such as etidronate, clodronate, and tiludronate, are 

considered first-generation bisphosphonates. The addition of nitrogen in the R2 position 

results in the second- and third-generation of bisphosphonates, with compounds like 

alendronate, risedronate, ibandronate, pamidronate, and zoledronic acid [82]. 

 

 

Figure I8. Bisphosphonates chemical structure. (A) Inorganic pirophosphate vs bisphosphonates. The 

chemical structure of these compounds is represented. In bisphosphonates we can observe the central 

carbon as well as the short-side chain R1 (in blue) and the long-side chain R2 (in red). Similar colour pattern 

is maintained in the rest of the compounds. (B) Non-nitrogen-containing bisphosphonates. Etidronate, 

clodronate and tiludronate are some examples. (C) Nitrogen-containing bisphosphonates. Alendronate, 

risedronate and zoledronic acid are some examples. Adapted from [82]. 
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Zoledronic acid (ZOL) is a third-generation compound, highly potent and widely used for 

medical applications. Having the general structure described above for this type of 

compounds, it is the heterocyclic imidazole group attached to the R2 position the 

characteristic that distinguishes zoledronic acid from other bisphosphonates (Figure I7) 

[83]. 

 

2.2.2. Functions 

 

The ability of bisphosphonates to bind selectively the hydroxyapatite crystals of the bone, 

and it subsequent selective deposition in this tissue, linked to the pro-apoptotic function 

on osteoclasts, results in the utilization of these compounds as primary therapy for bone 

disorders. These pathologies, that include osteoporosis, Paget’s disease of osteogenesis 

imperfecta, hypercalcemia or osteolysis associated with multiple myeloma and metastatic 

cancers, are characterized by excessive or imbalanced skeletal remodelling, in which 

osteoclastic and osteoblastic activities are not tightly coupled, leading to excessive 

osteoclast-mediated bone resorption [82, 84]. Moreover, in the last years, nitrogen-

containing bisphosphonates (NBPs) have been used as treatment for disorders non-related 

with bone. For example, ZOL have demonstrated a potent anti-proliferative effect against 

glioblastoma (GBM) cell lines, breast cancer cells and patient-derived GBM lines. In 

cancer clinical studies, ZOL improves disease-free survival, decreases residual invasive 

tumor size, and reduces circulating tumor cells [85]. 

 

2.2.3. Molecular targets 
 

Given the fact that NBPs are the most potent and the most used nowadays, we will focus 

on this more recent class of compounds. These compounds exert their cellular effects by 

interference with the mevalonate pathway.  

The most studied fact is that NBPs are proposed to selectively bind and inhibit FDPS, the 

enzyme that represent the branch point in the mevalonate pathway [86]. This presumably 

selective inhibition produce a loss of posttranslational isoprenylation of proteins 

(including the small guanosine triphosphate–binding proteins Rab, Rac, and Rho, which 

play central roles in the regulation of core osteoclast cellular activities including stress 

fiber assembly, membrane ruffling, and survival), leading to osteoclast apoptosis and, 
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thereby, inhibiting the bone-destroying function of these cells [82]. According to several 

studies, the NBPs exert a slow, tight binding inhibition on FDPS [87-89]. In other words, 

first, the inhibitor binds rapidly to an open formation of the DMAPP/GPP site of FDPS 

producing a slow conformational change that locks the enzymatic-NBPs complex. 

Secondly, IPP binds to the complex and induce a full closure, preventing further catalysis 

(Figure I9).  

 
 

Figure I9. Mechanism of FDPS inhibition by bisphosphonates. First, NBPs bind rapidly the 

DMAPP/GPP site of FDPS producing a slow conformational change that locks the enzymatic-NBPs 

complex. Secondly, IPP binds to the complex and induce a full closure, blocking other substrates (such as 

DMAPP) from accessing and displacing the N-BP inhibitor. Adapted from [87]. 

 

Conversely, some in vivo studies suggested that the inhibition of the mevalonate pathway 

by N-BPs lies downstream the FPP synthesis step due to several cellular effects of N-BPs 

such as inhibition of osteoclast formation, inhibition of ovarian cancer cell migration or 

inhibition of breast cancer cell invasion, were reversed only by geranylgeraniol (GGOH) 

but not by farnesol (FOH) [90]. In accordance, some of the biological activities of ZOL 

are sustained by its inhibitory effect of protein geranyl-geranylation, which is influenced 

by an inhibition of FDPS, but mainly produced by a direct inhibition of geranylgeranyl 

diphosphate synthase (GGDPS). Several studies have support the ability of NBPs to 

selectively bind and inhibit geranylgeranyl diphosphate synthase (GGDPS) and 

geranylgeranyl transferase I [85, 91, 92]. However, the mechanism is unclear and needs 

to be further explored. 

Moreover, NBPs are potent inhibitors of squalene synthase [93]. This enzyme catalyse 

the formation of squalene, the first committed step of the sterol branch in the mevalonate 

pathway, so its inhibition results in a decrease of cholesterol and sterol biosynthesis [90].  
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  2.2.4. Bisphosphonates and Q 

 

Despite Q is a final product of the mevalonate pathway, the information of its regulation 

by NBPs is limited to a few studies. Coscia et al. described a Q decrease after treatment 

with ZOL in cells derived from a mammary tumor of a BALB-neuT female (TUBO cells), 

as well as in macrophages obtained from 18-week-old mice [94]. This decrease was 

restricted to Q9 in Hep G2 cells treated with risendronate [95]. Complementary, a clinical 

study reveals that postmenopausal women with osteoporosis treated with ZOL 

compromised Q10 levels and vitamin E status in plasma [96].  

 

2. Dietary phenolic compounds 

 

2.1. Structure and classification 

 

Phenolic compounds are secondary metabolites in plants with a common aromatic ring 

bearing one or more hydroxyl groups. Phenylalanine and/or tyrosine are the precursors 

for the synthesis of phenolic acids through shikimate pathway, being the addition of 

hydroxyl groups into the phenyl ring a key step of the biosynthesis [97]. More than 8000 

natural phenolic compounds have been identified to date [98]. Due to the diversity and 

wide distribution of these compounds in plants, they can be categorized according to 

different parameters. Phenolic compounds have been classified by their source of origin, 

biological function, and chemical structure. 

Focusing on their structure, they are classified broadly into simple and complex phenolics 

(or polyphenols). Simple phenolics contain a carboxylic group attached to the benzene 

ring with one or more hydroxyl or methoxyl groups attached to it, whereas polyphenols 

are compounds with higher molecular weight due to the presence of more than one 

benzene ring. More concretely, phenolic compounds have been classified into five major 

chemical families, namely flavonoids, phenolic acids, stilbenes, lignans and 

curcuminoids (Figure I10-A) [99] or, by abundance, in two big groups: flavonoids and 

non-flavonoids compounds. 
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  2.1.1. Flavonoids 

Flavonoids are polyphenolic compounds comprising 15 carbons with two aromatic rings 

connected by a three-carbon bridge. They are the most numerous of the phenolics and are 

found throughout the plant kingdom [100]. The basic flavonoid skeleton can have 

numerous substituents resulting in the establishment of subclasses, being the principals: 

flavones, flavonols, flavan-3-ols, isoflavones, flavanones, and anthocyanidins (Figure 

I10-B). Moreover, other flavonoid subgroups also exist with a minor presence in the diet 

such as chalcones, dihydrochalcones, dihydroflavonols, flavan-3,4-diols, coumarins and 

aurones.  

 
 

Figure I10. Classification of phenolic compounds according to their chemical structure. (A) General 

classification of phenolic compounds. The general structure of the main groups of phenolic compounds, 

phenolic acid, stilbenes, flavonoids, lignans and curcuminoids, is represented. (B) Classification of 

flavonoids. The general structure of the most abundant subgroups of flavonoids is represented: flavonols, 

flavones, flavan-3-ols, isoflavones, flavanones and anthocyanidins. 
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  2.1.2. Non-flavonoids compounds 

 

The main non-flavonoids of dietary significance are the phenolic acids, the 

hydroxycinammates and their conjugated derivatives, and the polyphenolic stilbenes. 

Moreover, due it extensive use as condiments and flavouring in the food industry we can 

also stand out the curcuminoid group. 

 

2.2. Therapeutic potential 

 

Polyphenols, which are widely present in foods and beverages of plant origin, have 

received great interest during the last years due to their positive effects on human health. 

Fruits, vegetables, olive oils, whole grains and other types of foods and beverages such 

as tea, chocolate and wine are examples of rich sources of polyphenols [98]. Several 

studies have strongly supported a role for polyphenols in the prevention of important 

diseases such as cancer, cardiovascular disease, chronic inflammation and 

neurodegenerative disease [101]. The beneficial properties of polyphenols have been 

partially attributed to their antioxidant role as well as to their ability to modulate 

molecular targets and signaling pathways. For instance, they can exerts anti-carcinogenic 

effects due to the ability to: (a) induce cell cycle arrest; (b) inhibit oncogenic signaling 

cascades controlling cell proliferation, angiogenesis and apoptosis; (c) modulate ROS 

levels; (d) promote tumor suppressor proteins such as p53; and (e) enhance the ability to 

differentiate and transform cancer cells into normal cells [97]. Their antioxidant capacity 

is widely linked to their ability to reduce free radical formation and to scavenge free 

radicals, but other mechanisms of action serving to elevate endogenous antioxidants are 

also important. For example, polyphenols can induce antioxidant enzymes such as 

glutathione peroxidase, catalase and superoxide dismutase and inhibit the expression of 

enzymes such as xanthine oxidase [102]. Moreover, they can elicit cellular signaling and 

modulate pathways that determine activity of the mitochondrial electron transport chain, 

membrane potential and biogenesis, intra-mitochondrial oxidative status and, ultimately, 

mitochondria-triggered cell death [103]. Another important factor is the molecular 

structure of these compounds, which can modulate their properties and functions. Of note, 

the 3-hydroxyl group in flavonols is considered especially important for their antioxidant 

activities [98]. 



Introduction 

 

66 
 
 

However, polyphenols can behave as a double-edged sword; on the one hand, when used 

properly in the form of foods or functional foods, they are strong antioxidants the exert 

their action against oxidative stress, being thus beneficial to health. On the other hand, 

they can also display pro-oxidant activity when consumed in high doses, such as when 

taking supplements [104]. 

 

 2.3. Dietary phenolic compounds and Q 

 

As we described above, some (poly)phenolic acids exerts a key role as precursor of the 

benzoquinone ring of Q. Concretely, phenolic acids such as 4HB, vanillic acid, 

protocatechuic acid and p-coumarate as well as the stilbenoid resveratrol function as Q 

ring precursors in yeast and mammals [52, 56]. Moreover, a large list of phenolic acids 

such as p-coumaric acid, m-coumaric acid, isoferulic acid, ferulic acid, tyrosine, p-

hydroxyphenyl-lactic acid, p-hydroxyphenylacetic acid, 4HB, anisic acid, p-

hydroxybenzaldehyde and p-hydroxyphenylpyruvic acid display an inhibitory effect on 

phosphomevalonate kinase and mevalonate diphosphate decarboxylase, when present at 

high concentrations [105] (see Figure I3). This study revealed that some of the phenolic 

acids compete with the substrates, mevalonate 5-phosphate and mevalonate 5-

pyrophosphate, whereas others inhibit uncompetitively. Therefore, the inhibition of these 

enzymes, that participate in the early stages of the mevalonate pathway, may regulate the 

biosynthesis of Q. 

Apart from the role that some phenolic compounds have over the biosynthesis of Q, little 

is known about the possible interaction of more complex polyphenols in Q metabolism 

or regulation. A significant number of polyphenols have been shown to interact strongly 

with the lipid domains of cell membranes, altering the properties of the immediate lipid 

environment in which a representative number of crucial protein receptors are embedded. 

Moreover, it is described that mitochondria is a target for polyphenols [103, 106]. Linking 

these facts, a possible direct or indirect interaction of these compounds and Q is easy to 

come up with. An example is given by the flavonol quercetin. Quercetin is the most 

efficient polyphenol exerting a protective effect against mitochondrial dysfunction 

probably due to its ability to enter cells and accumulate in mitochondria. The 

ubiquinone/ubiquinol-like behaviour of quercetin allows preserving mitochondrial 

function. The polyphenol will prevent the formation of H2O2, even when the H2O2 
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production rate is stimulated by mitochondrial inhibitors like rotenone. Quercetin joins 

the Q-binding site of complex I instead of the inhibitor avoiding the impairment of the 

mitochondrial function. These findings suggest a new mitochondrial protective function 

for dietary polyphenols, independent of their antioxidant properties [107, 108]. A similar 

mechanism was also proposed for epichatechin, kaempferol and apigenin [109]. 

 

3. Dietary fatty acids 

3.1. Fatty acids 

 

Fatty acids are biomolecules composed by a carboxyl group linked to a long-chain 

hydrocarbon side groups. Most fatty acids have an even number of carbon atoms because 

they are usually biosynthesized by the concatenation of C2 units and commonly the length 

oscillates between 14 and 22 carbons. They are rarely free in nature but, rather, are found 

taking part of complex lipid molecules and being the fundamental components of 

biological membranes. The nomenclature of fatty acids are made according the rules 

created and developed by the International Union of Pure and Applied 

Chemistry (IUPAC). However, their importance in biological process have made that, on 

one hand, traditional names of the most common or important compounds have been 

maintained and, on the other hand, the development of alternative nomenclatures have 

been promoted. Thus, despite for the IUPAC the C1 of the molecule is the one that 

belongs to the carboxyl group, an alternative nomenclature start to count from the carbon 

of the terminal methyl group of the chain (named carbon ω). Therefore, using this 

alternative nomenclature the third carbon from this side is the ω-3. This alternative is 

normally used in the biomedical literature. 

Attending to the presence of double bound between the carbons of the lateral chain as 

well as it number and location, fatty acids can be classified as (see examples in Figure 

I11): 

 Saturated fatty acids (SFA). In these molecules, no double bond is present in the 

hydrocarbon chain, resulting in an elevated fusion point. They can be identified 

with the abbreviate formulation of n:0, where n is the number of carbons present 

in the chain (for example, palmitic acid, 16:0). 
 

https://en.wikipedia.org/wiki/International_Union_of_Pure_and_Applied_Chemistry
https://en.wikipedia.org/wiki/International_Union_of_Pure_and_Applied_Chemistry
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 Unsaturated fatty acids. In these molecules, at least one double bound is present 

between two carbons of the chain. According to the number of double bonds two 

groups are stablished: monounsaturated fatty acids (MUFA) and polyunsaturated 

fatty acids (PUFA). The major part of these lipids have a double bound between 

C9 and C10 and, if more than one is present, the additional doubles bounds tend 

to occur at every third carbon atom toward the methyl terminus of the molecule. 

Two important classes of PUFA are denoted ω-3 (or n-3) and ω-6 (or n-6). This 

nomenclature allows to identity perfectly each fatty acid in a simple manner. For 

instance, eicosapentanoic acid (EPA) is named 20:5 ω-3 denoting its 5 double 

bonds, the first between ω-3 and ω-4 carbons. 

Fatty acids are the structural units to the establishment of more complex molecules. One, 

two or three fatty acids can be esterified with glycerol to form 

monoglycerides, diglycerides, and triglycerides, respectively. Moreover, the combination 

of acylglicerols with a phosphate group and an aminoalcohol form phospholipids, the 

structural components of the cellular membranes. 

 

 

Figure I11. Classification of fatty acids attending to the presence of double bonds. We represent the 

main group of fatty acids: saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and 

polyunsaturated fatty acids (PUFA). One of the most important fatty acid of each group is selected to act 

as example. For PUFA, we have represented the two principal series of these compounds.  

 

 

 

https://en.wikipedia.org/wiki/Monoglyceride
https://en.wikipedia.org/wiki/Diglyceride
https://en.wikipedia.org/wiki/Triglyceride
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3.2. Essential fatty acids 

 

Cells are able to synthetize fatty acids in the cytoplasm from acetyl-CoA and NADPH 

through the reactions of enzymes called fatty acid synthases. These fatty acids are known 

as the “non-essential fatty acids”. However, cells are not able to produce all types of fatty 

acids it requires, but some of them must come from diet. These fatty acids are called 

“essential fatty acids” or EFAs [110]. The fact that mammal’s cells cannot synthetize ex 

novo some types of fatty acids were elucidated in rats fed with a totally fat-free diet. 

Because of this feeding, among other problems, rat had growing alterations, dermatitis 

and reproductive disorders [111]. However, mayor advances in the understanding of the 

essential fatty acids are obtained, unfortunately, due to health problems developed in 

patients fed with fat-free total parenteral nutrition [112].  

There are two known families of EFAs, the n-3 and the n-6 series. Both, are synthetized 

in plants through reactions related directed with the chlorophyll biosynthesis, where a 

type of desaturases, not synthetized in animals, are in charge of the insertion of a double 

bond in n-3 or n-6 positions of the hydrocarbon chain of the fatty acid. α-Linolenic acid 

(ALA) is the primary n-3 EFA whereas linoleic acid (LA) in the primary n-6 EFA (see 

their structures in Figure I11). Both n-3 and n-6 fatty acids exert important roles in the 

biophysics properties of the lipid bilayers, increasing its fluidity and affecting its 

oxidation pattern. Moreover, these lipids are beneficially associated with some 

pathological disorders. The n-3 series, apart from being a structural component of the 

membranes, plays an important protective role against cardiovascular diseases, 

psychiatric disorders [113], immune alterations and some types of cancer [114]. On the 

other hand, the n-6 series is associated with a beneficial influence over cardiovascular 

diseases [115].  

Moreover, EFA are actually precursors to hormone like substances called “eicosanoids”. 

The n-6 fatty acids, especially arachidonic acid (AA), are the primary source of the n-6 

eicosanoids that are produced from oxygenation of AA by cyclooxygenase, lipoxygenase, 

and epoxygenase enzymes to produce prostaglandins, leukotrienes, lipoxines, and P-450 

compounds, which acts as prolific cell messengers [110].  
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3.3. Dietary lipids 

 
Due to essential fatty acids are obtained directly from the diet, it fat and oil (which differ 

only in that fats are solid and oils are liquid at room temperature) composition has 

important long-term consequences for health.  Some studies have described the ability of 

biological membranes to adapt its phospholipid composition according to the major lipid 

source present in the diet [116-118], so a modification in the lipid pattern could produce 

biochemical alterations in cells, especially mitochondrial membranes [119]. PUFA 

sources, such as soybean or fish oil, will generate membranes more susceptible to 

oxidative stress than a SFA or a MUFA source, like animal fat and olive oil, respectively. 

Therefore, these alterations in the membranes could affect the oxidative damage rate and 

its related process such as aging [120]. Optimal cellular functions will require an adequate 

incorporation of PUFA through the diet as basic elements of the cellular membranes 

without exceeding the correct balance to avoid its negative activities. 
 

 

 

3.4. Dietary fatty acids and Q 

 

Huertas et al. provided the first evidences of the interaction of dietary fat and Q levels 

[116]. The different dietary fats used (virgin olive oil, refined olive oil and corn oil) did 

not produce any effect on microsomes but all of them influenced the mitochondrial levels 

of Q9 and Q10 in rat liver. Higher mitochondrial Q content is observed in a corn oil-based 

diet (a source of n-6 PUFA) in comparison with an olive oil-based diet (a MUFA source). 

This difference in the amount of Q can also be supported by the fact that the mitochondrial 

membrane is more unsaturated in animals fed corn oil, and a higher antioxidative defense 

is therefore needed. It also been described that after an unnatural induction of oxidative 

stress a significant decrease of coenzyme Q9 content was reported in the corn oil group 

but not in the olive oil group [121]. The high Q9 turnover possibly stems from the 

oxidative damage that is induced in highly unsaturated mitochondrial membranes as a 

result of the corn oil intake. It is also described that Q levels in liver mitochondrial 

membranes of rats are significantly affected by the supplementation of olive oil with 200 

mg/kg of vitamin E in comparison with a simple supplementation of olive oil. These 

differences suggest that vitamin E content in olive oil had a direct effect on Q levels, 

possibly due to a synergism between vitamin E and Q [122].  
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Moreover, previous studies in our Group reveals a fast regulation of mice Q biosynthesis, 

which involve COQ genes and COQ proteins, after 1 month of dietary intervention [123]. 

In this study, different sources of SFA and PUFA, as well as calorie restriction (CR), alter 

Q metabolism. Concretely, a n-3 PUFA rich diet (based on fish oil) induce the expression 

of COQ genes in liver, kidney, skeletal muscle, brain and heart. The incorporation in the 

membranes of fatty acids more sensitive to oxidation activates the biosynthesis pathway 

of Q as a defense mechanism to face a redox disarrangement. On the other hand, short-

term calorie restriction use the biosynthesis pathway of Q to alter the energetic 

metabolism, although adaptation of COQ genes transcription is tissue-dependent.  

From another point of view, Q is also related with fatty acids and diet when used as a 

dietary supplemental antioxidant. Exogenous Q is used as a supplement to alleviate the 

oxidative stress produced by PUFA-enriched diets. Ochoa et al. showed that heart 

mitochondria in rats fed a polyunsaturated fatty acid (PUFA)-rich diet and supplemented 

with Q10 present a lower hydroperoxide levels; higher content and/or activity of α-

tocopherol, Q, and catalase; and a slightly lower decrease in mitochondrial function. 

According to that, previously reported positive effects of Q supplementation on the 

lifespan of rats fed a PUFA-rich diet [124] might be a consequence, at least in part, of a 

lower oxidative stress level [125]. Moreover, Quiles et al. described that MUFA can 

protect cardiomyocyte mitochondria from age-related changes, and that Q 

supplementation to a n-6 PUFA-enriched diet partially resembles MUFA benefits [126]. 

In liver, the supplementation with exogenous Q10 increased Q levels in both, total 

homogenates and plasma membranes, but rats fed with sunflower oil as fat source showed 

higher amounts of Q than those fed with olive oil, indicating a more protective antioxidant 

effect of olive oil dietary fat with respect to sunflower oil [127]. 

Fatty acids can suffer autoxidation reactions generating lipid peroxides and peroxyl 

radicals, which are chemically reactive and result in many products that are toxic to cells. 

A previous study performed in Coq3-deleted yeast revealed that these Q-deficient 

mutants are hypersensitive to the autoxidation products of linolenic acid and other 

polyunsaturated fatty acids, while the monounsaturated oleic acid, which is resistant to 

autoxidative breakdown, has no effect. The hypersensitivity of the Q-deficient mutants 

can be rescued by the addition of antioxidants, concretely, butylated hydroxytoluene, α-

tocopherol or trolox, an aqueous soluble vitamin E analog. The results indicate that 
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autoxidation products of polyunsaturated fatty acids mediate the cell killing and that Q 

plays an important role in protecting eukaryotic cells from these oxidative products [128]. 
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The main objective of this work is to analyze the regulation of the coenzyme Q system 

through nutritional and pharmacological interventions. For this purpose, we include three 

partial objectives corresponding to the study of how coenzyme Q metabolism is 

influenced by three different groups of compounds: 

 

1. Phenolic acids. In this partial objective, we will study the effect of different 

flavonoids and non-flavonoids compounds on coenzyme Q levels and their role 

as coenzyme Q precursors.  

 

2. Fatty acids. To evaluate the effects of fatty acids on Q metabolism we will use 

an in vitro model of cell lines treated with lipid emulsions that differ in their 

composition as well as an in vivo model of animal fed with different fat sources. 

 

3. Farnesyl diphosphate synthase inhibitors. In this case, the objective is the study 

of this key enzyme of the mevalonate pathway as a potential regulator of Q 

metabolism. We will use different strategies to inhibit this enzyme: specific 

siRNAs and zoledronic acid, as example of the nitrogen-containing 

bisphosphonate family. Q metabolism will be determined in the farnesyl 

diphosphate synthase depleted cells. 
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The brand of all the products used in the present work are summarized in Appendix 1. 

1. Cellular model 

1.1. Cell cultures 

All cultures were maintained at 37ºC in sterile conditions and in a humidified atmosphere 

of 5% CO2. Routinely, cells were replated every 3-4 days to maintain the culture using 

the appropriate cell culture media. Cell lines used in the present work (see images in 

Figure M1) are:  

 Human embryonic kidney cells 293 (HEK 293). Cells were grown in DMEM: 

F12 with 1 g/L glucose supplemented with 10% FBS, 2mM L-glutamine and 

gentamicin-amphotericin B (125 µg/ml and 5 mg/ml, respectively).  

 Human liver hepatoma cells (Hep G2). Cells were maintained in MEM 

containing 1g/L glucose and supplemented with 10% FBS, 1% sodium pyruvate, 

2mM L-glutamine and gentamicin-amphotericin B (125 µg/ml and 5 mg/ml, 

respectively).  
 

 

Figure M1. Cell cultures used along the study. (A) Human cell lines. HEK 293, HepG2, HeLa and HL-

60 cells. (B) Mouse cells. Tkpts, Hepa 1.6 and MEFs. Images were taken directly from the inverted 

microscope. 



Materials and Methods 

 

80 
 
 

 Human promyelocytic leukemia cells (HL-60). Cells were grown in RPMI-

1640 supplemented with 10% FBS, 2mM L-glutamine and gentamicin-

amphotericin B (125 µg/ml and 5 mg/ml, respectively). 

 Human cervical cancer cells (HeLa). Cells were grown in DMEM with 4,5 g/l 

glucose supplemented with 10% FBS, 4mM L-glutamine and gentamicin-

amphotericin B (125 µg/ml and 5 mg/ml, respectively). 

 Mouse kidney proximal tubule epithelial (Tkpts) cells. Cells were grown in 1:1 

DMEM: F12 with 4.5 g/L glucose supplemented with 10% FBS, 2mM L-

glutamine and gentamicin-amphotericin B (125 µg/ml and 5 mg/ml, respectively).  

 Mouse liver hepatoma cells (Hepa 1.6). Cells were culture in the same culture 

medium described above for Tkpts cells. 

 Mouse embryonic fibroblast (MEFs). Cells were culture in DMEM 2g/L 

glucose supplemented with 10% FBS, 2mM L-glutamine and gentamicin-

amphotericin B (125 µg/ml and 5 mg/ml, respectively). 

All cell lines were obtained from ATCC except for Tkpts and MEFs. Tkpts cells [129] 

were kindly provided by Dr. Elsa Bello-Reuss (Texas Tech University Health Science 

Center) and Dr. Judit K. Magyesi (University of Arkansas for Medical Sciences, Little 

Rock, AR) whereas MEFs were obtained in our own laboratory by repeated subculture of 

cells derived from mouse embryos following a standard 3T3 immortalization protocol 

[130]. 

 

1.2. Viability assay 

Final concentration of each product used in this work was selected on the basis of previous 

MTT viability assays. NAD(P)H-dependent cellular oxidoreductases enzymes present in 

viable and metabolic active cells are capable of reducing the 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) to its insoluble formazan, which has purple 

color. Non-viable cells has lost this ability so the color formation serves as a useful marker 

of viability [131]. To perform these assays, a convenient number of cells were plated into 

24 well-plates and treated with the correspondent compound during 48h. Then, 50 µl/ml 

of a 5 mg/ml stock of MTT were added to the cultures. After 2 hours of incubation at 

37ºC in 5% CO2, the culture medium was removed, the converted dye solubilized with 
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0.04M HCl in absolute isopropanol, and the absorbance measured at 590 nm in a plate 

reader (Optic Ivymen System 2000-C). 

 

1.3. Treatments 

Generally, unless otherwise specified, the same experimental conditions were used to test 

all the compounds in mouse and human cells. Each product was dissolved according to 

the manufacturer’s information. Assays were performed in 6 well-plates with an initial 

amount of 50,000-100,000 cells/well. Cells were incubated with the selected compounds 

for 48h under standard culture conditions (37ºC, 5% CO2).  

