
JCLEC-MO: a Java suite for solving many-objective

optimization engineering problems

Aurora Ramı́rez, José Raúl Romero∗, Carlos Garćıa-Mart́ınez, Sebastián
Ventura

Department of Computer Science and Numerical Analysis, University of Córdoba, 14071
Córdoba Spain

Abstract

Although metaheuristics have been widely recognized as efficient techniques
to solve real-world optimization problems, implementing them from scratch
remains difficult for domain-specific experts without programming skills. In
this scenario, metaheuristic optimization frameworks are a practical alterna-
tive as they provide a variety of algorithms composed of customized elements,
as well as experimental support. Recently, many engineering problems re-
quire to optimize multiple or even many objectives, increasing the interest in
appropriate metaheuristic algorithms and frameworks that might integrate
new specific requirements while maintaining the generality and reusability
principles they were conceived for. Based on this idea, this paper introduces
JCLEC-MO, a Java framework for both multi- and many-objective opti-
mization that enables engineers to apply, or adapt, a great number of multi-
objective algorithms with little coding effort. A case study is developed and
explained to show how JCLEC-MO can be used to address many-objective
engineering problems, often requiring the inclusion of domain-specific ele-
ments, and to analyze experimental outcomes by means of conveniently con-
nected R utilities.

Keywords: Metaheuristic optimization framework, multi-objective
optimization, many-objective optimization, evolutionary algorithm, particle

∗Corresponding author. Tel.: +34 957 21 26 60
Email addresses: aramirez@uco.es (Aurora Ramı́rez), jrromero@uco.es. (José

Raúl Romero), cgarcia@uco.es (Carlos Garćıa-Mart́ınez), sventura@uco.es (Sebastián
Ventura)

Preprint submitted to Engineering Applications of Artificial IntelligenceJanuary 10, 2024

swarm optimization

1. Introduction

Optimization problems frequently appear in the engineering field, but
their characteristics make the application of mathematical methods not al-
ways feasible (Singh, 2016). Hence, the use of efficient search methods has ex-
perienced a significant growth in the last years, specially for those engineering5

problems where there are multiple objectives that require to be simultane-
ously optimized (Marler and Arora, 2004). A recurrent situation in engineer-
ing is the need of jointly optimizing energy consumption, cost or time, among
others. All these factors constitute a paramount concern to the expert, and
represent conflicting objectives, each one having a deep impact on the fi-10

nal solution (Marler and Arora, 2004). Initially applied to single-objective
problems, metaheuristics like evolutionary algorithms (EAs) have been suc-
cessfully applied to the resolution of multi-objective problems (MOPs) in
engineering, such as the design of efficient transport systems (Domı́nguez
et al., 2014) or safe civil structures (Zavala et al., 2014).15

The presence of a large number of objectives has been recently pointed
out as an intrinsic characteristic of engineering problems (Singh, 2016), for
which the currently applied techniques might not be efficient enough. It is
noteworthy that other communities are also demanding novel techniques to
face increasingly complex problems, what has led to the appearance of the20

many-objective optimization approach (von Lücken et al., 2014; Li et al.,
2015). This variant of the more general multi-objective optimization (MOO)
is specifically devoted to overcome the limits of existing algorithms when
problems having 4 or more objectives, known as many-objective problems
(MaOPs), have to be faced. Even though each metaheuristic follows different25

principles to conduct the search, their adaptation to deal with either MOPs
or MaOPs share some similarities, such as the presence of new diversity
preservation mechanisms or the use of indicators (Li et al., 2015; Mishra et al.,
2015). The resulting many-objective algorithms have proven successful in
the engineering field too (Li and Hu, 2014; López-Jaimes and Coello Coello,30

2014; Cheng et al., 2017), where specialized software tools have begun to
appear (Hadka et al., 2015).

In fact, the availability of software suites is one of the factors that most in-
fluences engineers when selecting a solution or algorithm (Marler and Arora,

2

2004), as they can greatly reduce coding efforts and even provide some guid-35

ance to engineers. In this context, metaheuristic optimization frameworks
(MOFs) (Parejo et al., 2012) seem to go one step further, as they may in-
tegrate environments not only providing a collection of algorithms or code
templates, but also other general utilities to properly configure them and
analyze outputs. MOFs are modular and adaptable in different ways, and40

should enable the introduction of specific domain knowledge and constraints
in terms of the representation and evaluation of solutions (López-Jaimes and
Coello Coello, 2014; Singh, 2016).

Focusing on the resolution of MOPs, these suites are expected to keep the
principles of multi-objective optimization by making the appropriate adap-45

tations for their components to deal with multiple objectives. At the same
time, MOFs still need to consider aspects like efficiency, utility and integra-
bility if a broad industrial adoption is sought. Among the currently available
alternatives, there are some specialized frameworks like jMetal (Durillo and
Nebro, 2011) and MOEA Framework (Hadka, 2017), whose main strength50

lies on a more extensive catalog of recent algorithms. Besides, other general-
purpose MOFs like ECJ (White, 2012), HeuristicLab (Elyasaf and Sipper,
2014) or JCLEC (Ventura et al., 2008) benefit other aspects like their ease
of use and greater availability of components to represent and modify the
solutions are their key advantages.55

A mix of both alternatives would enable to take advantage of reusabil-
ity, maturity and the reduction of the learning curve promoted by general-
purpose components, whereas specialization might bring the suite closer to
comply with current requirements of industry. At this point, JCLEC has
been reported as a competitive tool due to its large number of customiz-60

able components, which can be combined to solve user-defined optimization
problems (Parejo et al., 2012). In addition, JCLEC can be easily integrated
with other systems because of its regular use of standards like XML. Its core
elements are defined at a high level of abstraction, providing the required
flexibility to build new functionalities on top of a stable platform. Therefore,65

JCLEC has become an interesting baseline MOF to be extended to adopt
different metaheuristics for the resolution of both MOPs and MaOPs within
an industrial environment.

To this end, this paper presents JCLEC-MO, an extensible framework
providing suitable search elements and techniques for multi- and many-70

objective optimization. The preliminary architecture (Ramı́rez et al., 2015),
only focused on multi-objective evolutionary algorithms (MOEAs), has been

3

refined and significantly evolved to include new types of algorithms and sup-
port for other metaheuristics. As a result, JCLEC-MO provides generic
metaheuristic models that have been conveniently adapted to the precepts of75

MOO, and still preserves the valuable characteristics of a general-purpose so-
lution. The conceptual algorithmic model proposed to achieve independence
and a significant scalability is a distinctive characteristic of JCLEC-MO. It
is also competitive in terms of the available catalog of algorithms, mecha-
nisms to assess their performance and reporting capabilities. A case study80

shows how this suite enables the resolution of a many-objective engineering
problem, thus serving to illustrate how user-defined components should be
conceived and how the returned solutions could be analyzed, e.g. by using
R functionalities.

The rest of the paper is organized as follows. Section 2 provides an essen-85

tial background on metaheuristics for multi- and many-objective optimiza-
tion and MOFs. Existing frameworks for solving multi-objective problems are
analyzed in Section 3. Section 4 presents the design criteria and architecture
of JCLEC-MO. A more detailed description of the software functionalities
and its modular organization is provided in Section 5. Then, Section 6 devel-90

ops an illustrative case study to show the applicability and use of JCLEC-MO
as a supportive tool for engineers. A discussion of the benefits of JCLEC-
MO compared to other available MOFs is presented in Section 7 and, finally,
conclusions are outlined in Section 8.

2. Background95

Metaheuristics, just like evolutionary algorithms (Eiben and Smith, 2015)
and particle swarm optimization (PSO) (Poli et al., 2007), are well-known
techniques to address optimization problems due to their efficiency and inde-
pendence of the problem formulation. Based on the principles of natural evo-
lution, EAs manage a set of candidate solutions (population of individuals)100

that are iteratively selected, recombined and mutated to gradually produce
improved solutions. In PSO, each particle represents a potential solution that
changes its position and velocity influenced by the rest of particles. Other bio-
inspired metaheuristics imitate the behavior of other forms of living beings,
such as ants or bees, when looking for resources like food sources (Boussäıd105

et al., 2013).
These paradigms were promptly adapted to deal with problems having

more than one objective. Solving a MOP involves finding the values of a

4

Algorithm 1 Pseudocode of a MOEA (adapted from (Coello Coello et al.,
2007))

1: Initialize population P and archive P ∗

2: Evaluate objective functions over P
3: Assign fitness to P based on dominance and diversity
4: while not stopping condition (e.g. number of generations) do
5: Selection of parents: P i ← select(P ∪ P ∗)
6: Recombination and mutation of individuals: P ii ← genOps(P i)
7: Evaluate objective functions over P ii

8: Assign fitness to (P ∪ P ii) based on dominance and diversity
9: Replace P choosing from (P ∪ P ii)

10: Update archive: P ∗ ← update(P, P ii, P ∗)
11: end while

group of decision variables that jointly optimize a set of objective functions,
while satisfying other possible constraints (Coello Coello et al., 2007). In110

this scenario, optimal solutions, a.k.a. non-dominated solutions, are those
for which there is no other feasible solution with better outcomes for all the
objectives, so they reach the best trade-off among them. Therefore, multi-
objective algorithms aim at obtaining a good approximation to the Pareto
front (PF), namely the set of non-dominated solutions within the objective115

space. Finally, the expert will make the choice.
It is worth remarking that, due to the specific characteristics of a MOP,

any multi-objective metaheuristic needs to reconsider three main search con-
cepts: fitness assignment, diversity preservation and elitism (Talbi, 2009).
Therefore, dominance rankings, the definition of diversity measures or the120

creation of an external archive to promote elitism are examples of mecha-
nisms that frequently appear in MOEAs (Konak et al., 2006). Algorithm 1
shows how these elements are integrated in the general structure of a MOEA.
Furthermore, given that they worked well in MOEAs and were not depen-
dent on how the algorithm creates or modifies solutions, they were subse-125

quently adopted by other metaheuristics (Coello Coello et al., 2007). For
instance, multi-objective PSO includes a sort of mutation, named turbu-
lence, to promote diversity, and the set of leaders, i.e. the best particles,
are selected according to dominance principles and kept within an external
archive (M. Reyes-Sierra, 2006).130

