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Simple Summary: Lameness is one of the main causes of poor performance in all equestrian disci-
plines. Traditionally, it is assessed by clinical assessment, using subjective numerical scales. Quantita-
tive lameness assessment has gained popularity over the last years, aiding in the decision-making
process. Recently, a marker-less artificial intelligence (AI) motion tracking system has been developed
for lameness assessment, requiring less specialized equipment than traditional methods, along with
reduced technical expertise and time-consuming procedures. Our aim was to compare this system
with an inertial measurement unit system, as well as with clinical examination, to determine the level
of agreement and accuracy of both systems, and their relation to visual examination. In our study,
clinical examination detected locomotor asymmetries in accordance with both systems. A greater
number of limbs were considered asymmetric by the AI motion tracking system. The highest level of
agreement was observed for forelimb movement on a straight line and hard surface, and the lowest
for pelvic movement on a straight line and soft surface, probably due to the difficulty in assessing
hindlimb asymmetry. It would be interesting to measure locomotor asymmetries regularly in training
and conditioning horses, as some degree of asymmetry may be clinically relevant.

Abstract: In horses, quantitative assessment of gait parameters, as with the use of inertial measure-
ment units (IMUs) systems, might help in the decision-making process. However, it requires financial
investment, is time-consuming, and lacks accuracy if displaced. An innovative artificial intelligence
marker-less motion tracking system (AI-MTS) may overcome these limitations in the field. Our
aim was to compare the level of agreement and accuracy between both systems and visual clinical
assessment. Twenty horses underwent locomotion analysis by visual assessment, IMUs, and AI-MTS
systems, under the following conditions: straight hard (SH), straight soft (SS), left and right circle
hard (LCH, RCH), and soft (LCS, RCS). A greater number of horses were considered sound by clinical
examination, compared to those identified as symmetric by the two gait analysis systems. More limbs
were considered asymmetric by the AI-MTS compared to IMUs, suggesting its greater sensitivity. The
greatest agreement between the two systems was found for the difference between two minima in
vertical head position in SH, while the lowest for the difference between two minima in vertical pelvis
position in SS, reflecting the difficulties in assessing asymmetry of the hindlimbs. It is unknown what
degree of asymmetry is clinically relevant, suggesting that more consistent use in training horses may
help determine the thresholds for asymmetry. Some degree of asymmetry may be clinically relevant,
suggesting its regular use in training horses.
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1. Introduction

Lameness is a major cause of poor performance, with serious consequences for horses,
owners, and veterinarians in terms of the welfare of the equine athlete, the expectations of
the trainer/rider, and the loss of economic income associated with competition [1,2]. In a
clinical setting, the assessment of lameness involves observing various characteristics of the
horse’s movement at different gaits, particularly focusing on the trot, but not exclusively [3].
Various subjective numerical scales have been developed to standardize the severity of
lameness for communication among clinicians and for inclusion in clinical records for
future consultation [4]. The American Association of Equine Practitioners (AAEP) grading
scale is one of the most widely used for quantifying lameness severity [4,5]. This scale
ranges from 0, indicating soundness, to 5, representing maximum lameness with minimal
weight bearing.

Several studies have documented that the agreement in clinical subjective assessment
using standardized scoring between experienced clinicians is low for lameness of mild to
moderate intensity (1-2/5 on the AAEP scale) [6], with higher agreement in the detection
of the lame limb, but not for the degree of lameness. Inter- and intra-clinician agreement
is acceptable to poor, being poorer for hindlimb lameness compared to forelimbs [7,8].
Perception, expectation bias, and the limited resolution of the human eye are the main
causes of the moderate to low levels of inter-observer agreement, as well as poor intra-
observer reliability in visual lameness examinations [9–12].

To overcome these problems, several inertial measurement unit (IMU) systems have
been developed in recent years to aid in the decision-making process, particularly in cases
of mild lameness, referred lameness, evaluation of improvements after a treatment or
recovery period, or when conducting clinical research studies [13,14].