 

1.3.1 Phenolic compounds 

Several phenolic compounds were used to test their effects on Q metabolism. Cells were 

treated with kaempferol, resveratrol, apigenin, quercetin, piceatannol, luteolin, 

naringenin, curcumin, ferulic acid or 4HB. In viability assays the concentration range was 

5nM to 100µM. Some of the higher concentrations were found non-viable for cells, so in 

the following experiments the concentration range of all the phenolic compounds was 

decreased to 5 nM to 10µM, excepting for 4HB which did not affect cell viability at any 

of the concentrations tested. These compounds were mainly used in Tkpts cells but, in 

some cases, other cells lines such as HEK 293, HL-60, Hep G2, Hepa1.6 and MEFs were 

also used to complement these studies. 

 

1.3.2. Lipid emulsions 

To study the effect of different fat sources in Q metabolism we treated the cells with 

commercial lipid emulsions, traditionally used in parenteral nutrition. Lipofundin 

MCT/LCT 20%, Lipoplus 20% and ClinOleic 20% were added to the cells at a 

concentration of 7 µl/ml. Lipofundin MCT/LCT 20% is a source of n-6 PUFA due its 

composition is based on soybean oil. It contains 100g/L of soybean oil and 100g/L of 

medium-chain triacylglycerol’s (MCT). As a source of n-3 PUFA (characteristic of a diet 

enriched in fish oil) we used Lipoplus 20% composed by 100g/L of MCT, 80g/L of 

soybean oil and 20g/L of n-3 triacylglycerol’s. As a source of n-9 MUFA we used 

ClinOleic 20% mainly composed of purified olive oil (160g/L) and soybean oil (40g/L). 

The treatments with the described emulsions were performed in Hepa1.6 and Tkpts cells, 
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with the precaution of plating the cells at high density (15,000 cells/cm2). Other cellular 

lines were also tested, such as Tkpts and HEK 293, but these lipids were extremely toxic 

for them, making it impossible to perform any study with lipid emulsions on these kidney-

derived cell lines. 

During the development of this study, B. Braun Melsungen AG stopped the 

commercialization of Lipofundin MCT/LCT 20%. The used of this lipid emulsion was 

restricted to a short period and so, Lipofundin only appears in some of the presented 

experiments. These experiments do not necessarily have to be the first ones because the 

workflow, in which the work was performed, was not the same that the one that is 

presented in this document. 

 

1.3.3. Antioxidants 

To discard the possible effect of the oxidation of the lipid emulsions used in our studies 

we made a co-treatment with two antioxidants: trolox (6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid), an analogue of vitamin E, and butylated 

hydroxytoluene (BHT). To discard cellular toxicity, a viability curve for each compound 

was performed at a concentration range from 500 nM to 2 mM. According to the obtained 

results, trolox was used at 250 µM and BHT at 50 µM. Corresponding determinations 

were carried out in Hepa 1.6 cells. 

 

  1.3.4. Inhibitors 

   1.3.4.1. p-Aminobenzoic acid 

To test if the effect of the compounds tested was related with ubiquinone biosynthesis we 

used p-aminobenzoic acid (PABA), a polyprenyltransferase Coq2 inhibitor, as an indirect 

approach. This compound was used at 1 mM in Tkpts cells, a concentration previously 

shown by our Group to produce an effective inhibition of ubiquinone biosynthesis [132]. 

 

   1.3.4.2. Nicotinamide 

Nicotinamide, a well-known inhibitor of sirtuin deacetylase activity [133], was used in 

some of our experiments in Tkpts cells, either by itself or in a combined treatment with 

the polyphenol kaempferol. In both cases, this product was used at 10 mM 
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   1.3.4.3. Zoledronic acid 

This third generation bisphosphonate is a well-known inhibitor of the enzyme farnesyl 

diphosphate synthase [89], which plays a major role in the mevalonate pathway. The 

toxicity of this chemical was tested in a concentration range from 0.5 µM to 200 µM in 

Tkpts, Hepa1.6, HEK 293 and HeLa cells. Each cellular line showed a different tolerance 

to this product, and we selected the highest concentration that did not affect cellular 

viability. Thus, we used ZOL at 20 µM in Hepa 1.6 and Tkpts cells, at 10 µM in HeLa 

cells and at 5 µM in HEK 293 cells. 

 

   1.3.4.4. Lovastatin 

Lovastatin is part of a family of compounds named statins, well known as inhibitors of 

the HMG-CoA reductase. The inhibition of this enzyme suppress the conversion of 

HMG-CoA to mevalonic acid, an important step in the mevalonate pathway [134]. This 

compound was tested in Hepa 1.6 and Tkpts cells at a final concentration of 1µM, which 

was previously defined in a toxicity curve for each cell line. 

 

1.4. Transient cellular transfections 

 1.4.1. Plasmids 

Hepa 1.6 and Tkpts cells were transfected using Lipofectamine® 2000 according to the 

manufacturer’s instructions. 100,000 cells were seeded in 12-well plates and cultures 

overnight at 37% and 5% CO2 until a 70-90% of confluence was reached before starting 

the transfection procedure. To measure the efficiency of transfection (Transfection index, 

see below) of our cellular lines by flow cytometry, 1 µg of phrGFP-N1 vector (Agilent 

Technologies) was mixed with 3 or 6 µl of Lipofectamine® 2000 in 0.5 ml of Opti-MEM 

and incubated for 5 min at room temperature. Cell media were withdrawn and the new 

transfections complexes were added to the cells and incubated at 37% and 5% CO2 for 24 

hours. After this time, Opti-MEM that contained the lipid complexes was replaced by 1 

ml of complemented media and cells were incubated another 24h hours.  
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 1.4.2. siRNAs 

Two commercial 27mer siRNA duplexes designed against mouse FDPS as well as a 

universal scramble negative control (all from OriGeneTM Technologies) were used to 

transfect Hepa1.6 cells. 250,000 cells were plated in 6-well plates and incubated overnigth 

at 37% and 5% CO2. For each transfection we used 6 µl of Lipofectamine® 2000 in 1 ml 

Opti-MEM and siRNAs at a final concentration of 20 nM. Cultures were incubated for 

48 h post-transfection (with a media change at 24 hours) in order to allow siRNAs to 

achieve the appropriate inhibition of FDPS. After this time, cells were recovered and 

processed for lipid measurements and western-blotting (see below). siRNA effectiveness 

was validated for each experiment by western-blot using a specific antibody raised against 

FDPS. 

Identification Sequence 

SR411924-A rArGrArGrGrUrArCrArArArUrCrGrArUrUrGrUrCrArArGTA 

SR411924-B rCrArUrGrUrGrGrArUrCrUrUrGrGrUrArGrArUrArCrArCTG 
 

Table M1. SiRNA identification and sequence. We summarize here the sequence of both 27mer siRNA 

duplexes used to deplete the amount of FDPS in Hepa 1.6 cells. 

 

To test the effect of Lipoplus 20% over cells in which the FDPS had been silenced using 

siRNAs, cells were replated 48 hours after transfecction and treated with 7 µl/ml of 

Lipoplus 20%  for another period of 48 hours. When cells were replated we doubled the 

numbers of wells, including a set of wells to be treated with 7 µl/ml Lipoplus 20% alone 

and a similar set to be used as untreated control. 

 

1.5. Whole cell extracts 

 1.5.1. For lipid determinations 

Once the corresponding treatment was completed, cells were washed with Hanks’ 

balanced salt solution and detached from culture plates, using a cell scraper, in 1ml of the 

same solution. Cell suspensions were pelleted by low-speed centrifugation and the dry 

cell pellets were stored at -80ºC until use for extraction of lipids as described below.  
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 1.5.2. For electrophoresis and western-blotting 

Cells were washed with Hanks’ balanced salt solution twice and detached using a cell 

scraper directly in a small volume (100-200 µl) of radioimmunoprecipitation assay 

(RIPA) buffer (50mM Tris-HCl pH8, 150mM NaCl, 0.5% deoxycholate, 0.1% SDS, 

1mM DTT, 1% Triton X-100). In order to enhance the preservation of the samples, RIPA 

buffer was always supplemented with 20µg/ml of each of the following protease 

inhibitors: chymostatin, leupeptin, antipain and pepstatin (CLAP) and 1mM of 

phenylmethylsulfonyl fluoride (PMSF). The cell suspension was centrifuged at 10,000 g 

for 15 minutes to remove non-solubilized debris and the supernatants were saved for 

future determinations of protein levels by western-blot. All the procedure was carried out 

at 4ºC.  

 

2. Animal model. 

 2.1. Calorie restriction and dietary fat intervention in mice 

C57BL/6 male mice were used in the present study. Mice were cared according with the 

Guide for care and use of laboratory animals (National Research Council, United States), 

the Animal Welfare Act (PL 89-544, United States) and the Real Decree 1201/2005, 

October 10, about protection of animals used in research projects and science. The ethic 

committees of animal experimentation of the University of California, Davis (United 

States) and the University Pablo de Olavide (Seville, Spain) approved all the protocols. 

Animals were maintained at the Andalusian Center of Developmental Biology 

(University Pablo de Olavide) in individual cages to ensure the correct intake control. 

Dark-light cycles had a duration of 12 hours, the temperature was 22 ºC and the animals 

had unlimited access to water.  The daily average intake was calculated along three weeks 

in a group of 30 mice, in order to select a criterion to calculate the amount of calories we 

should administer in the different diets. 

At the age of ten weeks, mice were randomly assigned to one of the different diet groups 

(one group and the remaining three groups under calorie-restricted conditions) and fed 

with a purified AIN-93M diet (Research Diets, New Jersey, United States) (composition 

described in Table M2 and M3). In order to avoid an excessive weight gain and obesity, 

the control group (Ctrl) was fed with the 95 % of the daily average intake previously 
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calculated. In calorie-restricted groups (CR), food was reduced to 60 % of the daily 

average intake. The only difference between diets was the main fat source. While in the 

Ctrl group the diet contained soybean oil (high in n-6 polyunsaturated fatty acids, Super 

Store Industries, Lathrop, CA) the three CR groups were fed with diets containing 

soybean oil, fish oil (high in n-3 polyunsaturated fatty acids: 18% eicosapentaenoic acid 

and 12% docosahexaenoic acid; Jedwards International, Inc., Quincy, MA) or lard (high 

in saturated and monounsaturated fatty acids, ConAgra Foods,Omaha, NE), respectively. 

Two age groups were constituted for each dietary intervention: one for an intervention 

lasting 6 months and another one for a longer intervention of 18 months.  

 

Ingredients Lard diet (g/kg) Soybean oil diet (g/kg) Fish oil diet (g/kg) 

Casein 200 200 200 

Corn starch 397.48 397.49 397.50 

Maltodextrin 132 132 132 

Sucrose 100 100 100 

Cellulose 50 50 50 

Soybean oil 0 70 0 

Lard 70 0 0 

Fish oil 0 0 60 

t-butyl hydroquinone 0.014 0.015 0.016 

Mineral mix 35 35 35 

Vitamin mix 10 10 10 

L-cysteine 3 3 3 

Choline bitartrato 2.5 2.6 2.7 
 

Table M2. Composition of the different diets used in this study. The soybean oil diet was used in the 

RC-Soy group as well as in the control diet. Diets contain mineral mix (S10022G) and vitamin mix 

(V10037). Data obtained from [135]. 

 

Fatty acids Lard (%) Soybean oil (%) Fish oil (%) 

Saturates 40.3 14.8 28.3 

Monounsaturated (n-9) 39.2 21.2 8.7 

Total n-6 16.0 55.0 3.2 

Total n-3 0.7 8.1 33.9 

n-6/n-3 ratio 24.4 6.8 0.1 

 

Table M3. Fatty acid composition of the fats present in the different diets used in this study. Data are 

represent in %. Data obtained from [136]. 
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Animals were sacrificed in the installations of University Pablo de Olavide by cervical 

dislocation after the corresponding intervention. Tissues were extracted and preserved in 

freezing buffer (0.21 M mannitol, 0.07 M sucrose and 20 % DMSO). All tissue samples 

were stored at - 80ºC until use. 

 

2.1.1 Preparation of tissue homogenates. 

Muscle and liver from Ctrl and CR animals were already processed in previous studies 

developed by our Group to obtain whole homogenates [137, 138]. Hind limb skeletal 

muscles were chopped and homogenized at 4 °C in ice-cold buffer containing 20 mM 

Tris–HCl pH 7.6, 40 mM KCl, 0.2 M sucrose, 1 mM PMSF, 10 mM EDTA and 20 μg/ml 

CLAP with a Teflon-glass tissue homogenizer. A second step of homogenization were 

carried out using a high-performance dispersing instrument (Ultra-Turrax T25, IKA, 

Staufen, Germany) and the resultant total homogenates were stored at -80 ºC until use. In 

the case of liver, the same procedure was performed but a suitable buffer was used (5mM 

Tris-HCl pH 7.4, 0,225 M mannitol, 0.075 M sucrose, 0.5 mM EGTA, 10mM EDTA, 

1mM PMSF and 20 μg/ml CLAP). 

 

 2.2. Sirt3 knockout model 

Frozen tissues from Sirt3 knockout mice (Sirt3-/-), as well as from the corresponding 

matched controls (wt), were provided by Dr. Verdin (Gladstone Institute, San Francisco, 

CA, USA) and used in the present study. These male knockout mice were developed as 

described [139] in a genetic C57Bl/6 background. Mice were maintained on a standard 

chow diet (5053 PicoLab diet, Ralston Purina Company, St. Louis, MO) and sacrificed at 

the age of 3 months. The organs were collected and quickly frozen in liquid nitrogen. 

 

2.2.1 Preparation of tissue extracts 

A thin slice weighing approximately 50 mg, was directly cut off the frozen tissue and 

lysed in RIPA buffer supplemented with protease inhibitors, as indicated above. A pellet 

pestle motor (Kimble® Kontes) was used to aid in tissue disruption. Lysates were 

centrifuged at 10,000g for 15 min in a tabletop microfuge at 4°C and supernatants were 

transferred to new vials and conserved at -80 °C. For this study, we prepared tissue 

homogenates from liver, kidney, skeletal muscle and brain. 
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3. Lipid extractions 

 3.1. For HPLC with electrochemical or diode array detection measurements 

Cellular pellets (approx. 106 cells) from the different treatments or 20mg of tissue 

homogenate were collected and resuspended in 90µl of Hanks’ balanced salt solution. 

Samples were then solubilized using 10 µl of 10% SDS followed by 200 µl of 95:5 

ethanol-isopropanol. After vortexing vigorously, 500 µl of hexane were added and the 

samples were centrifuged for 5 min at 10,000 g at 4 ºC. Lipids were recovered within the 

upper hexane phase, and the last step was repeated twice. Hexane phases were combined 

and the solvent evaporated under vacuum. Lipid extracts were stored frozen at -80ºC until 

use. 

 

 3.2. For HPLC-MS/MS measurements 

After treatments, di-propoxy-Q10 was added to the pellets as internal standard in mouse 

and human samples. Cell pellets were resuspended in 1ml of methanol followed by 1ml 

of petroleum ether. Samples were vortexed for 1 minute and, after removal of the organic 

upper layer, another 1ml of petroleum ether was added. Samples were vortexed again and 

the combined organic phase was dried under nitrogen. Lipid dry extracts were stored at -

20ºC until use. 

 

4. Determination of protein concentration 

Protein concentration of all the samples were determined using the variation described by 

Stoscheck [140] of the traditional protein assay protocol described by Bradford [141]. 

Samples were mixed with 50 µl of 1M NaOH in order to facilitate the solubilization and 

then, 1ml of Bradford reagent was added. Samples were vortexed and incubated for 10 

minutes at room temperature in the dark. The absorbance of each sample was measured 

at 595 nm in a DU-640 spectrophotometer (Beckman Coulter, USA). A standard curve 

with known concentrations of γ-globulin (from 0 to 20 µg/ml) was used to calculate the 

final protein concentration of the samples. 
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5. Measurements of non saponifiable lipids levels by HPLC 

 5.1. Ubiquinone 

HPLC analysis was carried out on a Beckman System Gold (Beckman Coulter, USA) 

connected to a Coulochem II electrochemical detector (ESA, Chelmsford, MA, USA). 

The chromatographic separation was performed on a C18 reverse phase analytical column 

(4.6 mm × 25 cm, Ultrasphere ODS, 5 μm particle) with a mobile phase composed of 

53:45:2 methanol-isopropanol-1M pH 4.4 ammonium acetate at a flow rate of 1ml/min. 

The analytical cell (ESA, Model 5010) was set at potentials of -500 mV and +300 mV in 

electrodes 1 and 2, respectively. The entire procedure was performed at room 

temperature. Lipids extracts were dissolved in 30 µl of methanol, and the sample was 

subjected then to a reduction step by adding 1 µl of freshly prepared 50mM sodium 

borohydride just before injection into the system.  

 

Figure M2. Chromatographic separation of Q9 and Q10. This figure show a representative chromatogram 

of Q9 and Q10 levels in Hepa1.6 cells. Alterations in baseline observed between the start of the 

chromatogram and minute 5 correspond with the alteration caused by the injection of the sample and the 

presence of sodium borohydride as a reducing agent.  

 

This procedure results in the reduction of the quinones to their corresponding 

hydroquinones (which are detected at the second electrode with maximal sensitivity) and 

it allows a significant shortening of chromatography time. Retention times were 10-11 
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min for reduced Q9 and 14-15 min for reduced Q10 (Figure M1). The area units of 

hydroquinone peaks were integrated and referred to the reduced Q10 standard. Normalized 

values were obtained by referring to the amount of protein of each sample. 

 

 5.2. Cholesterol 

HPLC analysis was performed on a Beckman System Gold (Beckman Coulter, USA) 

connected to a diode array detector (Module 168, Beckman Coulter, USA). A C18 reverse 

phase analytical column (4.6 mm × 25 cm, Ultrasphere ODS, 5 μm particle) was used to 

perform the chromatographic separation, with a mobile phase composed of 70% ethanol- 

30% methanol at a flow rate of 1ml/min. Although maximum absorption of cholesterol is 

at 202 nm, this compound was monitored at 210 nm as recommended Arnezeder et al. 

[142] to avoid interference with solvents in the mobile phase that would give a noisier 

base line. Diode array detector allows checking of the absorption spectrum of the 

cholesterol peak in every single sample, in order to double check the specificity of the 

method. Lipids extracts were dissolved in 30 µl of methanol and injected directly into the 

system. Retention times was approximately 6.7 minutes (Figure M2). The area unit of 

cholesterol peak was integrated and referred to a commercial cholesterol standard. 

Normalized values were obtained by referring to the amount of protein of each sample. 

 

Figure M3. Chromatographic separation of cholesterol. This figure show a representative 

chromatogram of cholesterol levels in Tkpts cells.  
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6. Synthesis of radiolabeled 4-hydroxybenzoic acid 

In order to measure the rates of Q biosynthesis we synthetized the radiolabeled precursor 

4-hydroxy-(U-14C) benzoate (14C-4HB) starting from (U-14C)-tyrosine, essentially as 

described by Clarke et al. [143] with minor modifications. 250μCi of (U-14C)-tyrosine in 

2.5 ml of 2% ethanol was blown to dryness under nitrogen. Then, 25 µl of 10M KOH and 

17.5 µl of 10M NaOH freshly prepared were added and the resulting mixture were, again, 

blown to dryness under nitrogen. To perform the alkaline fusion, tubes were heated in a 

mineral oil sand bath for 6 minutes at 272ºC. After this time, tubes were allowed to cool 

to room temperature and 400 µl of H2SO4 25% (v/v) were added to acidify the sample. 

After vortexing, tubes were transferred to an ice bath and 1.5 ml of 100% ethyl acetate 

were added. Tubes were mixed vigorously and centrifuge 10 minutes at 2,000-3,000 rpm 

in a table top centrifuge (Mixtasel 7000575, Selecta). After this step, 2 phases were clearly 

differentiated. 14C-4HB was recovered with ethyl acetate in the upper phase while 

remaining (U-14C)-tyrosine stayed in the bottom aqueous phase. Ethyl acetate was added 

two more times and the combined organic phase was washed twice with water and dried 

under vacuum. Final product was dissolved in 1ml of 100% ethanol and stored at -20ºC.   

 

 

Figure M4. Scheme of the thin layer chromatography of 14C-4HB on silica gel plates. Letter A 

represents the 4HB standard while letter B represents the product synthetized during this protocol. A) Two 

spots represent the co-migration of both standard 4HB and 14C-4HB on the TLC plate. B) Dashed lines 

represent the sections we scratched separately and measured in a scintillation counter. (C) Cpm extracted 

of each section delimited in the silica plate. The synthetized 14C-4HB migrated till section 3 and, in this 

section of the TLC we detected almost all the radioactivity.  
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The purity of the synthetic product was checked by thin layer chromatography on silica 

gel plates which were developed with isopropanol: ammonium hydroxide: water (8:1:1). 

All detectable radioactivity was contained in a single peak with co-migrated with an 

authentic 4HB standard. Spots were observed under UV light and radioactivity was 

double checked scratching section by section the silica of the plates and measuring the 

radioactivity in a Beckman scintillation counter after mixing each sample with 4ml of 

scintillation liquid. 

 

7. Ubiquinone biosynthesis assays 

 7.1. Incorporation of a radiolabeled precursor 

 14C-4HB (100.000 CPM) was added to the cells during the 48h incubation with the 

corresponding treatment. Samples were processed as described previously by Córdoba-

Pedregosa et al. [144]. Briefly, cells were rinsed twice with Hanks’ balanced salt solution 

and fixed for 15 min in 1ml of 5% trichloroacetic acid (TCA). The radioactivity was 

directly extracted from each well with 1ml of 1M NaOH for 2h at room temperature with 

gentle stirring. Radioactivity was quantified in a Beckman scintillation counter by mixing 

900 µl of each sample with 4ml of scintillation liquid. The CPM values so obtained were 

then referred to the total amount of protein in each sample. 

 

 7.2. Incorporation of 13C labeled or deuterated precursors 

Lipid extracts, from cells treated with the corresponding product, were measured by 

HPLC-tandem mass spectrometry (MS/MS) analyses as previously described by Xie et 

al. [56]. A binary HPLC solvent delivery system with a Luna phenyl-hexyl column 

(particle size 3 µm, 50 × 2.00 mm, Phenomenex) connected to a 4000 QTRAP linear 

MS/MS spectrometer from Applied Biosystems (Foster City, CA) was used in all the 

determinations. Applied Biosystem software, Analyst version 1.4.2, was used for data 

acquisition and processing. Samples were resuspended in 200µl of 1mg/ml benzoquinone 

in order to oxidize all the lipids prior to chromatographic separation with a mobile phase 

composed of 90% solvent A (95:5 mixture of methanol:isopropanol containing 2.5mM 

ammonium formate) and 10% solvent B (isopropanol containing 2.5mM ammonium 

formate) at a constant flow rate of 1ml/min during the whole chromatography. All 

samples were analyzed in multiple reaction-monitoring mode. Transitions monitored are 
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described in Table M2. The area value of each peak, normalized with the correspondent 

standard curve of Q9 and Q10 and internal standard (di-propoxyQ10), was referred as well 

to the initial amount of protein.  

 

Molecule m/z (+ H) m/z (+ NH3) 

Q9 795.6/197.08 812.6/197.08 

D3-Q9 798.6/200.08 815.6/200.08 

13C6-Q9 801.6/203.08 818.6/203.08 

Q10 863.6/197.08 880.6/197.08 

D3-Q10 866.6/200.08  883.6/200.08 

13C6-Q10 869.6/203.08 886.6/203.08 

Dipropoxy-Q10 919.7/253.1 936.7/253.1 
 

Table M4. HPLC-MS-MS transitions for each analyte. We summarize here the transitions used for each 

molecule in the HPLC-MS/MS. We monitored both the protonated and the ammoniated transitions. 

 

8. Determination of GPP and FPP  

The ability of FTase to prenylate proteins with a consensus sequence CAAX in the 

carboxyl terminus where C is cysteine, A is any aliphatic amino acid and X is the C-

terminal amino acid, such as methionine, serine, cysteine, or alanine [145] was used as a 

tool to determine metabolites such as GPP and FPP. This method combines the specificity 

of enzymatic reactions, the selective separation of HPLC, and the sensitivity of 

fluorescence detection to measure low levels of GPP and FPP in cultured cells. 

Combining a consensus peptide (GCVLS for GPP and FPP), linked to a fluorescent 

dansyl group, with the enzyme able to perform the isoprenylation (FTase, in the case of 

GPP and FPP) we are able to measure the amount of GPP or FPP in our samples. The 

protocol used is an adaptation of that developed by Holstein et al. [146]. 

 

 8.1. Extraction of GPP and FPP from cell cultures 

Approximately 10x106 cells, conveniently treated, were rinsed, scratched directly in 

Hank’s balanced salt solution and pelleted by low-speed centrifugation. Cell pellets were 

resuspended in 1ml of cold PBS and centrifuged at 100,000 g during 5min at 4ºC. The 

buffer (PBS) was aspirated and 0.5 ml of extraction solvent (isopropanol/75 mM 



Materials and Methods 

 

94 
 
 

ammonium hydroxide/acetone, in 1:1.5:5 proportion) was added to the cell pellet. 

Samples were vortexed for 1 min and centrifuged at 10,000 g during 5 min at 4ºC. The 

extraction was repeated twice and the combined supernatants were dried under nitrogen 

at 30ºC and stored at -80ºC. 

 

 8.2. Enzymatic reaction 

Just before to start the enzymatic reaction, the residue was dissolved in 40 µl of 50 mM 

Tris-HCl pH 7.5 containing 5 mM DTT, 5 mM MgCl2, 10 µM ZnCl2 and 1% octyl-β-D-

glucopyranoside. To start the reaction, 0.25 nmoles of D*-GCVLS (dansyl-labeled 

peptide GCVLS) and 1 µl of FTase (50 µg/µl) were added and the mixture was incubated 

for 2 hours at 38ºC. The reaction was terminated by the addition of 60 µl acetonitrile. 

Denatured proteins were removed by centrifugation at 100,000 g at 4 ºC for 5 min and 

the supernatant was analyzed by HPLC.  

 

 

 

Figure M5. Reaction catalyzed by FTase. GPP and FPP reacts with D*-GCVLS peptide to form G-D*-

GCVLS and F-D*-GCVLS, respectively. These reaction products can be measured by HPLC-fluorescence. 

Scheme adapted from [147]. 
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After this reaction, the GPP and FPP present in the sample will be conjugated with the 

dansyl labeled peptide added forming geranyl/farnesyl-conjugated dansyl peptides (G-

D*-GCVLS and F-D*-GCVLS, respectively) that could be separated and quantified using 

HPLC with fluorescence detection. 

 

 8.3. Quantification 

HPLC analysis was carried out on a Beckman Gold System (Beckman Coulter, USA) 

connected to a FP-2020 Plus intelligent fluorescence detector (Jasco Co., Tokyo, Japan). 

To separate prenylated peptides (G-D*-GCVLS, F-D*-GCVLS) a C18 reverse phase 

analytical column (4.6 mm × 25 cm, Ultrasphere ODS, 5 μm particle) was used. The 

mobile phase was composed by two solvents: solvent A, 20 mM ammonium acetate in 

40% acetonitrile and solvent B, 20 mM ammonium acetate in 90% acetonitrile. The 

program was initiated at 26% B for 2 min and then solvent B was brought to 60% by a 

linear gradient in 3 min. An isocratic 60% solvent B was run up to 15 min, then the solvent 

B was brought back to 26% B by a linear gradient in 1 min.  