In the last years, researchers have stressed the need of applying meta-

5

heuristics to solve many-objective problems, a term commonly accepted in
the literature for those having 4 or more objectives (Zhou et al., 2011; von
Lücken et al., 2014). First attempts to address MaOPs were focused on
adapting already existing evolutionary algorithms for MOPs (Adra and Flem-135

ing, 2011). However, other specific mechanisms have appeared more recently,
such as the use of indicators or reference points to guide the search (Li et al.,
2015). At present, many-objective approaches—originally integrated into
EAs—can be found in conjunction with other metaheuristics like ant colony
optimization (Falcón-Cardona and Coello Coello, 2017), bee colony optimiza-140

tion (Luo et al., 2017) or PSO (Figueiredo et al., 2016).
The extensive application of metaheuristics to real-world complex prob-

lems is also reflected in the area of engineering. The intrinsic characteristics
of these problems, which are affected by multiple decision factors and con-
straints and may require time-consuming simulations to evaluate solutions,145

make MOEAs specially appealing (Zhou et al., 2011). Other paradigms are
beginning to draw more attention in the last years. For instance, Zavala
et al. (Zavala et al., 2016) conducted a comparative study of several multi-
objective metaheuristics to improve the design of cable-stayed bridges. Sim-
ilarly, examples of the use of many-objective metaheuristics for aiding en-150

gineers in a variety of areas can be found in the literature, such as vehi-
cle control systems (Cheng et al., 2017) (7 objectives) or the design of air-
foils (López-Jaimes and Coello Coello, 2014) (6 objectives). A PSO algorithm
was also proposed for this latter domain with 5 objectives (Wickramasinghe
et al., 2010), as well as for the balance of risk and performance objectives in155

wind-sensitive structures (Li and Hu, 2014).
Despite their wide popularity in academic environments, engineers from

an industrial context could find difficult to work with metaheuristics with-
out any kind of tool support. To mitigate the skill gap, MOFs can act as a
bridge between the research in the field of optimization and its adaptation to160

the needs of the engineering industry. Notice that metaheuristic optimiza-
tion frameworks do not only provide most of the components taking part
in the search algorithm, i.e. solution encodings, operators, selection mech-
anisms and iterative processes, but they also provide the required support
to create experiments, monitor their execution and report outcomes (Parejo165

et al., 2012). MOFs are specially well-suited for non-expert users, thus fa-
cilitating the selection and customization of components, mainly with the
challenges to come with the increasing complexity and number of objectives
being considered.

6

MOFs are also valuable suites for developing and verifying new propos-170

als. Their modularity make code more reusable and, consequently, the re-
quired development and testing efforts can be reduced. However, MOFs
need to maintain a modular design, provide clear guidelines and promote
extensibility. These aspects are significantly more relevant for multi- and
many-objective metaheuristics, since each paradigm may propose its own175

procedure to conduct search, while they could still use the same mechanisms
to deal with MOPs and MaOPs.

3. Related work

In recent years, the number of available MOFs has grown, possibly moti-
vated by the existence of different audiences with particular purposes. Parejo180

et. al (Parejo et al., 2012) compared a selected group of frameworks and
evaluated their characteristics, specially those referred to the diversity of
techniques, their level of customization and the quality of the documenta-
tion. However, the potential to address MOPs was barely considered, as it
was mostly focused on the availability of certain algorithms proposed in early185

2000s. In this section, we firstly present an updated list of general-purpose
frameworks including some kind of support for MOO. Next, a more detailed
analysis of MOFs specially for MOO is discussed.

3.1. General-purpose MOFs

Table 1 categorizes the best-known general-purpose frameworks with re-190

spect to the following aspects: the list of supported metaheuristic paradigms,
either for single- or multi-objective optimization (or both); types of encoding
available, what also serves to a certain extent to demonstrate the variety of
problems that they could address; the way in which optimization problems
are defined (to be minimized or maximized, with or without constrains);195

the specific multi-objective algorithms currently supported; the set of multi-
objective benchmarks and the collection of assessment metrics, a.k.a. quality
indicators.

Firstly, ECJ is a well-known Java-based research system for evolution-
ary computation (White, 2012; Luke, 2017), for which the different steps of200

MOEAs, i.e. selection, evaluation and replacement, are implemented sepa-
rately from the rest of the search process established in the breeding pipeline.
This highly modular design was followed to deploy the two MOEAs provided,
SPEA2 and NSGA-II (Coello Coello et al., 2007), whose performance can be

7

Table 1: Summary of the characteristics of general-purpose MOFs

Characteristic ECJ v25 (2017)
HeuristicLab
v3.3.15 (2018)

EvA v2.2 (2015)

Metaheuristics
DE, EDA, ES, GA,

GE, GP, PSO

ES, GA, GE, GP, LS,
PSO, SS, TS, SA,

VNS

DE, EP, ES, GA, GP,
HC, PSO, SS, SA

Encodings
binary, integer, real,

tree
binary, integer, real,

tree
binary, integer, real,

tree
Optimization
problems

c/u, min/max u, min/max c/u, min

MOO
algorithms

NSGA-II, SPEA2
MO-CMAES,
NSGA-II

MO-CMAES,
MOGA, NSGA,
NSGA-II, PESA,
PESA-II, Random
Weight GA, SPEA,
SPEA2, VEGA

MOO
benchmarks

Fons.&Flem.,
Kursawe, Poloni,
Quagli.&Vicini,

Schaffer, Sphere, ZDT

Fonseca, Kursawe,
Schaffer, DTLZ, ZDT

TF

Quality
indicators

GD, HV, Spacing
ER, GD, HV, Max.
PF error, ONVG

Characteristic
Opt4J v3.1.4

(2015)
PaGMO v2.6

(2017)
JCLEC v4 (2014)

Metaheuristics DE, GA, PSO, SA
ABC, DE, ES, GA,

PSO, SA
GA, GP

Encodings binary, integer, real integer, real, mixed
binary, integer, real,

tree
Optimization
problems

c/u, min/max c/u, min min/max

MOO
algorithms

NSGA-II, SPEA2,
SMS-EMOA,
OMOPSO

MOEA/D, NSGA-II NSGA-II, SPEA2

MOO
benchmarks

DTLZ, Knapsack,
LOTZ, Queens,
WFG, ZDT

DTLZ, ZDT

Quality
indicators

HV HV

ABC: artificial bee colony, DE: differential evolution, EDA: estimation of distribution algorithms

EP: evolutionary programming, ES: evolution strategy, GA: genetic algorithm

GE: grammatical evolution, GP: genetic programming, HC: hill climbing, LS: local search

SS: scatter search, SA: simulated annealing, TS: tabu search, VNS: variable neighborhood search

c: constrained, u: unconstrained, min: minimization, max: maximization

assessed against a variety of test functions. On the other hand, developed205

in C# for Microsoft .NET, HeuristicLab (Elyasaf and Sipper, 2014; Wagner

8

et al., 2014) provides a fully functional environment with a user graphical
interface to run diverse optimization algorithms, enabling the representation
and evaluation of MOPs. Additionally, some benchmarks have been also in-
cluded. Analogously to ECJ, only two MOEAs are available, which have the210

same structure than any single-objective algorithm.
Other general-purpose Java libraries have also gain attention for dealing

with MOO requirements, being able to facilitate a modular design of these
algorithms. For instance, MOEAs in EvA (Kronfeld et al., 2010) are declared
from a generic class, named MultiObjectiveEA, which has to be configured215

jointly with an optimization strategy, an archiver and an information retrieval
strategy. The last two elements are defined by the specific MOO approach,
providing up to 10 different MOEAs (see Table 1). This suite has also the
most complete catalog of quality indicators, but just one benchmark for
tests. On the other hand, Opt4J (Lukasiewycz et al., 2011) includes multi-220

objective implementations for EAs and PSO. These approaches are developed
on the basis that the selection and replacement steps are both defined by the
interface Selector. In Opt4J, selectors are viewed as configurable elements of
an optimizer that separately control the rest of the search. This suite also
includes implementations of popular benchmarks, for both continuous and225

combinatorial tests.
Likewise, PaGMO/PyGMO (Biscani et al., 2010; Izzo, 2012) is a C++/

Python platform that provides the necessary support to build parallel global
optimization algorithms. Two MOEAs are currently available, though they
apparently suffer from a lack of customization capacity since the definition of230

genetic operators is embedded within the algorithm itself. Finally, JCLEC is
a highly modular framework for evolutionary computation written in Java.
Like most of these frameworks, the current version of JCLEC is mostly con-
ceived to address single-objective optimization problems, even when it imple-
ments the two most usual MOEAs. Nevertheless, one key factor of JCLEC235

is its extensibility, as its core elements are independent of each other, defined
at a high level of abstraction, and the interface and object specification is
clear and well structured. Hence, it does not only provide an appropriate sta-
ble platform to build new MOO functionalities, but also offer the flexibility
required to integrate new metaheuristics.240

3.2. MOO-specific MOFs

Table 2 shows the most popular frameworks specifically oriented to the
resolution of MOPs. It is worth remarking that, in this case, algorithms,

9

Table 2: Summary of MOO-specific MOFs and their characteristics

Characteristic PISA (2009)
ParadisEO-MOEO v2.0.1

(2012)

Metaheuristics ES, GA
HC, ILS, GA, PSO, SA, TS,

VNS
Encodings binary, real binary, integer, real

Optimization
problems

u, min u, min/max

MOO
algorithms

ϵ-MOEA, FEMO, HypE, IBEA,
MSOPS, NSGA-II, SEMO2,

SHV, SPAM, SPEA2

DMLS, IBEA, IBMOLS,
MOGA, NSGA, NSGA-II, PLS,

SEEA, SPEA2

MOO
benchmarks

BBV, DTLZ, Knapsack,
MLOTZ, WFG

Schaffer and external
contributions (DTLZ, Flowshop,

WFG, ZDT)
Quality
indicators

Iϵ, Iϵ+, HV, R2, R3 Iϵ+, contribution, HV

Characteristic jMetal v5.4 (2017)
MOEA Framework v2.12

(2017)

