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Abstract12

This paper reports the results of research on PM10 wet scavenging by13

rainfall using a new multilayer complex networks called Multiplex Visibility14

Graphs (MVG). To the best of our knowledge, this work is the first to assess15

PM10 wet deposition using multivariate time series according to African16

dust seasonality. We considered 11 years of daily PM10 and rainfall data17

from the Guadeloupe archipelago. To analyse the impact of rainfall on PM1018

behaviour, two MVG parameters were computed: the average edge overlap19

(ω) and the interlayer mutual information (IPM10Rainfall). On the 1-d scale,20

the ω results showed that the wet scavenging process was higher during the21

second half of the year when the high dust season and the rainy season are22

juxtaposed. This highlights a greater correlation between the microscopic23

structure of the signal, and the impact of rainfall on PM10 concentrations24

is more significant when the atmosphere is loaded with dust. The joint25

probability computed between the PM10 and rainfall nodes confirmed this26

trend. The IPM10Rainfall results indicated a correlation between PM10 and27
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rainfall structures throughout the year. Furthermore, IPM10Rainfall values28

were higher during the transition periods between winter and summer (and29

vice versa). Our study showed that MVG is a powerful technique for inves-30

tigating the relationship between at least two nonlinear time series using a31

multivariate time series.32

Keywords: PM10, Wet scavenging, Multiplex visibility graphs, Complex33

networks, Caribbean area34

1. Introduction35

In geoscience, precipitation is a key component of the water cycle (Schnei-36

der et al., 2014) and of atmospheric circulation (Kidd and Huffman, 2011).37

In recent decades, the removal of atmospheric Particulate Matter (PM) by38

falling precipitation has greatly interested the scientific community (González39

and Aristizábal, 2012; Ouyang et al., 2015; Wu et al., 2018). This phe-40

nomenon, which can occur through liquid (rain) and solid (snow) forms of41

precipitation, is called “wet deposition” (Kim et al., 2012; Singh et al., 2016).42

Numerous studies have shown that wet scavenging of PM by rainfall is one43

of the primary precipitation processes for wet deposition (Laouali et al.,44

2012; Tiwari et al., 2012; Yoo et al., 2014; Singh et al., 2016; Olszowski,45

2017; Wu et al., 2018; McClintock et al., 2019). Raindrops falling through46

the air column, bump into and collect air particles. Raindrops approach the47

particles, apply a force via the air as a medium, and change trajectory (Son-48

wani and Kulshrestha, 2019). The collision between the raindrops and the49

PM is conditioned by size and relative location (Olszowski, 2017). The two50

primary wet scavenging mechanisms related to rainfall are rainout (in-cloud51

scavenging) and washout (below-cloud scavenging) (Dallarosa et al., 2005;52

Tombette et al., 2009; Sonwani and Kulshrestha, 2019). Studies have shown53
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that wet scavenging can remove 30% of the aerosols from the troposphere54