Figure M6. Chromatographic separation of prenylated dansyl-labeled peptides. This figure show a 

representative chromatogram of G-D*-GCVLS and F-D*-GCVLSPP levels in Hepa1.6 cells. The 

saturating increase in minute 2-3 corresponds with the non-prenylated dansyl peptide. 
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The total run time was 21 min. A flow rate of 1.16 ml/min was kept throughout all the 

analysis. Geranyl- and farnesyl- adducts were monitored by fluorescence at the excitation 

wavelength of 335 nm and the emission wavelength of 528 nm. The retention time for the 

G-D*-GCVLS and F-D*-GCVLS peaks were approximately 9 and 16 min, respectively 

(Figure M5). Their area units were integrated and referred to GPP and FPP commercial 

standards, previously subjected to the same extraction and enzymatic reaction as the rest 

of the samples. Normalized values were obtained by referring to the amount of protein of 

each sample. 

 

9. Protein electrophoresis and western-blot 

 9.1. Sample preparation 

In order to measure proteins not embedded in cellular membranes, 50 µg of the whole 

cells extract described above were mixed with 1X SDS-dithiothreitol loading buffer (60 

mM Tris-HCl pH 6.8, 10 % sucrose, 2 mM EDTA, 1.5 % SDS, 20 mM dithiothreitol and 

0,01 % bromophenol blue) and heated for 5 minutes at 100ºC. However, to measure 

membrane proteins 50 µg of protein extract were mixed with a mixture composed by 1X 

loading buffer containing CLAP (5mg/ml) and PMSF (100mM) in proportions 18:1:1. In 

this case, the heating of the samples was limited to 45ºC for 15 minutes to avoid 

aggregations of membrane proteins that would be otherwise promoted by SDS at higher 

temperatures. The only exception were those samples prepared to measure levels of the 

OXPHOS complexes, which cannot be heated more than 37ºC in order to preserve the 

complex IV signal. 

 

 9.2. Electrophoresis, transfer and loading control 

TGX 4-20% polyacrylamide gradients gels (Bio-Rad) were used to determine the protein 

abundance by western-blot. Gels of 10, 18 or 26 wells were used according to the needs 

of each experimental design and, always, at least one well was used to load the molecular 

weight marker (Dual Color Precision Plus Protein Standards, Bio-Rad). Proteins were 

separated in a Criterion system (Bio-Rad) at a constant voltage of 180-200 V.  

Once the electrophoresis was completed, proteins were transferred to nitrocellulose 

membranes included in the Trans-Blot Turbo kit (Bio-Rad) using a program of 25V and 
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7 minutes included in the Trans-Blot Turbo Tranfer System (Bio-Rad). To have a loading 

control, membranes were stained with Ponceau S (0.1% Ponceau S red dye diluted in 1% 

acetic acid) for 5 minutes and gentle stirring at room temperature. The excess of staining 

was removed by rinsing the membrane several times with 1% acetic acid. Protein patterns 

so obtained were digitalized using a ChemiDocTM Imaging System (Bio-Rad). Then, the 

membranes were blocked with TTBSL buffer (50 mM Tris-HCl pH 7.6, 0.85% NaCl, 

0.05% Tween-20 and 5% skimmed milk powder) during 1-5 hours, including a buffer 

change. After this step, membranes were either used immediately for immunostaining or 

stored at -20ºC until use. 

 

 9.3. Inmunostaining, developing and quantification 

Blocked membranes were incubated with the corresponding primary antibody at 4 ºC 

overnight with gentle stirring. Primary antibodies were diluted in TTBSL at the 

concentration indicated in Table M3. After the incubation, membranes were washed 

three times with TTBS (50 mM Tris-HCl pH 7.6, 0.85% NaCl and 0.05% Tween-20) at 

room temperature and gentle stirring. Afterwards, the corresponding species-specific 

secondary antibody diluted in TTBSL (see specific concentration in Table M3) and 

coupled to horseradish peroxidase was added and the membrane incubated for 1 hour at 

room temperature with moderate agitation.  

 

Primary antibody Dilution Reference Secondary antibody Dilution Reference 

Acetylated-lysine  1:1000 9441S Rabbit anti-IgG  1:2000 sc-2004 

COQ2   1:1000 [15] Chicken anti-IgG  1:5000 Sigma A-9046 

FDPS  1:1000 ab153805 Rabbit anti-IgG  1:2000 sc-2004 

OXPHOS complex  1:2000 458099 Mouse anti-IgG  1:5000 Sigma A-9044 

Rap1 C-17  1:1000 sc-1482 Goat anti-IgG  1:5000 Sigma A-5420 

Rap1 E-6  1:1000 sc-398755 Mouse anti-IgG  1:2000 Sigma A-9044 

Sirt3  1:1000 sc-99143 Rabbit anti-IgG  1:2000 sc-2004 

VDAC  1:1000 sc-98708 Rabbit anti-IgG  1:2000 sc-2004 

 

Table M5. Antibodies used for immunodetection in western blotting. Each primary antibody was used 

in combination with the corresponding secondary antibody as referred in the table. References denoting 

“sc” refers to antibodies obtained from Santa Cruz Biotechnologies, “ab” denote an antibody obtained from 

Abcam and “Sigma A” denote antibodies from Sigma Aldrich. Acetylated-lysine antibody was obtained 

from Cell Signalling while OXPHOS complex antibody is from Thermo Fisher Scientific. 
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Then, the antibody was removed and the membrane was washed 3 times with TTBS at 

room temperature and gentle stirring. Finally, membranes were washed once with TBS 

(50 mM Tris-HCl pH 7.6 and 0.85% NaCl). 

Developing of images was performed by enhanced chemiluminiscence (ECL Plus, 

Amersham Bioscience). Luminescence derived from the horseradish peroxidase-

catalyzed reaction was recovered using a ChemiDocTM Imaging System (Bio-Rad). 

Images obtained were quantified and normalized with Ponceau S staining, to correct for 

minor differences in protein loading, using Image LabTM Software (Bio-Rad). 

 

10. Flow cytometry  

Hepa 1.6 and Tkpts cells were transfected with phrGFP-N vector and, at the same time, 

controls cells for each type were subjected to the same transfection procedure but in the 

absence of plasmid. 48 hours post-transfection, cells were washed with Hank’s balance 

salt solution and detached from the culture plates using non-enzymatic Cell Dissociation 

Solution. Each cell suspension was directly injected and analyzed in an EPICS XL flow 

cytometer (Beckman Coulter) equipped with a 488 nm argon laser. After excitation at 

488nm, the fluorescence emission was registered at 525 nm (FL1 channel). At least the 

signal of 20,000 cells were recovered.  

The data were obtained in a logarithmic scale and represented in histograms using the 

EXPO32 ADC Analysis software (Beckman Coulter). Using control cells, we delimited 

a region in which fluorescence signal was absent and, then, we quantified the % of 

transfected cells which emitted a fluorescent signal above this region. Using these data, 

we calculated the transfection index for each cellular line. 

 

11. Electron microscopy 

11.1. Sample preparation 

Hepa 1.6 cells treated with lipid emulsions were detached from the plates using trypsine 

for 2-3 minutes before neutralizing with completed culture medium. Cell suspension was 

mixed with fixing solution (2.5% glutaraldehyde in 0.1 M pH 7 cacodylate buffer) at 1:1 

proportion in Eppendorf tubes and incubated for 1 hour at 4 ºC. Afterwards, cells were 

centrifuged and the supernatant discarded. Fresh fixing solution was added to the pellet 
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and incubated for 4-6 hours at 4 ºC. Each cell pellet was washed twice with 0.1 M 

cacodylate buffer, pH 7 prior to postfixation in 1% osmium tetroxide in the same buffer 

for 1 hour at 4 ºC. A couple of washes were carried out and, then, cells were dehydrated 

in an ascendant series of ethanol (50%, 70%, 90% and 100%). Pellets were transferred to 

propylene oxide and then gradually infiltrated in Embed 812 resin using a propylene 

oxide:resin sequence of 2:2, 1:1 and 1:2 along 48 hours. Samples were transferred to pure 

resin for 24 hours and, afterwards, allowed to polymerize for 48 hours at 65 ºC. Blocks 

were removed from the tubes and sculpted prior to the cut in an Ultracut Reicher 

ultramicrotome to get ultrathin sections (about 50nm width). Sections were recovered on 

nickel grids and stained with aqueous 2% uranyl acetate for 2 minutes and Reynold’s lead 

citrate for 5 minutes. Sections were photographed in a Philips CM-10 transmission 

electron microscope. From this material, we obtain high and low magnification images 

(25,000 X and 5,800-7,900X, respectively) that were subjected to several quantitative 

analyses as described below. 

 

 11.2. Planimetric and stereological calculations  

Using Image J software and high magnification images, we measured several 

ultrastructural mitochondrial parameters such as area, perimeter, maximum and minimum 

diameter and circularity in a population of 100 mitochondria. Moreover, additional 

parameters were calculated from the previous measurements. For instance, mitochondrial 

volume was calculated using maximum and minimum radius assuming the volume 

mathematical formula of the prolate spheroid, the geometric figure more similar to 

mitochondria.  

Complementary, using the low magnification images we performed a stereological 

analysis of the samples in order to obtain 3-dimension information of mitochondria inside 

the cells. Mitochondrial volume density (Vv) as well as mitochondrial numerical density 

(Nv) were calculated following a point analysis according to the previously described 

method of Weiber [148]. Briefly, 15 images of whole cells were selected and included 

into a virtual grid, mitochondria were encircled and a point-counting method was 

performed, that is, we counted all the grid points that concurred with a mitochondria. 

Moreover, we also counted the total number of mitochondria present inside a single cell 

and measured all the planimetric parameters described above in relation to the whole cell. 
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Figure M7. Example of the stereological mitochondrial measurements. In red, we observed the limit of 

the cell while, in green, we observed the limits of all the mitochondria present. (A) Electron micrograph 

were contours had been delimited. (B) Overlap of the contours and the virtual grid to perform the point 

analysis described by Weiber [148]. 

 

Therefore, referring the number of points that concur with mitochondria with the total 

number of points of the grid we calculated the mitochondrial density volume (Vv) and 

using the following formula  

 

We also calculated the mitochondrial numerical density (Nv). “Na” in the numerical 

profile density (number of mitochondria/µm2 of cell), and k and β the mitochondrial size 

distribution and shape coefficients. These coefficients were calculated using the previous 

planimetric measurements and assimilating the mitochondrial shape to a prolate spheroid 

as we previously described. Finally, the number of mitochondria per cell was calculated 

multiplying Vv and Nv by mean cell volume.  

 

12. Statistical analyses 

Statistical analyses were performed using GraphPad Prism 5.03 (GraphPad Software Inc., 

San Diego, CA, USA). All the data shown are mean ± standard error (SEM) from at least 

four replicates. Normality of data was checked by Kolmogorov-Smirnov test with the 

Dallal-Wilkinson-Lilliefor corrected p value. Means were compared using either the 

A B 
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parametric two-tail Student’s t test or non-parametric Mann-Whitney t test depending on 

the results of the normality test. Significant differences were referred as * (p<0.05), ** 

(p<0.01) and *** (p<0.001). 
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Chapter 1: Regulation of Q metabolism by phenolic compounds 

1. 1. Q levels in cultured kidney cells treated with different phenolic compounds.  

 

 

 

Figure R1. Molecular structures and assessment of toxicity for all phenolic compounds tested in 

Tkpts cells. A viability assay was performed for each phenolic compound with MTT. The resulting values 

of A590nm were used to select a concentration range that did not affect cell viability, and was then used for 

subsequent experiments to determine Q content. Data are represented as mean ± SEM of 8 replicates. 

Statistically significant differences between control and treatments are represented by * (p<0.05), ** 

(p<0.01) and *** (p<0.001). 
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We determined the effect of several polyphenols on Q content and biosynthesis. Each 

compound used in this study was first added to Tkpts cells at concentrations ranging from 

5 nM to 100 µM over a period of 48 h, and tested with the MTT assay to determine 

possible effects on cellular viability (Figure R1). Kidney cells responded differently to 

the compounds tested. Neither vanillin nor apigenin, naringenin or ferulic acid produced 

any toxicity in Tkpts cells in the concentration range used. However, resveratrol, 

piceatannol, quercetin, kaempferol, luteolin and curcumin decreased cellular viability 

when used at high concentrations. Based on these data, we chose to test phenolic 

compounds at concentrations ranging from 5 nM to 10 µM to detect possible effects on 

Q content. Within this range, none of the polyphenols under study decreased viability 

significantly, and only a small increase in viability was observed at 1µM piceatannol. 

In the same way, during the development of the study we had used HEK 293 cells as a 

complementary model of human renal cells. The toxicity of the compounds was also 

assessed in this cellular line and results are shown in Figure R2. Kaempferol, curcumin, 

vanillin and ferulic acid impaired cell viability of HEK 293 at high concentrations. These 

observations allowed us to use concentrations of each compound that did not affect 

cellular viability in the experiments carried out with this cell line. 

 

 

Figure R2. Molecular structures and assessment of toxicity for all phenolic compounds tested in HEK 

293 cells. A viability assay was performed for each phenolic compound with MTT. The resulting values of 

A590nm were taking into account to select a concentration in further experiments carried out with this cell 

line. Data are represented as mean ± SEM of 8 replicates. Statistically significant differences between 

control and treatments are represented by * (p<0.05), ** (p<0.01) and *** (p<0.001). 
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Figure R3. Effect of different polyphenols on Q levels of Tkpts cells. Q9 and Q10 levels were determined 

in Tkpts cells treated with different polyphenols at the given concentrations for 48 h. After the incubation 

period, lipids were extracted and Q levels quantified. (A) Stilbenoids. Resveratrol, but not piceatannol, 

produced a modest increase of Q9 and Q10 levels. (B) Flavonols. Quercetin did not affect Q levels, but 

kaempferol produced a dramatic increase of both Q9 and Q10. (C-D) Flavones and a flavanone. Apigenin, 

but not luteolin or naringerin, slightly increased Q9 and Q10 levels. (E) Basic chemical skeleton of 

flavonoids. Data are represented as mean ± SEM of 6 replicates. Statistically significant differences 

between control and treatments are represented by ** (p<0.01) and *** (p<0.001). 

 

Once we selected the range of concentrations of phenolic compounds, we next focused 

on the study of Q levels. For these assays, we first tested how two stilbenoids (resveratrol 

and piceatannol) and two flavonols (quercetin and kaempferol) affected Q levels in Tkpts 

cells. As shown in Figure R3-A, resveratrol produced a slight increase of Q9 and Q10 

levels at most concentrations above 50 nM, whereas the other stilbenoid tested, 

piceatannol, and the flavonol quercetin had no effect on Q levels (either Q9 or Q10) at any 

of the concentrations tested. In contrast, kaempferol produced a dramatic increase of both 
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Q9 and Q10 at 100 nM and higher concentrations, producing a plateau at concentrations 

between 500 nM and 10 µM (Figure R3-B). We also confirmed a substantial increase of 

Q9 and Q10 levels in Tkpts cells treated with kaempferol at concentrations above 100 nM 

when specific values were calculated on a protein basis (Figure R4). 

 

 

 

Figure R4.  Kaempferol also increases Q levels when calculated on a protein basis. Values of Q levels 

were referred to protein (Bradford assay) to obtain specific values. The figure depicts the percentage of 

change in specific levels of Q compared to the untreated control. Data are represented as mean ± SEM of 6 

replicates. Statistically significant differences between control and treatments are represented by *p<0.05 

and ***p<0.001. 

 

Given the differential effects of kaempferol and quercetin (which differ only in one 

hydroxyl group), we hypothesized that the chemical structure of the flavonoids could 

influence their effect on Q content (see chemical structures of the compounds used in 

Figure R1 and the basic chemical skeleton of flavonoids in Figure R3-E). Thus, we tested 

how additional polyphenols of the flavonoid group affected Q levels in Tkpts cells. For 

these experiments, we chose two flavones: apigenin, luteolin (Figure R3-C), and one 

flavanone: naringerin (Figure R3-D). Among these three flavonoids, only apigenin 

produced a slight increase in Q at concentrations between 500 nM and 10 µM, although 

a concentration of 50 nM was found inhibitory and statistically significant differences 

were observed for Q9 but not for the Q10 isoform (Figure R3-C). 

The following experiments, aimed on elucidating how flavonoids can increase Q levels, 

were focused on kaempferol, as this polyphenol was by far the most efficient in 

augmenting the amounts of cellular Q. 
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1. 2. Possible implication of the mitochondrial sirtuin Sirt3 on the increased Q levels 

produced by kaempferol.  

Kaempferol has been reported to up-regulate Sirt3 [133, 149], a mitochondrial sirtuin that 

plays an important role in regulating cellular processes like homeostasis, oxidative stress 

and aging [150]. Up-regulation of mitochondrial Sirt3 optimizes redox processes linked 

to the electron transport chain and boosts antioxidant defense in this organelle by 

activating ROS-scavenging systems [151].  

 

 

Figure R5. Effect of sirtuin activators and inhibitors in Tkpts cells. (A) Kaempferol increases 

mitochondrial Sirt3. A western-blot against Sirt3 shows that the mitochondrial form of Sirt3 is upregulated 

by kaempferol at 10 μM. (B) Nicotinamide inhibits deacetylase activity in Tkpts cells. Anti-acetyl lysine 

antibody was used to confirm the inhibitory effect of nicotinamide (NAM). As expected, acetylation levels 

were significantly increased in presence of nicotinamide. In (A) and (B), arbitrary units depicted in the 

graph relate directly to the immunoblots shown underneath, and the immunoblots derive from the same 

film. Ponceau S staining was used to correct for minor differences in protein loading between samples. 

Data are represented as mean ± SEM of 4 replicates. Statistically significant differences between control 

and treatments are represented by *p<0.05 and ***p<0.001. 
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Thus, it seemed possible that Sirt3-mediated changes might affect Q levels by providing 

an antioxidant environment that would diminish oxidative Q degradation. To investigate 

this, Tkpts cells were treated with kaempferol and the up-regulation of mitochondrial 

Sirt3 was then assessed. As depicted in Figure R5-A, treatment of Tkpts cells with 

kaempferol increased significantly the levels of the mitochondrially-targeted (cleaved) 

form of Sirt3 at concentrations that also increased Q9 and Q10 levels. We next proceeded 

to verify whether this up-regulation of Sirt3 mediated the increase in Q levels or, on the 

contrary, it was an independent event.  

 

 

Figure R6. Study of the Sirt3 role on the regulation of Q levels. (A) Tkpts cells. General inhibition of 

sirtuin desacetylases by nicotinamide (NAM) at 10 mM did not prevent the increase of Q levels in Tkpts 

cells treated kaempferol (K) at 10 µM. (B) Sirt3 KO mice. Q levels are not altered in tissues (skeletal 

muscle, liver, kidney and brain) obtained from Sirt3 knockout mice in comparison with age-matched 

controls. Data are represented as mean ± SEM of at least 5 replicates. Asterisks denote statistically 

significant differences (***p<0.001). 
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To this purpose, we tested whether simultaneous treatment with nicotinamide (NAM), a 

well-known inhibitor of sirtuin deacetylase activity [133], had any impact on Q levels in 

Tkpts cells treated with kaempferol. As shown in Figure R6-A, treatment with 10 mM 

NAM did not alter basal levels of Q in Tkpts cells, and the kaempferol-mediated increase 

of Q9 and Q10 was completely unaffected by NAM. A western-blot using an anti-acetyl 

lysine antibody confirmed that, under our experimental conditions, deacetylase activity 

was significantly inhibited by 10 mM NAM since this treatment produced a substantial 

increase of protein acetylation (Figure R5-B).  

Furthermore, we also determined Q levels in several tissues obtained from Sirt3 knockout 

mice. In each tissue examined, including muscle, liver, kidney, and brain, Q levels from 

Sirt3 knockout mice were not significantly different from their background-matched 

controls (Figure R6-B). Thus, although similar concentrations of kaempferol can indeed 

up-regulate Sirt3-dependent mitochondrial functions and increase amounts of Q, the 

increase in Q content does not appear to be related to the upregulation of Sirt3 activity. 

 

1. 3. Effect of kaempferol on Q biosynthesis in mouse and human kidney cells. 

We considered the possibility that the increase of Q levels caused by kaempferol could 

be a consequence of a higher Q biosynthetic rate. To test this possibility, we followed two 

different approaches. First, we studied how PABA, a well-characterized inhibitor of Coq2 

activity in animal cells [10, 132], affected Q levels in control and in Tkpts cells that had 

been treated simultaneously with 10 µM kaempferol. As expected, PABA decreased Q 

levels in the control cells. Moreover, PABA abolished the increase of Q in response to 

kaempferol treatment, indicating a direct link between kaempferol and Q biosynthesis 

(Figure R7-A). 

Secondly, we measured Q biosynthesis with an assay based on the incorporation of 

exogenous 14C-labeled 4HB as Q ring precursor. Our results showed that kaempferol 

produced a substantial decrease in the incorporation of 14C-4HB (Figure R7-B). The 

simultaneous increase of Q levels and decrease of 14C-4HB incorporation into Q by 

kaempferol implies that this compound competes with the substrate 4HB to behave as a 

ring precursor for Q biosynthesis.  
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Figure R7. Role of kaempferol on Q biosynthesis. (A) An indirect implication of Q biosynthesis using 

PABA. Cells were cultured for 48 h in the presence of 10 µM kaempferol and /or 1mM PABA. Inhibition 

of the Coq2 polyprenyltransferase with PABA decreased Q levels in control Tkpts cells and abolished the 

increase of Q9 and Q10 in cells treated with kaempferol (K). (B) Competition assay of 14C-4HB 

incorporation into Q. Treatment of cells with 10 µM kaempferol (K) inhibited the incorporation of 14C-

4HB into Q, which indicates competition of kaempferol and 4HB as Q ring precursors. (C) Demonstration 

of the role played by kaempferol in Tkpts cells. Cells were cultured for 48 h in the presence of unlabeled 

(K) or 13C-labeled kaempferol (13C-K) at 10 µM. Unlabeled (12C, open bars) and 13C6-labeled (closed bars) 

Q were then measured with HPLC-MS/MS. The majority of Q measured in cells treated with 13C-

kaempferol was 13C6-Q, demonstrating the role of kaempferol as a novel Q ring precursor. (D) 

Demonstration of the role played by kaempferol in HEK 293 cells. Kaempferol is confirmed as a Q ring 

precursor which also increased Q levels in human kidney cells. Data are represented as mean ± SEM of 6 

replicates. Asterisks denote statistically significant differences (***p<0.001). 
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To confirm this possibility, we cultured Tkpts cells in the presence of 13C-labeled 

kaempferol and then measured the levels of 12C-Q and 13C6-Q with HPLC-MS-MS. This 

technique allows the simultaneous measurement of the amount of cellular Q derived from 

endogenous 4HB (12C-Q) and the amount of newly synthesized Q derived from 13C-

kaempferol (13C6-Q). Total levels of Q obtained in the presence of 13C-kaempferol were 

also compared with those obtained when cells were grown in the presence of the non-

labelled polyphenol. We found that Q9 and Q10 levels increased equally with both non-

labeled and 13C-kaempferol. Of note, when the 13C-labeled precursor was used, nearly all 

the Q present in Tkpts cells was 13C6-Q, identifying kaempferol as an efficient novel Q 

ring precursor (Figure R7-C).  Similar experiments were carried out to test the effects of 

kaempferol in human HEK 293 cells, another kidney cell line and, as observed for Tkpts 

cells, Q levels were also increased by 10 µM kaempferol treatment. Furthermore, when 

13C-kaempferol was used, almost all the Q present in HEK 293 cells was 13C6-Q (Figure 

R7-D). In sum, our results demonstrate a role for kaempferol as a Q ring precursor both 

in murine and human kidney cell lines. 

We do not have any evidence of how kaempferol is included into Q metabolism to serve 

as Q ring precursor in our cellular model. However, literature described that mammals 

colonic microflora metabolize kaempferol to 4-hydroxyphenylacetic acid (4HPAA) and 

4-methyphenol (or p-cresol) [152, 153]. We wonder if a fragmentation that also yielded 

these compounds might occur in kidney cells and thus, we decided to investigate whether 

or not these two compounds could also serve as Q ring precursors.  

A MTT assay ruled out any toxicity of these compounds in concentrations ranging from 

5 nM to 100 µM (Figure R8-A) and no decline in Tkpts viability was observed at any of 

the concentrations tested. On the contrary, we even observed an increased MTT signal 

with 4HPPA at concentrations to 10-100µM and at 20 µM p-cresol. Thus, we decided to 

use both 4HPAA and p-cresol at a similar concentration as that used in our previous 

experiments with kaempferol (10 µM). Our results showed that neither 4HPAA nor p-

cresol increased Q levels, and they were also unable to compete with 14C-4HB in a Q 

biosynthesis competition assay (Figure R8-B/C). Together, these results argue against 

4HPAA and p-cresol as metabolites mediating the effect of kaempferol on Q biosynthesis 

in kidney cells. 
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Figure R8. Effect of 4HPAA and p-cresol in viability and Q metabolism of Tkpts cells. (A) MTT 

assays. Viability assays were performed for each product with no toxicity being observed at any of the 

tested concentrations. Contrary, we observed an increase of MTT absorbance at some concentrations 

between 10 µM and 100 µM. (B) Q levels. Neither 4HPAA nor p-cresol increased Q levels in Tkpts cells. 

(C) Radiolabeled Q biosynthesis assay. A combined treatment with 14C-4HB and 4HPAA or p-cresol 

shows that none of these products compete with 14C-4HB as Q precursor. Data are represented as mean ± 

SEM of 6 replicates. Asterisks denote statistically significant differences (*p<0.05 and ***p<0.001). 

 

1. 4. Role of other phenolic compounds as Q ring precursors 

To further study the ability of other dietary phenolic substances to act as precursors in Q 

biosynthesis we tested curcumin and ferulic acid, which have a quite different structure 

in comparison with the stilbenoids and flavonoids we already tested. We also analyzed 

vanillin, a simpler molecule that shares the same ring structure as curcumin, and ferulic 

acid (see Figure R1). Vanillic acid, which also bears hydroxyl and methoxy groups in the 

same position of the ring, has been previously described as Q ring precursor in mammals 

[52]. As shown in Figure R9-A, total Q9 levels were decreased when Tkpts cells were 

treated with both unlabeled or 13C12-labeled curcumin, with no 13C6-Q being detected in  
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Figure R9. Effect of curcumin, ferulic acid and vanillin on Q biosynthesis in Tkpts and HEK 293 

cells. (A) Effect of curcumin and vanillin in Tkpts cells. Q levels were slightly decreased in Tkpts cells 

treated with curcumin and vanillin. A small amount of 13C6-Q was detected when Tkpts cells were treated 

with 13C6-vanillin, but not with 13C12-curcumin, indicating that curcumin does not act as Q ring precursor. 

(B) Effect of ferulic acid in Tkpts cells. Ferulic acid did not alter Q levels and a minimal deuterated signal 

was recovered after the treatment with D3-ferulic acid, indicating that ferulic acid does not serve as Q ring 

precursor. (C) Effect of curcumin, vanillin and ferulic acid in HEK 293 cells. 13C6-Q10 is not detected 

when HEK 293 cells were treated with 13C12-labeled curcumin, demonstrating that curcumin does not act 

as Q ring precursor. Ferulic acid does not serve as Q ring precursor because no deuterated signal is 

recovered after treat HEK 293 cells with D3-ferulic acid. Data are represented as mean ± SEM of 6 

replicates. Statistically significant differences in total Q9 or Q10 between control and treatments are 

represented by * (p<0.05), ** (p<0.01) and *** (p<0.001). 