Metaheuristics
CE, CRO, DE, ES, GA, LS,

PSO, SS
DE, ES, GA, GP, GE, PSO

Encodings binary, integer, real, mixed binary, integer, real, tree
Optimization
problems

c/u, min c/u, min

MOO
algorithms

AbYSS, CellDE, dMOPSO,
GDE3, GWASF-GA, IBEA,

MOCell, MOEA/D, MOEADD,
MOCHC, MOMBI, MOMBI-II,
NSGA-II, NSGA-III, OMOPSO,

PAES, PESA2, R-NSGA2,
SMPSO, SMS-EMOA, SPEA2,

WASF-GA

DBEA, ϵ-MOEA, GDE3, IBEA,
MO-CMAES, MOEA/D,

MSOPS, NSGA-II, NSGA-III,
OMOPSO, PAES, PESA2,

RVEA, SMS-EMOA, SMPSO,
SPEA2, VEGA

MOO
benchmarks

CDTLZ, CEC’09, DTLZ,
Fonseca&Fleming, GLT,

Kursawe, LGZ, LZ, Schaffer,
TSP, WFG, ZDT, among others

CDTLZ, CEC’09, DTLZ,
Fonseca&Fleming, GLT,

Knapsack, Kursawe, LOTZ, LZ,
Poloni, Schaffer, WFG, ZDT,

among others

Quality
indicators

Iϵ, ER, ∆S, GD, HV, IGD,
IGD+, R2, spread, two set

coverage

Iϵ+, contribution, GD, HV, IGD,
max. PF error, R1, R2, R3,
spacing, two set coverage

CE: cellular algorithms, CRO: coral reefs optimization, ILS: iterated local search

benchmarks and quality indicators acquire more importance.
PISA and ParadisEO-MOEO could be considered the two first attempts245

10

to provide specific suites for MOO. Even though both projects were updated
for the last time several years ago, they laid some foundations for future
proposals. On the one hand, PISA (Bleuler et al., 2003) was conceived as a
language-independent platform based on file interchangeability, where a mon-
itor is in charge of connecting the algorithm, named selector, to a variator250

used to define all the domain-specific elements. On the other hand, Par-
adisEO is a multi-purpose MOF, developed in C++, with a specific module
for MOO (Liefooghe et al., 2011). This suite proposed an interesting concep-
tual model for an algorithm, in which the fitness assignment, the selection
method and the replacement strategy are independent to promote modular-255

ity. This model has been implemented by popular evolutionary algorithms
like NSGA-II and SPEA2, as well as some other in-house developments of
local search methods (DMLS, IBMOLS and PLS).

jMetal (Durillo and Nebro, 2011; Nebro et al., 2015) is the first Java
framework specifically conceived for MOO, and still one of the most active260

projects nowadays. This suite consists of a library that provides a large
number of multi-objective algorithms based on different metaheuristic tech-
niques, including different types of evolutionary algorithms, such as DE, SS
and GA, and PSO. Internally, two abstract classes, namely AbstractEvo-
lutionaryAlgorithm and AbstractParticleSwarmOptimisation, decompose the265

corresponding iterative process into different steps. It is worth noting that
jMetal does not explicitly separate the metaheuristic model from its specific
adaptations for MOO. Next to this, MOEA Framework (Hadka, 2017) is an-
other Java-based suite that combines highly-modular native implementations
(see Table 2) with the possibility of running other non-native algorithms from270

PISA and a former version of jMetal. Consequently, the resulting catalog of
algorithms is most extensive among the MOO-based alternatives. Never-
theless, it should be considered that each algorithm may present a different
structure and level of customization, what also occurs with native imple-
mentations of EAs and PSO algorithms. The collection of benchmarks and275

quality indicators provided by both frameworks is particularly extensive, as
shown in Table 2.

4. Architecture of JCLEC-MO

On the basis of the lessons learned from existing MOFs, this section intro-
duces the identified design principles and construction guidelines for JCLEC-280

MO. More specifically, Table 3 collects the principles to be applied, with a

11

Figure 1: Overall module organization of JCLEC-MO

clear focus on the resolution of user-defined problems, a correctly structured
modularization and the independence between components in order to pro-
mote extensibility and usability. Other aspects like integration facilities and
external access to analytical functionalities also require precise specifications.285

As a suite, JCLEC-MO is built on top of the framework JCLEC, as
a way to integrate and reuse ground elements. Nevertheless, JCLEC-MO
still keeps its own identity by proposing a new architecture to comply with
the expected MOO-specific requirements. Following the precepts of software
design, Figure 1 displays the overall organization of JCLEC-MO, in terms290

of its core components and their mutual interactions. Dashed lines state for
external libraries, and the shaded box contains those modules demanding
some user-provided code.

As can be seen, the framework is made up of three main elements. Firstly,
JCLEC-MO is the largest module, in charge of implementing MOO-specific295

functionalities, including the algorithms for MOO. Internally, the block ex-
periments is responsible for connecting the rest of components in this layer,
as well as controlling the execution of algorithms by operating on the con-
figuration and running capabilities of JCLEC. The domain-specific elements

12

Table 3: Design principles of JCLEC-MO

Design principle Description

Generality preservation Generality principles for this kind of software (Gagné and
Parizeau, 2006; Ventura et al., 2008) should be preserved.
Any design decision has been made according to the precepts
of best practices of software engineering, e.g. use of design
patterns, as a way to guarantee modularity and extensibility.
Extension mechanisms have also been clearly specified.

Design extensibility With the aim of promoting adaptability, scalability and
reusability among different metaheuristics, there should be
a clear distinction between the core elements of the meta-
heuristic models and those parts specifically adapted to the
resolution of MOPs and MaOPs.

Updated availability A competitive collection of well-known multi- and many-
objective algorithms based on EAs and PSO is desirable.
With adequate specifications and mechanisms for extensi-
bility and modularity, end-users should be able to easily en-
large the collection by themselves.

Independence of prob-
lem definition

Algorithms should be modular enough to work with the min-
imal set of restrictions concerning the number and mathe-
matical formulation of objectives, the solution encoding and
the presence of constraints.

Domain adaptability The configuration of domain-specific elements referred to the
optimization problem should be assumable, either for those
selected from the catalog of elements provided by the frame-
work or for those provided by third-parties as external con-
tributions.

Batch processing and
parallel evaluation

Experiments should be defined as a sequence of processes,
automatically executed, where solutions could be evaluated
in parallel.

Experimental support Flexible and understandable mechanisms for configuring
experiments, reporting capabilities and outputs should be
available, as well as the collection of usual benchmarks and
quality indicators.

Interoperability and
standardization

Design decisions should ensure the interoperability between
procedures and tools provided by third-parties, such as al-
gorithms or analytical tools, as well as the compliance with
standards related to data formats and communication inter-
faces.

13

conceived to solve an optimization problem, i.e. objective functions or new300

operators, need to be externally defined by the end-user. To this end, a clear
specification of interfaces and abstract classes is provided as a reference. Fur-
thermore, other general utilities enable a more rapid development and testing
of new algorithms by encapsulating basic operations in the multi-objective
space and making benchmarks available.305

Secondly, JCLEC+ is an extension of JCLEC, specially conceived and de-
veloped to serve as a bridge between JCLEC and JCLEC-MO. This module
provides basic mechanisms to run experiments and define the specific search
components for each metaheuristic. Apart from the adaptation required for
integration purposes, JCLEC+ enables the independence between the foun-310

dations underlying each metaheuristic paradigm and those parts that may
require some specific adaptation to deal with MOPs and MaOPs. JCLEC+
also implements a module to work with PSO, but its specification provides
extension mechanisms to easily incorporate new sorts of metaheuristics in
the future.315

Finally, it is noteworthy that external interactions are permitted with the
aim of integrating external analytical tools like datapro4j1, a Java library for
data processing, or R2, a well-known programming language for statistical
analysis. For instance, the module Reporting within JCLEC-MO makes use
of datapro4j to generate reports in different ways and formats. Additionally,320

R can be used to perform an in-depth analysis of either the obtained PF
approximation or quality indicators by simply importing CSV files.

5. Software modules

On the basis of the architecture explained above, this section augments
the discussion on the main classes and interfaces that constitute the speci-325

fication of JCLEC-MO. In more detail, Figure 2 depicts the class diagram
specifying the concrete design elements and their relationships. Abstract
classes are written in italics and extension points are identified by the stereo-
type ≪extension point≫. Elements related to the implementation of multi-
objective algorithms are explained at first, followed by those referring to the330

problem definition and the utilities provided for experimentation, validation
and reporting.

1http://www.uco.es/grupos/kdis/datapro4j
2http://www.r-project.org/

14

http://www.uco.es/grupos/kdis/datapro4j
http://www.r-project.org/

Figure 2: JCLEC-MO main classes and interfaces

5.1. Algorithms

Design extensibility and updated availability (see Table 3) are two rele-
vant design principles well formalized in the implementation of multi- and335

many-objective algorithms in JCLEC-MO. To this end, an explicit distinc-
tion is made between phases of the iterative process defined by a concrete
metaheuristic, namely algorithm, and the specific steps requiring some adap-
tation to deal with MOPs and MaOPs, referred as multi-objective strategy.
It is noteworthy that algorithms have common characteristics regarding the340

way in which solutions are handled. Similarly, strategies can be reused across

15

different algorithms, and new multi-objective approaches can be incorporated
by simply coding the steps as determined by the strategy.

Within the module algorithms, the interface IMOAlgorithm declares the
common operations to be implemented by every multi-objective algorithm,345

independently of its metaheuristic model. There are currently two classes
implementing this interface. Firstly, MOECAlgorithm encapsulates the iter-
ative process performed by algorithms based on evolutionary computation.
This is an abstract class, so it is specialized to provide different types of evolu-
tionary algorithms like genetic algorithms or genetic programming (Boussäıd350

et al., 2013). Secondly, the abstract class MOPSOAlgorithm is in charge
of adapting the PSO paradigm to MOO. Other metaheuristic models can
be similarly incorporated, what easily benefits extensibility and reusability
of code. On the other hand, multi-objective strategies are represented by
the abstract class MOStrategy. Based on the so-called Strategy design pat-355

tern (Gamma et al., 2013), this class specifies the steps of the MOO approach,
allowing its combination with any current or future sort of algorithm. Anal-
ogously, MOPSOStrategy is specifically devoted to include the steps followed
by multi-objective PSO.

For a more precise description, Figure 3 shows collaborations between360

algorithms and strategies, where text in italics stands for abstract methods.
Interactions are depicted for both MOEAs (see Figure 3a) and PSO (see
Figure 3b). For instance, focusing on the search conducted by MOEAs,
method invocation and return is performed as follows:

1. Initialization. The algorithm creates the initial population according to365

the selected encoding and problem characteristics. Next, the strategy
is invoked to create the initial archive, if required.