(Murakami et al., 1983; Schumann, 1989).55

Over the past decades, two types of PM have received special attention56

due to their health impact: fine particles (particulate diameter < 2.5 µm,57

PM2.5) and coarse particles (particles with diameters between 2.5 and 1058

µm, PM10−2.5) (Bayraktar et al., 2010; Plocoste and Calif, 2019). Epidemi-59

ological studies reveal that short- and long-term exposure to high concen-60

trations of PM2.5 and PM10 can cause human health problems (Weinmayr61

et al., 2010; Atkinson et al., 2014; Lu et al., 2015). The authors focused on62

PM10, which also strongly impacts climate (Plocoste and Pavón-Domínguez,63

2020b; Plocoste et al., 2020a).64

In the Caribbean, air quality is frequently degraded by African dust65

(Euphrasie-Clotilde et al., 2020). Dust haze episodes primarily occur dur-66

ing summer (Petit et al., 2005; Prospero et al., 2014). Many studies present67

the processes that allow the transport of dust over the Atlantic Ocean (Perry68

et al., 1997; Prospero, 1999; Prospero and Lamb, 2003; Engelstaedter et al.,69

2006; Kumar et al., 2014; Euphrasie-Clotilde et al., 2020). As the wet scav-70

enging of PM10 is a standard indicator of air quality in a given area, the71

aim of this study was to investigate the wet scavenging process of PM10 by72

rainfall in the Caribbean Basin. Additionally, we aim to determine whether73

there is a link between wet scavenging efficiency and African dust seasonal-74

ity.75

A newly developed method termed Multiplex Visibility Graph (MVG)76

was used to perform this study (Lacasa et al., 2015). The methodology is77

based on a previous technique called Visibility Graph (VG), first introduced78

by Lacasa et al. (2008). The main idea is to transform a time series into a79

complex network, which can later be analysed, and to preserve some of the80
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original information. Most of the variants of this method focus on analysis81

of a single time series (Luque et al., 2009; Lan et al., 2015; Carmona-Cabezas82

et al., 2019b; Iacovacci and Lacasa, 2019) and have been applied to applica-83

tions related to univariate time series (Mali et al., 2018; Carmona-Cabezas84

et al., 2019a; Plocoste et al., 2021b). However, owing to their stochastic85

properties, atmospheric processes are frequently related to numerous de-86

grees of freedom; that is, their behaviour is governed by a multivariate time87

series. To overcome this drawback, the MVG technique applies the visibility88

approach to examine nonlinear multivariate time series (Lacasa et al., 2015).89

After transforming the time series into complex networks, the results were90

used to build a multi-layered structure that could be analysed. Owing to91

recent advances in the theory of multilayer networks (Bianconi, 2013; Kivelä92

et al., 2014; Battiston et al., 2014; Lacasa et al., 2015), additional informa-93

tion can be retrieved from the original multivariate time series. To the best94

of our knowledge, no study has yet investigated PM10 wet scavenging using95

a multivariate time series. Here, 11 years of daily PM10 and rainfall data96

from the Guadeloupe archipelago were analysed.97

2. Site and data collection98

The Guadeloupe archipelago (16.25◦N −61.58◦W) is a French overseas99

region located in the central Caribbean Basin (Plocoste et al., 2019). The100

small territory (∼1,800 km2; 390,250 inhabitants) has an insular tropical101

climate with meteorological characteristics that vary by location due to mi-102

croclimates (Bertin and Frangi, 2013). According to the Köppen-Geiger103

climate classification (Peel et al., 2007), Guadeloupe is in the ‘‘Af (tropical104

rainforest)’’ category.105
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For this study, time series of Particulate Matter (PM10) and rainfall were106

used. Hourly PM10 data were provided by Gwad’Air Agency (http://www.gwadair.fr/),107

which manages the Guadeloupe air quality network. PM10 concentrations108

were measured using the Thermo Scientific Tapered Element Oscillating Mi-109

crobalance (TEOM) models 1400ab and 1400-FDMS. From 2005 to 2017,110

the air quality network-principally located at the centre of the island-has111

only one PM10 sensor at Pointe-à-Pitre (16.2422◦N 61.5414◦W) from 2005112

to 2012 and at Baie-Mahault (16.2561◦N 61.5903◦W) since 2015. Because of113

the proximity between the air quality stations (∼5.5 km), PM10 measure-114

ments were performed under the same environmental conditions. Rainfall115

measurements were made by Météo France at the international airport of116

Pôle Caraïbes at Abymes (16.2630◦N 61.5147◦W) using a Precis-Mecanique117

3070. As with the PM10 time series, the Météo France observations are an118

hourly rainfall time series. Both measurements were made in the insular119

continental regime (Plocoste et al., 2018; Plocoste and Pavón-Domínguez,120

2020a). To assess the possible wet scavenging phenomenon over an entire121

day, hourly PM10 data were converted into daily average values, whereas122

rainfall data were converted into daily average and daily sum values. By123

computing the Pearson correlation coefficient between the daily average124

PM10 and the daily rainfall data (sum then average), the same result was125

obtained (R= -0.14). Many studies demonstrate the cumulative effect of126

rainfall on atmospheric processes (Winstanley, 1973; Johnson and Ciesiel-127

ski, 2000). In addition, to account for hours with and without rainfall (0128

mm) in a day, the authors favoured the sum over the average for the stochas-129

tic analysis. Thus, 11 years of simultaneous measurements between the daily130

average PM10 and the daily sum of rainfall were available for this study (a131

total of 3,849 points per time series). Figure 1 shows the sequence of the132
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analysed time series. A slight lag appears to exist between the groups of133

peaks.134
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Figure 1: Illustration of simultaneous measurement sequences between (a) daily average

PM10 concentrations and (b) the daily sum of rainfall between 2005 and 2011.