Most of these IMUs are based on the assessment of gait symmetry during trot. They
provide quantitative data on vertical movement symmetry and vertical displacement over
multiple trot strides. Sensors are usually attached to primary axial body segments with
double-sided tape; the head for forelimb lameness, the pelvis for hindlimb lameness, and
sometimes the withers for compensatory lameness [15–17]. The normal vertical displace-
ment of these body segments is represented by a sinusoidal double wave curve for each
stride. The highest position of the two peaks and the lowest position or valleys of this
signal are analyzed to indicate the level of asymmetric loading of the right versus left limb
during the midstance and push-off phases of the trotting stride [18]. Several publications
have reported that IMUs are reliable tools for correctly identifying and localizing the limb
with pain or dysfunction [19–22]. These sensors are considered accurate and precise be-
cause they provide measurement parameters that are consistent with subjective visual
assessments of lameness, along with data collected from force plate analysis. They have
proven to be sensitive to small changes in movement symmetry, as observed in horses with
experimentally induced lameness [23–28].

However, the use of IMUs requires a substantial financial investment, and mounting
the sensors on the horse’s body is time consuming and may lack accuracy if the sensors are
displaced, which limits their use in a field setting [29–32]. Recently, an artificial intelligence
(AI) marker-less motion tracking system (AI-MTS) has been developed (Sleip AI, Uppsala,
Sweden) [33]. It is based on deep neural networks that process large amounts of data
from computer algorithms previously trained by deep learning on the horse’s body for
objective motion analysis. In particular, it tracks the movement of the head, pelvis, and
hooves of trotting horses, both towards and away from the camera, to obtain measurement
images [33–36]. This system allows its use with minimal technical training and no expensive
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equipment, allowing assessment from a smartphone camera video, which is easier and
more practical in a clinical setting [37].

The current study was conducted with the aim of comparing IMUs with AI-MTS,
analyzing the level of agreement and accuracy of both systems, in different conditions
(straight line and circles) and over two different types of surfaces (soft and hard), in horses
considered sound or mildly lame at clinical examination.

2. Materials and Methods
2.1. Horse Population

A convenience sample of twenty horses of different ages, sexes, breeds, and uses,
referred to the Equine Sports Medicine Center (CEMEDE) of the University of Cordoba
(Spain) for performance assessment, were enrolled on a voluntary basis by their owners
during a 2-week data collection period. Depending on the owners’ preference, the proce-
dures were performed either at the riding stables where the horses were normally kept
(8 horses) or at the facilities of the Equine Sports Medicine Center (12 horses). Requirements
for the stables were the presence of a hard flat surface (asphalt), and a sand riding arena,
the same conditions found at the CEMEDE center, where horses could be trotted in hand,
in a straight line, and lunged in circles of 10 m diameter.

Enrolled horses first underwent a clinical lameness assessment while trotting in hand
on a straight line and in circles, on a hard and soft surface. Trots were recorded with a
smartphone for later analysis. Two experienced blinded operators (N.C-G.) and (C.M.L.F.),
assigned a score of 0–5 based on the AAEP lameness grading system and recorded the lame
limb(s). Only horses with clinical lameness ≤ 2/5 were included in the study.

A signed written informed consent for the inclusion of horses in the present study
and the use of data for research purposes was obtained from all owners. The followed
procedures and the results derived were explained to the owners. All procedures were
performed in accordance with the Code of Good Veterinary Practice. No specific ethical
approval was required for the present study, as all horses were presented for veterinary
examination and the cases were considered as professional activities.

2.2. Locomotor Assessment

The horses underwent gait analysis using two different validated gait analysis tech-
nologies simultaneously: an inertial sensor-based gait analysis system, such as IMUs
(Equigait Ltd., Chestnut, Herts, UK) [38,39], and a smartphone application based on a
computer vision system AI-MTS (Sleip AI, Uppsala, Sweden) [33,34]. To allow comparison
of data collected by the two systems and to maximize synchronization between them, the
recordings were manually started and stopped at the same time by two different opera-
tors. To reduce variability between trials, the same operators (C.M.L.F. and N.C-G.) were
responsible for recording and collecting data from all the horses.

The locomotion analysis of the included horses was performed in the following
assessment conditions: (1) straight hard (SH): trot in hand on a straight line on a hard
surface; (2) straight soft (SS): trot in hand on a straight line on a soft surface; (3) left and
right circle hard (LCH and RCH): trot in circle on the left and right hand on a hard surface;
(4) left and right circle soft (LCS and RCS): trot in circle on the left and right hand on a
soft surface.

During the straight line data collection, horses were trotted by a handler at least
two times back and forth on a 30 m long straight line as requested by the AI system.
Handlers trotted the horses at their preferred speed and were asked not to interfere with
the horses’ head movements. After that, the horses were lunged in a left circle for at least
45 s, stopped, and then lunged in a right circle for at least 45 s within a 10 m diameter circle.