2. Parent selection. The algorithm delegates this step to the strategy,
where parents are selected considering both the population and archive.
To this end, the strategy invokes fitnessAssignment() to execute its own370

evaluation mechanism.

3. Offspring generation. The algorithm executes the genetic operators.

4. Replacement. The algorithm asks the strategy to proceed with the
selection of survivors, which are picked from the current population,
the offspring and the archive altogether. The strategy may invoke a375

quality evaluation mechanism to complete this step, if required.

5. Population update. Survivors constitute the new population, and the
algorithm asks the strategy to update the archive.

16

(a) MOEAs

(b) MOPSO

Figure 3: Collaboration between algorithms and strategies

6. Stop criteria. The algorithm checks whether every stop condition is
satisfied, such as the maximum number of generations or evaluations,380

the existence of a solution with an admissible fitness value, or any other
user-defined criterion.

17

Notice that a collaboration schema with a number of common steps is pro-
posed for multi-objective PSO, in compliance with design principles, promot-
ing code understandability and reusability. Other collaborations between al-385

gorithm and strategy in PSO respond to the particularities of multi-objective
PSO proposals. For instance, the algorithm delegates the movement of par-
ticles and the execution of the variation mechanism to the strategy, as shown
in Figure 3b.

In the current version, JCLEC-MO includes an implementation for each390

of the following types of EAs: genetic algorithm (with or without muta-
tion), evolution strategy, genetic programming and evolutionary program-
ming. Regarding PSO, a standard algorithm with a turbulence mechanism
is implemented as a subclass of MOPSOAlgorithm. Furthermore, the frame-
work provides an extensive collection of representative strategies belonging395

to diverse families of approaches (Wagner et al., 2007; Li et al., 2015). Ta-
ble 4 shows the list of available strategies, including information about the
sort of MOO approach and the year of publication. All these strategies are
also adapted to deal with constrained problems.

5.2. Problem-specific elements400

Solving real-world optimization problems may require coding problem-
specific elements, as provided by modules EA and PSO within JCLEC+.
They include classes to represent and modify solutions. Additionally, the
module problem of JCLEC-MO accepts user-provided code to evaluate their
quality and specialize the solution encoding, if needed.405

Notice that solutions in JCLEC-MO can be represented using all the avail-
able encodings in JCLEC (Ventura et al., 2008), including binary, integer,
real or tree structures. Existing genetic operators can manage all these types
of encodings, offering a great variety of combinations to be chosen. Addi-
tionally, a specialization of the real encoding enclosing velocity and memory410

properties to represent particles is provided by the module PSO. All these
elements serve to guarantee domain adaptability.

On the other hand, objective functions should be defined as an extension
of the Objective class. An evaluation method has to be coded in order to com-
pute the objective value for a given solution, as well as to specify the limits415

of the function and indicate whether it should be minimized or maximized.
JCLEC-MO provides an explicit mechanism to include constraints as part

of a generic problem definition. With this aim, the IConstrained interface

18

Table 4: Available multi-objective and many-objective strategies

Algorithm Acronym Year
Based on Pareto dominance
Pareto Archived Evolution Strategy PAES 2000
Strength Pareto Evolutionary Algorithm SPEA2 2001
Non-dominated Sorting Genetic Algorithm II NSGA-II 2002
Multi-Objective CHC Algorithm MOCHC 2007
Based on landscape partition
ϵ Multi-Objective Evolutionary Algorithm ϵ-MOEA 2002
Grid-based Evolutionary Algorithm GrEA 2013
Based on indicators
Indicator Based Evolutionary Algorithm IBEA 2004
S Metric Selection Evol. Multi-Objective Algorithm SMS-EMOA 2007
Hypervolume Estimation Algorithm HypE 2011
Based on decomposition
Multi-Objective Evol. Alg. based on Decomposition MOEA/D 2007
Based on reference points
Non-dominated Sorting Genetic Algorithm III NSGA-III 2014
Reference Vector-guided Evolutionary Algorithm RVEA 2016
Based on preferences
Preference-based adaptive region of interest PAR 2016
PSO algorithms
Multi-Objective Particle Swarm Optimizer OMOPSO 2005
Speed-constrained Multi-objective PSO SMPSO 2009

should be implemented by a class representing candidate solutions of a con-
strained problem. Other participants of the search process like evaluators and420

strategies can access the information about the solution feasibility by calling
its methods isFeasible() and degreeOfInfeasibility(), which specify whether
a solution is feasible or not and the overall degree of constraints violation,
respectively.

5.3. Experiments425

The evaluation of solutions is carried out as a separate step, properly con-
trolled by the so-called Evaluator class. IMOEvaluator interface within the

19

module experiments declares the list of operations that any evaluator should
provide to an algorithm when solving either a MOP or a MaOP. JCLEC-MO
provides two classes aimed at evaluating solutions either sequentially (MO-430

Evaluator) or in parallel (MOParallelEvaluator), depending on preferences.
These classes handle the set of objective functions implemented for the spe-
cific problem, iteratively invoking them in order to get all the objective values
for a given solution.

Regardless of the type of evaluator, objective values are always encapsu-435

lated within MOFitness class, which conveniently allows assigning a single
quality value to a solution, as some multi-objective algorithms like SPEA2
and IBEA do (Zhou et al., 2011). In contrast, other algorithms compute
additional properties to make further comparisons, such as the crowding dis-
tance in NSGA-II (Coello Coello et al., 2007). JCLEC-MO defines subclasses440

that extend MOFitness to allow these properties to be part of the fitness ob-
ject. According to the Prototype design pattern, the evaluator will create
fitness objects from one given prototypical object defined by the strategy.
This process guarantees the independence of the different search components
and enhances extensibility of the existing algorithms.445

Once all the components of an algorithm have been defined or selected
among those available, JCLEC-MO will proceed with its configuration and
execution. Notice that search algorithms are comprised of several elements
that might require parameters, which should be properly configured and
tuned. In addition, since randomness is present in these algorithms, good450

practices recommend accurately assessing their performance by executing
them several times and then aggregating the obtained results. JCLEC-MO
includes diverse tools aimed at facilitating this task and putting all the pieces
together, what is commonly referred as an experiment. Within the exper-
iments module, an experiment is represented by the MOExperiment class.455

It aggregates a set of algorithm configurations, i.e. components and their
parametrization, to be deployed and executed by the MOExperimentRun-
ner class. Then, a sequence of post-processing steps could be specified to
perform a detailed analysis considering one of more experiments. Following
the precepts of the Chain of responsibility design pattern (Gamma et al.,460

2013), each individual post-processing task is defined as a separate class that
extends a general handler named MOExperimentHandler. These handlers
are then connected to determine the ordered sequence of steps required by
the post-processing flow, depending on each specific case. The generation
of R plots and the application of statistical tests are examples of the func-465

20

Table 5: Available quality indicators

Unary indicators
Overall non-dominated vector generation (ONVG)
Hypervolume (HV) Spacing
Binary indicators
Epsilon (Iϵ) Additive epsilon (Iϵ+)
Spread (S) Generalized Spread (∆S)
Generational distance (GD) Inverted generational distance (IGD)
Error ratio (ER) Maximum PF error (ME)
Hyperarea ratio (HR) Two set coverage
R2 R3
Non-dominated vector addition (NV A) ONV G ratio
Ternary indicators
Relative progress

tionalities currently available. In the latter case, JCLEC-MO handlers can
make use of the wrappers available in datapro4j to execute either parametric,
e.g. Anova or t-test, or non-parametric tests, e.g. Wilcoxon, Friedman or
Kruskal-Wallis. On the other hand, the engineer could also define his/her
own analytical procedure as a R script to be directly executed from the470

framework.

5.4. Quality indicators and reporters

The indicators module includes the abstract definition of a performance
measure (Indicator class), which can be specialized into unary, binary and
ternary indicators, depending on the number of PFs in which they oper-475

ate. The complete list of indicators is shown in Table 5. Quality indicators
can be reported at a user-defined frequency during or after the search. In
addition, the reporting module provides a collection of classes to generate dif-
ferent types of reports, they all inherited from MOReporter class. It is worth
observing that reporters also provide access to the set of non-dominated so-480

lutions and the corresponding PF.

5.5. Utilities

JCLEC-MO provides additional types of low-level utilities and construc-
tors that enable saving development time and reducing the required effort:

21

• Commands are recurrent operations like objective transformations and485

sorting methods involving the whole population. Based on the so-
called Command design pattern (Gamma et al., 2013), they are prop-
erly implemented as highly configurable classes that could be called
from strategies and reporters.

• Along the search process, strategies may need to perform comparisons490

between solutions. With this aim, two different categories of com-
parators are implemented: MOFitnessComparator receives two fitness
objects to make the comparison, whereas MOSolutionComparator con-
siders complete solutions by setting a primary criterion (e.g., feasibil-
ity) to decide which solution would be preferred. If both solutions are495

equivalent, the result would depend on the comparator at the fitness
level.

• Diversity preservation mechanisms are frequently based on comput-
ing distances between solutions within the objective space. JCLEC-
MO provides different implementations for IDistance interface, adopted500

from JCLEC, that compute both the euclidean and Manhattan dis-
tances.

• MOFs usually provide benchmarks to facilitate the comparison of new
proposals against the state-of-the-art. They can also be used to run
and test algorithms or as code templates for addressing new MOPs,505

which can be helpful for less experienced users of the suite. At least
one benchmark is provided per type of encoding: the knapsack problem
(binary), the traveling salesman problem (integer), the DTLZ and ZDT
families (real) (Coello Coello et al., 2007), and a symbolic regression
problem (tree). The availability of benchmarks could be easily extended510

too.

6. An illustrative running example

JCLEC-MO enables engineers to integrate optimization approaches in
their industrial applications in just a few simple steps. In this section, the
resolution of a water resource management problem is presented as a case515

study. It is addressed from a many-objective perspective, and its represen-
tation, coding and configuration is explained below, as well as the way in
which outcomes are subsequently processed and analyzed.