3. Theoretical framework135

3.1. Visibility graphs136

A graph is a mathematical object composed of a set of vertices (or nodes)137

which are connected by a set of lines or edges. A relatively recent tool138

called Visibility Graph (VG) allows the transformation of two-dimensional139
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sets of points into graphs or networks (Lacasa et al., 2008). VG has great140

applicability for time series analysis and produces networks that inherit141

many of the properties of the original time series (Lacasa and Toral, 2010).142

The points in the time series correspond to the nodes in the graph. The143

edges of the graph (which connect nodes) are selected by checking which144

pairs of points meet the visibility criterion, which is as follows: two points145

from the time series (ta, ya) and (tb, yb) are connected only if any other point146

(tc, yc) located between them (ta < tc < tb) fulfils the following relationship147

(Lacasa et al., 2008):148

yc < ya + (yb − ya)
tc − ta
tb − ta

(1)

To construct the graph, this algorithm was applied to every pair of points149

in the signal. Two consecutive nodes are always connected, because there150

are no intermediate points.151

A graph is commonly expressed via its adjacency matrix, whose rows152

store the information of each node. If an element aij is equal to 1, nodes i153

and j are connected, the opposite is true if aij is equal to 0. In the case of a154

time series with N points, the resulting VG is represented by an N×N adja-155

cency matrix, which has special properties that facilitate computation; the156

adjacency matrix is symmetric (aij = aji) and hollow (aii = 0); additionally,157

all the nearest neighbours are visible to one other (aij = 1 for j = i ± 1).158

In general, the adjacency matrix has the following form (Carmona-Cabezas159
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et al., 2019a):160

V =


0 1 · · · a1,N

1 0 1
...

... 1
. . . 1

aN,1 · · · 1 0

 (2)

3.2. Degree centrality161

Degree is the most commonly used of the principal properties that can be162

studied from a graph and one of the centrality parameters used to measure163

the importance of different nodes in the graph with relation to the rest of164

them, using different criteria (Latora et al., 2017). The degree of a node (ki)165

measures (in an undirected graph) the number of nodes that are reciprocally166

connected to a given node. By considering the adjacency matrix, the degree167

can be computed as ki =
∑

j aij .168

Once the degree of every point is computed, a degree probability dis-169

tribution P (k) can be obtained for the graph (here, VG). P (k) accounts170

for the probability of having each value of degree in the graph. To obtain171

information on the nature of the series, the degree distribution is analysed172

(Lacasa et al., 2008; Mali et al., 2018; Pierini et al., 2012). If the right tail of173

the degree distribution (for high values of degree) can be fitted by a power174

law such as P (k) ∝ k−γ , the time series has a fractal nature (Lacasa et al.,175

2008). This part of the distribution is related to the hubs (nodes with the176

highest degrees), which are, by definition, rare in a graph. The exponent in177

the power law is the coefficient, which is related to the Hurst exponent in178

series related to Brownian motion (Lacasa et al., 2009).179
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3.3. Multiplex visibility graph180

Another application of VGs in the context of multivariate analysis, is181

the use of multi-layered networks. This methodology was recently intro-182

duced as Multiplex Visibility Graph (MVG) (Lacasa et al., 2015). The183

main idea behind MVG is to build each of the layers M with VGs from184

the different variables of the study. Therefore, as VG is represented by its185

adjacency matrix, so MVG is identified by a vector of adjacency matrices186

Ω = {A[1], A[2], ..., A[M ]}. In the last expression, A[α] corresponds to the VG187

adjacency matrix of the VG in the α-dimension (or layer in the multiplex),188

which comes from the α variable of the multivariate time series (see Figure 2,189

where PM10 and rainfall sample time series are transformed for illustrative190

purposes).191
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After construction, MVG is analysed to obtain information regarding the192