 

the latter case. The same trend was observed for Q10 levels, although a statistically 

significant decrease was observed only in the case of 13C12-labeled curcumin. Vanillin 

also produced a decrease of Q9 levels, and the same trend was observed for Q10 although 
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without statistical significance. Strikingly, even when total Q levels were decreased, we 

were able to detect a signal for 13C6-Q9, although not for 13C6-Q10, in lipid extracts 

obtained from Tkpts cells cultured in the presence of 13C6-vanillin (Figure R9-A). 

However, the proportion of 13C6-Q9 present in cells treated with 13C6-vanillin was only 

about 2%, which is much lower than that produced by 13C-kaempferol (see Figure R7-C). 

Ferulic acid did not produce any significant change of total Q levels, and deuterated forms 

of Q9 or Q10 only accounted for a minor portion of total Q after treatment of Tkpts cells 

with D3-ferulic acid (Figure R9-B). 

Treatments were also carried out in human HEK 293 cells and, in this case, we found that 

both curcumin and vanillin increased Q10 levels. We were unable to detect any 13C6-Q10 

in cells cultured for 48 h in the presence of 13C12-labeled curcumin (Figure R9-C), which 

indicated that the increase of Q levels is not related to augmented Q biosynthesis. Total 

amounts of Q were also increased in HEK 293 cells cultured in the presence of 13C6-

labeled vanillin, but 13C6-Q10 was only about 1% of total Q (Figure R9-C), making it 

unlikely that augmented Q biosynthesis plays a prominent role for the increase of Q levels 

observed in this cell type. Treatment with ferulic acid did not alter Q levels and the 

deuterated form of Q10 (D3-Q10) was not detected (Figure R9-C). 

In summary, we demonstrate that neither curcumin nor ferulic acid serve as ring precursor 

for the Q biosynthetic pathway in mouse or human kidney cells, whereas vanillin plays 

only a minor role in comparison with kaempferol or with the endogenous substrate 4HB. 

 

1. 5. Is 4HB a limiting step for Q biosynthesis in mammal cells? 

 The efficient utilization of kaempferol by kidney cells as a Q ring precursor could be 

linked to a limited availability of endogenous ring precursors in these cells. In accordance, 

Pierrel et al. [54] described that availability of the ring precursor (4HB or PABA) was a 

rate-limiting step for the biosynthesis of Q6 in yeasts cultured in PABA-free medium. To 

test whether the effect of kaempferol-mediated increase in Q levels in mammalian cells 

resulted from limiting amounts of endogenous ring precursors, we measured Q levels in 

cells that had been treated with exogenous 4HB. For these determinations, we compared 

the response of the two kidney-derived cell types (mouse Tkpts and human HEK 293) 

with that of non-kidney cell lines, including mouse liver hepatoma Hepa 1.6, MEFs, 

human liver hepatoma Hep G2, and human promyelocytic leukemia HL-60 cells. 
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Previous results of our research group had revealed that 4HB is not toxic even at high 

concentrations (1-2 mM) so performing a MTT viability assay was not necessary to 

determine the range of concentrations to use in the experiments. 

 

 

Figure R10. 4HB as a limiting step in the biosynthesis of Q in kidney cells. Cells of different origin 

were treated with increasing concentrations of 4HB. (A) Murine cells. Tpkts cells exhibited a dramatic 

increase in Q9 and Q10 levels. However, only a slight increase at some concentrations of 4HB was observed 

for Hepa 1.6 and MEFs. (B) Human cells. Human kidney-derived cells (HEK 293) displayed a significant 

increase of Q10 levels, but this effect was not found in human lines from another origin, such as Hep G2 or 

HL-60. Data are represented as mean ± SEM of 6 replicates. Statistically significant differences in total Q9 

or Q10 between control and treatments are represented by * (p<0.05), ** (p<0.01) and *** (p<0.001). 

 

As depicted in Figure R10, Q levels were dramatically increased in the two kidney-

derived cell lines when cultured in the presence of 4HB, and attained levels four- to six-

fold higher as compared to the corresponding no-addition controls. HEK 293 cells were 

particularly sensitive to supplementation of culture medium with 4HB, with a close to 
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maximal response being already achieved at concentrations as low as 5 nM 4HB. In the 

mouse Hepa 1.6 cell line, Q levels were increased two-fold by 4HB concentrations 

between 5 nM and 1 µM but, strikingly, this response was lost at concentration of 10 µM 

and higher. In the case of MEFs, a slight increase was obtained for the Q9 isoform at 

concentrations of 4HB between 50 nM and 1 µM, but no significant changes were 

observed for Q10. Excepting a slight increase of Q10 levels at 50 nM 4HB in Hep G2 cells, 

no further alteration of Q levels by exogenous 4HB supplementation was observed in this 

cell line or in HL-60 cells at any concentration. 

Taken together, these results support that availability of endogenous 4HB is a limiting 

step for Q biosynthesis in kidney cells, which favors the incorporation of exogenously 

applied ring precursors, such as polyphenols (particularly kaempferol) or exogenous 

4HB. This could be due to a very active flow of metabolites towards Q biosynthesis, 

which maintains very low levels of upstream substrates such as endogenous 4HB 

specifically in kidney cells. This interpretation was further supported by the comparison 

of Q levels in Tkpts and Hepa 1.6 cells, the former containing much higher amounts of 

Q, particularly Q10 (Figure R11-A), and of the polyprenyltransferase Coq2, the enzyme 

that catalyzes the condensation reaction between ring and hydrophobic tail precursors, 

which was found also significantly enriched in Tkpts in comparison with Hepa 1.6 cells 

(Figure R11-B). This situation resembles that of kidney and liver tissues in the mouse 

[154]. 

As Q is synthetized in mitochondria, we wants to ascertain if the results we observed 

comparing Hepa 1.6 and Tkpts cells could be influenced by a different amount of 

mitochondria in the cells. To this purpose, we used specific antibodies as markers of outer 

and inner mitochondrial membrane. The voltage-dependent anion channel (VDAC) is a 

pore located at the outer membrane of the mitochondrion allowing the entry and exit of 

numerous ions and metabolites between the cytosol and the mitochondrion [155]. Using 

this protein as marker of the outer mitochondrial membrane, we have observed that 

VDAC levels were drastically decreased in Tkpts cells comparing to Hepa 1.6 (Figure 

R11-C). Moreover, as marker of the inner mitochondrial membrane we have used an 

antibody mixture that binds specifically to some subunits of all the complexes of the 

electron transport chain. In this case, we observed a significant increase in complex I, III  
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Figure R11. Comparison of different mitochondrial parameters between kidney-derived Tkpts cells 

and hepatic Hepa1.6 cells. (A) Q levels. Q levels were higher and Q9/Q10 ratio lower in Tkpts than in Hepa 

1.6 cells. (B) Coq2 prenyltransferase levels. Tkpts cells displayed higher levels of Coq2 polypeptide. (C) 

VDAC levels. This outer mitochondrial membrane marker was significantly decreased in Tkpts cells. (D) 

OXPHOS complexes levels. Complex I, III and IV were increased while complex V was decreased in 

Tkpts cells. Arbitrary units depicted in the graph relate directly to the immunoblots shown next to each 

graph, and the immunoblots derive from the same film. Ponceau S staining was used to correct for minor 

differences in protein loading between samples. Data are represented as mean ± SEM of at least 3 replicates. 

Statistically significant differences between both cell types are represented by ** (p<0.01) and *** 

(p<0.001). 
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and IV in Tkpts cells (Figure R11-D). No changes were observed in complex II and a 

decrease was observed in complex V in this cell line. 
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 Chapter 2: Role of different fatty acids in Q metabolism 

 

2.1. Effect of different lipid sources in an in vitro model 

Lipid emulsions, traditionally used for parenteral nutrition, were used to study the effect 

of different lipid sources on Q system. Lipofundin, Lipoplus as well as ClinOleic, a source 

of n-6 PUFA, n-3 PUFA and n-9 MUFA respectively, were used in Hepa 1.6 cells, a 

mouse hepatocellular model. First, a viability curve was performed in order to select the 

most suitable concentration to carry out the following experiments. Figure R12-A 

represent a MTT assay for each lipid emulsion where it can be observed that Hepa 1.6 

cells were apparently affected by these lipids. Despite a decrease in MTT signal was 

observed from the lowest concentration used of all lipid emulsions (1µl/ml), cells in 

culture looked perfectly healthy, indicating that the decrease in absorbance obtained after 

performing a MTT assay refers to a lower growth rate instead of cellular toxicity.  

However, it was noted that both low cellular density and the oxidation state of lipid 

emulsion increased differences in growth rate when we compared control cells with cells 

treated with lipid emulsions. In Figure R12-B we show a comparison between control 

cells (no treatment with emulsions) with cells treated with Lipoplus (either fresh or aged 

for more than 3 months) and seeded at different cellular densities. As depicted in this 

Figure, an oxidized emulsion impaired dramatically the growth rate of the cells, but this 

effect was significantly attenuated as the cell density increased. When we used a fresh 

emulsion the growth rate was also affected but to a lesser extent. Again, the decrease of 

the growth rate could be prevented by increasing the cellular density. Thus, our results 

show that a higher cellular density has a protective effect against the inhibition of the cell 

growth caused by emulsions. Although we cannot avoid completely this fact, we can 

minimize it by using high cellular densities in our experiments. Considering our 

observations, we decided to use 7 µl/ml of each emulsion and a cellular density of 20,000 

cells/cm2 for all the following experiments. 

Complementary, based on our previous investigations focused on polyphenols (see 

previous chapter) we decided it would be interesting to study the effects of lipid emulsions 

in renal cells lines as human HEK 293 and mouse Tkpts. However, when these cells were 

treated with the emulsions it was found that the lipids were extremely toxic, making 

impossible to perform any comparative study. As an example, we have represented the 
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MTT toxicity curves for HEK 293 cells in Figure R12-C, showing significant decrease in 

the absorbance for the three lipid emulsions. 

 

 

Figure R12. Effect of different lipid emulsions on the growth/viability of Hepa1.6 cells. (A) MTT 

assay performed in Hepa1.6 cells after treatments with different amounts of Lipofundin, Lipoplus 

and ClinOleic. Absorbance at 590 nm decreased from the lowest concentration (1µl/ml). (B) MTT assay 

performed in Hepa1.6 seeded at different cellular densities after the treatment with aged or fresh 

Lipoplus emulsion. The oxidized emulsion potentiates the decrease in the growth rate. However, culturing 

at higher densities protects cells from the effect of the lipids, both for aged and fresh emulsions. (C) MTT 

assay in HEK 293 cells after treatments with the three emulsions. Lipid emulsion are extremely toxic 

in renal cell lines. Data are represented as mean ± SEM of 8 replicates. Differences are represented as * (p 

< 0.05) and *** (p < 0.001).  
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2.2. Effect of different lipid sources on Q levels of Hepa1.6 cells 

Q levels were measured to evaluate whether Lipofundin, Lipoplus or ClinOleic have some 

effect on the levels of this antioxidant. These three emulsions were included in our 

experiments either under high-glucose or under low-glucose condition. While high-

glucose (4.5 g/L glucose) is the standard culture condition for this hepatic cell line, the 

low-glucose availability (1 g/L) represents a restricted intake for these cells. We decided 

to use both conditions to test if a lower energetic intake modifies the effect of a different 

fat source in our in vitro model. 

Figure R13 shows Q levels after the 48 hours treatment with 7 µl/ml of each lipid 

emulsion. Focusing on Q9 levels in cells grown under high-glucose conditions (Figure 

R13-A) we can observe that Lipofundin, Lipoplus and, to a lesser extent, ClinOleic 

increase Q9 in comparison with the untreated controls. Moreover, the increase observed 

with Lipoplus was significantly higher than that produced by ClinOleic. When cells were 

cultured in low-glucose medium, none of the emulsions cause an increment on Q9 levels, 

most likely, because the control in this restricted glucose condition already displayed 

increased levels of the antioxidant. Although, we should note that, even under low-

glucose condition, Lipoplus treatment led to higher Q9 levels comparing with ClinOleic, 

as we previously observed when cells were treated with lipid emulsion in high-glucose 

medium. 

Figure R13-B shows Q10 levels in cells treated with the lipid emulsions. In this case, 

despite the control in low glucose also increased Q10 levels comparing with the 

corresponding control cultured in high-glucose medium, the effect of the lipid emulsions 

was similar independently of the availability of glucose for the cells. Both PUFA sources, 

Lipofundin and Lipoplus, increased drastically Q10 levels when comparing with the 

control with no emulsion, indicating that both, n-6 and n-3 fatty acids have a similar effect 

on regulating Q10 levels. ClinOleic, which is composed mainly by n-9 MUFA, but it also 

contains n-6 PUFA, also caused a slight increase of Q10 levels compared to control but, 

in this case, the effect was only observed, since the increase of Q10 levels attained by 

culturing cells under glucose limiting conditions abated any further increase by ClinOleic. 

Moreover, the massive increase of Q10 observed when cells were cultured in the presence 

of PUFA was significantly higher than the slight increase observed with ClinOleic in a 

high-glucose condition. 
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Figure R13. Effect of different lipid sources on Q levels of Hepa1.6 cells. (A) Q9 levels. Lipofundin, 

Lipoplus and, to a lesser extent, ClinOleic increased Q9 levels in high-glucose medium. Culturing cells in 

low glucose already increased Q9 level in such a way that the effect of lipid emulsions on Q9 levels was 

abated. (B) Q10 levels. Independently of the glucose availability, Lipoplus, Lipofundin and, to a lesser 

extent, ClinOleic increased Q10 levels in comparison with the control without emulsion. (C) Q9/Q10 ratio. 

Independently of the glucose availability, PUFA decreased drastically the ratio while MUFA caused only 

a slightly decrease when compared to the control without emulsion. (D) Total Q levels. Lipofundin, 

Lipoplus and, to a lesser extent, ClinOleic increased total Q levels in cells cultured under high-glucose 

conditions. In low-glucose, Q levels were already increased in comparison with high-glucose, although 

Lipoplus further increased Q levels in comparison with the corresponding control. Data are represented as 

mean ± SEM of 6 replicates. Differences are represented as * (p < 0.05), ** (p < 0,01) and *** (p < 0.001). 

“F” and “P” refers to differences between Lipofundin or Lipoplus (p < 0.05), respectively, under the same 

condition regarding glucose availability. “CH”, “FH” or “PH” refers to differences between control, 

Lipofundin or Lipoplus in low-glucose compared with the same treatment but under conditions of high-

glucose availability.    
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The ratio between Q9 and Q10 levels is represented in Figure R12-C as Q9/Q10 ratio. Again, 

results in this parameter were similar independently of the glucose availability. Exposure 

of cells to PUFA decreased the Q9/Q10 ratio drastically compared to control and to 

ClinOleic treatment, as a consequence of the dramatic increase of Q10 levels already 

described. Treating the cells with MUFA also decreased the Q9/Q10 ratio, but the decrease 

was not so pronounced, in accordance to the effect on Q10 levels. 

Total Q levels in Hepa 1.6 cells treated with different lipid sources are represented in 

Figure R13-D. Since Q9 is the main Q isoform presents in mouse cells, total Q levels are 

often an accurate reflection of Q9 levels. However, in this case, the dramatic increase of 

Q10 levels attained under some conditions led to a significant contribution to the total Q 

levels. In high glucose, a large increase of Q levels was observed with Lipofundin and 

Lipoplus, whereas only a slight increase was observed with ClinOleic in comparison with 

the control without emulsion. The increase of Q levels caused by exposure to the two 

PUFA sources was significantly higher than that observed when cells were treated with 

ClinOleic. Under low-glucose conditions, only Lipoplus increased significantly Q levels 

in comparison with the control, which already displayed increased levels of Q, likely due 

to a low energetic availably. Thus, the increase of Q caused by lipid emulsions was of 

less magnitude under these conditions of restricted energy. 

Taken together, these results indicate that different lipids sources contribute to the 

regulation of Q levels in the cells, especially Q10 leading to significant alterations of 

Q9/Q10 ratio. Several repetitions of this experiment evidence the specificity of fatty acids 

to regulate Q10 and Q9/Q10 ratio, however, the influence on Q9 levels is more variable and 

always lower than the observed for the minority isoform. Moreover, the unsaturation 

index of the lipids might be a key factor in this regulation.  

 

2.3. Effect of PUFA in mitochondrial morphology and ultrastructure. 

Since lipid emulsions produced significant changes of Q levels, and this molecule is 

intimately related with the mitochondria, we decided to study mitochondrial ultrastructure 

in cells treated with lipid emulsions, by using electron microscopy. Since electron 

microscopy in a very laborious and time-consuming technique, we decided to focus on 

the effect of Lipoplus, the emulsion that produced the highest effect on Q, as an example 

of a PUFA source. Control Hepa 1.6 cells, as well as cells treated with Lipoplus were 
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incubated with the emulsion in high- and low-glucose conditions. After a 48 hours 

treatment cells were fixed and embedded in resin. Ultrathin sections were then cut in the 

ultramicrotome, stained and visualized at the electron microscope to obtain micrographs 

(see Material and Methods). For these ultrastructural studies, we took low-magnification 

micrographs, in which whole cells could be observed (Figure R14), as well as high-

magnification micrographs where mitochondrial ultrastructure could be observed in detail 

(Figure R15). 

 

 
 

Figure R14. Ultrastructure of whole Hepa 1.6 cells cultured under control conditions or treated with 

Lipoplus. A) High-glucose control. B) Low-glucose control. C) High-glucose, Lipoplus treatment. D) 

Low-glucose, Lipoplus treatment. Low magnification images (original magnification in the microscope 

was 5,800X or 7,900X. The bar attached to the micrograph (2 or 5 µM) give the real magnification). N = 

nucleus; Nu = nucleolus; * = mitochondria; = autophagy figures; ■ = lipid droplets.  

 

 

We can observe that, independently of the treatment, Hepa 1.6 cells detached from the 

culture surface displayed a spherical shape with a prominent nucleus slightly displaced to 

a pole (Figure R14). Rarely, we found binucleated cells. Although we acknowledge that 
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this is not the natural shape of these cells, but they show this appearance because of the 

use of trypsine to detach cells from the culture plate, we found this methodology more 

appropriate for the subsequent quantitative estimations of mitochondrial abundance per 

cell (see below). In these micrographs, we were able to distinguish numerous 

mitochondrial profiles along the cytoplasm, as well as lipid droplets and autophagy 

figures. The analysis of high-magnification micrographs allowed us to distinguish several 

features aspects of the mitochondrial ultrastructure (Figure R15). This organelle exhibited 

an elliptical shape with transverse to the major axis cristae.  

 

 

 

Figure R15. Detailed section of control and PUFA-treated Hepa 1.6 cells . A) High-glucose control. 

B) Low-glucose control. C) High-glucose plus Lipoplus treatment. D) Low-glucose plus Lipoplus 

treatment. High-magnification images (original magnification in the microscope was 25,000X. The bar 

attached to the micrograph (1 µM) give the real magnification). N = nucleus; Nu = nucleolus; * = 

mitochondria; ■ = lipid droplets; →: endoplasmic reticulum. 

 
 

Planimetric measurements, performed with high-magnification images, revealed addition 

information about mitochondrial ultrastructure such as mitochondrial area, perimeter, 
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maximal and minimum radius and circularity. Using the maximal and minimum radius, 

we also calculated mitochondrial volume. Since all planimetric parameters related to 

mitochondrial size are related, we will only represent here mitochondrial volume and 

circularity (Figure R16-A). Mitochondrial volume was only affected by PUFA when 

given to cells under high-glucose conditions, with a slight increase in cells treated with 

Lipoplus. Moreover, mitochondrial circularity was not affected by neither PUFA nor 

glucose availability (Figure R16-A).  

 

Figure R16. Mitochondrial ultrastructure parameters in Hepa1.6 cells. (A) Planimetric parameters. 

PUFA increased mitochondrial volume in high-glucose but not in low-glucose conditions. Mitochondrial 

circularity was not affected by either PUFA or energetic intake. (B) Stereological parameters. PUFA 

increased Nv and Vv in low-glucose conditions. Cell volume was affected by PUFA and by restricted 

energetic availability. PUFA increased the no. of mitochondria/cell independently of the energetic 

availability. Data are represented as mean ± SEM of at least 16 images per experimental condition. 

Differences with the control are represented as * (p < 0.05), ** (p < 0.01) and *** (p < 0.001). “CH” and 

“PH” refers to differences between control and Lipoplus, respectively, comparing with the same treatment 

under high-glucose availability.    
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Complementary, a stereological analysis were also performed using low-magnification 

micrographs. Mitochondrial numerical density (Nv), mitochondrial volume density (Vv), 

cell volume and number of mitochondria per cell were calculated and the results are 

shown in Figure R16-B. Mitochondrial numerical density (Nv) refers the number of 

mitochondria present in an area unit of the cell. According to our results, Nv was not 

influenced by PUFA when cells were cultured under standard conditions (high-glucose). 

However, Nv was decreased in cells cultured under low-glucose conditions but increased 

drastically when Lipoplus was incorporated into the culture medium (Figure R16-B). As 

stereological parameter related to relative mitochondrial abundance, we represent the 

mitochondrial volume density (Vv), a value that reflects the portion of cell volume that is 

occupied by mitochondria (both in µm3). Results obtained for Vv were similar to those 

of Nv (Figure R16-B). Since both Nv and Vv are parameters referred to cellular volume, 

we also wanted to elucidate if this parameter was also affected by PUFA. Cell volume 

increased significantly when cells were grown in standard medium (high-glucose) in the 

presence of PUFA, but also by culturing cells in low-glucose medium. However, the 

combination of PUFA and low-glucose resulted in a decrease in cellular volume to reach 

values that were similar to those found in control cells cultured in standard medium 

(Figure R16-B). Changes observed in cell volume could explain the effect previously 

described for Nv and Vv in low-glucose condition. Finally, we also calculated the no. of 

mitochondria per cell and found that PUFA increased significantly the number of 

mitochondria in a given cell independently of glucose availability. However, changes 

observed in high-glucose were more noticeable.  

As major changes in Q system have been observed in standard glucose conditions, 

hereinafter we decided to use only the high-glucose condition in further experiments.  

 

2.4. Effect of pro-oxidant status in the increase of Q caused by different lipid sources. 

We wanted to elucidate whether the increase of Q in cells treated with PUFA-containing 

emulsions is a consequence of lipid autoxidation. To this purpose, we combined the 48 

hours treatment with two different antioxidants. For these experiments, we decided to use 

Lipoplus because it is the PUFA-containing emulsion that gave a greater response in terms 

of Q levels. BHT and Trolox, two antioxidant previously used for this purpose [156], 

were selected and a toxicity curve for each one was performed to choose the appropriate 
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concentration (Figure R17). BHT did not affect cell viability at concentrations under 50 

µM but it revealed extremely toxic for the cells at higher concentrations (Figure R17-A). 

On the other hand, Trolox did not affect cellular viability at none of the concentrations 

tested but produced a higher MTT signal at concentrations of 1 and 2 mM (Figure R17-

B). According to these data, we chose 50 µM BHT and 250 µM Trolox to perform the 

following experiments. 

 

Figure R17. Effect of different antioxidants on the viability of Hepa1.6 cells. (A) MTT assay 

performed in Hepa1.6 cells after treatment with BHT. BHT did not affect cellular toxicity at 

concentrations lower than 50 µM, but higher concentrations were extremely toxic. (B) MTT assay 

performed in Hepa1.6 cells after treatment with Trolox. This antioxidant did not produce cellular 

toxicity at all. Data are represented as mean ± SEM of 8 replicates. Differences with the control are 

represented as *** (p < 0.001).  

 

Using the selected concentrations of the two antioxidants, Hepa 1.6 cells were treated 

during 48 hours with Lipoplus in the presence of BHT or Trolox. Cells without any 

treatment or with Lipoplus but without antioxidants were also cultured in parallel to serve 

as controls. Lipids were extracted from cells grown under the different experimental 

conditions and Q levels were then measured by HPLC with electrochemical detection and 

represented in Figure R18. In general, the antioxidants treatment did not affect Q levels 

in control cells, apart from a slightly decrease in Q9/Q10 ratio observed with BHT (Figure 

R18-C). However, as expected, the mayor regulation of Q levels is observed on Q10 levels, 

which increased after the treatment with Lipoplus in absence or presence of the selected 

antioxidants (Figure R18-B). Therefore, the Q9/Q10 ratio is decreased independently of 

the co-treatment with BHT or Trolox (Figure R18-C). A minor regulation is observed on 

Q9 or total Q levels. Despite, Lipoplus increase Q levels in absence of antioxidants, the 

co-treatment did not show the same effect (Figure R18-A/D). Together, these data 
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strongly support that the effect on Q mediated by PUFA is independent of lipid 

autoxidation.  

 

 

Figure R18. Effect of different antioxidants in combination with PUFA on Q levels of Hepa1.6 cells. 

(A) Q9 levels. Q9 levels increase with Lipoplus, but nor BHT neither Trolox had effect on Q9 levels in 

absence or presence of emulsion. (B) Q10 levels. Q10 increase widely with Lipoplus in comparison to control 

and, also, in the co-treatment with the antioxidants. (C) Q9/Q10 ratio. Lipoplus decrease the ratio, to the 

same extent, in presence or absence of antioxidants. (D) Total Q levels. The same response described for 

Q9 is observed. Data are represented as mean ± SEM of 6 replicates. Differences with the corresponding 

control are represented as ** (p < 0.01). “C”, “B”,   and “T” refers to differences between control, BHT or 

Trolox, respectively, comparing control conditions with the response in presence of Lipoplus.    

 

2.5. Effect of fatty acids on Q biosynthesis. 

We wondered if the increase of Q levels in cells treated with PUFA could be related with 

a modification of the biosynthesis rate of this molecule. Thus, we measured directly 

newly-synthesized Q with the aid of 13C6-labeled 4HB. Hepa 1.6 were cultured in 

presence of 13C6-4HB for 48 hours, and then the Q already present in the cells (12C-Q) 
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could be differentiated from the Q that was newly synthetized during our treatment (13C6-

Q) by using HPLC-MS/MS. The treatment with the labelled precursor was combined with 

Lipoplus and ClinOleic as examples of PUFA and MUFA lipid sources, respectively. 

 

Figure R19. Effect of fatty acids on Q biosynthesis of Hepa1.6 cells. Adding the labeled Q precursor, 

13C6-4HB, we can measure specifically the amount of Q that is newly synthetized during treatments. (A) 

Q9 levels. Lipoplus increased Q9 biosynthesis comparing to control and ClinOleic, which had no effect. (B) 

Q10 levels. Q10 biosynthesis was highly increased with Lipoplus but slightly decreased with ClinOleic. (C) 

Q9/Q10 ratio. 12C-Q ratio did not change during the treatments while 13C6-Q ratio significantly decreased 

with Lipoplus and slightly increased with ClinOleic. (D) Total Q levels. Lipoplus increased total Q 

biosynthesis comparing to control and ClinOleic, which again did not display any significant effect. Data 

are represented as mean ± SEM of 6 replicates. Differences to the correspondent control are represented as 

* (p < 0.05), ** (p < 0.01) and *** (p < 0.001). “C” and “P” refers to differences between control and 

Lipoplus, respectively. 
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As depicted in Figure R19, under all experimental conditions the majority of Q was 13C-

labelled, which is indicative of an active biosynthesis during the 48 hours treatment. 13C6-

Q9 levels, and thus, the biosynthesis of Q9 increased significantly in presence of Lipoplus 

compared to control and to ClinOleic-treated cells, which maintained 13C-Q9 levels 

similar to those observed in the control (Figure R19-A). Similar results were observed for 

13C6-Q10 levels (Figure R19-B), although in this case the increment was substantially 

higher than the observed for 13C6-Q9. The larger increase observed for 13C6-Q10 is in 

accordance with a predominant effect on the levels of this isoform, as observed in 

previous experiments. However, ClinOleic did not increase 13C6-Q10 levels but it even 

decreased this isoform comparing to the control. Our results suggest that the increase of 

Q mediated by PUFA is consequence of an increase biosynthetic rate, but changes in the 

biosynthetic rate are not responsible of the slight increase of Q levels observed after the 

treatment with MUFA. Q9/Q10 ratio of cells cultured under the different experimental 

conditions is represented in Figure R19-C. We have calculated independently the ratio 

for 12C-Q and for 13C6-Q. Of note, treatments did not alter the Q9/Q10 ratio in the case of 

the non-labelled isoforms (of 12C-Q) since this Q was already present in the cells before 

emulsions were added. However, the Q9/Q10 ratio calculated for the 13C6-labeled isoforms 

(and hence, synthesized during the treatment) demonstrated a significant decrease with 

Lipoplus treatment in comparison with control conditions or in the presence of ClinOleic, 

indicating that culturing cells in medium containing PUFA determines an greater increase 

in the synthesis of the Q10 isoform than that of Q9. As expected, total 13C6-Q levels (Figure 

R19-D) showed a similar pattern to 13C6-Q9 levels. Nevertheless, the increment of Q9 

biosynthesis described for Lipoplus (p<0.05) together with to the large increase of Q10 

biosynthesis observed with this emulsion (p<0.001) determines that statistical 

significance of differences between control and Lipoplus is higher (p<0.001) in the case 

of total Q. No differences of total Q biosynthesis was observed in a treatment with 

ClinOleic indicating that this process is not targeted significantly by MUFA. 