22

6.1. Problem representation

The Water Resource Management (WRM) problem (Ray et al., 2001)520

consists in finding the optimal planning for a drainage system. This real-
world problem, for which the performance of many-objective algorithms has
been already reported (Deb and Jain, 2014; Asafuddoula et al., 2015), is
defined in terms of three decision variables: local detention storage capacity
(x1 ∈ [0.01, 0.45]), maximum treatment rate (x2 ∈ [0.01, 0.10]) and maximum525

allowable overflow rate (x3 ∈ [0.01, 0.10]). Five objective functions, which are
conceived to be minimized, compute the following aspects: drainage network
cost (f1), storage facility cost (f2), treatment facility cost (f3), expected
flood damage cost (f4) and expected economic loss due to flood (f5). They
are properly defined as follows:530

f1(x) = 106780.37 · (x2 + x3) + 61704.67 (1)

f2(x) = 3000.00 · x1 (2)

f3(x) = 30570.00 · 0.02289 · x2/(0.06 · 2289.0)0.65 (3)

f4(x) = 250.00 · 2289.00 · e−39.75·x2+9.90·x3+2.74 (4)

f5(x) = 25.00 · (1.39/(x1 · x2)) + 4940.0 · x3 + 2.74 (5)

In addition, the WRM problem presents the following seven constraints
(a more detailed description of the problem can be found in (Ray et al.,
2001)):

g1(x) = 0.00139/(x1 · x2) + 4.94 · x3 − 0.08 ≤ 1 (6)

g2(x) = 0.000306/(x1 · x2) + 1.082 · x3 − 0.0986 ≤ 1 (7)

g3(x) = 12.307/(x1 · x2) + 49408.24 · x3 + 4051.02 ≤ 50000 (8)

g4(x) = 2.098/(x1 · x2) + 8046.33 · x3 − 696.71 ≤ 16000 (9)

g5(x) = 2.138/(x1 · x2) + 7883.39 · x3 − 705.04 ≤ 10000 (10)

g6(x) = 0.417/(x1 · x2) + 1721.26 · x3 − 136.54 ≤ 2000 (11)

g7(x) = 0.164/(x1 · x2) + 631.13 · x3 − 54.48 ≤ 550 (12)

6.2. Translating the problem into code in JCLEC-MO

Firstly, JCLEC-MO requires some problem-specific elements to be defined535

and implemented: (a) the type of encoding representing candidate solutions,

23

(b) the objective functions and (c) the evaluator of solutions. Because of
the highly modular design of the framework, all these elements should be
implemented only once, since they can be easily combined with the rest of
classes of JCLEC-MO if other different algorithms want to be tested. Thus,540

engineers can find a competitive algorithm with just a few lines of codes and
a lightweight configuration process.

For the problem being addressed, a real encoding has been selected, which
perfectly allows the application of both EAs and PSO and opens up the possi-
bility of choosing from a variety of compatible genetic operators provided by545

the framework. Additionally, the WRM problem presents several constraints
to be considered. As explained in Section 4, JCLEC+ provides the base
implementation of a PSO solution, named Particle, which is actually a spe-
cialization of RealArrayIndividual class. In addition, since it is a constrained
problem, this class should implement IConstrained interface, as illustrated550

in Listing 1.

1public class WRMSolution extends Particle implements IConstrained {
2boolean isFeasible; /∗∗ The solution is feasible ∗/
3double degreeOfInfeasibility; /∗∗ The degree of infeasibility ∗/555

4...
5}

Listing 1: Solution encoding for the WRM problem

Next, objective functions are developed as a specialization of Objective.
As an example, the code required to implement f1 is shown in Listing 2,560

where x2 and x3 are extracted from the array encoding decision variables,
i.e. the genotype for EAs or the particle position in PSO (lines 3-5).Then,
the current value for the function (line 6) is computed, and the fitness object
returned (lines 7-8).

565
1public class F1 extends Objective {
2public IFitness evaluate(IIndividual solution) {
3double [] genotype = ((RealArrayIndividual)solution).getGenotype();
4double x2 = genotype[1];
5double x3 = genotype[2];570

6double objectiveValue = 106780.37 ∗ (x2 + x3) + 61704.67;
7IFitness fitness = new SimpleValueFitness(objectiveValue);
8return fitness;
9}
10}575

Listing 2: Evaluation of the first objective of the WRM problem

As part of the evaluation process, a subclass of MOEvaluator checks
whether the constraints are met. For illustrative purposes here, the evaluator

24

only accumulates the degree of violation of each constraint. As shown in
Listing 3, all constraints are checked (lines 5-13) right after evaluating all580

objectives, what is actually performed by invoking the super object (line 4).
Finally, the decision about the solution feasibility is made (lines 14-19).

1public class WRMEvaluator extends MOEvaluator {
2protected void evaluate(IIndividual solution) {585

3// Call super implementation (evaluate objective functions)
4super.evaluate(solution);
5// Check constraints
6double [] genotype = ((RealArrayIndividual)solution).getGenotype();
7double x1 = genotype[0], x2 = genotype[1], x3 = genotype[2];590

8double [] g = new double[7];
9g [0] = (0.00139/(x1∗x2)+4.94∗x3−0.08) − 1; // g1 constraint function
10... // Rest of constraints
11double total = 0.0;
12for(int i=0; i<7; i++) // Compute the degree of constraint violation595

13if (g[i] > 0) total += g[i];
14if (total > 0){ // Infeasible solution
15((IConstrained)solution). setFeasible (false) ;
16((IConstrained)solution). setDegreeOfInfeasibility (total) ;
17} else // Feasible solution600

18((IConstrained)solution). setFeasible (true);
19}

Listing 3: Evaluator for the WRM problem

6.3. Configuration and execution

In real-world applications, it may be extremely difficult for the engineer to605

know beforehand which algorithm is the most appropriate to address a given
problem like WRM. In fact, it is likely that engineers might not be confident
about neither the metaheuristic that best suits the problem nor its specific
parametrization. In this context, given that the suite provides flexible and
highly-customized implementations, conducting a comparison of the perfor-610

mance of different alternatives becomes easy and convenient. For the WRM
problem under study, four algorithms will be applied and compared, that
is, three many-objective evolutionary algorithms (GrEA, HypE and NSGA-
III) and one PSO approach (SMPSO). Although the latter was originally
proposed as a multi-objective approach, it is founded on the ϵ-dominance615

principle, which is frequently used in many-objective optimization.
Following the JCLEC philosophy, in JCLEC-MO each algorithm is set up

in terms of a XML-based configuration file (see Listing 4). It contains values
of both general parameters, such as the population size and the number of
generations (lines 14-15), and other specific elements requiring the injection620

of external code, such as the aforementioned objective functions (lines 7-10).

25

Notice that the metaheuristic algorithm (line 2) is independent of the multi-
objective strategy (line 3), whose parameters should be also configured (line
4). Genetic operators can be chosen from those available in JCLEC (Ventura
et al., 2008). In this example, BLX-α crossover (line 12) and polynomial625

mutation (line 13) have been chosen, and probabilities are configured too.
Next, a list of random seeds is provided to perform independent runs of the
method (lines 16-19). Finally, a number of reporters can be configured to save
outcomes for further processing. For this experiment, two different reporters
are selected: MOParetoFrontReporter is provided to store the PF (lines 20-630

22), and MOComparisonReporter serves to compute two unary indicators
(lines 23-31), namely hypervolume and spacing.

1<experiment>
2<process algorithm−type=‘‘net.sf.jclec.mo.algorithm.MOGeneticAlgorithm”>635

3<mo−strategy type=‘‘net.sf.jclec.mo.strategy.constrained.ConstrainedHypE” >
4<sampling−size>10000</sampling−size>
5</mo−strategy>
6<evaluator type=‘‘net.sf . jclec .mo.problem.wrm.WRMEvaluator”>
7<objectives>640

8<objective type=‘‘net.sf . jclec .mo.problem.wrm.F1” maximize=‘‘false”/>
9...
10</objectives>
11</evaluator>
12<recombinator type=‘‘net.sf.jclec . realarray . rec .BLXAlphaCrossover2x2” rec−prob=‘‘0.9” />645

13<mutator type=‘‘net.sf.jclec . realarray .mut.PolynomialMutator” mut−prob=‘‘0.15” />
14<population−size>100</population−size>
15<max−of−generations>500</max−of−generations>
16<rand−gen−factory multi=‘‘true”>
17<rand−gen−factory type=‘‘net.sf.jclec.util .random.RanecuFactory” seed=‘‘123456789”/>650

18<rand−gen−factory type=‘‘net.sf.jclec.util .random.RanecuFactory” seed=‘‘234567891”/>
19...
20</rand−gen−factory>
21<listener type=‘‘net. sf . jclec .mo.listener .MOParetoFrontReporter”>
22<report−title>WRMExperiment</report−title>655

23</listener>
24<listener type=”net.sf. jclec .mo.listener .MOComparisonReporter”>
25<report−title>WRMExperiment</report−title>
26<number−of−algorithms>4</number−of−algorithms>
27<number−of−executions>10</number−of−executions>660

28<indicators>
29<indicator type=”net.sf. jclec .mo.indicator.Hypervolume”/>
30<indicator type=”net.sf. jclec .mo.indicator.Spacing”/>
31</indicators>
32</listener>665

33</process>
34</experiment>

Listing 4: Example of a configuration file

One XML configuration file could be deployed per algorithm. Then, the
MOO experiment is invoked by a very simple Java program, as illustrated in670

26

Listing 5. Firstly, configuration files are processed (lines 4-5) and, secondly,
the experiment is run (lines 7-10).

1public class WRMCaseStudy {
2public static void main(String [] args){675

3// Declaring all the experiments
4MOExperiment experiment = new MOExperiment();
5experiment.addConfigurationsFromDirectory(”./configuration−files/”);
6// Running experiments
7MOExperimentRunner runner = new MOExperimentRunner();680

8for(int i=0; i<experiment.getNumberOfConfigurations(); i++){
9runner.executeSequentially(experiment.getConfiguration(i)) ;
10}
11...
12}685

Listing 5: Creation of the experiment for the case study

6.4. Post-processing and analysis of results

Depending on the configuration of reporters, different types of outcomes
will be saved. In this case, the output directory will contain the PF found
by each algorithm, as well as the values of the selected unary indicators, i.e.690

hypervolume and spacing. Once all the algorithms have been executed, a
chain of responsibility can be constructed to specify the post-processing pro-
cedure. It is worth noting that there is not a standard procedure to analyze
the performance of many-objective algorithms. Nevertheless, experimental
studies often report a set of quality indicators or the range of values for695

the objectives (von Lücken et al., 2014). These results can be supported by
graphics representing the obtained PFs (Walker et al., 2013). For the WRM
case study, we want to generate some plots to visually analyze the obtained
PFs and compute the value of several binary indicators, which require a ref-
erence PF. The latter will be constructed in terms of all the non-dominated700

solutions found by the algorithms. More in detail, the chain of responsibility
for this case study is organized according to the following ordered steps:

1. Obtaining one single PF for each algorithm considering all its execu-
tions.

2. Creating a reference PF taking the previous PFs as a basis.705

3. Scaling the values of the PFs generated from steps 1 and 2 for an easier
interpretation and fair comparison of results.

