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Abstract: The application to agriculture of wheat-straw spent mushroom substrate amendments
(compost/vermicompost) used to grow Pleurotus ostreatus has been analyzed. The study was con-
ducted in a vineyard where the effect on (1) the physicochemical properties of the soil and the leaf
and (2) the analytical characteristics and the aromatic composition of the wine were analyzed. The
application of the amendments resulted in an increase in organic matter and macronutrients (NO3

−,
P2O5 and K2O) in the soil. With regard to the leaves, the NO3

− and K2O contents of those vines
fertilized with vermicompost were higher, and the metallic content was the same regardless of the
treatment applied. The analysis of the colorimetric parameters showed that there was a higher
content of compounds with red and violet colorations in the case of wine obtained after treatment
with vermicompost. In addition, for this type of wine, a higher concentration of volatile compounds
was obtained. Thus, after grouping the aroma compounds into aroma series, the greatest differences
among vermicompost wines and the rest were obtained in the fruit, floral, herbaceous, and green
fruit series. The principal component analysis showed that the vermicompost treatment clearly
differentiated the wine from the rest of the wines, in addition to its effects on the aromatic series, the
values in the total polyphenol index, and the compounds responsible for brown tones.

Keywords: compost; vermicompost; wine; aroma compounds; volatilome; aroma series

1. Introduction

At present, winegrowing soils cover a surface of approximately 7.3 × 106 hectares
across the world, mainly concentrated amongst the Mediterranean regions (Spain, France,
Italy, Turkey) and China, the USA, Argentina, and Chile [1]. In most of these wine-growing
areas, agriculture is intensive, which implies a significant environmental impact and,
consequently, an important loss of fertility in the soils [2].

In recent years, sustainable agricultural practices in accordance with circular bioe-
conomy, based on the organic and biodynamic management of the vineyards, have been
fostered in order to (1) minimize the adverse effects caused by intensive agriculture and
heavy machinery and (2) reduce dependence upon chemical fertilizers and upon plague
and disease control techniques relying on components of synthesis [3–6]. In this perspec-
tive, the application of compost and vermicompost in agriculture can be a sustainable
alternative for vineyards, considering their impact on viral and bacterial communities as
well as the organic matter and nutrients they provide, such as nitrogen, phosphorous, and
potassium [7–10].

In the literature, we find numerous studies analyzing the impact of the application
of organic amendments. However, these present dissimilar results, depending on the
agricultural practices and the origin, composition, and dose of the compost/vermicompost
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applied to the vineyard. Evans et al., in 2013 [11], analyzed the application of compost
tea made from cattle manure, hen droppings, vegetable waste, and salmon fish farming
waste, and confirmed that their use can be regarded as a strategy for the comprehensive
management of grapevine illnesses. Döring et al., in 2015 [12], compared the conventional
comprehensive management (compost + chemical fertilizers + herbicides + fungicides)
with organic management (compost) and biodynamic (natural treatments + copper +
sulfur) management and observed that these sustainable amendments, despite not having
an adverse impact on the quality of the wine, reduced the growth and the yield of the
grapevine. The study of Gaiotti et al., in 2017 [13], demonstrated that the addition of cattle
manure compost and compost from waste from pruning grapevines has a positive impact
on the growth of the roots of the grapevine and on its vegetative growth and improves
the yield and the composition of the grape. Martínez et al., in 2018 [14], stated that the
application of compost and vermicompost from hen droppings and sawdust enhanced the
assimilation of nutrients and the yield of the grapevine.

In view of this data, it is clear the application of organic amendments (compost/
vermicompost) needs to be further studied, and particularly the impact of these amend-
ments on the analytical and sensory quality of the wines. This is a field that is still practically
unexplored but for a few studies, namely Korboulewky et al., who, in 2004 [15], analyzed
the impact of the application of sewage sludge on the concentration of 13 volatile organic
compounds of the wine, and González et al., who, in 2018 [16], studied the effects of the
application of grape pomace compost on Vitis vinifera cv. Chelva grapevines, analyzing the
concentration of 81 volatile compounds of the wine.

The present study analyzed the application of two amendments to agriculture, com-
post and vermicompost, obtained from the treatment of lignocellulosic waste (wheat-straw
spent mushroom substrate) from the cultivation of Pleurotus ostreatus. In fact, although there
are studies on co-composting [17] and co-vermicomposting [18] with this type of waste,
there is no literature delving into their individual treatment to obtain organic amendments
with a potential use in agriculture. In particular, these amendments were applied to a
vineyard in order to analyze the nutritional state of the soil and the levels of heavy metals
in it, as well as the effects of the amendments on the aromatic components of the wine.

2. Materials and Methods
2.1. Vineyard, Climate, Soil and Leaf

The vineyard is located in Puente Genil, Córdoba Spain (37◦24′51′ ′ N, −4◦42′0′ ′ W) in
southwestern Spain, in a calcarean soil. In this area, the annual average rainfall is 580 mm,
and the average temperature is 16.2 ◦C. The grape variety used was Vitis vinifera cv. Syrah.

Representative samples of soil and leaves were taken for each replica of the treat-
ment. The samples of the soil were obtained from different points at a depth from 0 to
0.30 m [13,19], and the samples of leaves following the method proposed by Failla et al.,
1993 [20].