system of the time series. The two measures used for such purposes (Nicosia193

and Latora, 2015) and chosen for this work are Average Edge Overlap (ω)194

and Interlayer Mutual Information (Iα,β). ω averages the number of layers195

on which a given edge between a pair of nodes can be found. Iα,β measure196

the correlations between the degree distributions of the given layers α and197

β. In this study, the layers correspond to daily PM10 concentrations and198

total rainfall.199

The computation is relatively straightforward after the MVG and degree200

distributions of each layer are obtained. Equation 3 shows the formula to201

compute the ω of a given MVG (Lacasa et al., 2015):202

ω =

∑
i

∑
j>i

∑
α a

[α]
ij

M
∑

i

∑
j>i

(
1− δ

0,
∑

α a
[α]
ij

) (3)

203

All quantities were previously defined in the text; δ
0,
∑

α a
[α]
ij

corresponds to204

a Kronecker delta, which is 1 when
∑

α a
[α]
ij is null, and otherwise 0. The205

maximum value of ω = 1 indicates that all the layers and, therefore, the time206

series are identical. Conversely, the minimum possible value of ω = 1/M207

indicates that every edge in the MVG can be found only in a singular layer.208

Overall, this quantity provides an idea of the expected number of layers on209

which an edge can be found. In addition, a high ω value indicates a high210

correlation in the microscopic structure of the signal (Lacasa et al., 2015).211

Additionally, Iα,β is defined in Equation 4 (Lacasa et al., 2015):212

Iα,β =
∑
k[α]

∑
k[β]

P (k[α], k[β])log
P (k[α], k[β])

P (k[α])P (k[β])
(4)

213
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where P (k[α], k[β]) is the joint probability of having a degree of k[α] in layers214

α and k[β] in layer β that can be obtained using the following formula:215

P (k[α], k[β]) =
Nk[α],k[β]

N
(5)

where Nk[α],k[β] is the number of nodes with a degree of k[α] in layer α216

and k[β] in layer β; Nk[α],k[β] is divided by N, which is the total number of217

nodes or points in the time series.218

4. Results and Discussion219

4.1. Preliminary analysis220

We conducted a preliminary analysis to investigate PM10 and rainfall221

seasonality throughout the year. Figure 3 illustrates the monthly average222

PM10 concentrations and the monthly summation of rainfall data over 11-y223

period. Seasonality is observed in both curves, with a high dust season from224

May to September (Plocoste and Pavón-Domínguez, 2020b) and a rainy225

season from July to November (Bertin and Frangi, 2013). Van der Does226

et al. (2020) observed the same behaviour for both parameters in Barbados.227

The Inter-Tropical Convergence Zone (ITCZ) dynamics throughout the year228

play a key role in these seasonal behaviours. In summer, the activation of229

dust sources from the Saharan and Sahelian deserts coupled with the up-230

ward northward movement of the ITCZ (10 − 20◦N) (Moulin et al., 1997;231

Adams et al., 2012; Euphrasie-Clotilde et al., 2020) allows the transport of232

dust plumes from the African coast to the Caribbean area (Petit et al., 2005;233

Prospero et al., 2014; Euphrasie-Clotilde et al., 2021). According to a statis-234

tical study lasting over a decade (Plocoste et al., 2020b), average PM10 and235

kurtosis are 1.5 times higher and 5.5 times lower during the high dust season,236

12



respectively, due to the recurrence of dust plumes compared with the low237

dust season. From October to April, PM10 concentrations are primarily re-238

lated to marine aerosols (Clergue et al., 2015; Rastelli et al., 2017), because239