2.2.1. Locomotor Assessment with an Inertial Measurement Unit System

Horses were equipped with five inertial sensors (MTw2, Xsens, Enschede, the Netherlands)
attached at specific anatomical locations: the poll (located at the center of the highest part
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of the head, between the ears), the withers (located at the most prominent part, over the
spinous process of T6), the tuber sacrale (situated at the highest point of the pelvis), and
the right and left tuber coxae. All the sensors were wirelessly synchronized with a station
(Awinda, Xsens) that received the data and transmitted them simultaneously at a sampling
rate of 100 Hz per channel to a dedicated laptop with a pre-installed analysis software
(Equigait, Ltd., Chestnut, Herts, UK). Data recording was manually initiated and stopped
by the same operator (N.C-G.) for all horses. For each assessment condition, the following
data provided by the software were considered in the present study:

- HDmin: difference between the vertical minima reached by the head during left and
right forelimbs stance, expressed in millimeters;

- HDmax: difference between the vertical maxima reached by the head during left and
right forelimb stance, expressed in millimeters;

- H-ROM: range of motion of the head, difference between minimum and maximum
values reached by the head throughout the stride cycle, expressed in millimeters;

- PDmin: difference between the vertical minima reached by the pelvis during left and
right hindlimbs stance, expressed in millimeters;

- PDmax: difference between the vertical maxima reached by the pelvis during left and
right hindlimb stance, expressed in millimeters;

- P-ROM: range of motion of the pelvis, difference between minimum and maximum
values reached by the pelvis throughout the stride cycle, expressed in millimeters;

- Number of recorded strides;
- Laterality of the asymmetry (towards the left or the right side).

Furthermore, to allow a direct comparison between horses of different sizes and
with different ranges of movement, as well as with the results of the AI-MTS, the values
of HDmin, HDmax, PDmin, and PDmax were normalized to H-ROM and P-ROM. For this
purpose, HDmin and HDmax were divided by the H-ROM and then multiplied by 0.4; PDmin
and PDmax were divided by the P-ROM and then multiplied by 0.25 [26,27]. The values
obtained were defined, respectively, as follows: MinDiffhead, MaxDiffhead, MinDiffpelvis,
and MaxDiffpelvis.

Finally, the HDmin and PDmin data recorded during the SH assessment were addition-
ally analyzed by applying published thresholds to discriminate between symmetric and
asymmetric horses. Specifically, kinematic thresholds of 12 mm for HDmin and 6 mm for
PDmin were used, as suggested by previous studies [31,32]. After applying these thresh-
olds, horses were classified as “symmetric” or “asymmetric”, and the asymmetric limb(s)
were recorded.

2.2.2. Locomotor Assessment with an AI Marker-Less Motion Tracking System

Simultaneously with the IMUs recordings, gait analysis was performed using a com-
puter vision-based smartphone application (Sleip AI, Uppsala, Sweden), downloaded onto
an iPhone 11 Pro. For this purpose, the smartphone was placed on a tripod at a height of
160 cm in landscape mode and the trots were recorded in all the assessment conditions
described above. The video streams were first saved locally and later uploaded to the
software for data processing.

Data recording was manually started and stopped for all horses by the same operator
(C.M.L.F.). For each assessment condition, the following data provided by the software
were considered in the present study:

- MinDiffhead: difference between two minima in vertical position of the head, during
the right and left forelimbs halves of a stride, normalized to the head range of motion;

- MaxDiffhead: difference between two maxima in vertical position of the head, during
the right and left forelimbs halves of a stride, normalized to the head range of motion;

- MinDiffpelvis: difference between two minima in vertical position of the pelvis, during
the right and left hindlimbs halves of a stride, normalized to the pelvis range of motion;

- MaxDiffpelvis: difference between two maxima in vertical position of the pelvis, during
the right and left hindlimbs halves of a stride, normalized to the pelvis range of motion;



Animals 2024, 14, 921 5 of 18

- Number of recorded forelimb and hindlimb strides (as the pelvis was visible only
when the horse was trotting away from the camera, the number of hindlimb strides
was lower than that of the forelimb strides);

- Laterality of the asymmetry and the presumed affected limb(s).

For both IMUs and AI-MTS, the values of MinDiffhead, MaxDiffhead, MinDiffpelvis,
and MaxDiffpelvis were multiplied by −1 if the presumed affected limb was on the left
side, while positive values indicated that the presumed affected limb was on the right
side [33,34].