2.2. Composting and Vermicomposting

Two treatments, composting and vermicomposting, were applied to the wheat straw
waste used as a substrate in the cultivation of Pleuratus ostreatus at Huertos de Hytasal S.L.
(Seville, Spain). Both processes were performed over a period of 120 days in a covered
plant to avoid the impact of climatological conditions.

The composting was carried out following the open trapezoidal pile system (2.0 m
height, 2.5 m width and 6 m length), using a pile that was irrigated and mechanically
turned at five specific moments during the process. With these working conditions, the four
phases that characterize this type of process were completed (mesophilic, thermophilic,
cooling, and maturation phases), and the temperature (never above 65 ◦C) and the moisture
content (never less than 40%) were controlled.

Regarding vermicomposting, this was performed through the addition of 3500 worms
of the Eisenia fetida species at the bed (0.40 m height, 1.5 m width, 4.0 m length), which
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was irrigated weekly, thus preserving the temperature at <25 ◦C and hence avoiding
jeopardizing the development of the worms.

Once the bioprocesses were completed, the products were mechanically sieved with
a rotary sieve of a 1 cm mesh. From the total mass following each sifting, representative
samples of compost and vermicompost were built, from subsamples taken from different
points and at different depths (center > 0.50 m; intermediate, 0.25–0.40 m; and superficial,
0–0.15 m).

2.3. Treatments in Experimental Plots

The fertilizer was applied at the end of the month of February, before the sprouting
period. Nine plots were required for the different treatments: three unfertilized (Control),
three with compost (T1), and three with vermicompost (T2). The application of the different
amendments was estimated to provide a total of 50 kg of nitrogen per hectare of soil, in
this manner respecting the established limit for areas vulnerable to nitrate pollution of
agricultural origin (170 kgN/ha), according to Directive CEE/676/91 [21]. The organic
amendments were added to the strip of land at a distance of between 0.20–0.50 m with
respect to the stem and at a depth of 0–0.30 m, complying with the regulation for sustainable
nutrition in agricultural soils (Spanish RD 1051/2022) [22]. The end of the study was
considered as the time of harvest (last days of August).

2.4. Physicochemical Characterization of Organic Amendments, Soil, and Leaf

The solid samples were dried at 60 ◦C to a constant weight and then crushed with
a blade mill (ORTO-ALRESA) and stored at −20 ◦C until subsequent analysis. The pH
and electrical conductivity (EC) were measured in the aqueous extract (1:25 ratio). The
solution and solid phase were then separated via centrifugation at 3000 rpm for 20 min
and filtered through a 0.45 µm membrane. The pH and EC values were measured with
a pH meter and conductivity meter, respectively. The organic matter content was mea-
sured by loss on ignition with samples oven dried for 4 h at 550 ◦C. The total content
of carbon and nitrogen were determined with a LECO CHNS-932 Elemental Analyzer
(Leco Corporation, St. Joseph, MI, USA). The quantity of phosphorus was quantified with
UV–visible spectrophotometry as per the Olsen method. The content of nitrogen (NO3

−)
and the granulometric analysis were performed following the methods specified by official
regulations (Spanish RD 999/2017, RD 1110/1991) [23,24].

The evolution of the maturity of the material was evaluated on dry samples taken at the
beginning and at the end of each process, finely ground in Agate mortar, and placed on the
sample compartment of a Spectrum TWO-FTIR-ATR (Perkin Elmer, Waltham, MA, USA) at
a working range of 4000–400 cm−1. The methodology of Zucconi et al., 1981 [25] was used
to evaluate the phytotoxicity. The germination index (GI) was determined by combining
the measurements of seed germination and root elongation of cress seeds (Lepidium sativum
L.) (Figure 1).

Lastly, the analysis of K, Cr, Cu, Ni, Pb, and Zn was performed with the absorption
technique with a flame atomic absorption spectrometer (A Analyst 300, Pelkin Elmer,
Waltham, MA, USA) following the acid digestion of the dry samples, as per the method
described by Rosal, 2007 [26].
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2.5. Chemical Standards

The identification and quantification of aroma compounds were carried out with
standard solutions of pure compounds of analytical grade, purchased from Sigma-Aldrich
(St. Louis, MO, USA), Merck (Rahway, NJ, USA), and Fluka (Buchs, Switzerland). Pure
water was obtained from a Milli-Q purification system (Millipore, Burlington, MA, USA).

2.6. Winemaking Conditions

Nine batches of five kilograms of red grapes of the Syrah variety were hand crushed
and the resulting must and grape skin were placed in five-liter Erlenmeyer flask. The first
three batches contained grapes from vines treated with compost. The second three batches
contained grapes from vines treated with vermicompost. The last three batches contained
grapes from untreated vines.

Each batch was inoculated with the commercial yeast strain Uvaferm VN from Lalle-
mand (Grenaa, Denmark) according to the instructions of the supplier. Fermentation was
performed at 18 ◦C and was considered complete when the density was below 995 g
per liter.

2.7. Determination of Oenological Parameters

Oenological parameters such as pH, titratable acidity, volatile acidity, ethanol, and
residual sugar content were determined according to the official EEC methods [27]. Three
biological replicates were used to undertake the analysis.