of the insular context of the Guadeloupe archipelago. These aerosols are240

advected by trade winds which blow continuously from east to west across241

the Atlantic Ocean (Plocoste et al., 2014; Plocoste and Pavón-Domínguez,242

2020a). Consequently, the contribution of marine aerosols to PM10 con-243

centrations remains constant throughout the year. Figure 3 shows that the244

standard deviations exhibit their lowest values from October to April. Thus,245

marine aerosols are one of the primary constituents of the PM10 background246

atmosphere (Plocoste et al., 2021a). The ITCZ movement toward the north247

generates precipitation carried by trade winds during the boreal summer248

(the rainy season) (Giannini et al., 2000; Muñoz et al., 2008). During the249

boreal winter (mid-January to March), the ITCZ awakens the Azores anti-250

cyclone due to its southerly movement, which reduces cloud generation (the251

dry season) (Bertin and Frangi, 2013).252

4.2. Degree distribution253

4.2.1. Overall analysis254

Before performing a profound analysis of the impact of rainfall on PM10255

concentrations in the MVG frame, both time series were analysed sepa-256

rately in the VG frame. The classical first approach is to study the degree257

distribution P (k) of each time series. Figure 4(a) and 4(b) show the degree258

distributions obtained for the PM10 and rainfall time series over the 11-y259

period, respectively. Both plots highlight the fractal nature of the time se-260

ries. The tail region of P (k) in the log-log plot can be fitted by a power261

law, such as P (k) ∝ k−γ , where γPM10 and γrainfall equal 3.11, and 2.84,262
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respectively. In the literature, the fractal nature of the PM10 (Dong et al.,263

2017; Nikolopoulos et al., 2019; Plocoste et al., 2021b) and rainfall (Olsson264

et al., 1993; Breslin and Belward, 1999; Maskey et al., 2016) data has been265

observed.266

To assess the behaviour of the highest degree (so-called hubs), the time267

series values versus their degrees (v-k plot) were analysed for each parameter268

as introduced by Pierini et al. (2012). Figure 4(c) and 4(d) illustrate the v-k269

plot for the PM10 and rainfall data, respectively. In both cases, the hubs270

were related to the highest values of each time series. Carmona-Cabezas271

et al. (2019a) found the same tendency for hubs of a tropospheric ozone272

time series in Cadiz, Spain. The value of precipitation has an almost linear273

relationship to the degree of rainfall. Thus, the degree of the rainfall nodes274

can be used to identify both high and low rainfall values. In addition, the275
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Figure 4: At the top, degree distribution of the visibility graph for (a) PM10 and (b)

rainfall in a log-log plot for all the data. A the bottom, the relationship between the time

series values and their degrees in (c) PM10 and (d) rainfall.

PM10 dot distribution appears more heterogeneous, because of the wide276

annual variability of African dust haze (Plocoste et al., 2017, 2020a).277

4.2.2. Monthly analysis278

We use the first centrality measure (degree centrality) to study the im-279

portance of the node for PM10 and rainfall throughout the year (Carmona-280

Cabezas et al., 2019a). Figure 5(a) and 5(b) highlight the monthly behaviour281

of the average degree and standard deviation from the degree distribution of282
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the PM10 and rainfall time series. A trend merged in both curves. The decay283

of PM10 hubs begins at the onset of the high dust season (May-September)284

(Plocoste and Pavón-Domínguez, 2020b; Plocoste et al., 2021b); the decay285

for rainfall hubs begins at the onset of the hurricane season (June–October)286

(Tartaglione et al., 2003; Dunion, 2011) in the Caribbean Basin. Figure 3287

shows that the monthly behaviour of PM10 and rainfall over the period of a288

decade confirms this trend, increases in PM10 and rainfall begin in May and289

June, respectively. The above-mentioned results show the impact of season-290

ality on node distribution and highlight that the VG frame is sensitive to291

time-series behaviour.292

4.3. Multiplex visibility graph293

After performing the analysis of the PM10 and rainfall univariate time294

series in the VG frame (i.e., transformation of the time series into a complex295

network), both complex networks were combined to design a two-layered296

multivariate network. Here, we investigate the wet scavenging process of297

PM10 by rainfall. The authors focused on two approaches, which demon-298

strate the abundance of single edges across layers (average edge overlap)299

and the presence of interlayer correlations of the node degrees (interlayer300

mutual information) (Lacasa et al., 2015; Nicosia and Latora, 2015). The301

first approach measures the overall coherence in the multivariate time series,302

and the second evaluates structural correlation.303

4.3.1. Average edge overlap analysis304

Figure 6 illustrates the monthly average edge overlap values (ω) and305

their standard deviations over the 11-y period. ω > 1/M and ω < 1; thus,306

the two layers are different, and edges can be found in both layers. These307
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Figure 5: Computed average degree and standard deviation from the degree distribution

of each month over the 11-y period for (a) PM10 and (b) rainfall. Each monthly value is

the average of the computed 11-y values.