Moreover, the severity of any asymmetry was defined as follows: 0.3–0.5 (very mild
asymmetry), 0.6–0.9 (mild asymmetry), 1–1.4 (moderate asymmetry). No horses in the
study population had severe asymmetry, as horses with clinical lameness grade ≥ 3/5 were
excluded. Thresholds for asymmetry severity were chosen based on the results provided
by the AI-MTS application to allow diagnostic comparison between systems [33,34].

2.3. Statistical Analysis

Data were collected in an electronic spreadsheet (Microsoft Excel, Redmond, WA,
USA), and analyzed using a commercial statistical software package (GraphPad Prism 9.5.1
for MacOS; GraphPad Software, San Diego, CA, USA). All data were tested for normality
using the Shapiro–Wilk test, and descriptive statistics were performed according to the data
distribution. Data are presented as mean ± standard deviation if normally distributed, or
as median and interquartile range (IQR) if not normally distributed. Statistical significance
was set at p < 0.05.

The agreement between the locomotor parameters evaluating the impact or push-off
phases of the stride, as detected by the two technologies used (IMUs and AI-MTS), was
evaluated using the K Cohen coefficient in each assessment condition. K Cohen coeffi-
cient values of 0 indicated no agreement, 0–0.2 slight agreement, 0.21–0.4 fair agreement,
0.41–0.6 moderate agreement, 0.61–0.8 substantial agreement, and 0.81–1 almost perfect
agreement. Bland–Altman analysis was used to evaluate the statistical agreement between
the gait analysis systems for each locomotor parameter in each of the assessment conditions.

In addition, the locomotion parameters were assessed by comparing the absolute val-
ues (without arithmetic signs) of each locomotion parameter in each assessment condition
measured by the two technologies, using the paired t-test (for normally distributed data)
or the Wilcoxon test (for non-normally distributed data). The number of strides recorded
by the two systems in each assessment condition was compared using a paired t-test. To
evaluate the effect of different surfaces and trot direction on the locomotor parameters,
the data were compared using one-way ANOVA and Tukey’s multiple comparison test
(for normally distributed data) or the Friedman test and Dunn’s multiple comparison
test (for non-normally distributed data). In these tests, the absolute values were used for
comparison, since the goal was to compare asymmetry regardless of laterality.

3. Results
3.1. Horse Population

The study population consisted of 20 horses aged between 4 and 24 years (median 9,
IQR 8–15 years), including 15 geldings, 4 mares, and 1 stallion. The horses belonged to
different breeds, including nine mixed breeds, five Spanish purebred horses, three Arabians,
one pony, one Quarter Horse and one KWPN. Regarding horses’ use, ten were recreational
horses, five were used for Spanish cowboy dressage competitions, three for endurance, and
two for dressage. The results of the clinical examination and the symmetry data provided
by the two locomotor analysis systems are shown in Table 1.
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Table 1. Lameness scoring is conducted based on clinical lameness examination and assessment
of outcomes from the inertial measurement unit (IMU) system, using two different cut-off values
(in millimeters, to distinguish between symmetric and asymmetric horses, as well as for severity
assessment), and an artificial intelligence marker-less motion tracking system (AI-MTS). The results
of IMU and AI-MTS assessments in horses, conducted while trotting on a straight line and hard
surface, are presented.

Horse
AAEP
Grade

IMUs
AI-MTS

Millimeters Cut-Off Severity

1 RF: 2/5 Asymmetric (FL, HL) RF: moderate impact, very mild
push-off; RH: very mild impact

RF: mild impact, mild push off;
RH: very mild impact

2 Sound Symmetric LF: very mild impact LF: very mild impact

3 RF: 2/5 Asymmetric (FL) RF: very mild impact, very mild
push-off; LH: very mild push-off

RF: mild impact, very mild
push-off; LH: very mild push-off

4 Sound Asymmetric (HL) LH: very mild impact, very mild
push-off Symmetric

5 LF: 1/5; LH: 2/5 Asymmetric (FL, HL)
LF: mild impact, mild push-off;

LH: very mild impact, mild
push-off

LF: mild impact, mild push-off;
LH: mild push-off

6 Sound Symmetric LF: very mild impact, very mild
push-off; RH: mild push-off

LF: very mild impact; RH: mild
push-off

7 RF: 1/5 Asymmetric (FL)
RF: very mild impact; LF: very
mild push-off; LH: very mild
impact, very mild push-off

RF: mild impact; LF: very mild
push-off; RH: very mild impact;

LH: very mild push-off
8 Sound Symmetric RF: very mild push-off RF: very mild push-off