We measured the total phenol index (TPI) as a spectrophotometric measurement at
280 nm. The absorbance at 420, 520, and 620 nm were also determined in a Perkin-Elmer
Lambda 25 spectrophotometer (Waltham, MA, USA) after filtering the samples through a
HA-0.45 µm paper (Millipore, Milford, MA, USA).

2.8. Volatile Compounds Determination

Volatile compounds in must and wines can be classified according to their contents of
major volatile compounds (≥10 mg/L) and minor volatile compounds (<10 mg/L). Three
biological replicates were used to undertake the analysis.
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2.8.1. Major Volatile Compounds

These were identified and quantified in a gas HP 6890 Series II chromatograph
equipped with the capillary column CP-WAX 57 CB (50 m in length, 0.25 mm in internal
diameter and 0.4 µm in coating thickness) and an FID, according to the conditions described
by Peinado et al., 2004 [28]. To identify and quantify the analyzed compounds, standards
were injected under the same conditions as the samples. Additional information about LRI
used to identify volatile compounds is detailed in Table S1.

2.8.2. Minor Volatile Compounds

These compounds were identified and quantified in a two-step process, both described
previously in detail by López de Lerma et al., 2018 [29]. The first one consists of an extraction
procedure using stir bars (film thickness 0.5 mm, 10 mm length, Gerstel GmbH, Mülheim
an der Ruhr, Germany). These are placed in a vial containing 10 mL of 1:10 diluted sample
and 0.1 mL of ethyl nonanoate (0.4464 mg/L) as an internal standard. After 100 min
of stirring at 1500 rpm, the stir bars were removed and put into a desorption tube for
chromatographic analysis.

The second phase consists of the determination of the volatile compounds in a GC-MS
equipped with a Gerstel TDS 2 thermal desorption system. Desorption tubes, containing
the stir bars, are heated at 280 ◦C with the aim of releasing the volatile compounds in a CIS 4
PTV cooling system programmed at 25 ◦C, which contains a Tenax adsorption tube. Lastly,
the CIS is heated to release the volatiles in the GC-MS equipped with an Agilent-19091S
capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness). The mass detector works
in scan mode at 1850 V and checks the mass from 39 to 300 amu.

To identify the volatile compounds, the retention times of standards injected under
the same chromatographic conditions as the samples were used. Also, the NIST and Wiley
spectral libraries were used. Quantification was made using calibration curves of the
standard. Additional information about the LRI used to identify volatile compounds is
detailed in Table S1.

2.9. Calculation of Aroma Series

The odor activity values (OAV) of the volatile compounds were determined as per
the ratio between concentration and the odor perception threshold. Aromatic series were
obtained as the sum of the OAVs of the volatile compounds with similar aroma descriptors.
In this way, 10 aroma series, namely chemistry, fruity, green fruit, creamy, caramel, floral,
green, citrus, fatty, and waxy, were obtained. The same compound can be included in one
or several aroma series based on its aromatic descriptors.

2.10. Statistical Analysis

Except for FT-IR, the analyses were carried out in triplicate. The statistical study of
the significant differences between the average of the physicochemical parameters of the
soil and the leaf was conducted with the Student t-test for independent samples with the
software package IBM SPSS Statistics 25.

ANOVA analysis was carried out to test the differences among the physicochemical
parameters analyzed in the organic amendment, the soil, and the leaf. In addition, homo-
geneous group analyses were carried out to analyze the differences in wine compositions
resulting from the different treatments. A footprint of the wines was obtained with multi-
variate analysis using the aroma series. Lastly, the aroma series were used to perform a
cluster and principal component analysis. To this end, the statistical software Statgraphics
Centurion XVI of StatPoint Technologies Inc. (Warrenton, VA, USA) was used.

3. Results and Discussion
3.1. Temperature in Composting and Vermicomposting Processes

The evolution of temperature during composting is one of the main parameters
characterizing the quality of the process, since it is correlated with the degradation of the
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organic matter and the generation of microbiota. Figure 2 shows the evolution of internal
and ambient temperatures throughout the treatment of the waste.
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The increase in the internal temperature is observed from the first day of the compost-
ing process, reaching thermophilic values from day 14. During the most intense bioxidative
phase, temperatures were above 55 ◦C for more than 14 days, which favors sanitation
according to Regulation (UE) 1009/2019 [30]. After the fourth week of composting, temper-
ature decreased, remaining within levels above 45 ◦C until day 70. These results are similar
to those obtained by other authors who used spent fungi substrate for co-composting
processes [31].

With regard to vermicomposting, internal temperatures at the base oscillated between
17 ◦C and 24 ◦C during the process (Figure 2), thus not having an adverse impact on the
evolution of the Eisenia fetida species [32,33].

3.2. Physicochemical Characterization of Compost and Vermicompost

Table 1 shows the physicochemical properties of the organic amendments applied
to the experimental plots. The increase in pH and the decrease in the C/N ratio during
the treatment of the waste can be used as indicators of the evolution of its maturity [34].
In this regard, when comparing both parameters in the amendments studied, at the final
stage, results show evidence of the greater maturity of vermicompost. In any case, both
amendments present optimal levels for their use in agriculture as per the parameters found
in the literature. Hogg et al., 2002 [35], explain that pH values between 6.0–8.5 in the
amendments are appropriate for agricultural use, and Bernal et al., 2009 [36], suggest that
C/N ratio values < 20 indicate maturity.