4. Generating boxplots for unary quality indicators.

5. Creating parallel coordinates plots to visualize the PFs.

27

6. Computing binary quality indicators using the reference PF, e.g. Iϵ,710

Iϵ+, ∆S, GD, IGD and ME.

7. Applying the Kruskal-Wallis statistical test to reveal whether there
are significant differences in terms of the hypervolume and spacing
indicators.

Steps from 1 to 6 are already available in JCLEC-MO, so they only need715

to be invoked. As can be seen in Listing 6, handlers require a boolean array
specifying whether each objective function should be maximized (true) or
minimized (false), as well as the path to the reporting directory (lines 6-7).
The chain is then constructed by indicating which handler should be executed
in the following step by means of setSuccessor() method (lines 14-15). Once720

the chain is completely declared, it could be executed by simply calling the
first handler (line 18).

1public class WRMCaseStudy {
2public static void main(String [] args){725

3// JCLEC runner
4...
5// Post−processing outputs
6boolean [] objs = new boolean[]{false,false,false,false,false};
7String reportDirectory = ”./reports/WRMExperiment”;730

8...
9// Create handlers
10MOExperimentHandler handler1 = new GenerateAlgorithmPF(reportDirectory,objs);
11MOExperimentHandler handler2 = new GenerateReferencePF(reportDirectory,objs);
12...735

13// Create chain of handlers
14handler1.setSuccessor(handler2);
15handler2.setSuccessor(handler3);
16...
17// Execute the complete process740

18handler1.process() ;
19}

Listing 6: Post-processing with handlers for the case study

A new handler has been implemented for the execution of the Kruskal-
Wallis test (step 7). This test will serve to prove the hypothesis that the four745

algorithms perform similarly for a particular unary indicator. As can be ob-
served in Listing 7, the handler firstly loads the results for the hypervolume
and spacing indicators (line 3). Then, the test is computed for each indicator
(lines 13-18) by invoking the wrapper of the R implementation available by
datapro4j (RKruskal). Test outcomes, which indicate whether the hypoth-750

esis would be rejected and the level of confidence in the decision, are then
processed (lines 21-22) and stored in a text file (line 5).

28

1public class WRMKruskalWallisTestHandler extends MOExperimentHandler {
2public void process() {755

3readDatasets();
4computeTests();
5saveResults() ;
6if (nextHandler()!=null)
7nextHandler().process();760

8}
9

10protected void computeTests() {
11RKruskal algorithm;
12this. testResults = new ArrayList<Map<String,Object>>();765

13for(int i=0; i<this.indicatorResults. size () ; i++) {
14// Execute the test for each indicator
15algorithm = new RKruskal(this.indicatorResults.get(i),”myData”,false);
16algorithm. initialize () ;
17algorithm.execute();770

18algorithm.postexec();
19

20// Get the result
21Map<String,Object> testMapResult = (Map<String,Object>)algorithm.getResult();
22this. testResults .add(testMapResult);775

23}
24}
25...
26}780

Listing 7: Handler to execute the Kruskal-Wallis test

Figure 4 shows the parallel coordinates R plots generated by step 5, where
each line represents the objective values of a non-dominated solution. These
graphics are frequently used when solving MaOPs since they make the analy-
sis of highly-dimensional PFs simpler (Walker et al., 2013). It is worth noting
how each axis represents a different objective function. Consequently, a high785

density of lines around certain values indicates that the algorithm did not
found diverse solutions. Each line representing a different solution indicates
the achieved trade-off among objectives. As can be observed, the alternation
of extreme values for some axes suggests the existence of conflicts between
the corresponding objectives. For instance, GrEA, HypE and NSGA-III are790

seemingly able to find solutions having a broad range of values for f1, f2
and f3, whereas SMPSO returns a smaller number of solutions with extreme
values.

Table 6 shows the results returned by binary quality indicators (step
6 of the post-processing chain), where the best value is written in bold.795

Notice that the reference PF was constructed with those PFs provided by
the algorithms and all measures were minimized. As can be observed, HypE
provides the best distributed PF (∆S) for the WRM problem, whilst NSGA-

29

(a) GrEA (b) HypE

(c) NSGA-III (d) SMPSO

Figure 4: Pareto front found by each algorithm

III returns the closest PF to the reference PF (GD and IGD). Even though
SMPSO found a smaller number of non-dominated solutions, most of them800

seem to belong to the reference PF, as reflected by the good values returned

30

Table 6: Results for binary quality indicators

Indicator GrEA HypE NSGA-III SMPSO
Iϵ 1.666049 1.675537 1.382379 1.675127
Iϵ+ 0.049350 0.049149 0.049434 0.049149
∆S 0.830827 0.370173 0.674743 0.971610
GD 0.002104 0.005367 0.001797 0.003892
IGD 0.005193 0.016245 0.003695 0.054198
ME 0.097496 0.220674 0.090818 0.082821

for Iϵ+ and ME.
Finally, since unary indicators are computed during the execution of each

algorithm, we may evaluate to what extent the stochastic nature has influ-
enced the returned values. Hence, boxplots serve to visualize the distribution805

of hypervolume and spacing, where higher values are preferred (see Figure 5).
These values can also be analysed by conducting the Kruskal-Wallis test to
confirm whether the observed differences are statistically significant. The ob-
tained p-values are 1.34E-5 for hypervolume and 4.35E-7 for spacing. In both
cases, these values are clearly inferior to the usual confidence levels (α=0.01810

or α=0.05), meaning that statistical differences among the algorithms exist.

7. Differentiating characteristics of JCLEC-MO

JCLEC-MO has been thoroughly developed according to the design ratio-
nale explained in Section 4, and following coding and design best practices.
On this basis, this section reviews the benefits that such design criteria may815

offer to practitioners from an industrial environment, and compares this suite
against other available MOFs (see Section 3) in relation to these aspects.

Generality preservation. Engineers interested in MOO, as most of non-
expert users in metaheuristics, will presumably tend to make a more effec-
tive use of predefined, standard configurations of some available algorithms,820

investing their time in their customization and the adaptation of problem-
specific methods. However, providing full support in this scenario is only
possible for those MOFs providing a wide range of general, modular and plug-
gable components, easy to combine and parametrize (Gagné and Parizeau,
2006). Most current state-of-the-art MOFs satisfy generality preservation825

in terms of both problem-specific components, i.e. encodings and operators,

31

(a) Hypervolume (b) Spacing

Figure 5: Boxplots showing the distribution of unary indicators

and technique-oriented elements, i.e. algorithms and evaluators. In addition,
JCLEC-MO follows this idea for MOO-specific elements too, such as fitness
objects, comparators or the novel concept of strategy. In this aspect, this
suite is closer to general-purpose MOFs like ECJ, EvA and Opt4j, since it830

takes advantage of its integrability to JCLEC in order to promote reuse of
other components like genetic operators. As a result, it provides a wider
range of these components than MOO-specific suites like jMetal and MOEA
Framework.

Design extensibility. The increasing cooperation between academia and835

industry enables the development of ad-hoc solutions to address engineering-
specific optimization problems. Most of them apply popular metaheuristics,
and the use of novel, potentially more fitted approaches is still limited. This is
where MOFs could make a relevant contribution. Within the field of MOO,
some authors (Zavala et al., 2014) already highlighted the importance of840

code extensibility and reuse. Similarly to ParadisEO, ECJ, EvA and Opt4J,
JCLEC-MO maintains independence between the metaheuristic paradigm
and its adaptation to MOO in favor of the aforementioned characteristics.
Furthermore, JCLEC-MO applies best practices in design, such as the use of
design patterns and the explicit definition of extension points. Both aspects845

make future developments easier. The two metaheuristics currently available

32

in JCLEC-MO, EAs and PSO, are seemingly the preferred paradigms among
engineers (Zavala et al., 2014; Kulkarni et al., 2015), probably because of
historical reasons and the suitability of PSO to continuous search spaces.

Updated availability. Many-objective optimization is still a developing850

research area. New algorithms, indicators, validation techniques, applica-
tions and studies are appearing. JCLEC-MO already provides the most
extensive catalog of algorithms among general-purpose frameworks, being
the only suite including algorithms specifically conceived for many-objective
optimization. Only jMetal and MOEA Framework provide an implemen-855

tation for some many-objective algorithms. Considering both multi- and
many-objective algorithms, these two MOFs provide more algorithms than
JCLEC-MO, which is normal considering that both projects have been ac-
tively developed in the last years.

Independence of the problem definition. JCLEC-MO does not make any860

assumption regarding the problem formulation, including objective functions,
e.g. if they should be maximized or minimized, the representation of indi-
viduals, or the treatment of constraints. This is particularly well-suited for
real-world applications, as it may increase the independence of the suite to
the specific problem. Therefore, most general-purpose frameworks (ECJ,865

HeuristicLab, Opt4J and PaGMO) allow formulating different fashions of
objective functions, which, however, is not so recurrent among MOO-specific
tools: only ParadisEO-MOEO was built considering this aspect. Besides
JCLEC-MO, MOEA Framework, jMetal, ECJ, EvA, Opt4J and PaGMO
have some sort of support for handling constraints, which is a determining870

factor in the case of engineering problems (Singh, 2016).
Domain adaptability. Values in engineering problems are often continu-

ous, which implies that candidate solutions could be precisely represented
with common encoding structures like real arrays. Nevertheless, the pres-
ence of problem-specific constraints may require the implementation of some875

user-defined code to modify and evaluate candidate solutions. A relevant
design aspect followed by JCLEC-MO is to minimize the need to recompile
the framework if some external piece of code has to be injected. To do this,
JCLEC-MO allows specifying external code dependencies in XML-based con-
figuration files. Besides this framework, to the best of our knowledge, only880

ECJ and Opt4J support the edition of configuration files to reference exter-
nal code. Genetic operators could be also integrated and configured by the
configuration file.