9 LF: 1/5 Asymmetric (FL, HL) LF: mild impact; LH: very mild
impact, very mild push-off LF: very mild impact

10 RF: 2/5 Asymmetric (FL) RF: mild impact; RH: very mild
push-off

RF: very mild impact; RH: very
mild impact

11 LH: 1/5 Asymmetric (HL) LH: very mild impact., very mild
push-off LH: very mild push-off

12 Sound Asymmetric (HL) LF: very mild impact; RH: very
mild impact LF: very mild impact

13 LF: 1/5 Asymmetric (FL) LF: mild impact LF: very mild impact, very mild
push-off; RH: very mild impact

14 LH: 1/5 Asymmetric (HL) LH: very mild impact, mild
push-off

LH: very mild impact, very mild
push-off

15 Sound Asymmetric (FL) RF: very mild impact RH: very mild impact

16 RF: 1/5 Asymmetric (FL) RF: mild impact, mild push-off RF: very mild impact, very mild
push-off

17 LF: 1/1 Symmetric LF: very mild impact; LH: very
mild push-off

LF: very mild impact; LH: very
mild push-off

18 Sound Symmetric
RF: very mild impact; LF: very

mild push-off; LH: very
mild impact

RF: very mild impact; RH: very
mild push-off

19 Sound Asymmetric (HL)
LF: very mild impact; RH: very

mild push-off; LH: very
mild impact

RH: very mild push-off

20 Sound Symmetric LF: very mild impact; RH: mild
push-off

RH: very mild push-off; LH:
very mild impact

FL = forelimb, HL = hindlimb, RF = right forelimb, LF = left forelimb, RH = right hindlimb, LH = left hindlimb.

The number of animals considered sound/symmetrical by clinical examination was
nine; by IMUs, when using the HDmin and PDmin cut-off values, six; when using the
severity cut-off values, zero; and by AI-MTS, one. Complete agreement between the
three scoring systems (i.e., clinical examination, IMUs and AI-MTS) regarding the affected
limb(s) occurred in only four horses. In all the horses that were considered lame on
clinical examination, on the straight line and on a hard surface, IMUs and IA-MTS agreed
on at least one of the affected limb(s) detected by clinical examination. However, both
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locomotor assessment systems detected more asymmetric limbs than those detected by
clinical examination.

3.2. Agreement between Inertial Measurement Unit System and AI Marker-Less Motion
Tracking System

Cohen’s coefficients of agreement between the two gait analysis systems (IMUs and
AI-MTS) in the different assessment conditions (SH, SS, RCH, RCS, LCH, and LCS) are
shown in Table 2 for the four locomotor parameters considered, (MinDiffhead; MaxDiffhead;
MinDiffpelvis; MaxDiffpelvis). In none of the assessment conditions was Cohen’s coefficient
greater than or equal to 0.81, which was indicative of almost perfect agreement.

Table 2. Cohen’s K coefficients of agreement between the inertial measurement unit (IMU) system
and an artificial intelligence motion tracking system (AI-MTS) in the following assessment conditions:
straight hard (SH), straight soft (SS), left circle hard (LCH), left circle soft (LCS), right circle hard
(RCH), and right circle soft (RCS).

Locomotion
Parameters SH SS LCH LCS RCH RCS

MinDiffhead 0.80 0.65 0.58 0.53 0.67 0.60
MaxDiffhead 0.55 0.25 0.54 0.54 0.74 0.77
MinDiffpelvis 0.12 0.08 0.35 0.17 0.47 0.59
MaxDiffpelvis 0.50 0.51 0.49 0.68 0.69 0.63

Substantial agreement between IMUs and AI-MTS was found for: MinDiffhead in SH,
SS, and RCH; MaxDiffhead in RCH and RCS; and MaxDiffpelvis in LCS, RCH, and RCS. The
lowest agreement coefficients were found for MinDiffpelvis in all the assessment conditions
(Table 2).