Appl. Sci. 2023, 13, 8001 7 of 19

Table 1. Physicochemical characteristics of the compost and vermicompost used.

Property Compost Vermicompost

pH 6.8 ± 0.1 7.84 ± 0.02
EC (dS·m−1) 4.0 ± 0.5 1.90 ± 0.02

OM (%) 64 ± 2 60.6 ± 0.4
N (%) 2.1 ± 0.4 2.2 ± 0.3
P (%) 0.30 ± 0.01 0.20 ± 0.01
K (%) 2.6 ± 0.4 3.8 ± 0.2
C/N 13.4 12.9

GI (%) 74.8 84.3
Cr (mg/kg) 26.7 ± 0.6 24.7 ± 0.5
Cu (mg/kg) 6.1 ± 0.1 10.5 ± 0.3
Ni (mg/kg) 11.9 ± 0.5 12.3 ± 0.5
Pb (mg/kg) 16.3 ± 0.6 15.5 ± 0.4
Zn (mg/kg) 34 ± 5 27 ± 2

Granulometry (mm) 15.0 * 15.0 *
EC: electrical conductivity; OM: organic matter; GI: germination index. Data expressed in dry weight basis. * >90%
particles passed through a 15 mm sieve.

With regard to electrical conductivity, the final amendment must present values < 4 dS/m
for safe use in agriculture [37,38]. The mean value of compost was remarkably higher
than that of vermicompost. This may be due to the different conditions of humidity of
each process, which, in the case of vermicomposting, may have caused a leaching effect
(saline lixiviation), given the higher frequency of irrigation. Both electrical conductivity
values were similar to, and even lower than in some instances, the ones revealed by other
studies for amendments (compost/vermicompost) from urban wastes [39,40], livestock
wastes (hen droppings/manure) [34,41], and even agricultural wastes such as olive tree
pruning byproduct [42]. The macronutrient (NPK) concentrations were higher or similar to
those found by other authors in studies of composting and vermicomposting using urban
wastes [43], vegetable wastes [44], and agro-industrial wastes [31]. Phytotoxicity is a very
useful decisive criterion for assessing whether organic materials are appropriate for agricul-
tural use. Both amendments presented percentages above the minimum value (GI < 50%)
established by Zucconi et al., 1981 [25], to indicate the absence of phytotoxicity.

In both the compost and the vermicompost, the values observed in organic matter
(>35%), C/N ratio (<20), and granulometry (<25 mm) were within the limits established
by the legislation for agricultural applications and, as per the heavy metals, the total
concentrations were under the limits established for the maximum quality category, Class
A, pursuant Spanish RD 506/2013 [45].

Finally, the graph in Figure 3 shows the FT-IR spectra of the initial lignocellulosic
waste and of the products obtained in each of the processes. As the composting and
vermicomposting processes evolve, the matter is transformed due to biodegradation and to
polymerization reactions, hence increasing the concentration of organic humic substances.
FT-IR can be used to assess the stabilization of organic matter and the quality of the final
product [46].
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Figure 3. Fourier transform infrared (FT-IR) spectra to initial matter, compost and vermicompost.

FTIR was applied to reveal how the functional groups changed, comparing the bands
in the initial substrate to the ones identified in the organic amendments. In this study, a
broad band of 3400 cm−1 was observed, corresponding to –NH inter and intramolecular
bonds and –OH elongations of carboxylic, phenolic, or alcoholic nature and whose intensity
significantly decreased in the compost and the vermicompost. At approximately 2930 cm−1,
C–H stretching vibrations appear, characteristic of saturated carbons pertaining to aliphatic
chains, which progressively decrease when the maturation of the material progresses.
At 1620, 1509, and 1416 cm−1, C=C stretching vibrations contribute characteristics of
unsaturated carbons of aromatic structures and C=O vibrations of conjugated quinones and
ketones. The broad band appearing at 1094 cm−1 corresponds to C–O vibrations of esters,
significantly present as the process evolves and, in this case, more intense in vermicompost.
With regard to the band appearing at 1035 cm−1, it corresponds to C–O vibrations associated
with structures of polysaccharide remnants, whose intensity significantly decreases in the
spectra of the product, probably due to the degradation of the carbohydrates as the process
evolves. The bands in the areas between 450 and 800 cm−1 correspond to C–H vibrations of
substituted aromatic rings, which appear at the final stages of the processes and are related
to the humic transformation of the material. Evidently, the FT-IR spectra shows an increase
in the intensity of the bands related to the aromatic groups in the products compared to
the control, especially in the case of vermicompost. Interpretations of the IR spectra are
based on work found in the literature [47–52] and are consistent with the analysis that
compared pH and C/N ratio in compost (6.8, 12.4) and vermicompost (7.8, 10.9), whose
values indicated greater maturity in the material that underwent vermicomposting.
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3.3. Physicochemical Characterization of Soil and Leaf

Table 2 shows the results obtained in the analysis of the soils treated with organic
amendments and of the soil without treatment (control) at the end of the experiment.
In the cases studied, pH mean values were determined at 8.10–8.35, which reduce the
availability of nutrients for the plant to absorb [53,54], and mean conductivity values at
0.17–0.80 dS·m−1, levels remarkably under the threshold of salinity (1.50 dS·m−1) referred
to in literature for the cultivation of grapevines [55]. It is observed that the treatments with
these kinds of organic amendments remarkably increased the presence of organic matter
and macronutrients (NO3

−, P2O5, K2O) in the soils at the end of the experiment. As per
heavy metals, the treatments with the amendments increased the total concentration (Cr, Cu,
Ni, Pb) in the soil, although the levels reached (7.7–36.1 mg·kg−1) were significantly under the
maximum content allowed in agricultural soils with pH ≥ 7 (70.0 mg·kg−1–200 mg·kg−1), as
per Spanish legislation (RD 1051/2022) [22].