 

2.6. Role of fatty acids as regulators of the mevalonate pathway. 

Hepa 1.6 cells, treated with Lipoplus and ClinOleic during 48 hours, were recovered and 

processed to perform western-blot and lipid determinations in order to study FDPS and 

cholesterol levels, two important components of the mevalonate pathway. Using a 

specific antibody against FDPS we observed that both lipid emulsions, Lipoplus and 
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ClinOleic, inhibited the protein expression of FDPS (Figure R20-A). A 25% of inhibition 

was observed with Lipoplus in contrast with a 49% inihibition observed with ClinOleic. 

Our results confirm the effect of PUFA over the FDPS described in the literature. 

Moreover, we should take into account that results observed with ClinOleic could be 

influenced by the 1/5 part of soybean oil present in its composition.  

 

 

 

Figure R20. Fatty acids as regulators of some steps of the mevalonate pathway. (A) FDPS levels. 

Lipoplus and, even more, ClinOleic decreased FDPS in Hepa 1.6 cells. (B) Cholesterol levels. Lipofundin, 

Lipoplus and ClinOleic, in a similar extent, decreased cholesterol. Data are represented as mean ± SEM of 

at least 4 replicates. Differences with the corresponding control are represented as * (p < 0.05), ** (p < 

0.01) and *** (p < 0.001).  

 

On the other hand, cholesterol levels were measured by HPLC coupled with UV detection 

(Figure R20-B). Results showed that Lipofundin, Lipoplus, and also, ClinOleic decreased 

cholesterol levels compared to Hepa 1.6 control cells, all of them to a similar extend. 

Again, our results are in accordance with the described inhibition of cholesterol caused 

by PUFA. However, the results obtained with ClinOleic would indicate that different fatty 
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acids (PUFA or MUFA) might regulate the mevalonate pathway at different levels, since 

this emulsion affected cholesterol in the same way as Lipofundin and Lipoplus by its 

effect on Q levels and Q biosynthesis was quite different.   

We further investigate if the levels of some isoprene intermediate metabolites from the 

mevalonate pathway are modified by lipid emulsions. Using HPLC with fluorescence 

detection, we were able to quantify the cellular levels of GPP and FPP (Figure R21). In 

animal cells, FDPS catalyzes the synthesis of both GPP and FPP via sequential adduction 

reactions [146]. Thus, provided that PUFA and MUFA decreased FDPS levels (see 

above), it might be expected that isoprenes produced by this enzyme would be also 

decreased after the treatment with the lipid emulsions. However, contrary to this 

hypothesis, our results showed a significant increase of GPP levels in presence of both 

Lipoplus and ClinOleic. FPP levels, which were substantially higher than the levels of 

GPP, were only increased in presence of Lipoplus. The increase of these metabolites has 

been already described in cells treated with bisphosphonates, a family of FDPS inhibitors 

(see Chapter 3). 

 

 

Figure R21. Effect of fatty acids on GPP and FPP levels of Hepa 1.6 cells. Both Lipoplus and ClinOleic 

increased GPP levels in Hepa 1.6 cells while only Lipoplus increased FPP levels. In Hepa 1.6 cells, FPP 

levels are substantially higher than those of GPP. Data are represented as mean ± SEM of 4 replicates. 

Differences to the corresponding control are represented as * (p < 0.05) and ** (p < 0.01). 
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Downstream from FPP in the mevalonate pathway we found GGPP, an isoprene 

responsible of the isoprenylation of several proteins in the cell. Rap-1A is a small GTPase, 

which is exclusively geranylgeranylated [90], and can be used to indirectly study the 

possible effect of lipid emulsions on GGDPS activity. In Figure R22 we can observe the 

levels of both unprenylated and total (unprenylated plus prenylated) amount of Rap1A. 

Unprenylated Rap1A (Figure R22-A) was difficult to detect in Hepa 1.6 cells indicating 

that the major part of this protein is present in its geranylgeranylated form. However, in 

this small unprenylated protein fraction we can observe that, while Lipoplus did not affect 

the isoprenylation of the protein, higher levels were indeed detected in cells treated with 

ClinOleic. This increase may be indicative of GGDPS inhibition caused by this treatment. 

Moreover, our results show that the total form of this protein is not affected by any of the 

lipids (Figure R22-B).   

 

Figure R22. Effect of fatty acids on the expression of Rap1A in Hepa 1.6 cells. (A) Unprenylated 

Rap1A. Lipoplus does not affect levels of the non-prenylated Rap1A while ClinOleic increases this form 

significantly. (B) Total Rap1A. None of the tested emulsions modified total Rap1A levels. Data are 

represented as mean ± SEM of 4 replicates. Differences with the corresponding control are represented as 

** (p < 0.01). 
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2.7. Effect of calorie restriction and fatty acids on Q levels of mice liver and skeletal 

muscle. 

Based on the effects mediated by fatty acids in the hepatocellular model we wondered 

whether Q levels could be influenced by energetic intake or dietary fat in an in vivo model. 

Our group had previously developed an in vivo model in which mice were fed with 95 % 

of the mean intake (controls) or in 40 % calorie restriction with a diet supplemented with 

soybean oil. Moreover, different groups of calorie-restricted animals were fed with diets 

that differed in the principal fat source: soybean oil, fish oil and lard. Samples were 

collected after a nutritional intervention of 6 months or 18 months, so this model would 

also allow us to study different parameters with aging. Total homogenates of liver and 

skeletal muscle, a mitotic and post-mitotic organ respectively, of these mice were used to 

determine the endogenous levels of Q9 and Q10, as well as, the Q9/Q10 ratio and the total 

amount of Q.  

In Figure R23, we can observe the effect of age on Q levels and Q9/Q10 ratio in the liver 

of calorie-restricted animals, in comparison with the controls, in both cases with a diet 

containing soybean oil as the predominant fat source. Liver Q9 and Q10 levels significantly 

increased in the 18-month control group compared with the 6-month group. The greater 

increase of Q10 observed with age in control animals produced a decrease in the Q9/Q10 

ratio. However, when we analyzed the effect of age in calorie-restricted animals it was 

found that the increment of Q was abated. Consequently, changes in liver Q9/Q10 ratio 

also disappeared in animals fed under calorie restriction. Total Q levels were similar to 

those of Q9, as Q10 is a less represented isoform in mouse tissues. These results indicate 

that calorie restriction abolishes age-induced changes in Q levels of mouse liver. 

We were also interested in studying the effect of different lipid sources in a calorie 

restriction context. In Figure R24, we can observe the effects of the age combined with 

the effect of different dietary lipid sources: lard, soybean oil or fish oil, in liver of animals 

fed in 40% calorie restriction.  A 6-month dietary intervention with a diet supplemented 

with fish oil (CR-fish) increased Q9 and Q10 levels significantly compared with a diet 

based on lard (CR-lard) or soybean oil (CR-soy). Young CR-soy animals displayed higher 

levels of Q10 compared with a diet based on lard. However, after 18 months of dietary 

intervention we found an increase of Q9 in CR-fish compared with CR-lard.  
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Figure R23. Effect of age and calorie restriction on Q levels of mouse liver. Q9 and Q10, as well as total 

Q, increased with age in control conditions whereas CR abolished these age-related changes. Age decreased 

the Q9/Q10 ratio in control conditions. Q9, Q10 levels, Q9/Q10 ratio and total Q are represented as mean ± 

SEM of a minimum of 8 animals. Differences among age of the same diet are represented as * (p < 0.05) 

and ** (p < 0.01). “Ctrl” refers to differences between the control diet and the CR-soy diet (p < 0.05). 

 

 

Attending to the Q9/Q10 ratio, we observed that both soybean and fish oil decreased this 

ratio in comparison with lard diet after 6 months of dietary intervention. However, in a 

longer nutritional intervention (18 months) the Q9/Q10 ratio was similar among the 

different fat sources. Again, total Q levels in the liver were similar to those of Q9, 

previously described, being CR-fish animals the ones with highest levels of Q along life. 



Results 

 

139 
 
 

 

 

Figure R24. Effect of different fat sources on Q levels in liver from calorie-restricted mice. The figure 

depicts Q9 levels, Q10, Q9/Q10 ratio and total Q. CR-fish group displayed the highest levels of Q9 in young 

animals. Old animals increased Q9 levels with both PUFA, although statistical significance was not reached 

in CR-soy group. Similar results were observed for total Q. CR-fish diet in young animals also increased 

significantly Q10 levels. Q9/Q10 ratio decreased drastically in CR-lard after 18 months of nutritional 

intervention, while PUFA maintained a lower ratio in both young and old animals. Data are represented as 

mean ± SEM of a minimum of 8 animals. Differences among age of the same diet are represented as * (p 

< 0.05) and ** (p<0.01). “S” refers to significant differences (p<0.05) comparing with CR-soy. “L” refers 

to significant differences (p<0.05) comparing with CR-lard. “#” indicate a trend between two ages of the 

same diet. 
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Figure R25. Effect of age and calorie restriction on Q levels of mouse skeletal muscle. The only change 

detected was the age-dependent increase of Q10 levels in control conditions. Q9, Q10 levels, Q9/Q10 ratio and 

total Q are represented as mean ± SEM of a minimum of 8 animals. Differences among age of the same 

diet are represented as * (p < 0.05). 

 

Q levels in total homogenate of skeletal muscle were also studied as an example of post-

mitotic tissue. The effect of age in calorie-restricted animals in comparison with control 

animals was summarized in Figure R25. Neither age nor CR caused any significant 

change in Q9, Q9/Q10 ratio or total Q. However, a significant increase in Q10 was observed 

in old control mice in comparison with the young counterparts. Although, in skeletal 

muscle the differences appeared to be rather small, again, as previously observed in liver, 

CR seemed to abolish the increase of Q caused by age. 
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Figure R26. Effect of different fat sources on Q levels of skeletal muscle from calorie-restricted mice. 

CR-soy, both in young and old mice, increased Q9 levels when comparing with a diet enriched in lard. This 

increment was also reflected in total levels of Q. Different dietary sources did not cause significant 

differences in Q10 levels at any age.  Q9/Q10 ratio decreased drastically in CR-fish, in both young and old 

animals. Q9 and Q10 levels, Q9/Q10 ratio and total Q are represented as mean ± SEM of a minimum of 8 

animals. “S” refers to significant differences (p<0.05) comparing with CR-soy. “L” refers to significant 

differences (p<0.05) comparing with CR-lard. 
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The effect of the different fat sources in skeletal muscle is represented in Figure R26. An 

increase of Q9, which is also reflected in the total content of Q in muscle, was observed 

only with CR-soy groups in both young and old animals. No significant changes were 

observed in Q10 levels but a decrease of Q9/Q10 ratio could be recognized for CR-fish, 

denoting slightly higher Q10 levels.  

 

2.8. Effect of calorie restriction and fatty acids on FDPS levels of mice liver and skeletal 

muscle. 

Previous observations using the cellular model related changes in Q levels with the 

alteration of FDPS levels. As we have observed several changes in Q levels of liver and 

skeletal muscle of mice fed calorie restricted diets containing lipid from different sources, 

we decided to determine FDPS levels in this in vivo model.  

In Figure R27-A, we can observe the changes in hepatic FDPS levels associated with 

aging and calorie restriction. FDPS levels were increased in young animals fed under 

calorie restriction comparing to the controls. Moreover, FDPS levels were significantly 

increased in old control animals while a significantly decrease in old animals was 

observed for calorie-restricted mice, comparing with young animals fed the same diet. In 

a calorie restriction context, young animals fed a diet containing soybean oil (CR-soy 

group) displayed the highest levels of FDPS comparing with animals of the same age fed 

with other lipid sources. Again, we observed here the decrease of FDPS levels associated 

with age in a CR diet supplement with soybean oil (Figure R27-B) while there were no 

changes with age in the remaining dietary groups (CR-lard and CR-fish). Levels of FPDS 

in old mice from CR-soy group were statistically lower than those measured in old CR-

lard mice.  

Similar measurements were performed with total homogenates of skeletal muscle. The 

effect of age and calorie restriction is represented in Figure R28-A. No differences of 

FDPS levels were observed with age in control mice. However, an increase was observed 

in old calorie-restricted mice compared with young animals subjected to the same 

intervention. Attending to calorie-restricted animals fed diets containing different lipids 

from different sources, young CR-soy animals had increased levels of FDPS comparing 

with the other two diets (Figure R27-B). On the other hand, old CR-lard mice showed 
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higher levels than young mice fed the same diet. Moreover, FDPS levels in old CR-lard 

mice are the highest observed within the three diets.   

 

 

 

Figure R27. Effect of age, calorie restriction and dietary lipid source on FDPS levels of mouse liver. 

A specific antibody against FDPS was used to measure protein levels of this enzyme. (A) Effect of age 

and CR. FDPS levels was increased in young calorie-restricted mice comparing with the control. Within 

the same diet, old control animals increased FDPS levels while a decrease was shown in old calorie 

restricted mice showed it. (B) Effect of different fat sources in calorie restricted conditions. Young CR-

soy animals showed the highest levels of FDPS comparing to CR-lard and CR-fish animals. Data are 

represented as mean ± SEM of at least 3 replicates. Differences among age of the same diet are represented 

as * (p < 0.05) and *** (p < 0.001). “Ctrl” refers to differences between the control diet and the CR-soy 

diet (p < 0.05), “L” refers to significant differences (p<0.05) comparing with CR-lard and “F” refers to 

significant differences (p<0.05) comparing with CR-fish. Arbitrary units depicted in the figure relate 

directly to the immunoblots shown aside, and the immunoblots derive from the same film. Ponceau’ 

staining is shown as protein loading control. 
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Figure R28. Effect of age, calorie restriction and lipid source on FDPS levels of mouse skeletal muscle. 

A specific antibody against FDPS was used to measure protein levels of this enzyme. (A) Effect of age 

and CR. No changes associated with age are observed in control animals. FDPS levels were increased in 

old CR-soy mice comparing with young animals fed the same diet. (B) Effect of different fat sources in 

calorie-restricted conditions. The highest levels of FDPS in young animals were observed in the CR-soy 

group, while the highest levels in old mice were observed in CR-lard group. Within mice fed the CR-lard 

diet, FDPS levels increased with age. Data are represented as mean ± SEM of 4 replicates. Differences 

among age of the same diet are represented as * (p < 0.05). “L” refers to significant differences (p<0.05) 

comparing with CR-lard and “F” refers to significant differences (p<0.05) comparing with CR-fish. 

Arbitrary units depicted in the figure relate directly to the immunoblots shown aside, and the immunoblots 

derive from the same film. Ponceau’ staining it shown as loading control.  
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Chapter 3: Effect of specific FDPS inhibition on Q metabolism 

In order to deepen the regulation of FDPS on Q metabolism we decided to inhibit this 

enzyme using two different mechanisms: a genetic approach and a pharmacological one. 

 

3.1. Genetic approach to deepen the alteration of the Q metabolism mediated by FDPS. 

 

In order to carry out this approach we decided to use small interfering RNAs (siRNAs), 

double-stranded RNA molecules that interfere with the expression of specific genes with 

complementary nucleotide sequences, resulting in an inhibition of the translation. 

Specifically, we used a couple of siRNAs, named A and B, designed specifically against 

different sequences of the FDPS gene (see Table M1 in Material and Methods). A 

universal scramble siRNA was used as a control in all the experiments. 

As siRNA are used in transient transfections, we needed to know if our cells had a suitable 

transfection index to perform the experiments. Cells transfected with a phrGFP-N1 vector 

were cultured during 48 hours and the transfection index was calculated from the green 

fluorescence of cells measured by flow cytometry (FL1). In Figure R29, we can observe 

the transfection index (%) for both cellular lines, Hepa 1.6 and Tkpts, with two different 

doses of Lipofectamine® 2000, our transfection agent. Independently of the 

Lipofectamine amount, Hepa 1.6 reached an average transfection index of 33% in contrast 

with the 3% observed in Tkpts cells. Attending to the histograms we observed that while 

transfected Tkpts (dashed blue line) did not show almost any differences respect to the 

control (red), the signal of transfected Hepa 1.6 cells increased significantly in the 

selected region. Thus, we decided to continue our experiments only with the 

hepatocellular model. 

The first step was to optimize the transfection with the siRNAs against FDPS, both A and 

B, in Hepa1.6 cells. Using a specific antibody to check FDPS levels after transfecting 

with the siRNAs we observed that the inhibition we achieved in these previous 

determinations was always lower than 55%. However, this decrease in protein levels was 

variable among each experiment. For this reason, we decided to check FDPS levels in 

each experiment and the corresponding western-blot is represented together with each 

result (see below). 
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Figure R29. Transfection index in Hepa 1.6 and Tkpts cells. (A) Transfection index. Hepa 1.6 cells 

showed a transfection index of about 33% in contrast with the 3% observed in Tkpts cells. Results are 

independent of the used dose of Lipofectamine® 2000. Data are represented as mean ± SEM of 3 replicates 

(B) Flow cytometer histograms. Histograms of both cells lines were represented. The big initial peak 

correspond with control cells and no transfected cells. Transfection index was calculated measuring the 

signal recover in the delimited segment. Data are represented as mean ± SEM of 3 replicates. 

 

3.1.1. Coenzyme Q levels in FDPS-depleted Hepa 1.6 cells.  

Q levels measured in cells treated with siRNAs against FDPS are represented in Figure 

R30. Both siRNAs, A and B, depleted FDPS levels in Hepa 1.6 cells in comparison with 

the scramble siRNA (Figure R30-A). Q9 levels measured in these cells revealed a clear 

trend towards a decrease when FDPS was inhibited, while Q10 levels were increased 

significantly under the same conditions (Figure R30-B/C). Genetic interference of FDPS 

also affected the Q9/Q10 ratio that decreased in cells treated with the siRNAs (Figure R30-

D). Moreover, total Q was not affected by the inhibition of the FDPS, because the 

decrease of Q9 was compensated by a similar increase of Q10 (Figure R30-E). These 
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results were similar independently of the siRNA used and of the % of inhibition achieved 

by them. 

 

 

Figure R30. Effect of genetic silencing of FDPS on Q levels in Hepa 1.6 cells. (A) FDPS levels. A 

western-blot shows FDPS levels in the same siRNA-transfected Hepa 1.6 cells used for determining Q 

levels by HPLC. Both siRNAs, A and B, achieved a high inhibition of FDPS levels. The % depicted in the 

graph relates directly to the immunoblots shown underneath, and the immunoblots derive from the same 

film. Ponceau’ staining it shown as protein loading control. (B) Q9 levels. The inhibition of FDPS does not 

cause statistically significant changes in Q9 levels, however, a clear downward trend could be observed 

with both siRNAs. (C) Q10 levels. The inhibition of FDPS caused a large increase in Q10 levels. (D) Ratio 

Q9/Q10. A dramatic decrease of Q9/Q10 ratio was observed in cells depleted from FDPS. (E) Total Q levels. 

Although the different isoforms were influenced by the inhibition of FDPS, total Q levels did not change. 

Data are represented as mean ± SEM of at least 4 replicates. Differences to the corresponding control are 

represented as ** (p < 0.01) and *** (p < 0.001). # denotes a trend compared to the control.  
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3.1.2. Alterations of several steps of the mevalonate pathway in FDPS-depleted 

Hepa 1.6 cells.  

Contrary to our expectations, we had previously observed an increase of GPP and FPP in 

cells cultured in the presence of PUFA. Using our genetic model for depletion of FDPS, 

the levels of these isoprenes were also measured and results are represented in Figure 

R31. Due to the complexity of the experiment, only siRNA B was used for this 

determination. Here siRNA B produced an 83% inhibition in the levels of FDPS (Figure 

R31-A). Strikingly, neither GPP nor FPP changed when FDPS was inhibited, although a 

non-significant increasing trend was observed for FPP (Figure R31-B).  

 

 

Figure R31. GPP and FPP levels in FDPS silenced Hepa 1.6 cells. (A) FDPS levels. A western-blot 

shows FDPS levels in siRNA transfected Hepa 1.6. SiRNA B achieved a high inhibition of FDPS levels. 

The % depicted in the graph relates directly to the immunoblots shown underneath, and the immunoblots 

derive from the same film. Ponceau’ staining is shown as loading control. (B) GPP and FPP levels. Neither 

GPP nor FPP were affected by the inhibition of FDPS. Data are represented as mean ± SEM of 3 replicates. 
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Rap1A levels were also studied in samples treated with the siRNAs against FDPS. Again, 

in this experiment both siRNAs achieved a good inhibition rate (55-60%) (Figure R32-

A). Our results are indicative that total Rap1A do not change despite FDPS is inhibited 

in the cells, although, a downward trend was observed with siRNA B (Figure R32-B). A 

signal for the non-prenylated form of Rap1a could not be even detected, indicating that 

the inhibition of FDPS does not affect protein geranylgeranylation and Rap1A remains 

completely prenylated.  

 

 
 

Figure R31. Total Rap1a levels in FDPS-silenced Hepa 1.6 cells. (A) FDPS levels. A western-blot shows 

FDPS levels in siRNA-transfected Hepa 1.6. Both siRNAs achieved a correct inhibition of FDPS levels. 

(B) Total Rap1a levels. Total Rap1 levels were not affected by the inhibition of FDPS, although a 

downward trend was observed with siRNA B. The % of arbitrary units depicted in the graph relates directly 

to the immunoblots shown underneath, and the immunoblots derive from the same film. Ponceau’ staining 

is shown as loading control. Data are represented as mean ± SEM of at least 3 replicates. Differences with 

the corresponding control are represented as *** (p < 0.001). # represents a trend compared to the control. 
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3.1.3. Combined effect of PUFA and siRNA on Q levels in Hepa 1.6 cells.  

PUFA as well as the inhibition of FDPS by siRNAs generated similar results in relation 

to Q10 levels and Q9/Q10 ratio indicating that the decrease in FDPS levels might regulate 

in some way these parameters. We asked ourselves if the combination of both 

interventions, PUFA and siRNA, could have an enhanced effect over Q levels. Hepa 1.6 

cells were transfected with siRNA B against FDPS or scramble during 48 hours and, then, 

these cells were further treated with Lipoplus during another 48 hours incubation period, 

being 96 hours the total time of the intervention.  

First, we checked the inhibition on FDPS levels (Figure R33-A) to observe that, 

surprisingly, Lipoplus (combined with the scramble siRNA) did not affect FDPS levels, 

but the treatment with siRNA B decreased 75% its expression, both in absence and in 

presence of PUFA. Q9 levels, represented in Figure R33-B, decreased only when FDPS 

levels were decreased by siRNA B. However, the decrease observed with the combination 

of siRNA B and Lipoplus was higher than that observed with the single siRNA treatment. 

Meanwhile, Q10 levels highly increased in cells transfected with siRNA B comparing to 

the scramble, and this increase was even higher when cells were also treated with Lipoplus 

(Figure R33-C). A substantial inversion of the Q9/Q10 ratio was clearly observed in FDPS-

depleted cells and, again, the effect was more pronounced in cells that had been also 

treated with Lipoplus (Figure R33-D). Total levels of Q (Q9 + Q10) decreased with siRNA 

B, independently of the presence of Lipoplus, but the effect was less pronounced than the 

decrease observed for Q9, probably due to the simultaneous augmentation of Q10 levels 

(Figure R33-E). 

Taken together these results suggest that Lipoplus potentiates the effect observed in Q9 

and Q10 levels and Q9/Q10 ratio.  
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Figure R33. Q levels in Hepa 1.6 cells after a combined treatment with siRNAs and Lipoplus. (A) 

FDPS levels. A western-blot shows FDPS levels in siRNA transfected Hepa 1.6. About a 75 % inhibition 

of FDPS levels was achieved by siRNA B in absence or presence of Lipoplus. The % of arbitrary units 

depicted in the graph relates directly to the immunoblots shown underneath, and the immunoblots derive 

from the same film. Ponceau’ staining it shown as loading control. (B) Q9 levels. The inhibition of FDPS 

by siRNA B decreased Q9 levels, and this effect was significantly potentiated when combined with 
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Lipoplus. (C) Q10 levels. An increase in Q10 levels was observed with siRNA B, and again, this effect was 

potentiated by Lipoplus. (D) Q9/Q10 ratio. A large decrease was observed in cells depleted from FDPS by 

siRNA B. Again, the decrease was potentiated by the presence of Lipoplus. (E) Total Q levels. A slight 

decrease was observed in FDPS-depleted cells, independently of the presence or absence of PUFA. Data 

are represented as mean ± SEM of at least 4 replicates. Differences to the corresponding control are 

represented as * (p < 0.05), ** (p < 0.001) and *** (p < 0.001). “B” refers to significant differences (p<0.05) 

comparing with single siRNA B treatment.  

 

3.2. Pharmacological approach to study the alteration of Q metabolism mediated by 

FDPS. 

Complementary, we decided to use a pharmacological approach to inhibit FDPS levels. 

Using ZOL we achieved an inhibition at post-translational level, so we used this drug to 

study the effect of this inhibition on the Q system. 

 

3.2.1. Effect of zoledronic acid in cellular viability.  

Before starting our experiments, we studied the viability of the cells after a 48 hours 

treatment with ZOL. In this study, we maintained our hepatocellular model but also 

included Tkpts cells, and other two human cell lines: HEK 293 and HeLa cells. MTT 

curves for each cell line after a ZOL treatment are represented in Figure R34. Cell 

viability was compromised at concentrations of 50 µM and higher in Hepa 1.6 cells and 

at 80 µM and higher in Tkpts cells (Figure R34-A/B). Moreover, HEK 293 and HeLa 

were more sensitive to this drug, and started to show a decreased viability from 10 µM 

and 20 µM, respectively (Figure R34-C/D). According to the described results, a different 

concentration of ZOL was selected to treat each cellular line, according to its particular 

tolerance to this drug. Thereby, ZOL at 20 µM were used to treat both, Hepa 1.6 and 

Tkpts cells. However, lower concentrations were needed in the experiments performed 

with human cell lines. In this case, 5 µM ZOL was used to treat HEK 293 while HeLa 

cells were treated with 10 µM ZOL.  
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Figure R34. Cellular tolerance to zoledronic acid. A MTT curve using increasing concentrations of ZOL 

was performed in each cell line. (A) Hepa 1.6 cells. Viability of the cells was affected at concentrations of 

50 µM and higher. (B) Tkpts cells. Viability of the cells was affected at concentrations of 80 µM and 

higher. (C) HEK 293 cells. Viability of the cells was affected at concentrations of 10 µM and higher. (D) 

HeLa cells. Viability of the cells was affected at concentrations of 20 µM and higher. Data are represented 

as mean ± SEM of 8 replicates. Differences with the corresponding control are represented as *** (p < 

0.001).  