Batch processing and parallel evaluation. Batch processing is a common

33

feature of MOFs, including JCLEC-MO. It acquires greater importance in885

the case of industrial environments, as they usually require the execution of
multiple experiments in order to validate the best choice of an algorithm for
a particular complex engineering problem, and also to consider alternative
inputs to carry out different studies related to the project. In the case of
demanding problems requiring the execution of time-consuming algorithms,890

parallel processing can be a differentiating factor for the selection of a frame-
work. Most frameworks, including JCLEC-MO, support parallel evaluation
of solutions. However, more advanced features like parallel execution of ex-
periments or parallel metaheuristics are not so extended among the analyzed
frameworks yet.895

Experimental support. Adapting a solution to an engineering problem
is an iterative process that demands a significant effort in repeating execu-
tions, validating outcomes and adapting the framework to the specific needs.
Hence, the availability of a complete toolkit with highly customizable utili-
ties, such as quality indicators, benchmarks and reporters, may simplify this900

task and improve productivity. JCLEC-MO provides the most extensive col-
lection of quality indicators and a representative set of benchmarks. In terms
of continuous test functions, ECJ, jMetal and MOEA Framework offer the
greatest number of alternatives, including the well-known test suites DTLZ
and ZDT, also supported by JCLEC-MO. Furthermore, graphical reporters905

allow the visual inspection of outputs. HeuristicLab, EvA, Opt4J, jMetal and
MOEA Framework enable the visualization of bi-dimensional PFs. MOEA
Framework and jMetal can also depict the evolution of quality indicators
along the execution. Similarly, JCLEC-MO permits computing indicators at
a user-defined frequency and, because of its integration with R, relies on R910

the generation of any boxplot and parallel coordinate chart, the latter kind
of graphic being specifically well-suited for many-objective optimization. In
fact, the connection between JCLEC-MO and R opens up the flexible use
of non-predefined statistical tests. In contrast, HeuristicLab and MOEA
Framework include their own implementations.915

Tool interoperability. We can speculate that MOFs are a complementary
tool for engineers. Consequently, providing bridges to other suites would fa-
cilitate its integration and adoption in industrial environments. Besides the
use of XML for configuring experiments, JCLEC-MO makes use of standard,
text-based data formats like XML and CSV for inputs and outputs. For920

instance, the use of XML is also promoted by Opt4j, and greatly reduces
the effort required to configure multiple experiments. However, the rest of

34

MOFs apply other less structured formats, such as key-value pairs (ECJ,
ParadisEO-MOEO and PISA) and YAML (EvA), or they require a specific
code development using their own constructs, e.g. jMetal, MOEA Frame-925

work, HeuristicLab and PaGMO. Nevertheless, using well-defined formats
enables interoperability with external tools, e.g. for data analysis purposes.
JCLEC-MO is also fully compatible with datapro4j and R, a valuable factor
that increases the potential of the suite. To the best of our knowledge, no
other MOF provides open access to extended external functionalities.930

In short, JCLEC-MO takes into consideration non-experts but still in-
terested users in metaheuristic search looking for ready-to-use functionalities
with a high customization degree. As can be observed from the aforemen-
tioned points, JCLEC-MO is also competitive with respect to MOO-specific
alternatives like jMetal or MOEA Framework, while maintaining the essential935

characteristics of a general-purpose suite.

8. Concluding remarks

Ongoing advances in artificial intelligence allow facing truly complex real-
world optimization problems that could not be addressed without specialized
software tools. In this scenario, metaheuristic optimization frameworks offer940

numerous advantages, as they provide diverse algorithms, multiple configu-
ration and experimentation possibilities, such as synthetic test problems, and
different sorts of utilities. Focusing on MOO, this sort of suites are intended
to provide more flexibility regarding the definition of MOPs, as well as to
include recent trends like many-objective optimization.945

JCLEC-MO can be viewed as a Java suite that facilitates the integration
and development of search-based solutions requiring the application of either
multi-objective or many-objective optimization for multi-platform systems.
With this aim, best practices in design and development have been taken into
account to satisfy requirements related to aspects like extensibility, adapt-950

ability, transparency or interoperability, among others. Moreover, this suite
provides the required support to conduct experiments and analyze their re-
sults using external libraries and languages widely used like R, a reference in
terms of data analysis. We also illustrate the use of JCLEC-MO with a case
study based on the WRM problem, which briefly explains how a complex955

many-objective problem could be solved in a simple sequence of steps.
Due to the rapid progress of the MOO field, the integration of novel

techniques clearly constitutes a future line of work. Thanks to the provided

35

extension points, we also plan to continue updating JCLEC-MO to support
other metaheuristic paradigms and hybrid approaches, and to provide new960

utilities and integration capabilities with other languages that might be useful
to engineers. Similarly, we consider interesting the possibility of making
accessible the functions of JCLEC-MO as a service located in a cloud-based
infrastructure in order to enable its interoperability with other programming
paradigms.965

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Com-
petitiveness [project TIN2017-83445-P]; the Spanish Ministry of Education
under the FPU program [grant FPU13/01466]; and FEDER funds.

Additional material970

Technical documentation of JCLEC-MO and code of the case study are
available from http://www.uco.es/grupos/kdis/jclec-mo.

References

References

Adra, S., Fleming, P., 2011. Diversity Management in Evolutionary Many-975

Objective Optimization. IEEE T. Evol. Comput. 15, 183–195. doi:10.
1109/TEVC.2010.2058117.

Asafuddoula, M., Ray, T., Sarker, R., 2015. A Decomposition-Based Evo-
lutionary Algorithm for Many Objective Optimization. IEEE T. Evol.
Comput. 19, 445–460. doi:10.1109/TEVC.2014.2339823.980

Biscani, F., Izzo, D., Yam, C.H., 2010. A Global Optimisation Toolbox for
Massively Parallel Engineering Optimisation, in: 4th International Con-
ference on Astrodynamics Tools and Techniques.

Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E., 2003. PISA – A Platform
and Programming Language Independent Interface for Search Algorithms,985

in: Evolutionary Multi-Criterion Optimization (EMO 2003), Springer. pp.
494–508. doi:10.1007/3-540-36970-8_35.

36

http://www.uco.es/grupos/kdis/jclec-mo
http://dx.doi.org/10.1109/TEVC.2010.2058117
http://dx.doi.org/10.1109/TEVC.2010.2058117
http://dx.doi.org/10.1109/TEVC.2010.2058117
http://dx.doi.org/10.1109/TEVC.2014.2339823
http://dx.doi.org/10.1007/3-540-36970-8_35

Boussäıd, I., Lepagnot, J., Siarry, P., 2013. A survey on optimization meta-
heuristics. Inf. Sci. 237, 82–117. doi:10.1016/j.ins.2013.02.041.

Cheng, R., Rodemann, T., Fischer, M., Olhofer, M., Jin, Y., 2017. Evolu-990

tionary Many-Objective Optimization of Hybrid Electric Vehicle Control:
From General Optimization to Preference Articulation. IEEE T. Emerg-
ing Topics in Computational Intelligence 1, 97–111. doi:10.1109/TETCI.
2017.2669104.

Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A., 2007. Evolution-995

ary Algorithms for Solving Multi-Objective Problems. 2nd ed., Springer.
doi:10.1007/978-0-387-36797-2.

Deb, K., Jain, H., 2014. An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point-Based Nondominated Sorting Approach,
Part I: Solving Problems With Box Constraints. IEEE T. Evol. Comput.1000

18, 577–601. doi:10.1109/TEVC.2013.2281535.

Domı́nguez, M., Fernández-Cardador, A., Cucala, A.P., Gonsalves, T.,
Fernández, A., 2014. Multi objective particle swarm optimization algo-
rithm for the design of efficient ATO speed profiles in metro lines. Eng.
Appl. Artif. Intell. 29, 43–53. doi:10.1016/j.engappai.2013.12.015.1005

Durillo, J.J., Nebro, A.J., 2011. jMetal: A Java framework for multi-objective
optimization. Adv. Eng. Softw. 42, 760–771. doi:10.1016/j.advengsoft.
2011.05.014.

Eiben, A., Smith, J., 2015. Introduction to Evolutionary Computing. 2nd
edition ed., Springer -Verlag Berlin Heidelberg.1010

Elyasaf, A., Sipper, M., 2014. Software review: the HeuristicLab framework.
Genet. Program. Evol. M. 15, 215–218. doi:10.1007/s10710-014-9214-4.

Falcón-Cardona, J.G., Coello Coello, C.A., 2017. A new indicator-based
many-objective ant colony optimizer for continuous search spaces. Swarm
Intell. 11, 71–100. doi:10.1007/s11721-017-0133-x.1015

Figueiredo, E., Ludermir, T., Bastos-Filho, C., 2016. Many Objective Par-
ticle Swarm Optimization. Inf. Sci. 374, 115–134. doi:10.1016/j.ins.
2016.09.026.

37

http://dx.doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1109/TETCI.2017.2669104
http://dx.doi.org/10.1109/TETCI.2017.2669104
http://dx.doi.org/10.1109/TETCI.2017.2669104
http://dx.doi.org/10.1007/978-0-387-36797-2
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1016/j.engappai.2013.12.015
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/10.1007/s10710-014-9214-4
http://dx.doi.org/10.1007/s11721-017-0133-x
http://dx.doi.org/10.1016/j.ins.2016.09.026
http://dx.doi.org/10.1016/j.ins.2016.09.026
http://dx.doi.org/10.1016/j.ins.2016.09.026

Gagné, C., Parizeau, M., 2006. Genericity in evolutionary computation soft-
ware tools: principles and case-study. Int. J. Artif. Intell. T. 15, 173–194.1020

doi:10.1142/S021821300600262X.

Gamma, E., Johnson, R., Vlissides, J.M., Fowler, M., 2013. Design Patterns:
Elements of Reusable Object-Oriented Software. 2nd edition ed., Addison
Wesley.

Hadka, D., 2017. MOEA Framework. Version 2.12.1025

http://www.moeaframework.org (Last accessed 22th March 2018).

Hadka, D., Herman, J., Reed, P., Keller, K., 2015. An open source framework
for many-objective robust decision making. Environ. Model. Softw. 74,
114–129. doi:10.1016/j.envsoft.2015.07.014.

Izzo, D., 2012. PyGMO and PyKEP: Open Source Tools for Massively Paral-1030

lel Optimization in Astrodynamics (The Case of Interplanetary Trajectory
Optimization), in: 5th International Conference on Astrodynamics Tools
and Techniques (ICATT). URL: http://arxiv.org/abs/1004.3824.