Table 2. Soil properties at the end of the experiment.

Property
Treatment

F Test Sig.
Control Compost Vermicompost

pH 8.32 a ± 0.04 8.10 b ± 0.01 8.10 b ± 0.05 **
EC (dS·m−1) 0.170 b ± 0.002 0.80 a ± 0.02 0.74 a ± 0.01 ***

OM (%) 1.86 c ± 0.04 2.0 b ± 0.2 2.7 a ± 0.1 *
NO3

− (%) 0.027 b ± 0.001 0.161 a ± 0.005 0.17 a ± 0.02 *
P2O5 (%) 0.09 b ± 0.01 0.30 a ± 0.02 0.30 a ± 0.01 *
K2O (%) 0.005 c ± 0.001 0.119 b ± 0.007 0.181 a ± 0.007 *

Cr (mg/kg) 2.2 c ± 0.2 11.5 a ± 0.3 7.7 b ± 0.1 **
Cu (mg/kg) 2.3 c ± 0.1 17.0 b ± 0.8 22 a ± 1 *
Ni (mg/kg) 6.1 c ± 0.4 26 b ± 1 36 a ± 2 **
Pb (mg/kg) 11.6 c ± 0.3 33.1 a ± 0.9 20 b ± 1 *
Zn (mg/kg) <LOQ(20) <LOQ(20) <LOQ(20) -

Data expressed in dry weight basis. EC: electrical conductivity; OM: organic matter; LOQ: limit of quantification.
Different letters indicate significant differences (* p < 0.05, ** p < 0.01, *** p < 0.001), ns = non-significant. (–) No
test was performed.

With regard to the analysis of the leaves of the grapevine, Table 3 shows the results ob-
tained at the end of the experiment. The physicochemical analysis performed on the leaves
showed that the contents of NO3

- and K2O were significantly higher with vermicompost
compared to the control and compost treatments. These results provide evidence of the
relation of the availability of the nutrients in the soil with the application of vermicompost
and the variation of the nutritional conditions of the plant, and are consistent with the
conclusions of other studies [56].

Table 3. Leaf properties at the end of the experiment.

Property
Treatment

F Test Sig.
Control Compost Vermicompost

OM (%) 77 ± 2 75 ± 6 79 ± 4 ns
NO3

− (%) 1.49 b ± 0.17 1.13 c ± 0.07 2.2 a ± 0.2 *
P2O5 (%) 0.38 ± 0.03 0.45 ± 0.01 0.45 ± 0.01 ns
K2O (%) 0.374 c ± 0.009 0.401 b ± 0.005 0.436 a ± 0.014 *

Cr (mg/kg) 1.2 ± 0.1 1.49 ± 0.02 1.74 ± 0.03 ns
Cu (mg/kg) 13.7 a ± 0.3 10.8 b ± 1 12.6 b ± 0.7 *
Ni (mg/kg) 3.0 ± 0.1 2.3 ± 0.1 2.91 ± 0.04 ns
Pb (mg/kg) 3.0 ± 0.1 2.7 ± 0.1 2.4 ± 0.2 ns
Zn (mg/kg) <LOQ (20) <LOQ (20) 26 ± 2 -

Data expressed in dry weight basis. OM: organic matter; LOQ: limit of quantification. Different letters indicate
significant differences (* p < 0.05), ns = non-significant. (–) No test was performed.
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Regarding the content of organic matter and assimilable phosphorous, no significant
differences were found between the treatments. And, as per the content of heavy metals,
results showed that the application of these types of amendments to the soil, despite the
slight increase in the total concentration of metals in the soil treated compared to the control,
caused no increase in the content of metals in the leaves. These results can be explained
based on two phenomena that reduce the mobility of the metals and, therefore, their
availability for the plant. On the one hand, the formation of insoluble metal chelates with
the humic fraction present in the organic amendment [57,58] and, on the other hand, the
capacity of the worms to reduce the bioavailability of the heavy metals [59,60]. These results
are similar to the ones provided by the studies of other authors on organic amendments
with different origins that were also applied to vineyards [61,62].

3.4. Enological Parameters

The climatic conditions of the year were characterized by long episodes of extreme heat
in the winemaking region in which the research was carried out. High temperatures, above
40 ◦C, caused a sharp decline in photosynthesis due to the disruption of the functional
integrity of the photosynthetic machinery in the chloroplasts [63]. As a consequence of the
decrease in photosynthesis, fruit ripening was suppressed. In addition, high temperatures
shift carbon partitioning to favor vegetative growth at the expense of fruit growth and
ripening [64,65]. Due to this, low levels of ethanol, around 13% (v/v), were obtained in
all wines. On the other hand, high temperatures involve a high malic acid degradation,
which affects pH values (Table 4). As can be seen, no significant differences are observed in
common enological variables except for those related to color parameters. Vermicompost
wines were those with the highest total polyphenol index and showed more red and blue
pigments than the rest of the wines.