two criteria prove that there is an interaction between PM10 and rainfall in308

the MVG frame. ω is a sensitive parameter with small variations (increases309

and decreases) (Lacasa et al., 2015). Here, ω was almost constant from Jan-310

uary to June. ω values are higher from July to December and peaked in311

September, indicating a greater correlation in the microscopic structure of312

the signal (Lacasa et al., 2015; Carmona-Cabezas et al., 2020) that repre-313
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sents interaction on the order of 1-d, which is the minimum time resolution.314

Therefore, at the 1-d scale, the wet scavenging process of PM10 by rainfall is315

more significant during the last six months of the year. A 20-y precipitation316

study in the Luquillo Mountains of Puerto Rico McClintock et al. (2019)317

also found a summer maximum in wet dust deposition. Physically, these318

findings make sense, as the summer corresponds to the high dust (Plocoste319

and Pavón-Domínguez, 2020b) and rainy (Bertin and Frangi, 2013) seasons320

in the Caribbean Basin. The atmosphere is loaded with dust, and the im-321

pact of rainfall on PM10 is greater. Tiwari et al. (2012) observed that low322

PM10 concentrations in New Delhi occurred during the monsoon (August-323

September) season due to the washout phenomenon. A 10-y study of air324

pollutants (PM10, CO, NO2, SO2, and O3) and precipitation over South325

Korea highlighted that PM10 is most effectively scavenged by summertime326

rainfall due to its particulate nature (Yoo et al., 2014). Because of data327

availability, determining which wet scavenging process (rainout or washout)328

is more efficient is difficult (Pillai et al., 2002; Tombette et al., 2009; Bayrak-329

tar et al., 2010). According to Sonwani and Kulshrestha (2019), the level330

of aerosols in and under clouds at the time of precipitation is crucial, as it331

determines whether both phenomena occur simultaneously.332

During the high dust season, the wet scavenging phenomenon naturally333

reduces PM10 concentrations in the atmosphere. Due to the impact on res-334

piratory and cardiovascular diseases, diminishing PM10 concentrations after335

dust outbreaks is crucial (Gurung et al., 2017; Zhang et al., 2017; Momtazan336

et al., 2019; Feng et al., 2019). African Easterly Waves (AEWs) (Prospero337

and Carlson, 1981; Plocoste et al., 2021a), which precede and follow the338

dust plumes, are the principal generator of precipitation during the high339

dust period (Dominguez et al., 2020) and regulate PM10 concentrations in340
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the Caribbean area.341
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Figure 6: 11-y monthly average edge overlap values (ω) and their standard deviations.

4.3.2. Interlayer mutual information analysis342

The relationship between PM10 concentrations and rainfall can also be343

determined by studying the node distribution in the MVG layers. Equa-344

tion 4 shows that the joint probability between the PM10 and rainfall nodes345

(P (k[PM10], k[Rainfall])) is a building block of the interlayer mutual informa-346

tion (IPM10,Rainfall). Thus, we first computed the joint probability before347

performing the interlayer mutual information analysis.348

Figure 7(a) and 7(b) illustrate the quantity P (k[PM10], k[Rainfall]) for349

the low dust season (October to April) and the high dust season (May to350

September) for the 11-y period. In these Figures, the colours indicate the351

probability that a node in the MVG has a degree equal to kPM10 and kRainfall352

in the layers corresponding to PM10 and rainfall VG, respectively. Overall,353

the most likely combinations of k values were those below a value of 20. For354
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higher degrees (k > 60), P (k[PM10], k[Rainfall]) becomes less significant. The355