 

3.2.2. Zoledronic acid as an efficient inhibitor of FDPS. 

Despite ZOL is well-known as inhibitor of FDPS [89, 157], we wanted to check whether 

this property is maintained in our cellular models. Since ZOL inhibits FDPS in a post-

translational way, FDPS levels should not be modified with the treatment. Verification of 

this fact is represented in Figure R35-A. As expected, FDPS levels were not modified in 

cells treated with ZOL, neither in the case of Hepa 1.6 nor in Tkpts cells.  
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Figure R35. FDPS and Rap1A levels in cells treated with zoledronic acid. Specific antibodies were used 

to detect protein levels after treatment with ZOL. (A) FDPS levels. FDPS levels were not affected by ZOL 

in any of the cellular lines. (B) Unprenylated Rap1a. ZOL increased uRap1a levels in Hepa 1.6 and Tkpts 

cells, this increase being particularly high in Tkpts cells. (C) Total Rap1A. Total form of Rap1A was not 

influenced by ZOL in any cell line. Arbitrary units depicted in the graph relate directly to the immunoblots 

shown next to the graphics, and the immunoblots derive from the same film. Ponceau’ staining is shown as 

loading control. Data are represented as mean ± SEM of 4 replicates. Differences with the corresponding 

control are represented as ** (p < 0.01) and *** (p < 0.001). 
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We next measured the accumulation of unprenylated Rap1A, a described biochemical 

indicator of the pharmacological activity of the NBPs [158, 159]. We indicated previously 

that Rap1A is specifically geranylgeranylated, so with this marker we actually measure 

the inhibition of the GGDPS mediated by NBPs, which has been also described in the 

literature [90, 160]. Rap1A levels are represented in Figure R35-B/C. Unprenylated 

Rap1A levels increased in presence of ZOL in both, Hepa 1.6 and Tkpts, indicating an 

inhibition of the geranylgeranylation and, thus, an inhibition of the GGDPS (Figure R35-

B). Moreover, we should emphasize the dramatic increase of uRap1A observed in Tkpts 

cells treated with ZOL. Total Rap1A levels were also measured but no changes were 

observed in any cellular model (Figure R35-C). The analysis of the levels of total Rap1a 

reveals that under control conditions hepatic cells possesses significantly higher levels of 

this protein than cells from renal origin.  

 

3.2.3. Effect of zoledronic acid on the Q system in different cell lines.  

Having selected a suitable and functional ZOL concentration to treat each of the cells line 

of interest, we have studied the effect of this drug on Q levels. ZOL had a similar effect 

in all cell lines, with the exception of Tkpts cells. In Hepa 1.6, HEK 293 and HeLa cells 

ZOL treatment produced a general decrease in Q9, Q10, Q9/Q10 ratio and total Q levels 

(Figure R36-A/C/D). Moreover, we should emphasize that the decrease in Q10 was always 

less pronounced that the observed for Q9. Meanwhile, the response of Tkpts cells to the 

drug shared the decrease already described for Q9 but, surprisingly, Q10 levels were 

dramatically increased after a treatment with ZOL (Figure R36-B). Higher levels of Q10 

and lower levels of Q9 in Tkpts treated with ZOL affected profoundly Q9/Q10 ratio, which 

was reversed in comparison with the normal ratio of Q isoforms that characterizes murine 

cells, to become less than 1 (i.e. Q10 became the main isoform). Regarding total Q, the 

increase of Q10 resulted in a partial compensation of the Q9 decrease. As a result, while  

total Q levels in Tkpts cells treated with ZOL were still lower than the levels measured in 

control cells, the overall effect of the drug on total Q was less pronounced than in the 

remaining cell lines.  
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Figure R36. Effect of zoledronic acid on Q levels in several cell lines. Q9, Q10, Q9/Q10 ratio and total Q 

levels are represented for each cellular line. (A) Hepa 1.6 cells. 20 µM ZOL significantly decreased all the 

parameters measured. (B) Tkpts cells. 20 µM ZOL decreased Q9 but increased Q10 levels. The decrease of 

the Q9/Q10 ratio in thus higher than the change observed for the rest of the cell lines. Total Q levels 

decreased, but overall inhibition was lower than the observed in the rest of the cells. (C) HEK 293 cells. 5 

µM ZOL significantly decreased all the parameters measured. (D) HeLa cells. 10 µM ZOL significantly 

decreased all the parameters measured. Generally, Q9 decreased to a greater degree than Q10. Data are 

represented as mean ± SEM of 8 replicates. Differences with the corresponding control are represented as 

** (p < 0.01) and *** (p < 0.001).  
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We previously have reported changes in Q levels with modifications in the biosynthetic 

rate of this molecule. Using 13C-4HB, we wanted to study the biosynthesis of Q after a 

treatment with ZOL. Figure R37 summarize Q biosynthesis of Hepa 1.6 and Tkpts cells 

treated with 20 µM ZOL. The results so obtained were similar to those previously 

described for Q levels in both cellular lines, indicating that the general inhibition of Q 

observed with ZOL is consequence of an altered biosynthesis caused by the drug. Hepa 

1.6 showed a decrease in 13C-labeled Q9, Q10 and total Q levels, as well as, a dramatic 

decrease of the Q9/Q10 ratio in cells treated with ZOL (Figure R37-A). The inhibition of 

Q biosynthesis was lower for Q10 than for Q9.  

On the other hand, the amount of unlabeled Q9 or Q10 (i.e., the quinones synthesized from 

endogenous 4HB), Q9/Q10 ratio and total Q did not change with the treatment, indicating 

that ZOL only affects newly synthesized Q. Interestingly, it was found that adding 13C-

4HB to the cells affected Q9/Q10 ratio of newly synthesized Q in the absence of ZOL. As 

depicted in Figure R36-A, the normal Q9/Q10 ratio in Hepa 1.6 is around 4, but adding 

13C-4HB raised this value to about 10 (Figure R37-A), indicating that supplementation 

with a Q ring precursor boost the preferential synthesis of Q9 over Q10. However, the 

presence of ZOL abated this effect and, under these conditions, Q10 was the preferred 

isoform synthesized by the cells. 

In Tkpts we observed a decrease in 13C-labelled Q9, total Q and a dramatic decrease of 

the ratio. According to previous results described for Q10 in this cellular line, newly 

synthesized Q10 was enhanced in a treatment with ZOL (Figure R37-B). Here, we also 

found that 13C-4HB affected the relative proportion of Q isoforms in the absence of ZOL. 

As depicted in Figure R36-B, the normal Q9/Q10 ratio in Tkpts cells is around 4, but 

adding 13C-4HB raised this value to about 35, indicating that supplementation with a Q 

ring precursor also boost the preferential synthesis of Q9 in this cell line. Again, the 

presence of ZOL abated this effect and, under these conditions, Q10 was by far the 

preferred isoform synthesized by the cells. The Q system in Tkpts cells was extremely 

sensitive to modulation by ZOL, in such a way that the drug not only decreased the ratio 

of 13C-labeled isoforms, but also that of the unlabeled quinones. 
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Figure R37. Effect of zoledronic acid on Q biosynthesis of murine cells. Q9, Q10, Q9/Q10 ratio and total 

Q levels after a 48 hours incubation of 13C-4HB are represented for each cell line. (A) Hepa 1.6 cells. 20 

µM ZOL significantly decreased Q biosynthesis for all the parameters measured. The decrease observed 

for Q10 was less pronounced than the observed for Q9. (B) Tkpts cells. 20 µM ZOL decreased Q9 but 

increase Q10 biosynthesis. The decrease of the Q9/Q10 ratio in this cell line was more pronounced than in 

the rest of the cell lines tested. Total Q biosynthesis decreased significantly. Data are represented as mean 

± SEM of 6 replicates. Differences with the corresponding control are represented as *** (p < 0.001). “C” 

refers to significant differences (p<0.05) compared with the corresponding control.  

 

Complementary, we also studied Q biosynthesis in human cell lines and similar results 

were observed in HEK 293 and HeLa (Figure R38-A/B). In both cell lines, Q9 and to a 

lesser extent Q10 biosynthesis decreased with ZOL. Q9 is a very minority isoform in 

human cells but, even so, a decrease in the ratio could be observed, confirming our 

observations of a lesser inhibition of Q10 biosynthesis. Finally, taking together all the 

results, total Q biosynthesis was significantly inhibited by treatment with ZOL. 
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Figure R38. Effect of zoledronic acid on Q biosynthesis in human cells. Q9, Q10, Q9/Q10 ratio and total 

Q levels after a 48 hours incubation with 13C-4HB are represented for each cell line. (A) HEK 293 cells. 5 

µM ZOL significantly decreased Q biosynthesis for all the parameters measured. (B) HeLa cells. 10 µM 

ZOL significantly decreased Q biosynthesis for all the parameters measured. Data are represented as mean 

± SEM of 6 replicates. Differences with the corresponding control are represented as *** (p < 0.001). “C” 

refers to significant differences (p<0.05) compared with the corresponding control.  

 

3.2.4. Effect of zoledronic acid at different levels of the mevalonate pathway. 

ZOL alters different steps in the mevalonate pathway. It inhibits FDPS and GGDPS and 

produces a general decrease in Q levels. Due to these alterations, levels of isoprenoid 

intermediates of the mevalonate pathway could be influenced by this treatment. Thus, 

GPP and FPP levels were measured in both Hepa 1.6 and Tkpts cells and the results were 

represented in Figure R39-A/B. ZOL produced a huge increase in GPP levels of Hepa 1.6 

cells whereas FPP levels were not modified (Figure R39-A). However, in Tkpts cells a 

treatment with ZOL did not modify neither GPP nor FPP levels, although, an upward 

trend was observed for GPP (Figure R39-B). 
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Complementary, we decided to study cholesterol as another branch end-product of the 

mevalonate pathway. ZOL is known to inhibit cholesterol biosynthesis [90, 161] acting 

as inhibitor of the SQS. We wondered whether cholesterol levels would be also decreased 

in our model after a treatment with ZOL and results are represented in Figure R39-C/D. 

Hepa 1.6 cells did not modify cholesterol levels after a 48 hours treatment with ZOL but, 

contrary, Tkpts cells decreased it significantly. Inhibition of SQS by ZOL seems to be 

dependent of the cellular line, being more effective in kidney-derived cells.  

 

 

Figure R39. Effect of zoledronic acid on GPP, FPP and cholesterol levels in mouse cell models. (A) 

GPP and FPP levels in Hepa 1.6 cells. 20 µM ZOL significantly increased GPP levels but did not change 

FPP levels. (B) GPP and FPP levels in Tkpts cells. 20 µM ZOL did not change neither GPP nor FPP, 

although, an upward trend was observed for GPP. (C) Cholesterol levels in Hepa 1.6 cells. Treatment with 

ZOL did not affect cholesterol levels in this cell line. (D) Cholesterol levels in Tkpts cells. ZOL 

significantly decreased cholesterol levels. Data are represented as mean ± SEM of at least 4 replicates. 

Differences with the corresponding control are represented as ** (p < 0.01) and *** (p < 0.001). “#” 

represent a trend (p<0.05 in the one-tail statistical analysis) compared with the corresponding control.  
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3.2.5. Effect of upstream mevalonate pathway inhibitors on Q and CHO levels. 

Statins and 4HB produce an upstream inhibition of the mevalonate pathway, contrary to 

all our previous strategies, so we thought a comparison of their effects on Q and 

cholesterol levels would be of interest.  

Lovastatin was used as an example of the effect of the statins in our in vitro model. First, 

we performed a viability curve in order to choose the most suitable concentrations of this 

product for the cells. Figure R40 depicts of the results of MTT assays performed to reveal 

the tolerance of Hepa 1.6 and Tkpts cells to lovastatin. Hepa 1.6 viability was affected 

negatively by lovastatin at concentrations of 5 µM and higher, with concentrations above 

20 µM being extremely toxic for the cells. On the other hand, deleterious effects in Tkpts 

appeared at concentrations of 20 µM and higher. In Tkpts cells, concentrations between 

0.5 and 5 µM lovastatin produced significant increases of the MTT signal, which could 

be related with a possible improvement of the growth rate. According to these results, we 

decided to use the maximum concentration that did not cause any toxic effect. In Hepa 

1.6 cells this concentrations is 1 µM lovastatin, so we decided to maintain the same 

concentration for both cellular lines.  

 

 

 

Figure R40. Effect on cell viability after a treatment with lovastatin. A MTT assay was performed for 

each cell line after treatment with lovastatin at different concentrations. (A) Hepa 1.6 cells. Lovastatin 

affected cellular viability at concentrations of 5 µM and higher. (B) Tkpts cells. Lovastatin affected cellular 

viability at concentrations of 20 µM and higher. The increase of absorbance observed at concentrations of 

lovastatin between 0.5 and 5 µM possibly reflects an improvement of the growth rate. Data are represented 

as mean ± SEM of 8 replicates. Differences with control are represented as *** (p < 0.001).  
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Q levels of cells treated with lovastatin are represented in Figure R41. Hepa 1.6 cells 

decreased Q9, Q10 and Q total levels after a treatment with lovastatin, with a maintenance 

of Q9/Q10 ratio (Figure R41-A). Meanwhile, in Tkpts, lovastatin decreased Q9 and total Q 

levels without affecting Q10. Lovastatin did not affect Q9/Q10 ratio, although a downward 

trend was observed in this cell line (Figure R41-B).  

 

 

Figure R41. Effect lovastatin on Q levels of hepatic and renal mouse cell lines. Q9, Q10, Q9/Q10 ratio 

and total Q levels are represented for each treatment. (A) Hepa 1.6 cells treated with 1 µM lovastatin. 

Lovastatin decreased Q9, Q10 and Q total levels without affecting the Q9/Q10 ratio. (B) Tkpts cells treated 

with 1 µM lovastatin. Lovastatin decreased Q9 and Q total levels without changing Q10. The Q9/Q10 ratio 

displayed a downward trend. Data are represented as mean ± SEM of 6 replicates. Differences with the 

control are represented as ** (p < 0.01) and *** (p < 0.001). # represent a trend (p < 0.05) compared with 

the corresponding control. 

 

We have studied 4HB as a Q precursor in Chapter 1 but this phenolic compound is also 

known to inhibit upstream enzymes of the mevalonate pathway when used at high 

concentrations. We have represented in Figure R42 the same dose-response curves of 

Hepa1.6 and Tkpts treated with different concentrations of 4HB (represented in Chapter 

1, Figure R10) in order to evaluate complementary ideas not described previously.  
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Figure R42. Effect 4HB on Q levels of hepatic and renal mouse cell lines. Q9, Q10, Q9/Q10 ratio and total 

Q levels are represented for each treatment. (A) Hepa 1.6 cells treated with 4HB. 4HB increased Q levels 

at low concentrations and decreased it at high concentrations. Q9/Q10 ratio decrease since 5nM onwards. 

(B) Tkpts cells treated with 4HB. 4HB increased Q9, Q10 and Q total levels at concentrations of 50 nM 

and higher. Q9/Q10 ratio increased since 100 nM onwards. Data are represented as mean ± SEM of 6 

replicates. Differences with the control are represented as * (p < 0.05), ** (p < 0.01) and *** (p < 0.001). 



Results 

 

164 
 
 

In Hepa 1.6 cells, Q levels (both isoforms and the total levels) were increased by 4HB 

concentrations between 5 nM and 1 µM but this response was absent at concentration of 

10 µM and higher and, even, an inhibition of Q level was observed at 100 µM (Figure 

R42-A). Q9/Q10 ratio was inverted from concentration of 5 nM and higher. Conversely, 

in Tkpts Q9, Q10 and total Q increased since very low concentrations of 4HB. Q9/Q10 ratio 

increased from concentrations of 100 nM and higher (Figure R42-B). The behavior of 

Tkpts cells are in agreement with the role of 4HB as Q ring precursor, being identify 

previously as a limiting step in the biosynthesis of Q in kidney cells. However, in Hepa 

1.6 this phenolic compound behave as Q ring precursor at low concentrations whereas at 

high concentrations its role change, acting as an inhibitor of the mevalonate pathway. 

 

 

Figure R43. Effect lovastatin and 4HB on CHO levels of hepatic and renal mouse cell lines. (A) Hepa 

1.6 cells treated with 1 µM lovastatin. Lovastatin did not change CHO levels. (B) Hepa 1.6 cells treated 

with 1 µM 4HB. 4HB did not change CHO levels (C) Tkpts cells treated with 1 µM lovastatin. 

Lovastatin decreased CHO levels, possibly by inhibiting SQS activity. (D) Tkpts cells treated with 1 µM 

4HB. 4HB decreased CHO levels. Data are represented as mean ± SEM of 6 replicates. Differences with 

control are represented as * (p < 0.05).  
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Additionally, we have measured cholesterol levels in these cellular models after a 

treatment with 1 µM lovastatin and 1 µM 4HB (Figure R43). Neither lovastatin nor 4HB 

had any effect on CHO levels in Hepa 1.6 cells (Figure R43-A/B). Meanwhile, the same 

treatments carried out in Tkpts cells produced a significant decrease of CHO levels 

(Figure R43-C/D). These results indicate that the inhibition of SQS in Tkpts cell is more 

pronounced than in Hepa 1.6 cells. 
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1. CHAPTER 1: Effect of different phenolic compounds on Q metabolism 

 

1.1. Polyphenols as Q ring precursors 

Polyphenols, widely present in foods and beverages of plant origin, have received great 

interest during the last years due to their positive effects on human health as, for example, 

the prevention of diseases like cancer or chronic inflammation [101]. The beneficial 

properties of polyphenols have been partially linked to their antioxidant activity as well 

as to their ability to modulate molecular targets and signaling pathways. Another 

important factor is the molecular structure of these compounds, which can modulate their 

properties and functions. To this sense, the 3-hydroxyl group in flavonols is considered 

as an especially important determinant for their antioxidant activities [98]. 

As a lipid-soluble antioxidant that can be endogenously synthesized by all organisms, Q 

plays a major role in antioxidant defense [10]. The stilbene, resveratrol, and some 

phenolic compounds such as 4HB, vanillic acid, protocatechuic acid and p-coumarate 

have been described as Q ring precursors in S. cerevisiae and mammal cells [52, 56], but 

the possibility that polyphenols could actually increase the levels of this lipid antioxidant 

in cells has not been explored. The capacity to increase Q levels endogenously could be 

a promising approach to palliate Q deficiencies associated with aging or disease. Kidney 

cells are especially sensitive to a decrease of Q levels, and a nephrotic syndrome is a 

major clinical phenotype in Q deficiencies [162]. For this reason, we selected two kidney-

derived lines, murine Tkpts and human HEK 293 cells, to study the putative capacity of 

different polyphenols to increase Q levels. 

Two stilbenes: resveratrol and piceatannol, and two flavonols: quercetin and kaempferol, 

were selected in the first phase of our studies. Resveratrol has been the subject of intense 

research due to its purported cardiovascular protective, antiplatelet, antioxidant, anti-

inflammatory, blood glucose-lowering and anti-cancer activities (reviewed in [163]). 

Piceatannol is a hydroxylated analogue of resveratrol and shares the structural motif and 

biological activities, being even more potent in some studies [164]. Apart from the 

beneficial effects of stilbenes, the regular consumption of flavonoids is related to reduced 

risk of a number of chronic diseases, including cancer, cardiovascular disease and 

neurodegenerative disorders (reviewed in [165]). Flavonoids are divided into several 

groups, with flavonols being those containing the 3-hydroxy group that has been 
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considered very important for antioxidant activity. Thus, for our determinations we also 

chose quercetin and kaempferol, the two most common compounds in this group. Among 

these four compounds, only kaempferol efficiently increased Q levels in kidney cells and, 

interestingly, the effects were observed at concentrations that can be attainable 

physiologically both by consumption of flavonoids-containing food and by oral 

supplementation [166-168]. Since this ability may derive from its chemical structure, we 

also tested additional structurally related flavonoids in a second phase of our studies. In 

this case, we chose two flavones, apigenin and luteolin, and one flavanone, naringenin. 

Of these, only apigenin caused a slight increase in Q9 and Q10 at selected concentrations, 

although its effects were extremely limited in comparison with kaempferol and moreover, 

a slight inhibition was even observed at one of the concentrations tested. 

In addition, kaempferol has been previously described as a Sirt3 activator. This 

mitochondrial sirtuin mediates the adaptation of increased energy demand during adverse 

conditions to increase the production of energy equivalents, and also deacetylates and 

activates mitochondrial enzymes involved in fatty acid β-oxidation, amino acid 

metabolism, the electron transport chain, and antioxidant defense [150]. Our results have 

shown that mitochondrial levels of Sirt3 were indeed increased after kaempferol 

treatment, confirming these effects also take place in renal cells. However, treatment of 

kidney cells with NAM, a general inhibitor of sirtuin activity, did not affect the 

kaempferol-induced increase of Q levels, indicating that Sirt3 activation does not mediate 

kaempferol effects on Q system. Furthermore, Q levels measured in different tissues 

obtained from Sirt3 knockout mice did not differ from those measured in their wild-type 

littermates, indicating that Sirt3 does not modulate Q biosynthesis.  

The increase in Q levels by kaempferol in kidney cells depends directly on the stimulation 

of Q biosynthesis. The kaempferol-mediated increase in Q was blocked by the Q 

biosynthesis inhibitor PABA and a competitive behavior against the incorporation of the 

14C-labelled ring precursor 4HB was found for this polyphenol. Moreover, cells treated 

with 13C-kaempferol generated newly synthesized 13C6-Q, demonstrating that kaempferol 

actually behaves as a novel Q ring precursor in mammalian cells. However, the exact 

metabolism of kaempferol that is responsible for its incorporation into the Q biosynthetic 

pathway remains to be established, although two possibilities can be proposed: (1) 

kaempferol could act directly as Q precursor being itself a substrate for the COQ2 
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transferase and would be subsequently metabolized and modified by different COQ 

proteins until it reaches the final structure of Q; or alternatively (2) kaempferol could be 

cleaved in the cell before entering the Q biosynthetic pathway to yield potential precursors 

which would be then integrated into this route.  

Previous studies have described that flavonoids can be transformed into phenolic acids 

by colonic microflora. However, the type of metabolic products depends on what phenolic 

compound is metabolized and its specific structure [169]. Cleavage of kaempferol by 

colonic microflora occurs between C-3 and C-4 carbons of ring C, forming 4HPAA [152, 

153] derived from the B ring, which is then rapidly decarboxylated to form p-cresol [170]. 

Moreover, Serra et al. [169] have detected 4HB derived from the metabolic pathway of 

kaempferol in rat microflora, possibly as a result of further 4HPAA processing. If renal 

cells were able to perform a fragmentation of kaempferol similar to that described for 

colonic bacteria, this metabolism might be an efficient source of Q precursors. However, 

in Tkpts cells neither 4HPAA nor p-cresol increased Q levels or competed with 14C-4HB, 

demonstrating that these compounds do not act as Q ring precursors in our in vitro model. 

Therefore, even if kaempferol is cleaved in renal cells before entering the Q biosynthetic 

pathway, these known metabolites are not involved in augmenting Q levels.  

A non-flavonoid compound like curcumin, which contains two ferulic acid moieties 

linked via a methylene bridge at the carbonyl group C atoms, also undergoes metabolism 

in animals, possesses antioxidant capacity and produces beneficial effects on diabetes, 

inflammation and neurodegenerative disease by modulating multiple signal molecules 

(transcription factors, enzymes, etc.) and controlling gene expression [171]. Structure of 

curcumin and ferulic acid differs substantially from that of flavonoids and stilbenoids, so 

testing their effect on Q system was also of considerable interest. However, our data 

indicate that neither curcumin nor ferulic acid increase Q levels, and only ferulic produced 

a small but detectable signal of D3-labeled Q in kidney cells.  

As part of this research, the effect of polyphenols as potential precursors of Q biosynthesis 

in S. cerevisiae was also studied at the University of California, Los Angeles. These 

results showed that Q6 levels were not enhanced with any of the compounds tested 

(kaempferol, ferulic acid, vanillin or curcumin). Moreover, studies performed with 13C-

labelled compounds showed that neither kaempferol nor vanillin are used efficiently in Q 

biosynthesis, in contrast with 13C6-4HB that is rapidly incorporated into 13C6-Q6 
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increasing significantly the total Q content in yeast (see Figure 7 in Appendix II) [172] . 

This complementary study allowed us to describe the previous results obtained with 

kaempferol as specific of mammalian cells. 

As indicated above, chemical structure is a key factor that define the functions and the 

effect of the different polyphenols. In our study, flavonoids were more efficient used in 

Q biosynthesis than other non-flavonoid compounds like stilbenoids and curcuminoids. 

Moreover, one member of the flanovol group (kaempferol) and one member from the 

flavone group (apigenin) were the ones that displayed the strongest effect increasing Q9 

and Q10 levels in renal cells. The difference between flavonols and flavones is 

distinguished by the presence of a hydroxyl group in the C3 position. This group seems 

to be very important because kaempferol (that possesses this group) is much more 

efficient in increasing Q levels than apigenin and, interestingly, this specific OH group 

has been previously linked to an increase of antioxidant activity [98]. However, 

kaempferol and apigenin have a common characteristic that also seems to be an important 

determinant for their effect on Q biosynthesis: both compounds only possess one 

hydroxyl group in the B ring. The presence of two hydroxyl groups in this ring, as it is 

the case for quercetin and luteolin, abolishes the effect of these flavonoids on Q system. 

One study that compared the anxiolytic effect of different flavonols noted that this activity 

decreases with an increasing number of hydroxyl groups in the B ring: kaempferol 

revealed again the strongest effect, whereas myricetin (which possesses three hydroxyl 

groups) did not have any effect [173]. 

 

1.2. 4HB as a limiting step in the biosynthesis of Q 

Whatever the metabolic route involved, an increase of alternative Q ring precursors in 

cells will only turn into higher Q levels if cells have low availability of endogenous 4HB. 

Pierrel et al. [54] described 4HB as a limiting step in the biosynthesis of Q in S. cerevisiae 

cells and, as we have demonstrated here, this also holds true for kidney cells, although 

not for other cell lines such as MEFs, Hep G2 or HL-60. The increase of Q observed after 

a treatment with nM concentrations of 4HB or kaempferol confirms that the endogenous 

availability of this precursor is very low in kidney cells of both mouse and human origin. 

The fact that many cell types do not show increased Q levels in response to exogenous 

4HB is in agreement with the early demonstration that 4HB may be present at saturating 
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concentrations in liver, as determined by in vitro assays with liver tissue slices [174]. 

Tissue-specificity of ring precursor supplementation on Q biosynthesis is also supported 

by the observations of Wang et al. [58]. These investigators demonstrated that adding the 

ring precursor 2,4-dihydroxybenzoic acid (2,4-DHB) to the drinking water of wild-type 

mice resulted in an increase of Q9 levels in mitochondrial kidney but a decrease in heart 

mitochondria as well as in liver and muscle homogenates. The specific increase of Q9 

levels in kidney but not in other tissues is in agreement with our results obtained with 

renal cell lines, thus confirming that the availability of ring precursors is a tissue-specific 

feature. Moreover, these researchers showed that giving 2,4-DHB to Q-deficient Mclk1 

KO mice resulted in a healthier phenotype, an increase in Q levels and an improvement 

of the mitochondrial respiratory capacity in heart, kidney and skeletal muscle [58], 

indicating that the addition of Q ring precursor could improve the endogenous synthesis 

of this lipid in a disease phenotype. 