Table 4. Enological variables and color parameters in the wine obtained after different vine treatments.

Property
Treatment

Control Compost Vermicompost

pH 4.03 a ± 0.04 3.95 a ± 0.06 4.04 a ± 0.05
Titratable acidity (g tartaric acid/L) 5.3 a ± 0.1 5.5 a ± 0.1 5.5 a ± 0.1

Volatile acidity (g acetic acid/L) 0.51 a ± 0.02 0.50 a ± 0.03 0.52 a ± 0.02
Ethanol % (v/v) 13.2 a ± 0.2 13.3 a ± 0.2 13.1 a ± 0.2

Reducing sugars (g/L) 2.2 a ± 0.3 2.4 a ± 0.4 2.6 a ± 0.3
TPI 49 b ± 2 49 b ± 1 60 a ± 1

Absorbance 420 nm 6.2 a ± 0.1 5.2 b ± 0.1 3.4 c ± 0.2
Absorbance 520 nm 19.2 c ± 0.1 23.8 b ± 0.2 25.8 a ± 0.1
Absorbance 620 nm 1.18 c ± 0.08 1.95 b ± 0.06 3.48 a ± 0.07

TPI: total polyphenol index; different letters indicate significant differences at 95% confidence level.

3.5. Effects of the Organic Amendment in the Wine Volatile Composition

Table 5 lists the volatile aroma compounds determined in the wines. Among them, the
concentration of 2,3-butanediol and isoamyl alcohols stand out. Other compounds with
amounts above the mg/L are isobutanol, 2-phenylethanol, ethyl acetate, diethyl succinate,
γ-butyrolactone, and γ-crotonolactone.

Alcohols are related to nitrogen metabolism by yeast. Usually, high levels of these
compounds indicate a low content of available nitrogen [66]. Only 2-phenyethanol shows
significant differences between the treatments, with the highest value being that of the
control sample of the wine. However, a high concentration of a volatile compound does
not always imply a greater impact on the wine aroma. In this regard, the odor threshold
and the odor activity value (OAV) must be considered.
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Table 5. Concentration (µg/L, except where indicated), odor perception threshold (OPT) and aroma
series (AS) assigned to the volatile aroma compounds determined in wines obtained after different
vine treatments.

Volatile Aroma
Treatment

OPT AS
Control Compost Vermicompost

ALCOHOLS

Isobutanol (mg/L) 17 a ± 1 17 a ± 1 18 a ± 1 40 1
Isoamyl alcohols (mg/L) 253 a ± 13 235 a ± 22 255 a ± 21 30 1

2,3-butanediol (mg/L) 423 a ± 27 281 b ± 11 239 c ± 21 668 4
Furfuryl alcohol 985 a ± 64 1035 a ± 66 1073 a ± 96 8000 5

Hexanol-1 718 b ± 33 514 c ± 31 881 a ± 58 8000 6
2-ethyl-1-hexanol 731 a ± 35 241 c ± 23 330 b ± 24 8000 7, 8

2-phenylethanol (mg/L) 39 a ± 1 24 c ± 2 33 b ± 3 10 9
Guaiacol 84 ab ± 6 88 a ± 8 71 b ± 6 75 1, 5

4-vinylphenol 273 b ± 22 397 a ± 28 249 b ± 22 180 1

ACETATES

Methyl acetate 26 a ± 2 22 ab ± 1 21 b ± 2 470 1
Ethyl acetate (mg/L) 30 a ± 3 17 b ± 2 32 a ± 3 7.5 1

Isoamyl acetate 91 b ± 4 58 c ± 2 102 a ± 4 30 2
β-Phenylethyl acetate 329 b ± 7 284 c ± 22 503 a ± 28 250 5, 9

ETHYL ESTERS

Ethyl propanoate 54 a ± 5 43 b ± 4 43 b ± 4 10 2
Ethyl butanoate 443 a ± 10 412 a ± 31 397 a ± 26 20 2

Ethyl 3-methylbutanoate 3.8 a ± 0.1 4.0 a ± 0.2 4.0 a ± 0.3 3 2, 3
Ethyl hexanoate 113 b ± 10 127 ab ± 12 143 a ± 11 14 2, 3

Ethyl 4-hydroxybutanoate 24 a ± 1 19 b ± 1 18 b ± 1 1000 5
Ethyl octanoate 229 a ± 10 222 a ± 15 348 b ± 12 5 2, 10
Ethyl decanoate 199 a ± 5 76 c ± 1 140 b ± 2 200 2, 10

Ethyl dodecanoate 24.7 a ± 0.4 4.6 c ± 0.2 7.6 b ± 0.3 500 10
Ethyl tetradecanoate 4.7 a ± 0.1 2.7 b ± 0.1 2.9 b ± 0.1 4000 10
Ethyl hexadecanoate 23 a ± 3 16 b ± 1 19 b ± 1 2000 10

Diethyl succinate (mg/L) 11 b ± 1 11 b ± 1 17 a ± 1 200 2
Ethyl vainillate 91 a ± 7 102 a ± 7 90 a ± 5 990 1, 4