probability asymptotically approaches both the X and Y axes. According356

to Carmona-Cabezas et al. (2020), as the degree increases, the probability of357

finding kPM10 and kRainfall with close values decreases exponentially. This358

demonstrates alternation between the hubs of the two time series. Due to359

the wet scavenging phenomenon, high daily values of PM10 and rainfall are360

less likely to occur on the same day. Figure 7(a-b) shows a difference in361

behaviour between both seasons. A concentration of probability is more362

pronounced in the high dust season (Figure 7(b)), and higher values in a363

low-degree area add red to the plot. In addition, the overall shape of the plot364

shrinks for the same period and has shorter tails. These results are consistent365

with those obtained for ω. The impact of rainfall on PM10 concentrations366

in the atmosphere more loaded with dust from May to September is more367

efficient because of a more significant wet scavenging phenomenon (Tiwari368

et al., 2012; Yoo et al., 2014).369

Figure 7(c) shows the monthly IPM10,Rainfall computed over the 11-y370

period. The interlayer mutual information, which provides an idea of the371

typical amount of information flow in the system (Lacasa et al., 2015), is372

directly related to the joint probability and also measures the correlation373

between degrees in the system. Thus, the interlayer mutual information374

may indicate the degree of correlation among the distributions and, hence,375

the behaviour of the two series. Because IPM10,Rainfall > 1, kPM10 and376

kRainfall always have higher correlations in May (IPM10,Rainfall = 1.25), Au-377

gust (IPM10,Rainfall = 1.14) and November (IPM10,Rainfall = 1.15). A study378

in the Caribbean basin by Gouirand et al. (2020) showed that the averages379

transition dates from winter to summer and from summer to winter occurred380

on average 13 May (± 9 days) and 26 October (± 12 days), respectively.381
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These transition periods correspond to comparatively high IPM10,Rainfall val-382

ues. Due to the standard deviations, the winter to summer transition always383

occurs in May, whereas the summer to winter transition can occur in Octo-384

ber or November. This could explain why the May peak was much larger.385

In addition, May corresponds to the beginning of the high dust season (Plo-386

coste and Pavón-Domínguez, 2020b), whereas November corresponds to the387

end of the rainy season (Bertin and Frangi, 2013). Therefore, these periods388

feature strong inter-layer correlations between kPM10 and kRainfall.389

5. Conclusion390

In conclusion, our results clearly highlight the efficiency of multilayer391

complex networks for tracking the correlations between particulate matter392

(PM10) and rainfall time series. The aim of this study was to investigate the393

wet scavenging phenomenon of PM10 by rainfall in the Caribbean area using394

MVGs. We highlighted the fractal nature of both time series and found that395

the highest degrees (hubs) are related to the highest values in the VG frame.396

The relationship between the values and degrees of PM10 is less homoge-397

neous than that of rainfall due to annual intermittency. The monthly degree398

centrality analysis indicated the seasonality of both time series. On the 1-d399

scale, the average edge overlap (ω) monthly analysis highlighted the wet400

scavenging process of PM10 by rainfall throughout the year. However, this401

process seems to be more significant during the last six months of the year,402

when the high dust and rainy seasons are juxtaposed. The joint probability403

results between the PM10 and rainfall nodes according to African dust sea-404

sonality confirmed the trend observed from the ω values. The atmosphere is405

loaded with dust during the high dust season, and rainfall helps restore the406
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PM10 atmospheric balance. Thus, the overall coherence in the multivari-407

ate time series was higher from July to December. The interlayer mutual408

information (IPM10Rainfall) monthly analysis showed a correlation between409

PM10 and rainfall structures throughout the year. IPM10Rainfall values were410

higher during the transition periods between winter and summer (and vice411

versa) in the Caribbean Basin. We assume that the transition periods allow412

the homogenisation of the multivariate time series before the usual trend413

is resumed. To better quantify the impact of the wet scavenging process414

on PM10, a future analysis of rainwater chemistry (organic and elemental415

carbon) related to rainfall intensity will be conducted.416
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Figure 7: Illustration of the joint probability distribution of the degrees of both layers for

(a) the low dust season (October to April) and (b) the high dust season (May to Septem-

ber) over an 11-y period. Each isoline shows the probability that the degree is precisely

kPM10 and kRainfall at the same time node in the VG frame; (c) monthly interlayer mu-

tual information values (IPM10Rainfall) and their standard deviations computed over an

11-y period.
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