In a previous report [154], we demonstrated maximal levels of COQ2 polypeptide in those 

organs displaying the highest Q concentrations, such as kidney and heart. In accordance, 

the murine kidney-derived Tkpts cells also showed significantly higher levels of both Q 

and COQ2 polypeptide than murine hepatic Hepa 1.6 cells. Moreover, Tkpts cells showed 

lower ratio than Hepa 1.6, as also occurs in kidney and liver tissues, revealing that the 

maintenance of a given Q9/Q10 ratio might be important for proper function of each tissue 

and this property is maintained in cell lines derived from these tissues. Higher levels of 

the COQ2 transferase might maintain low cellular concentrations of the ring precursor 

4HB due to its rapid use by the Coq2 prenyltransferase activity. Higher COQ2 levels 

could also account for making these cells particularly responsive to supplementation with 

ring precursors as 4HB or kaempferol, leading to a significant increase of Q levels. 

Further experiments will be needed to fully understand how kaempferol is metabolized 

to take part directly in the biosynthesis of Q. 

Usually Q levels are a direct reflect of the amount of inner mitochondrial membrane 

present in the cells and, since this membrane is the most abundant in mitochondria, the 

amount of Q is a good marker of mitochondria abundance. Based on our previous 

observations of the levels of Q and COQ2 in Tkpts and Hepa 1.6 cells we also focused 

our research towards the determination of more specific mitochondrial markers as VDAC 

and the different complexes of the respiratory chain. Our results showed that VDAC 
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levels were drastically decreased in Tkpts cells whereas complexes I, III and IV were 

increased, comparing to Hepa 1.6. Taken together these results might suggest that Tkpts 

cells might have less or smaller mitochondria (as deduced from dramatically decreased 

levels of VDAC), but they contain more surface of mitochondrial cristae inside this 

organelle that could explain the highest levels of Q observed, as well as a higher 

abundance of electron transport chain complexes.  

Nevertheless, although VDAC is widely used as mitochondrial marker [175], its use could 

be quite controversial. In mammalian cells, there are three isoforms of VDAC (VDAC1, 

VDAC2 and VDAC3) but previous studies have shown that they are not equally 

abundant, with VDAC1 being 10 times more abundant than VDAC2 and 100 times more 

abundant than VDAC3 [176]. Thus the majority of VDAC expressed inside cells is 

VDAC1 [177], which is mainly localized in the outer mitochondrial membrane. However, 

its exclusively mitochondrial location is still debated because VDAC has been also found 

on the cell surface and in the endoplasmic reticulum [178]. The specific antibody we used 

to detect VDAC is specifically designed against the 3 isoforms of the protein, so a 

variation in the proportion of the isoforms between the renal and the hepatic cell lines 

could influence our results. Moreover, VDAC levels were measured in total cell extracts 

so the abundance of the endoplasmic reticulum in the two cell lines tested is another factor 

to take into account. According to these observations, more direct approaches will be 

needed to determine the relative mitochondrial abundance in Tkpts and Hepa 1.6 cells. 

 

1.3. Concluding remarks and perspectives 

Taken all the results together, we have demonstrated that some components of a healthy 

diet can influence Q levels in renal cells. The flavonol kaempferol is identified here to 

have the strongest effect on increasing Q levels due to its action as a novel ring precursor 

in Q biosynthesis. The ability of kaempferol to simultaneously increase Q and Sirt3 levels 

links several of the beneficial effects previously described for this molecule. Moreover, 

we described 4HB as a limiting step in the biosynthesis of Q in mouse and human renal 

cells. Indeed, this knowledge can represent a step forward in the design of new treatments 

to alleviate the symptoms of Q deficiencies. Further experimentation is warranted to 

elucidate whether dietary kaempferol supplementation also increases Q levels in animals, 

both under normal and Q-deficient conditions. Extensive metabolism of kaempferol when 
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administered with the diet results in very low levels of circulating kaempferol in mice 

[179], which could hamper potential beneficial effects on Q biosynthesis. However, given 

the specific response of kidney to small amounts of ring precursors, it is still possible that 

dietary kaempferol could lead to increased Q levels in this organ, as previously observed 

for 2,4-DHB [58]. Increasing the availability of Q precursors in cells could move the 

metabolic flux in favor of the synthesis of Q, helping to ameliorate the phenotype 

associated with certain Q deficiencies, at least for some organs such as kidney.  
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CHAPTER 2: Role of different fatty acids in Q metabolism 

2.1. Fatty acids as regulators of Q levels  

Dietary fat, which contributes to food palatability and preservation, is an essential 

component of diet, and the presence of different types and quantities of fat is strongly 

associated with different culture and culinary traditions [180]. Dietary fat is classically 

defined as triglycerides (fats and oils), phospholipids, and sterols (cholesterol), including 

various classes of fatty acids (saturated and unsaturated). In the human body, fat is an 

energy and essential fatty acids source, an efficient energy long-term storage, and also a 

carrier of the fat-soluble vitamins A, D, E, and K. Moreover, fat provides insulation 

against temperature and protects vital organs from physical trauma [181]. Dietary fat and 

it associated nutrients play a critical role in health and, therefore, a bad nutrition could be 

related with some disorder such as cardiovascular diseases, obesity, diabetes and, even, 

cancer. 

Membranes are plastic structures that can adapt their lipid composition according to the 

principal dietary fat source, which also influences Q levels and its biosynthesis. To deepen 

into the regulatory effects that different lipid sources could exert on Q metabolism we 

have designed an in vitro model in which mouse liver hepatoma cells (Hepa 1.6 cells) 

were treated with three different lipid emulsions that differ in their fatty acid composition. 

The composition of these lipid emulsions is based on n-3 PUFA (Lipoplus), n-6 PUFA 

(Lipofundin) or n-9 MUFA (ClinOleic). Including an emulsion based on saturated lipids 

would have been also very interesting, but no lipid emulsion with this composition is 

available [182]. Q determinations in Hepa 1.6 cells treated with the three emulsions 

showed a clear effect of different lipid source on the levels of this antioxidant molecule. 

Lipoplus and Lipofundin (and, therefore, PUFAs), and to a lesser extent, ClinOleic 

(MUFA source) contribute to the regulation of Q levels in the cells, increasing Q10 and, 

hence, decreasing considerably the Q9/Q10 ratio. These emulsions also increase Q9 levels 

as well as total Q content but the effect on Q9 is more variable and always of lower 

magnitude than the effect exerted on Q10. It is expected that cells treated with PUFAs 

would have more unsaturation in their membranes being thus more sensitive to oxidative 

stress. The increase of Q levels could be the consequence of high request of antioxidant 

defense in these cells containing high levels of PUFA in their membranes. Conversely, 

cells treated with MUFA did not increase Q levels as those cultured in the presence of 



Discussion 

 

177 
 
 

PUFA, possibly due to the lower levels of unsaturation of these membranes. However, 

this hypothesis solely cannot explain the different regulation of the two Q isoforms that 

leads to the alteration of the Q9/Q10 ratio.  

The effects of fatty acids on Q levels described above take place both under high-glucose 

and low-glucose conditions, although the effects were of less magnitude under conditions 

of restricted carbohydrate availability. A smaller magnitude of fatty acids effects in low-

glucose can be explained by the existence of a regulation of Q levels by glucose 

availability itselfsince in low-glucose conditions, Q levels in control cells were 

significantly higher than in the corresponding control cells grown in high-glucose 

medium. Calorie restriction (CR) is a dietary regimen that reduces calorie intake without 

incurring in malnutrition, and it is the only non-pharmacological intervention know to 

retard aging and its deleterious symptoms in many model organisms [183]. Attending to 

Q, previous studies came up with the idea that alterations in Q biosynthesis are part of the 

metabolic adaptation to CR in mice [154], so our results agree with an adaptative response 

of cells towards a limited carbon source. In a parallel study performed in our research 

group other parameters associated with CR were also measured in cells grown under the 

same conditions as those used for Q determinations. Although the levels of mitochondrial 

ROS as well as mitochondrial membrane potential are known to be decreased in CR 

conditions [184, 185], in our cellular model these parameters were not altered (Gutiérrez-

Casado, personal communication). These results suggest that culturing cells with limiting 

amounts of glucose and decreased insulin (because of the use of 10% FBS) does not 

mimic CR in vitro in the case of hepatic cells. This model has been previously proposed 

to mimic CR in skeletal muscles dissected from rats [186]. It remains for further 

investigation to study the effects of low glucose and lipid emulsions on Q system in 

insulin-responsive cells [187].  

Since most of the cellular Q is located in mitochondria, the structure, number, size and 

distribution of this organelle greatly influences the overall content of this antioxidant in 

cells. For instance, cold adaptation and exercise increase mitochondrial number in the 

liver and skeletal muscle and, thereby, the total content of Q in these tissues is also 

increased [95]. We decided to study the ultrastructure and the abundance of this organelle 

in order to evaluate whether the regulation of Q levels by fatty acids involved an alteration 

of mitochondrial ultrastructure and/or mitochondrial abundance. Stereological 
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measurements carried out using electron microscopy micrographs of Hepa 1.6 cells 

treated with Lipoplus showed that n-3 PUFA significantly increased mitochondrial 

volume and the number of mitochondria per cell in glucose standard conditions. These 

data agree with previous results that described increased number of mitochondria per cell 

in hepatocytes of mice fed with a PUFA-enriched diet in calorie-restricted conditions, 

especially with a diet containing fish oil-as the predominat fat source [136]. However, 

changes observed under conditions of restricted glucose availability were less clear in our 

model. The increase of mitochondria in size and number could explain, at least partially, 

the increase of Q levels previously described. However, these changes at the level of 

mitochondrial ultrastructure could not explain the alteration of the Q9/Q10 ratio. 

Additional experimentation is thus necessary to go deeper into the regulation of this 

antioxidant molecule by exogenous fatty acids. 

Autoxidation of unsaturated fatty acids is a deleterious process to cells that can occur as 

consequence of exposure to an oxygen-enriched atmosphere. In mammalian cells, PUFAs 

are substrates for complex enzymatic systems that oxidize and convert them into a variety 

of lipid mediators [156]. Due to its antioxidant function, the increase of Q levels 

previously observed with the lipid emulsions containing high levels of PUFA could 

represent a protective response against this phenomenon. Furthermore, it was previously 

reported that Q is needed for providing protection against oxidative stress caused by 

PUFA autoxidation in yeasts [128]. In a previous study, antioxidants such as BHT, Trolox 

or vitamin E were used satisfactory to rescue the cellular toxicity that a treatment with 

PUFAs at elevated temperature causes in wild-type yeast [156]. Therefore, we decided to 

test whether the previous observed increase of Q mediated by fatty acids was influenced 

by lipid autoxidation. Cells were co-treated with Lipoplus and BHT or Trolox and Q 

levels were then measured. Results so obtained were generally similar to the previous 

effects observed after a treatment with Lipoplus alone, suggesting that lipid autoxidation 

is not influencing the increase of Q caused by PUFA. 

 

2.2. Effect of fatty acids in Q biosynthesis and the mevalonate pathway  

We wondered if the fatty acid-mediated increase of Q would be influenced by an 

alteration of its biosynthesis rate. Thus, we decided to measure directly Q biosynthesis by 

providing the labeled precursor 13C-labelled 4HB to cells cultured in the presence of lipid 
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emulsions. This 13C-labelled precursor allowed us to quantify the 13C-Q produced during 

48 hours of treatment with Lipoplus and ClinOleic. The PUFA-containing emulsion 

increased Q9, total Q and, specially, Q10 biosynthesis, and therefore produced a decrease 

in the 13C-Q9/
13C-Q10 ratio. However, the emulsion containing MUFA did not affect Q9 

or total Q biosynthesis, but even decreased Q10 levels, thus increasing the 13C-Q9/
13C-Q10 

ratio. These results demonstrate that enhancement of Q biosynthesis accounts for the 

increase of Q levels in cells treated with PUFA. However, putative changes of the Q 

biosynthesis rate cannot explain the increase of Q levels described with MUFA. 

Q, as well as others polyisoprenoid lipids such as cholesterol, dolichol or ergosterol, is 

synthetized in a branch derived from the mevalonate pathway [188]. Little is known about 

Q metabolic regulation by PUFA, in contrast with the widely studied mechanism that 

regulates cholesterol. This lipid homeostasis is regulated by a family of membrane-bound 

transcriptional factors designated sterol regulatory element binding protein (SREBP) 

[189]. In human, hamsters and mice there are three isoforms of SREBP. Two of them, 

designated SREBP-1a and SREBP-1c, are produced from a single gene (SREBF1) by 

using alternative transcriptional start sites. The third member, called SREBP-2, is 

encoded by a separate gene (SREBF2) and shares approximately 50 % homology with the 

SREBP-1 isoforms [190]. This family of transcription factors regulate transcription of 

many genes that encode enzymes of the mevalonate pathway: HMG-CoA synthase, 

HMG-CoA reductase, FDPS and SQS. Moreover, SREBPs modulate the transcription of 

genes encoding enzymes of fatty acid synthesis and uptake, including acetyl CoA 

carboxylase, fatty acid synthase, stearoyl CoA desaturase-1, and lipoprotein lipase [191]. 

Although there is some overlap in their targets, SREBP-2 preferentially enhances 

transcription of genes that control cholesterol synthesis, whereas SREBP-1 enhances 

genes of the fatty acid synthetic pathway [190].  

Previous studies have revealed that fatty acids and cholesterol, the final products of the 

pathway regulated by SREBPs, are themselves regulators of the same pathway by an auto-

loop regulatory circuit. Moreover, they are also regulated by a superfamily of nuclear 

hormone receptors, called liver X receptor (LXRs), that are ligand-activated transcription 

factors [192]. Sterols activate LXR and, therefore, their role as regulators of SREBP-1c 

mRNA levels has been also described [193]. Concretely, it is proposed that fatty acids 

can act as competitive antagonists of LXR in cultured rat hepatoma and human HEK 293 
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cells. This antagonism appears to explain, at least partially, the ability of unsaturated fatty 

acids to lower the levels of mRNA for SREBP-1c, which transcription has been shown to 

depend on an endogenous sterol LXR ligand. The lowered SREBP-1c, in turn, leads to a 

fall in mRNAs for enzymes responsible for synthesizing unsaturated fatty acids, thus 

completing the feedback loop [192, 193]. The ability of unsaturated fatty acids to inhibit 

SREBP-1 expression seems to be related to chain length and degree of unsaturation. The 

longer the chain length and the higher degree of unsaturation, the more potent the fatty 

acid is in suppressing SREBP-1 expression [190]. Unsaturated fatty acids also appear to 

lower SREBP-1 mRNA by accelerating its degradation in hepatocytes [193] or by 

reducing the maturation of SREBP-1 proteins [194]. However, the effect of MUFA 

downregulating SREBP-1 is quite controversial in cellular models. While in some studies 

the effects of n-9 MUFA are similar to those observed with PUFA [193, 195], other 

studies have related the ability to decrease SREBP-1 levels exclusively with PUFA [190, 

196]. Moreover, intestinal epithelial cells treated with SFA, MUFA or PUFA suppressed 

de novo fatty acid synthesis but only PUFA decreased SREBP-1 protein and SREBP-1c 

mRNA levels [190]. This study suggests that MUFA effects might be carried out by a 

different mechanism that do not involve SREBP mRNA levels, possibly accelerating the 

degradation of the mRNA or impairing the maturation of SREBP proteins. This 

controversy does not exist in vivo, where it is described that uniquely dietary n-6 and n-3 

PUFA, but not saturated nor n-9 unsaturated fatty acids, reduce the hepatic abundance of 

SREBP-1c mRNA [197]. Thus, the in vivo regulation of SREBP-1 metabolism by fatty 

acids appears to differ from that of the cell line models. 

PUFA inhibit SREBP-responsive genes such as HMG-CoA reductase and FDPS. 

Inhibition of FDPS (FDPS mRNA and protein levels) was described in hepatoma cells 

and also in liver from mice fed with n-3 PUFA, resulting in a decrease of cholesterol 

levels [198]. Cholesterol and FDPS levels in Hepa 1.6 cells treated with lipid emulsions 

were thus measured in this study, and a general decrease mediated by unsaturated fatty 

acids was observed. These results agree with the previous effects mediated by PUFA on 

cholesterol and FDPS levels, but also suggest a similar response to n-9 MUFA, since 

similar inhibition was observed with ClinOleic. However, despite the effect of MUFA 

and PUFA on cholesterol levels is similar, a different regulation is clearly observed in Q 

levels and Q biosynthesis, indicating a regulation of the mevalonate pathway at different 

levels.  
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The response of Q system to fatty acids differs from that described for cholesterol, despite 

both lipids share several steps in the mevalonate pathway. Despite PUFA strongly 

inhibited FDPS and, in accordance, we observed a decrease of cholesterol, this treatment 

led to an increase of Q9, Q10 as well as total Q. Bentinger and collaborators reported that 

lipid epoxides can alter the biosynthesis of lipids in cell cultures via the mevalonate 

pathway in a very similar way [199]. Lipid epoxides enhanced Q biosynthesis at the gene 

level and, therefore, elevated cellular content of this lipid while, simultaneously, inhibited 

cholesterol synthesis at the level of oxidosqualene cyclase, a necessary enzyme in the 

cholesterol branch of the pathway. Epoxides have been also reported to increase Q9/Q10 

ratio in human hepatic cells, possible due to altered levels of IPP. Complementary 

treatments aimed to alter IPP levels, either towards an increase or to a decrease, allowed 

these authors to propose that low levels of IPP in the cells result in increased Q9 levels 

while high levels of this intermediate favors the synthesis of Q10 [95]. However, contrary 

to the effect observed with the epoxides, in our mouse hepatocellular model PUFAs 

caused a decrease of the Q9/Q10 ratio. The regulation of the ratio will be evaluated in depth 

in the discussion referred to Chapter 3 (see later). 

Complementary, we have also focused our research towards the study of the effect of 

different fatty acids in other metabolites and enzymes of the mevalonate pathway. Using 

HPLC with fluorescence detection, we quantified cellular levels of GPP and FPP, the two 

metabolites produced by FDPS. The synthesis of FPP is catalyzed through two 

consecutive condensation reactions between, first, DMAPP and IPP to form GPP, and 

second, between GPP and another IPP unit to yield FPP [89]. Contrary to our 

expectations, GPP levels were significantly increased with both PUFA and MUFA while 

PUFA also increased FPP levels. A similar increment of these metabolites was observed 

in previous studies using NBPs [146, 147], leading to the proposal that GPP is not only a 

transient intermediate in the FDPS-catalyzed synthesis of FPP, as previously thought, but 

a metabolite that can be regulated to perform additional functions within the cells. GPP 

is used to elongate the polyisoprenyl chain of Q in yeast [200], and it was previously 

proposed as a precursor in the biosynthesis of Q polyisoprenyl chain in rat liver 

microsomes, even better than FPP [201]. However, no evidence is available for 

demonstrated functions of GPP in mammalian cells. The downregulation that fatty acids 

exerts on FDPS levels might affect upstream metabolites in the pathway such as IPP. 

Moreover, according with previous study with epoxides carried out by Bentinger et al. 



Discussion 

 

182 
 
 

[95], high levels of IPP would stimulate the biosynthesis rate of Q10 over Q9. Thus, the 

decrease in the Q9/Q10 ratio observed in our cells could be a direct consequence of the 

increased IPP levels. We have referred previously HMG-CoA reductase as a target of 

SREBP, the transcription factor specifically inhibited by PUFA. If a decrease of SREBP 

affected HMG-CoA reductase equally as FDPS, that upstream enzyme would be inhibited 

and then it is expected that IPP would not accumulate within the cells treated with PUFA. 

However, it has to be taken into account that HMG-CoA reductase is specifically 

regulated by SREBP-2 [202], and this isoform of the SREBP family exhibits a different 

regulation by fatty acids. Experiments performed in HEK 293 cells, have revealed that 

unsaturated fatty acids decreased the nuclear content of SREBP-1, but not SREBP-2 

[195]. Moreover, in vivo experiments have shown that the response of SREBP-1 and -2 

to PUFA clearly diverge [197]. After approximately 24 h of PUFA consumption, the 

nuclear concentration of mature SREBP-1 and the abundance of SREBP-1 mRNA 

decreased comparing with rats fed with fat-free diet, but the nuclear content of mature 

SREBP-2 and the abundance of SREBP-2 mRNA did not differ from the controls. In a 

longer intervention (> 48 h), the pool of SREBP-1 decreased while the content of mature 

SREBP-2 increased and, hence, the levels of HMG-CoA synthase, another target enzyme. 

Our results suggest that a different regulation of SREBP isoforms, able to maintain high 

levels of IPP, is also happening in our hepatocellular model. 

Isopentenyl-diphosphate isomerase (IDI), found in all free-living eukaryotes examined, 

convert IPP to its highly nucleophilic isomer dimethylallyl diphosphate (DMAPP) [203]. 

Therefore, if IPP levels are increased in Hepa 1.6 cells as a response to the fatty acid 

treatment, the levels of DMAPP should be consequently increased too. Previous studies 

about FDPS kinetics have proposed that, when DMAPP levels are high the GPP formed 

in the first reaction catalyzed by FDPS can leave the catalytic site of the enzyme and can 

be replaced by DMAPP prior to the second step of the reaction. Only after the DMAPP 

concentration is reduced does the reaction proceed towards FPP synthesis [89]. In other 

words, high levels of DMAPP could inhibit the condensation of GPP to FPP. In our 

model, the high levels of DMAPP could promote its binding to the FDPS enzyme 

remainingin cells treated with PUFA, thus inhibiting the second reaction and leading to 

an accumulation of GPP. 
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On the other hand, the accumulation of FPP could be also influenced by the inhibition of 

FPP-consuming downstream enzymes. The decrease of SREBP-1c levels mediated by 

fatty acids could explain the specific inhibition of the cholesterol synthesis branch and, 

therefore, the increased FPP levels. Another FPP-consuming enzyme is GGDPS, which 

catalyze the condensation of one unit of FPP with one unit of IPP to yield GGPP [204]. 

Along with FPP, GGPP is in charge of the isoprenylation of several proteins, a process 

which in this case is specifically known as geranylgeranylation [205]. To study GGDPS 

status in our model we used an indirect approach measuring unprenylated Rap1A level, a 

small GTPase that is exclusively geranylgeranylated [90]. Our results showed that total 

levels of Rap1A were not affected by unsaturated fatty acids, but ClinOleic enhanced the 

non-prenylated form of this protein. This increase suggests an inhibitory effect on 

GGDPS mediated by MUFAs. However, cellular FPP levels in cells treated with 

ClinOleic were similar to those measured in control conditions, indicating that a partial 

inhibition of GGDPS does not influence the FPP pool. Moreover, this increased pool of 

FPP is not expected to be the cause of the enhancement Q biosynthesis mediated by 

unsaturated fatty acids because the transprenyl transferase (i.e., the enzyme that utilizes 

FPP in the branch of the mevalonate pathway related with the synthesis of Q isoprenoid 

chain) is known to have a low Km for FPP, and thus this metabolite would not be rate-

limiting in Q biosynthesis [81, 206]. Taken together, our results suggest that, apart from 

inhibiting several enzymes in the mevalonate pathway, fatty acids could also have 

additional targets specifically in the branch that produce Q, resulting in the increase of Q 

levels.  

 

2.3. Regulatory role of fatty acids in Q and FDPS levels of CR-mice fed with different 

lipid sources 

During the last years, our group focused part of its research activity on studying how 

different predominant fat sources affected the outcome of CR in mice [207]. For this 

project, four dietary groups were established: one control group fed 95 % of a pre-

determined ad libitum intake (control) and three CR groups fed 40 % less than ad libitum 

intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-

6 PUFA) whereas the two remaining CR groups were fed with diets enriched in fish oil 

(high in n-3 PUFA) or lard (high in saturated and monounsaturated fatty acids). 

Complementary, as CR is an intervention known to extend lifespan in many organisms, 
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our model included three blocks of sample collection: 1, 6 and 18 months, in order to 

study the effect of aging in these dietary groups. Using this model, our group performed 

a longitudinal lifespan study [208], as well as numerous determinations to evaluate 

several mitochondrial parameters such us fatty acid composition, H+ leak, activities of 

electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial 

ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle [135-

138, 209, 210]. These approaches applied to different cohorts of mice have indicated 

independently that lard as a fat source often maximizes the beneficial effects of 40 % CR 

on mice, for example increasing lifespan or lowering level of liver DNA fragmentation 

in old mice [207]. The Membrane Theory of Aging proposes that lifespan is inversely 

related to the degree of unsaturation of membrane phospholipids [211, 212]. Thus, long-

live animals possesses more saturated membranes and, hence, are less sensitive to 

oxidative stress. The beneficial effects described for lard could be due to significant 

increases of SFA and MUFA levels in membranes. A lipidomic study let us to better 

understand the diminished susceptibility of membranes to peroxidation, which relies on 

a redistribution of the type of unsaturation. CR increased MUFA in liver, whereas the 

levels of PUFA were decreased without any change in SFA. These changes could be the 

consequence of a metabolic reprogramming that would minimize the oxidative damage 

and could contribute to an increase of the lifespan in CR mice [213].  

Q levels, COQ gene expression as well as Q-dependent antioxidant systems are CR 

targets in cellular systems and in mice in a tissue-specific way, with skeletal muscle 

exhibiting an early response (1 month) to this intervention [154]. In this study, skeletal 

muscle of CR-lard animals showed lower levels of Q9 and Q10 comparing with the ad 

libitum controls, whereas the diet based in soybean oil displayed the opposite response. 

Liver did not reflect any change influenced by the CR or the dietary fat after 1 month of 

nutritional intervention [123]. Changes in Q content observed in CR skeletal muscle could 

be related with the described decrease of protein oxidation and ROS generation in this 

organ [184].  

As part of the present work, we performed complementary studies in animals after 

medium (6-month) and long-term (18-month) intervention using this same model. The 

thought that Q levels decrease with aging is some tissues is extended [21], but in PUFA-

enriched diets our results showed that liver and skeletal muscle actually augmented Q 



Discussion 

 

185 
 
 

levels, probably as a protective mechanism against a potentially prooxidant enrichment 

of membranes with PUFA. Meanwhile, CR abolished these age-induced changes of Q 

levels in liver and skeletal muscle from mice fed PUFA-enriched diets. In longer 

interventions, liver and skeletal muscle showed a different response, being liver the most 

affected organ in its Q levels. Moreover, our results have indicated that liver and skeletal 

muscle tissues are able to adapt to a PUFA-enriched CR diet by increasing Q levels and 

decreasing Q9/Q10 ratio. Highest levels of Q in liver are observed in a RC-fish diet while 

RC-lard showed the lower levels. These observations again agree with the described 

protective effect of a saturated fat source in calorie-restricted conditions.  

Additionally, we have studied the effect of CR and different fat sources in FDPS levels 

of both, liver and skeletal muscle. Our results have shown that this central enzyme of the 

mevalonate pathway is highly influenced in liver by age and by CR when animals are fed 

with a soybean oil-enriched diet. However, lard- or fish oil-enriched diet in CR conditions 

did not influence FDPS levels in liver. The influence of CR and age in skeletal muscle 

was milder but still some changes were observed. The possible relation between Q and 

FDPS levels in liver or skeletal muscle is not completely clear. In our cellular model, we 

have related the decrease in FDPS levels with the large increase of Q10 levels and the 

significant decrease of the Q9/Q10 ratio caused by PUFA. However, in an in vivo model 

this correlation cannot be readily established. In both liver and skeletal muscle, we 

observed a decrease of the Q9/Q10 ratio in a CR-fish diet, and under these conditions FDPS 

levels were also lower. Nevertheless, we have observed several modifications of Q and 

FDPS levels that cannot be related in this way. PUFA, and also MUFA, could have 

multiple targets when used in a cellular model, and these could be augmented 

exponentially in an in vivo model due to the intrinsic complexity of a living organism. 