LACTONES

γ-butyrolactone (mg/L) 12.3 a ± 0.6 10.2 b ± 0.3 11.0 b ± 0.8 35 4
γ-crotonolactone (mg/L) 35.3 a ± 0.3 31 a ± 1 32 a ± 3 35 4

γ-nonalactone 22 b ± 1 38 a ± 3 21 b ± 2 30 2, 4

ALDEHYDES

Heptanal 1.2 b ± 0.1 2.6 a ± 0.2 2.5 a ± 0.2 3 6
Octanal 0.86 b ± 0.08 2.5 a ± 0.2 2.5 a ± 0.2 2.5 7
Nonanal 1.3 c ± 0.1 3.1 a ± 0.2 2.7 b ± 0.2 2.5 7
Decanal 0.9 b ± 0.1 2.0 a ± 0.1 2.0 a ± 0.1 1.25 7, 10

Benzaldehyde 21 b ± 2 38 a ± 3 41 a ± 3 350 2
Furfural 1088 a ± 63 776 c ± 59 970 b ± 43 150,000 5

5-methylfurfural 397 a ± 38 358 a ± 12 390 a ± 30 20,000 5
5-hydroxymethylfurfural 430 a ± 32 232 b ± 18 272 b ± 22 100,000 5

KETONES

3-heptanone 5.3 a ± 0.1 4.8 b ± 0.2 5.1 ab ± 0.3 7.5 6
6-methyl-5-hepten-2-one 106 b ± 11 164 a ± 12 123 b ± 10 50 6, 7

TERPENOIDS

Limonene 19 a ± 2 21 a ± 1 19 a ± 2 10 1, 7
β-Damascenone 276 b ± 7 241 c ± 22 385 a ± 16 7 9
Geranyl acetone 13.0 a ± 0.2 13.1 a ± 0.5 13.2 a ± 0.2 60 9
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Table 5. Cont.

Volatile Aroma
Treatment

OPT AS
Control Compost Vermicompost

β-farnesene 11.5 a ± 0.2 11.2 ab ± 0.2 11.1 b ± 0.2 20 6
E-Nerolidol 11 a ± 1 10.9 a ± 0.2 11 a ± 1 700 6, 9

E-methyljasmonate 5.3 b ± 0.4 5.2 b ± 0.3 6.4 a ± 0.4 70 9
Z-dihydrofarnesol 12.1 b ± 0.1 14 a ± 1 13 ab ± 1 20 9

(Z,E)-farnesol 26 a ± 1 18 b ± 1 18 b ± 1 20 9

FATTY ACIDS

Octanoic acid 3124 b ± 277 2183 c ± 198 3937 a ± 316 500 8
Decanoic acid 889 a ± 36 318 c ± 27 521 b ± 25 1000 8

Dodecanoic acid 180 a ± 14 138 b ± 6 173 a ± 16 2100 8
Hexadecanoic acid 62 a ± 3 62 a ± 1 61 a ± 5 100,000 8

Odor perception threshold (OPT) and aromatic series (AS) assigned to the volatile aroma compound (1: chemistry;
2: fruity; 3: green fruit; 4: creamy; 5: caramel; 6: green; 7: citrus; 8: fatty; 9: floral; 10 waxy); different letters
indicate significant differences (p < 0.05).

Fifteen compounds show odor activity values above the unity. Ethyl octanoate and
β-damascenone reach the highest values. Both compounds show the highest OAV in
wines obtained from grapes treated with vermicompost. Some of these compounds do not
depend on the treatment (isoamyl alcohols, ethyl butanoate, ethyl 3-methylbutanoate and
limonene). 2-phenylethanol and ethyl propanoate show the highest OAV in control wines,
whereas isoamyl acetate, β-phenylethyl acetate, ethyl hexanoate, and octanoic acid reach
the highest values in vermicompost wine. Lastly, 4-vinylphenol and 6-methyl-5-hepten-2-
one show the highest OAV in compost wine. Ethyl acetate shows no significant differences
between control and vermicompost wine. Adding up the OAV of the volatile compounds
in each wine, the aromas mentioned represent at least 50% of the sum. Dumitriu et al.,
2020 [67], provide similar results, describing many of these compounds as responsible for
the aroma of red wine treated with different oak pieces.

3.6. Aroma Series

As pointed out by Hein et al., 2009 [68], the aroma is not only determined by the volatile
compounds of the wine, but also the interactions amongst them, including synergistic and
antagonistic effects. Evaluating these effects is especially complex, and impossible in most
cases due to the high quantity of aroma compounds, although the odor activity value can
help to obtain information about the impact of a given compound on a wine aroma [69]. It
is widely accepted that an OAV above the unity in volatile compounds indicates a potential
contribution to wine aroma.

One way to observe all the volatile compounds is to group them based on their odor
descriptor [70–72]. In this way, an analytical volatilome fingerprint is obtained, reducing
the number of variables to consider when analyzing differences due to a given oenological
treatment. In this study, chemistry, fruity, green fruit, creamy, caramel, floral, green, citrus,
fatty, and waxy aroma series were obtained (Table 6).
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Table 6. Aroma series calculated in wines obtained after different vine treatments.