Konak, A., Coit, D.W., Smith, A.E., 2006. Multi-objective optimization
using genetic algorithms: A tutorial. Reliab. Eng. & Syst. Saf. 91, 992–1035

1007. doi:10.1016/j.ress.2005.11.018.

Kronfeld, M., Planatscher, H., Zell, A., 2010. The EvA2 Optimization Frame-
work, in: 4th International Learning and Intelligent Optimization Confer-
ence (LION), pp. 247–250. doi:10.1007/978-3-642-13800-3_27.

Kulkarni, M.N.K., Patekar, M.S., Bhoskar, M.T., Kulkarni, M.O.,1040

Kakandikar, G., Nandedkar, V., 2015. Particle Swarm Optimization Ap-
plications to Mechanical Engineering - A Review. Materials Today: Pro-
ceedings 2, 2631–2639. doi:10.1016/j.matpr.2015.07.223. 4th Int. Conf.
on Materials Processing and Characterization.

Li, B., Li, J., Tang, K., Yao, X., 2015. Many-Objective Evolutionary Algo-1045

rithms: A Survey. ACMComput. Surv. 48, 13:1–35. doi:10.1145/2792984.

Li, G., Hu, H., 2014. Risk design optimization using many-objective evolu-
tionary algorithm with application to performance-based wind engineering
of tall buildings. Struct. Saf. 48, 1–14. doi:10.1016/j.strusafe.2014.
01.002.1050

38

http://dx.doi.org/10.1142/S021821300600262X
http://dx.doi.org/10.1016/j.envsoft.2015.07.014
http://arxiv.org/abs/1004.3824
http://dx.doi.org/10.1016/j.ress.2005.11.018
http://dx.doi.org/10.1007/978-3-642-13800-3_27
http://dx.doi.org/10.1016/j.matpr.2015.07.223
http://dx.doi.org/10.1145/2792984
http://dx.doi.org/10.1016/j.strusafe.2014.01.002
http://dx.doi.org/10.1016/j.strusafe.2014.01.002
http://dx.doi.org/10.1016/j.strusafe.2014.01.002

Liefooghe, A., Jourdan, L., Talbi, E.G., 2011. A software framework based on
a conceptual unified model for evolutionary multiobjective optimization:
ParadisEO-MOEO. Eur. J. Oper. Res. 209, 104–112. doi:10.1016/j.
ejor.2010.07.023.

López-Jaimes, A., Coello Coello, C.A., 2014. Including preferences into a1055

multiobjective evolutionary algorithm to deal with many-objective engi-
neering optimization problems. Inf. Sci. 277, 1–20. doi:10.1016/j.ins.
2014.04.023.

von Lücken, C., Barán, B., Brizuela, C., 2014. A survey on multi-objective
evolutionary algorithms for many-objective problems. Comput. Optim.1060

Appl. 58, 707–756. doi:10.1007/s10589-014-9644-1.

Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J., 2011. Opt4J: A
Modular Framework for Meta-heuristic Optimization, in: Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation
(GECCO’11), pp. 1723–1730. doi:10.1145/2001576.2001808.1065

Luke, S., 2017. ECJ Then and Now, in: Proc. Companion Publication 2017
Ann. Genetic and Evolutionary Computation Conference, ACM. pp. 1223–
1230. doi:10.1145/3067695.3082467.

Luo, J., Liu, Q., Yang, Y., Li, X., rong Chen, M., Cao, W., 2017. An artificial
bee colony algorithm for multi-objective optimisation. Appl. Soft Comput.1070

50, 235–251. doi:10.1016/j.asoc.2016.11.014.

M. Reyes-Sierra, C.C., 2006. Multi-Objective Particle Swarm Optimizers: A
Survey of the State-of-the-Art. Int. J. Comput.l Intell. Research 2, 287–
308.

Marler, R., Arora, J., 2004. Survey of multi-objective optimization methods1075

for engineering. Struct. Multidiscipl. Optim. 26, 369–395. doi:10.1007/
s00158-003-0368-6.

Mishra, B., Dehuri, S., Cho, S.B., 2015. Swarm Intelligence in Multiple
and Many Objectives Optimization: A Survey and Topical Study on EEG
Signal Analysis, in: Multi-objective Swarm Intelligence. Springer Berlin1080

Heidelberg. volume 592 of Studies in Computational Intelligence, pp. 27–
73. doi:10.1007/978-3-662-46309-3_2.

39

http://dx.doi.org/10.1016/j.ejor.2010.07.023
http://dx.doi.org/10.1016/j.ejor.2010.07.023
http://dx.doi.org/10.1016/j.ejor.2010.07.023
http://dx.doi.org/10.1016/j.ins.2014.04.023
http://dx.doi.org/10.1016/j.ins.2014.04.023
http://dx.doi.org/10.1016/j.ins.2014.04.023
http://dx.doi.org/10.1007/s10589-014-9644-1
http://dx.doi.org/10.1145/2001576.2001808
http://dx.doi.org/10.1145/3067695.3082467
http://dx.doi.org/10.1016/j.asoc.2016.11.014
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/978-3-662-46309-3_2

Nebro, A.J., Durillo, J.J., Vergne, M., 2015. Redesigning the jMetal Multi-
Objective Optimization Framework, in: Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary1085

Computation, ACM. pp. 1093–1100. doi:10.1145/2739482.2768462.

Parejo, J.A., Ruiz-Cortés, A., Lozano, S., Fernandez, P., 2012. Metaheuristic
optimization frameworks: a survey and benchmarking. Soft Comput. 16,
527–561. doi:10.1007/s00500-011-0754-8.

Poli, R., Kennedy, J., Blackwell, T., 2007. Particle swarm optimization.1090

Swarm Intell. 1, 33–57. doi:10.1007/s11721-007-0002-0.

Ramı́rez, A., Romero, J.R., Ventura, S., 2015. An Extensible JCLEC-based
Solution for the Implementation of Multi-Objective Evolutionary Algo-
rithms, in: Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation, ACM. pp. 1085–1095

1092. doi:10.1145/2739482.2768461.

Ray, T., Tai, K., Seow, K.C., 2001. Multiobjective design optimization by
an evolutionary algorithm. Eng. Optimiz. 33, 399–424. doi:10.1080/
03052150108940926.

Singh, H.K., 2016. Development of optimization methods to deal with current1100

challenges in engineering design optimization. AI Communications 29,
219–221. doi:10.3233/AIC-140645.

Talbi, E.G., 2009. Metaheuristics: From Design to Implementation. John Wi-
ley & Sons, Inc.. chapter Metaheuristics for Multiobjective Optimization.
pp. 308–384. doi:10.1002/9780470496916.ch4.1105

Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C., 2008. JCLEC:
a Java framework for evolutionary computation. Soft Comput. 12, 381–
392. doi:10.1007/s00500-007-0172-0.

Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug,
A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affen-1110

zeller, M., 2014. Architecture and Design of the HeuristicLab Optimization
Environment, in: Advanced Methods and Applications in Computational
Intelligence. Springer. volume 6 of Topics in Intelligent Engineering and
Informatics, pp. 197–261. doi:10.1007/978-3-319-01436-4_10.

40

http://dx.doi.org/10.1145/2739482.2768462
http://dx.doi.org/10.1007/s00500-011-0754-8
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1145/2739482.2768461
http://dx.doi.org/10.1080/03052150108940926
http://dx.doi.org/10.1080/03052150108940926
http://dx.doi.org/10.1080/03052150108940926
http://dx.doi.org/10.3233/AIC-140645
http://dx.doi.org/10.1002/9780470496916.ch4
http://dx.doi.org/10.1007/s00500-007-0172-0
http://dx.doi.org/10.1007/978-3-319-01436-4_10

Wagner, T., Beume, N., Naujoks, B., 2007. Pareto-, Aggregation-, and1115

Indicator-Based Methods in Many-Objective Optimization, in: Evolution-
ary Multi-Criterion Optimization. Springer. volume 4403 of Lecture Notes
in Computer Science, pp. 742–756. doi:10.1007/978-3-540-70928-2_56.

Walker, D., Everson, R., Fieldsend, J., 2013. Visualizing Mutually Non-
dominating Solution Sets in Many-Objective Optimization. IEEE T. Evol.1120

Comput. 17, 165–184. doi:10.1109/TEVC.2012.2225064.

White, D.R., 2012. Software review: the ECJ toolkit. Genet. Program. Evol.
M. 13, 65–67. doi:10.1007/s10710-011-9148-z.

Wickramasinghe, U., Carrese, R., Li, X., 2010. Designing airfoils using a ref-
erence point based evolutionary many-objective particle swarm optimiza-1125

tion algorithm, in: Proceedings of the 2010 IEEE Congress on Evolutionary
Computation, pp. 1–8. doi:10.1109/CEC.2010.5586221.

Zavala, G., Nebro, A.J., Luna, F., Coello Coello, C.A., 2016. Structural de-
sign using multi-objective metaheuristics. Comparative study and appli-
cation to a real-world problem. Struct. Multidiscipl. Optim. 53, 545–566.1130

doi:10.1007/s00158-015-1291-3.

Zavala, G.R., Nebro, A.J., Luna, F., Coello Coello, C.A., 2014. A survey of
multi-objective metaheuristics applied to structural optimization. Struct.
Multidiscipl. Optim. 49, 537–558. doi:10.1007/s00158-013-0996-4.

Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q., 2011.1135

Multiobjective evolutionary algorithms: A survey of the state of the art.
Swarm Evol. Comput. 1, 32–49. doi:10.1016/j.swevo.2011.03.001.

41

http://dx.doi.org/10.1007/978-3-540-70928-2_56
http://dx.doi.org/10.1109/TEVC.2012.2225064
http://dx.doi.org/10.1007/s10710-011-9148-z
http://dx.doi.org/10.1109/CEC.2010.5586221
http://dx.doi.org/10.1007/s00158-015-1291-3
http://dx.doi.org/10.1007/s00158-013-0996-4
http://dx.doi.org/10.1016/j.swevo.2011.03.001

	Introduction
	Background
	Related work
	General-purpose MOFs
	MOO-specific MOFs

	Architecture of JCLEC-MO
	Software modules
	Algorithms
	Problem-specific elements
	Experiments
	Quality indicators and reporters
	Utilities

	An illustrative running example
	Problem representation
	Translating the problem into code in JCLEC-MO
	Configuration and execution
	Post-processing and analysis of results

	Differentiating characteristics of JCLEC-MO
	Concluding remarks