Moreover, it is described that SREBP fatty acid regulation differed between cellular and 

animal models [197] and, hence, the same type of regulation could be found at the FDPS 

level. In Chapter 3 we will try to deepen in the regulation of Q levels through the 

mevalonate pathway using simpler cellular models. 

 

 2.4. Concluding remarks and perspectives 

Unsaturated fatty acids are basic components of the diet and have, among others, several 

targets in the mevalonate pathway. Using a hepatocellular model, our results have shown 
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that unsaturated fatty acids are able to increase Q levels and Q biosynthesis as well as to 

decrease cholesterol levels. Moreover, unsaturated fatty acids regulated the different Q 

isoforms in a different way, promoting the biosynthesis of Q10 over Q9 and leading to 

increased levels of Q10 and a decreased Q9/Q10 ratio. The regulation of the ratio could be 

influenced by the decrease of FDPS produced by these compounds, which might lead to 

the accumulation of IPP and DMAPP within the cell. The accumulation of IPP would in 

turn promote the biosynthesis of Q10 over Q9, a mechanism already proposed previously 

[95]. However, additional targets of unsaturated fatty acids are necessary to understand 

the differential regulation of cholesterol and Q by fatty acids. GPP and FPP, the two 

metabolites produced by FDPS, are accumulated in presence of PUFA indicating that 

FDPS activity do not regulate directly its metabolites, at least under our experimental 

conditions, but possibly these levels are mostly affected by the activities of GPP/FPP-

consuming enzymes. Since GGDPS was not affected by PUFA, it is very likely that SQS, 

the major FPP-consuming enzyme, or other enzyme in the cholesterol branch, are directly 

regulated by PUFA in our hepatocellular system. Decreased levels of cholesterol 

confirmed this hypothesis but additional experiments are needed to point the concrete 

enzyme. Possibly IDI is also a target of fatty acids and this regulation could enhance 

DMAPP levels that might inhibit the second catalytic reaction of FDPS producing an 

accumulation of GPP. Finally, our results also suggest that unsaturated fatty acid did not 

regulate HMG-CoA reductase in our system. 

A previous model of CR-restricted animals of different ages allowed us to study the effect 

of supplementation with different types of fat. We observed that CR abolished these age-

induced changes of Q levels in liver and skeletal muscle from mice fed PUFA-enriched 

diets. In a CR context, liver and skeletal muscle tissues were able to adapt to a PUFA-

enriched diet by increasing Q levels and decreasing Q9/Q10 ratio. Taken together, these 

observations agree with the described protective effect of a saturated fat source in calorie-

restricted conditions previously described by our research group. Additionally, it was 

observed that FDPS is also regulated in calorie restriction and influenced by the different 

fat source, but in a different way from how it is regulated in the hepatocellular model. 

Further experiments are needed to fully understand the exact regulation that fatty acids 

exert in, both, cellular and animal models. 
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CHAPTER 3: Regulation of Q system through the mevalonate pathway 

3.1. Regulation of Q levels and Q9/Q10 ratio by inhibition of FDPS 

Our previous results with different lipid sources in Hepa 1.6 cells have shown that fatty 

acids regulate the biosynthesis of Q by modulating the mevalonate pathway. However, 

many questions still remain regarding the mechanisms that are involved. A key point may 

be the inhibition that fatty acids exert over the FDPS. Thus, we wondered if we could 

obtain more information by inhibiting more selectively this enzyme in a cellular model. 

We decided to accomplish this task by using two different approaches: genetic and 

pharmacological. Moreover, we thought it could be interesting to test the effect of this 

inhibition, besides the hepatocellular model previously used with lipid emulsions (see 

Chapter 2), in another cellular line from mouse such as Tkpts that revealed very useful in 

elucidating the role of polyphenols as novel biosynthetic ring precursors (see Chapter 1). 

We previously indicated our attempt to use this cell line also to test the effect of lipid 

emulsions on Q system, but the non-tolerance of these cells to supplementation with 

exogenous lipids did not allowed us to do that. Our genetic approach consisted in 

inhibiting FDPS using specific siRNAs. Prior to investigate the effect of FDPS gene 

silencing on the Q system, the transfection index was tested in both Tkpts and Hepa 1.6 

cells using a plasmid construct containing the GFP gene. These preliminary 

determinations indicated us that efficient transfections could be only obtained in liver- 

but not in kidney-derived cells.  

The silencing of FDPS revealed some similarities with our previous observations after a 

treatment with lipid emulsions. In this way, a decrease of FDPS levels caused a large 

increase in Q10 levels and the alteration of the Q9/Q10 ratio towards a decrease in both 

models. However, the increase of Q9 and total Q previously observed upon treatment with 

PUFA was not observed when the FDPS was selectively silenced by siRNAs, indicating 

the existence of at least two levels of regulation, with FDPS activity controlling Q9/Q10 

ratio, and another step, still to be identified, that influences total levels of Q. As we 

proposed before, fatty acids could have additional targets in the Q biosynthesis branch of 

the mevalonate pathway that could produce an increase of Q levels. 

We have studied the metabolites produced by FDPS, GPP and FPP, in FDPS-depleted 

Hepa 1.6 cells model but no significant changes were observed. These results indicate 
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that FPDS activity by itself does not regulate directly the levels of its reaction products, 

but additional factors are needed to be taken into account. Attending to our previous 

results with fatty acids, we observed that PUFA increased GPP and FPP levels while 

MUFA increased GPP. According to the results obtained by gene silencing, we can 

postulate that this increment is not related directly with the inhibition of the FDPS, 

because the specific depletion of this enzyme with a siRNA did not reproduce the changes 

in GPP or FPP. This would indicate that PUFA have additional targets that influence the 

levels of metabolites of the mevalonate pathway as we have previously proposed. 

Moreover, measuring unprenylated Rap1A levels we confirmed indirectly that the 

specific inhibition of FDPS did not influence GGDPS function. 

Complementary to the studies described above, we decided to perform a combined 

experiment with Lipoplus and siRNA against FDPS. We observed that, although, the 

FDPS levels measured in cells transfected only with siRNA B and those measured in cells 

that, in addition, had been further treated with Lipoplus did not differ significantly, the 

combined treatment produced marked differences in the Q system comparing with the 

single siRNA treatment. Co-treatment with both PUFA and siRNA against FDPS 

produced a higher decrease of Q9, an enhanced increase of Q10, and hence, a higher 

decrease of the Q9/Q10 ratio. This apparent discrepancy could be explained on the basis 

of a different sensitivity of the techniques used: western-blot for measuring FDPS and 

HPLC with electrochemical detection for measuring Q. We have described that Lipoplus 

did not contribute to a further inhibition of FDPS levels when siRNA B was present, 

however, a slightly non-significant decrease in the combined treatment was indeed 

observed (from an inhibition of 74% in the former case to one of 76% in the latter). The 

possibility exists that this difference does not reach statistical significance because of the 

use of a semiquatitative technique as the western-blot, which relies on densitometric 

evaluation of chemiluminescence due to antibody binding. However, minor differences 

might be easily demonstrated by the use of a more sensitive technique, as HPLC with 

electrochemical detection, which would allow to demonstrate actual differences in the 

combined treatment. In addition, we cannot forget that, in this experiment, if we focus on 

the control cells transfected with the scramble siRNA and then cultured in the presence 

of Lipoplus, no significant effect of the emulsion was apparent in this case, whereas in 

the previous experiments Lipoplus produced a consistent increase of Q10 and a large 

decrease of the Q9/Q10 ratio. It is possible that the agent used for transfections could 
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influence this difference. Lipofectamine® 2000 is a cationic lipid and after its use cells 

might be already loaded with lipids making our treatment with Lipoplus partially 

ineffective. In this case, another transfection technique such as electroporation, which do 

not use cationic lipids, would be useful to avoid this interaction.  

The described effects observed in the Q system in FDPS-depleted Hepa 1.6 cells could 

be explained due to the increase of upstream metabolites such as IPP. Low levels of FDPS 

will led to a decrease in the consumption rate of IPP and, therefore, to its accumulation 

within the cells. The length of Q side chain is precisely defined by PDSS1-PDSS2 in 

mammals cells but possibly the availability of isoprene units would also influence the 

length of the tail. The existence of an increased pool of IPP in cells could force PDSS1-

PDSS2 to introduce an additional isoprene to produce, preferably, Q10 and, therefore, to 

decrease the Q9/Q10 ratio. Unsaturated fatty acids as well as epoxides [95] produced, 

among others, similar alterations of Q10 and Q9/Q10 ratio. However, our study with siRNA 

points out FDPS by the first time as the central regulator of Q9/Q10 ratio in mediating 

effects since, according to our observations, the specific inhibition of FDPS would be 

sufficient to alter upstream metabolites (IPP) increasing Q10 levels and decreasing the 

Q9/Q10 ratio. 

The increase of GPP and FPP observed previously in Hepa 1.6 treated with fatty acids 

was not observed when we used specific siRNAs designed against FDPS. Our previous 

studies carried out with PUFA suggested that additional targets might account for the 

accumulation of these metabolites and, clearly, these targets are not affected by the 

specific siRNA used to inhibit FDPS expression. Indeed, the siRNA we used for this study 

were specifically designed against FDPS, so in this model the rest of IPP-FPP consuming 

enzymes would maintain their normal function. The residual FDPS activity that still 

remains in silenced cells would be still able to produce the FPP necessary to maintain a 

stable FPP pool in these cells to be used by these downstream enzymes. Previously, in 

the fatty acids model, we proposed DMAPP might take part in the accumulation of GPP 

by inhibiting the second reaction of FDPS. Of note, the accumulation of GPP did not take 

place after silencing of FDPS with specific siRNAs. If higher levels of IPP (and hence, 

of DMAPP) are also produced in this model (which could explain the lowering of Q9/Q10 

ratio), this would imply that high levels of DMAPP are not sufficient to produce the 

augmentation of GPP levels, but unsaturated fatty acids should have additional targets 
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that influence this phenomenon, for example, by affecting IDI or a GPP-consuming 

enzyme. In cells, IPP levels are higher than DMAPP levels; for instance, in MEFs the 

IPP:DMAPP proportion is approximately 750:100 pg/mg protein [214]. An increase in 

IPP levels would produce an increase of DMAPP to maintain the correct proportion 

within the cell. If IDI was upregulated by fatty acids, then the IPP:DMAPP ratio might 

change in favor of DMAPP. This increased availability of DMAPP might be the 

responsible of the inhibition of the second catalytic step of FDPS and, therefore, of the 

increase of GPP. Another possibility if that unsaturated fatty acid inhibit selectively an 

unidentified GPP-consuming enzyme.  

We also performed additional experiments by following a pharmacological approach to 

inhibit FDPS levels. Nitrogen containing bisphosphonates, such as ZOL, are known to 

inhibit FDPS, presumably in a specific way [157]. Thus, we selected ZOL to treat cells 

in order to study its effect on the Q system. However, this inhibition does not take place 

at the transcriptional level, as we previously described by PUFA and siRNAs, but it is 

due to a slow, tight binding process which results in the inactivation of FPDS activity. In 

this way, ZOL binds to the GPP/DMAPP site in FDPS, the enzyme undergoes a 

conformational change that results in the trapping of the molecule and then, IPP will 

stabilize the complex in such a way that the inhibition persists [87, 88]. However, FDPS 

is not the only target of these compounds. ZOL also inhibits, GGDPS [85, 91, 92] and 

SQS [93]. In this case, experiments were performed using Hepa 1.6 cells but also, Tkpts, 

a kidney-derived cell model. Although an activity assay to confirm the inhibition of FDPS 

was not carried out, the analysis of unprenylated levels of Rap1A allowed us to confirm 

the inhibition produced by ZOL on GGDPS in both cell lines. The effect of ZOL in the 

unprenylated form of Rap1A is dramatically higher in kidney-derived cells than in 

hepatocellular model. Cholesterol levels were also determined to study the effect of this 

compound on SQS. In this case, cholesterol levels were decreased in Tkpts but not in 

Hepa 1.6 cells. Together, these results suggest that Tkpts are more sensitive to ZOL than 

cells of other origins.  

Little is known about the effect that ZOL exerts on the Q system, apart from some studies 

that suggested a general decrease of Q levels [94, 96]. Thus, we studied the effect of ZOL 

on Q system in several cell lines, including two murine lines: Hepa 1.6 and Tkpts cells, 

as well as two human cell lines: HEK 293 and HeLa. Our results are in agreement with 
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the previous observations since a decrease in total Q levels was generally observed. 

Moreover, we should emphasize the general decrease observed in Q9/Q10 ratio, 

particularly in Tkpts cells where Q10 levels after a treatment with ZOL rose significantly 

over those of control cells. Additional experimentation indicated that the decrease in Q 

levels was caused by a decrease of the biosynthesis, being the inhibition in Q9 stronger 

than in Q10, especially in Tkpts. The preference of Q10 over Q9 in cells treated with ZOL, 

which led to a substantial decrease of the Q9/Q10 ratio, was previously described in 

treatments with fatty acids and siRNAs against FDPS. In this case, the explanation is 

based on similar concepts: the increase of IPP levels mediated by the inhibition of the 

FDPS would stimulate the production of Q10 over Q9. This increase of IPP has been 

confirmed in different mammalian cell lines after a treatment with ZOL [215, 216]. 

However, the general decrease of Q levels cannot be explained merely by the inhibition 

of FPDS nor the inhibition of GGDPS. Based on these results, we suggest that ZOL might 

have an additional target in the biosynthesis branch of Q of the mevalonate pathway, 

similarly to unsaturated fatty acids, despite their effects are totally opposite. Guo et al. 

described NBPs as inhibitors of hexaprenyl diphosphate synthase (from Sulfolobus 

solfataricus) and octaprenyl diphosphate synthase (from E. coli) [91]. Whether these 

long-chain prenyltransferases are potently inhibited by bisphosphonates, PDSS1-PDSS2 

becomes a strong candidate to be the additional target of ZOL that whose inhibition 

results a a decrease of Q levels in mouse and human cells.  

We additionally studied the effect of ZOL on the metabolites produced by FDPS. Results 

showed that while FPP levels were not affected by ZOL, GPP levels substantially 

increased in Hepa 1.6 and displayed an upward trend in Tkpts. In addition, we should 

indicate that basal levels of FPP were significantly higher in renal than in liver cells , 

indicating that the mevalonate pathway is regulated differentially in cells from different 

lines or tissues.  The increased levels of GPP caused by ZOL agrees with the previous 

studied published by Holstein et al. [146]. The fact that FPP levels were not increased by 

ZOL disagrees with previous results described by Tong et al. [215]. ZOL binds and 

remains the DMAPP/GPP site during FDPS inhibition impairing the binds of GPP to it 

active site and this might lead to an accumulation within the cell. This GPP pool could 

contribute to the cellular functions described for NBPs. Discrepancies in FPP levels could 

be explained on the basis of the use of different cell types, since previous studied used 

human cells whereas our studies were performed in mouse cell lines. Moreover, the 
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duration of the treatments, which also differs from 24 [215] to 48 hours in our 

experiments, could influence the response of the cells.  

 

3.2. Upstream inhibitors of the mevalonate pathway and their effect on Q system 

Other group of compounds, statins, are well known as inhibitors of the mevalonate 

pathway. Statins, which inhibit specifically HMG-CoA reductase, are widely used in 

clinical practices to lower cholesterol levels. Several examples of these products, such as 

rosuvastatin, atorvastatin, simvastatin, lovastatin, pravastatin and fluvastatin, are 

available in the clinic, with different efficiency in the inhibition of cholesterol levels 

[217]. Since the effects of statins in general, and lovastatin in particular, on Q metabolism 

are extensively described [60, 70, 77-81] we decided to study the effect of lovastatin in 

our cellular models in order to compare with our previous results. As expected, we 

observed a general decrease of total Q, Q9 and Q10 levels in Hepa 1.6 and Tkpts cells 

treated with lovastatin, with the only exception of Q10 in Tkpts which did not change. 

Lovastatin, as an upstream inhibitor of the mevalonate pathway, produced an effect on Q 

levels that differed from our previous treatments, which acted at the levels of FDPS. 

Moreover, lovastatin did not produce any change in the Q9/Q10 ratio. These results would 

indicate that an upstream inhibition of the mevalonate pathway, as that caused by 

lovastatin, has different effects of Q system comparing with a downstream inhibition, as 

that caused by ZOL, fatty acids or specific siRNA against FDPS. The inhibition of HMG-

CoA reductase produces a general decrease of Q without affecting the Q9/Q10 ratio, while 

inhibition of the mevalonate pathway at the FPDS step strongly affects Q9/Q10 ratio. The 

inhibition of HMG-CoA reductase would produce a general inhibition of all the 

downstream metabolites of the pathway, including IPP. The decrease of IPP would lead 

to lower levels of GPP, FPP and GGPP [146, 147] affecting downstream enzymes of the 

pathway. Lower levels of cholesterol indicated a decrease of SQS activity, while lower 

levels of Q would indicated a decrease of PDSS1-PDSS2 activity. However, it has to be 

noted that the decrease in Q levels occurred in both Tkpts and Hepa 1.6 cells, whereas the 

decrease of cholesterol was exclusively observed in the kidney-derived cell line, 

indicating that the effects produced by inhibitors of the mevalonate pathway on several 

branchs is cell-specific. Additional experiments, for instance aimed to measure directly 

SQS activity, will be necessary to uncover the mechanisms underlying this specificity.  
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In Chapter 1, we have described 4HB, the main ring precursor of Q, as a limiting step in 

the Q biosynthesis in kidney-derived cells. However, at high concentrations this 

compound has been reported to compete with the substrate mevalonate 5-pyrophosphate 

and so, to inhibit mevalonate pyrophosphate decarboxylase [105], the enzyme that 

catalyzes the decarboxylation of mevalonate pyrophosphate to isopentenyl 

pyrophosphate. Moreover, 4HB is known to decrease HMG-CoA reductase activity 

decreasing cholesterol levels in rat plasma [218], indicating the existence of a crosstalk 

between the pathways that originate the ring and the isoprenoid chain precursors of Q. 

Dose-response curves with 4HB were performed in different cell lines and the increased 

levels of Q allowed us to conclude that kidney cells, but not cells from other origins, have 

a low endogenous availability of Q ring precursors. Of note, in the hepatocellular model 

Q levels were increased by 4HB at low concentrations (nM) but this effect disappeared at 

elevated concentrations of 4HB, or this compound became even inhibitory. 4HB has been 

described to be present at saturating concentrations in liver, as determined by in vitro 

assays with liver tissue slices [174] and, so, a putative function as modulator of Q levels 

as ring precursor would not be expected. Nevertheless, the decrease of Q we observed at 

100 µM 4HB could be possibly due to its properties as mevalonate pathway inhibitor. 

Another difference between these cell lines to take into account is the different response 

in terms of the Q9/Q10 ratio: while Tkpts increased the ratio upon treatment with 4HB, this 

value was decreased in Hepa 1.6 cells, indicating the existence of a tissue-dependent 

regulation of Q biosynthesis also at this level. Furthermore, cholesterol levels measured 

after treatments with statins and 4HB decreased in Tkpts cells, but they did not display 

any change in Hepa 1.6, further supporting the fact that different braches of the 

mevalonate pathway are differently regulated in different cell types.  

 

3.3. Concluding remarks and perspectives 

In this chapter we have deepen into the regulation of the Q system using different 

inhibitors of the mevalonate pathway. Specific siRNA against FPDS showed that the 

specific inhibition of this enzyme is sufficient to alter upstream metabolites of the 

mevalonate pathway (especially IPP) increasing Q10 levels and decreasing the Q9/Q10 

ratio. However, the inhibition of this enzyme did not alter the levels of its products, GPP 

and FPP, which did not change even when the enzyme levels were very low. On the other 
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hand, NBPs, and concretely ZOL, are inhibitors of some enzymes in the mevalonate 

pathway: FDPS, SQS and GGDPS. Thus, cells treated with ZOL generally decrease Q 

biosynthesis and Q levels, but also decrease the Q9/Q10 ratio. The same upregulation of 

IPP seems to be the cause of the regulation of the Q9/Q10 ratio, whereas an additional 

target in the Q biosynthetic branch of the pathway should be necessary to explain the 

lower levels of Q since FPP levels did not decrease. Using lovastatin, an inhibitor of the 

HMG-CoA reductase, we have observed the different Q regulation of the mevalonate 

pathway when using an upstream inhibitor. Cells treated with lovastatin decrease Q but 

did not alter the ratio Q9/Q10. Further investigation is warranted to understand the 

mechanisms underlying the differential cell-specific effects of several inhibitors on the 

products of different branches of the mevalonate pathway as Q and cholesterol. This may 

be of great importance, since side-effects of some of these inhibitors, as statins, on Q 

system are proposed to be involved in several deleterious alterations associated with their 

long-term use. 
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1. Kaempferol strongly increases coenzyme Q levels in kidney cells by acting as a 

novel precursor of the benzoquinone ring, independently to its effect as 

upregulator of sirtuins. Other phenolics are much less active in our model. 

 

2. Limited availability of endogenous biosynthetic ring precursors of coenzyme Q is 

a feature of renal cells that determines enhanced sensitivity to supplementation 

with exogenous precursor substances, in comparison with cells of different 

origins. 

 

3. Farnesyl diphosphate synthase is identify as a key enzyme in the regulation of the 

Q9/Q10 ratio. Those interventions aimed to decrease its expression or inhibit its 

enzymatic activity produce a decrease in the Q9/Q10 ratio. 

 

4. The supplementation with monounsaturated fatty acids and polyunsaturated fatty 

acids exerts a differential action on the mevalonate pathway, particularly in the 

coenzyme Q biosynthesis branch. 

 

5. Polyunsaturated fatty acids are demonstrated as novel modulators that target 

coenzyme Q biosynthesis pathway by increasing the biosynthetic rate and 

decreasing the Q9/Q10 ratio. The alteration of the Q9/Q10 ratio can be explained on 

the basis of their role as inhibitors of the farnesyl diphosphate synthase expression 

whereas the increase of Q biosynthesis implied additional target(s) still to be 

identified.  

 

6. Zoledronic acid is identify by the first time as a drug that target the coenzyme Q 

biosynthesis by decreasing both, total coenzyme Q levels and the Q9/Q10 ratio. 

The alteration of the Q9/Q10 ratio can be explained by its action as a well-known 

enzymatic inhibitor of the farnesyl diphosphate synthase. The lack of a decrease 

of FPP levels implies the involvement of additional target(s) to explain the overall 

inhibition of coenzyme Q biosynthesis. 

 

7. Impairment of coenzyme Q biosynthesis pathway by zoledronic acid should be 

considered to understand the pharmacological and side effects produced in the 

administration of this nitrogen-containing bisphosphonate. 

 

8. The action of the different effectors that modify the coenzyme Q system through 

the mevalonate pathway is cell-specific. 
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1. El kaempferol incrementa los niveles de coenzima Q en células de riñón actuando 

como un nuevo precursor del anillo benzoquinónico, independientemente de su 

afecto como activador de sirtuinas. Otros compuestos fenólicos son mucho menos 

activos en nuestro modelo. 
 

2. La limitada disponibilidad de precursores endógenos de anillo del coenzima Q es 

una característica típica de células renales que potencia su sensibilidad a la 

suplementación con precursores exógenos, en comparación con la de células de 

diferentes orígenes. 
 

3. La farnesil difosfato sintasa se identifica como una enzima clave en la regulación 

del ratio Q9/Q10. Las intervenciones enfocadas a disminuir sus niveles o su 

actividad producen un descenso del Q9/Q10. 
 

4. La suplementación con ácidos grasos mono y poliinsaturados produce una 

regulación diferencial sobre la ruta del mevalonato, particularmente en la rama de 

la biosíntesis de coenzima Q.  
 

5. Los ácidos grasos poliinsaturados actúan como moduladores de la ruta de 

biosíntesis de coenzima Q incrementando su tasa biosintética y disminuyendo el 

ratio Q9/Q10. La alteración del ratio Q9/Q10 se explica debido a su papel como 

inhibidores de la expression de la farnesil difosfatos sintasa mientras que el 

incremento de la biosíntesis implica dianas adicionales aún por identificar.  
 

6. El ácido zoledrónico ha sido identificado por primera vez como una droga que 

afecta de forma específica la biosíntesis de coenzima Q disminuyendo sus niveles 

totales así como el ratio Q9/Q10. La alteración del ratio Q9/Q10 se explica en base 

a su bien conocida acción inhibidora sobre la actividad de la farnesil difosfato 

sintasa. La ausencia de un descenso de los niveles de FPP implica la acción de 

dianas adicionales para explicar la inhibición observada sobre la biosíntesis de 

coenzima Q.  
 

7. La disfunción de la ruta de biosíntesis de coenzima Q mediada por ácido 

zoledrónico debe ser considerada para comprender los efectos farmacológicos y 

colaterales de la administración este bisfosfonato.  
 

8. La acción de los diferentes efectores que modifican el sistema de coenzima Q a 

través de la ruta del mevalonato es específica de cada tipo celular.  
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Product Brand 

(U-14C)-tyrosine  Amersham 

13C-kaempferol Iso-life 

13C-vanillin Cambridge Isotopes 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide 
Sigma Aldrich 

4-hydroxybenzoic acid Sigma Aldrich 

4-hydroxyphenolacetic acid Sigma Aldrich 

Antipain Sigma Aldrich 

Apigenin Santa Cruz Biotechnology 

Bradford reagent Bio-Rad 

Butylated hydroxytoluene Sigma Aldrich 

Cell Dissociation Solution (non-enzymatic) Sigma Aldrich 

Cholesterol Sigma Aldrich 

Chymostatin Sigma Aldrich 

ClinOleic 20% Baxter (Spain) 

Coenzyme Q10 Sigma Aldrich 

Coenzyme Q4 Sigma Aldrich 

Coenzyme Q6 Sigma Aldrich 

Coenzyme Q9 Sigma Aldrich 

Curcumin Santa Cruz Biotechnology 

D3-ferulic acid Syninnova 

D6-curcumin Syninnova 

Dansyl labeled peptide GCVLS  BioNova científica, s.l. 

Fdps Trilencer-27 Mouse siRNA Origene 

Ferulic acid Santa Cruz Biotechnology 

Fetal bovine serum Sigma Aldrich 

Gentamicin Thermo Fisher Scientific 

Hanks’ Balanced Salt Solution Sigma Aldrich 

Kaempferol Santa Cruz Biotechnology 

Leupeptin Sigma Aldrich 

L-glutamine Sigma Aldrich 

Lipofectamine® 2000 Thermo Fisher Scientific 

Lipofundin MTC/LCT 20% B. Braun Melsungen AG, Germany  

Lipoplus 20% B. Braun Melsungen AG, Germany  

Luteolin Santa Cruz Biotechnology 

Naringenin Santa Cruz Biotechnology 

Nicotinamide Sigma Aldrich 

Nicotinamide Sigma Aldrich 

Opti-MEM Thermo Fisher Scientific 

p-aminobenzoic acid  Sigma Aldrich 

p-cresol Sigma Aldrich 

Pepstatin Sigma Aldrich 
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Piceatannol Santa Cruz Biotechnology 

Phenylmethylsulfonyl fluoride Sigma Aldrich 

Quercetin Santa Cruz Biotechnology 

Resveratrol Santa Cruz Biotechnology 

Trolox Sigma Aldrich 

Vanillin Sigma Aldrich 

Zoledronic acid Santa Cruz Biotechnology 

γ-globulin  Sigma Aldrich 
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