Aroma
Treatment

Control Compost Vermicompost

Chemistry 17.5 a ± 0.6 16.1 a ± 0.7 17.5 a ± 0.8
Fruity 87 b ± 2 83 b ± 6 110 a ± 5

Green fruit 9.3 b ± 0.7 10.4 ab ± 0.9 11.5 a ± 0.8
Creamy 2.8 a ± 0.1 3.0 a ± 0.1 2.4 b ± 0.1
Green 3.9 c ± 0.2 5.4 a ± 0.3 4.6 b ± 0.3
Citrus 5.7 c ± 0.3 9.2 a ± 0.2 8.1 b ± 0.1
Fatty 7.3 a ± 0.6 4.7 b ± 0.4 8.5 a ± 0.7

Herbal 42 b ± 1 39 c ± 3 57 a ± 2
Floral 47 b ± 1 40 b ± 3 62 a ± 3
Waxy 47 b ± 2 46 b ± 3 72 a ± 2

Different letters indicate significant differences (p < 0.05).

Regarding vermicompost, fruity, herbal, floral, and waxy wine series show the highest
values, whereas the creamy series shows the lowest, especially the values of the fruity
series, which is mainly influenced by the chemical family, namely ester, which involves
acetates, ethyl esters, and lactones. Green and citrus series show the highest values in
wine with compost and the lowest is that of the fatty series. The chemistry series does not
depend on the treatment.

The multivariate analysis of the series consists of the standardization of a given aroma
series, with the aim of analyzing the influence of the different treatments on the variability
of such series. Using this method, a spider chart is obtained, the unity being the medium
value of a given series, taking all wines into consideration (Figure 4). In this sense, although
the fruity series shows the highest value in all wines, control and compost wines show
values below the average. In vermicompost wine, the variability compared to the average
is around 17%, whereas fatty, floral, and herbal series show a variability of around 25%,
the waxy series being the one with the highest variability (30%). In compost wine, the
citrus series is 20% higher compared to the average value. Lastly, except for the chemistry
(2%), creamy (3%), and fatty series (6%) in the control wine, lower values compared to the
average were observed.
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3.7. Cluster Analysis and Principal Components Analysis

Cluster analysis is a statistical technique aimed at classifying wines based on their
similarities. To this end, the parameters for such classification must be established. This
study used aroma series and colorimetric parameters. As can be observed in Figure 5,
vermicompost wines are clearly differentiated from compost and control wines. As per
these two, the distance in between seems to indicate that there are no remarkable differences.
This type of analysis is only descriptive and provides evidence of the variations among the
different treatments.
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To delve into the variables responsible for the differentiation of the wines, a principal
component analysis was carried out. Two main components were obtained that explained
more than 94% of the variability observed (Figure 6).
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Figure 6. Principal component analysis using the aroma series and the colorimetric parameters of the
wines as the classifying variables.

The first accounts for 65.4% and relates to the differentiation of vermicompost wine
and the rest of the wines. The second relates to the differentiation between compost
and control wines and accounts for 27% of the observed variability. In this sense, total
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polyphenol index, fruity, herbal, and waxy series significantly contribute to positive values
of component 1, whereas absorbance 420 nm and creamy series contribute to the negative
values of this component (Table 7). Regarding component 2, the series that contributed to
control wine the most were chemistry and fatty, whereas citrus and green, in addition to
absorbance at 520 nm, contributed to differentiating compost wine (Table 7).

Table 7. Weight of the selected variables to perform the principal component analysis. In bold the
main variables of each component.

Variables Component 1 Component 2

TPI 0.3220 0.0195
Absorbance 420 nm −0.3038 0.1682
Absorbance 520 nm 0.2410 −0.3440
Absorbance 620 nm 0.3089 −0.1604

Chemistry 0.1522 0.3435
Fruity 0.3224 0.0635

Green fruit 0.2533 −0.2187
Creamy −0.2952 −0.1184
Green 0.0086 −0.4929
Citrus 0.0714 −0.4986
Fatty 0.2384 0.3460

Herbal 0.3228 0.0898
Floral 0.3132 0.1546
Waxy 0.3285 0.0151

TPI: total polyphenol index.

4. Conclusions

The results obtained have shown that the agricultural application of compost and
vermicompost from the spent substrate of mushroom cultivation does not cause adverse
effects on the physicochemical properties of the vineyard soil, but results in a positive in-
crease in its content in organic matter and macronutrients. Although the total concentration
of each metal slightly increased in the soil of the treated plots, with respect to the control
soil, in no case was metal contamination of the aerial parts of the vine observed. On the
other hand, among the oenological parameters usually analyzed, the highest content of
compounds responsible for the red and violet coloration in wines being obtained from
grapes treated with vermicompost stands out. The control wine had high absorbance
values at 420 nm, which is related to brown tones. Regarding the aroma composition, the
vermicompost wine was the one with the highest aroma concentration, especially fruity,
floral, herbal, green fruit, fatty, and waxy aromas. Lastly, considering the sum of all values
of the aroma series, compost wine showed the lowest levels; however, its citrus, green, and
fatty series excelled compared to the rest of the wines. Therefore, it can be assumed that
organic amendments have an impact on the composition of the grape and, consequently, on
wines. It can be concluded that the use of these types of amendments can be an alternative
source of nutrients for the sustainable management of the vineyard, although it would be
interesting to analyze the effects in the longer term and at the same study doses.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/app13148001/s1, Table S1: Major and minor aroma compounds
identified in the wines.
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