The results of the Bland–Altman analysis for the four locomotor parameters and for
the different assessment conditions are shown in Figures 1–6.
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Figure 1. Difference between the locomotor parameters measured by inertial measurement unit (IMU)
system and artificial intelligence marker-less motion tracking system (AI-MTS) (y axis) as a function
of average value of both systems (x axis) for each straight hard (SH) assessment in the 20 horses
included in the study. The upper and lower limits of agreement are illustrated by the dotted lines.
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3.3. Significant Differences in the Locomotor Parameters between Inertial Measurement Unit
System and AI Marker-Less Motion Tracking System

The significant differences for the four locomotor parameters using IMUs and AI-MTS
are presented in Figures 7–9 (only significant differences are shown). The following signifi-
cant differences in locomotor parameters were found when comparing the two technologies.
MinDiffhead values were significantly greater with IMUs compared to AI-MTS in SH and
SS. Likewise, MinDiffpelvis values were greater with IMUs in SH and LCS. On the contrary,
higher MaxDiffhead values were found for AI-MTS in LCS (Figures 7–9).
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MinDiffhead and MinDiffpelvis measured by the two gait analysis systems (IMUs and AI-MTS) during
the straight hard (SH) assessments. Statistical significance was set as * (p < 0.05).
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MinDiffhead and MinDiffpelvis measured by the two gait analysis systems (IMUs and AI-MTS) during
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The mean number of valid strides recorded by the IMUs and IA-MTS in the different
assessment conditions are shown in Table 3. The number of recorded forelimb strides was
significantly higher for the AI-MTS compared to the IMUs in SH, LCH, LCS, RCH, and RCS
conditions. Conversely, the number of hindlimb strides was higher for the IMUs compared
to the AI-MTS in the SS assessment, and lower in LCH and RCH conditions.
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Table 3. Number of valid strides recorded by the inertial measurement unit (IMU) system and the
artificial intelligence motion tracking system (AI-MTS) in the different assessment conditions (SH, SS,
LCH, RCH, LCS, RCS). Data are expressed as mean ± SD. Data in rows with different superscript
letters are significantly different from each other (p < 0.05).

Assessment Condition IMUs
AI-MTS

Forelimbs Hindlimbs

Straight hard (SH) 23 ± 7 b 34 ± 9 a 21 ± 7 b

Straight soft (SS) 21 ± 6 a 25 ± 6 a 16 ± 4 b

Left circle hard (LCH) 28 ± 11 c 44 ± 14 a 37 ± 11 b

Left circle soft (LCS) 30 ± 9 b 40 ± 16 a 34 ± 11 b

Right circle hard (RCH) 29 ± 12 c 48 ± 9 a 36 ± 8 b

Right circle soft (RCS) 29 ± 12 b 42 ± 15 a 35 ± 10 b

3.4. Effect of the Different Assessment Conditions

The comparisons between the absolute values of the studied locomotion parameters
measured under the different assessment conditions are shown in Figures 10 and 11. For
IMUs, significantly higher MinDiffpelvis values were found for LCS compared to SH and SS
(Figure 10). Regarding AI-MTS, the differences between the various assessment conditions
were found in MaxDiffhead. Higher values for MaxDiffhead were found in LCH compared
to SH and SS and in LCS compared to SH and SS (Figure 11).
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4. Discussion

The present study was performed due to the recent development of an AI marker-less
motion tracking system (AI-MTS). This system is intended for the assessment of lame-
ness/asymmetry and can be easily used in a clinical setting to aid in the decision-making
process [33,34]. In this study, our aim was to compare a commercial IMU system, previously
validated and widely used [13,17,18,22,38,39], with this new system (AI-MTS) [33,34,40]
in clinically sound horses and in horses with a mild intensity lameness, under different
assessment conditions, i.e., a straight line and in right and left circles, on both hard and
soft surfaces.

The most significant findings were the following: (1) The number of horses considered
sound in the clinical examination was higher compared to the number of asymmetric
animals detected by the IMU and AI-MTS systems. (2) A complete agreement between the
clinical examination and the two gait assessment systems regarding the affected limb(s) oc-
curred only in a very reduced number of animals because IMUs and AI-MTS detected more
asymmetrical limbs than clinical examination. (3) The greatest agreement between IMUs
and AI-MTS was found for MinDiffhead in SH conditions. MaxDiffhead and MaxDiffpelvis
showed substantial agreement in circles, particularly towards the right side and on both
types of surface types (hard and soft). The lowest agreements were found for MinDiffpelvis
in all conditions. (4) Finally, considering the absolute values of the evaluated locomotor
parameters, the IMU system presented higher values for MinDiffhead (in SH and SS condi-
tions) and for MinDiffpelvis (in SH and LCS conditions) and lower values for MaxDiffhead
(in the LCS condition).

The fact that the number of asymmetric horses detected by both gait assessment
systems was higher than the number of horses considered lame by clinical examination
was an expected finding. Clinical examination, using the human eye and depending on the
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experience of the examiner, detects more obvious changes in gait, as well as other clinical
manifestations that are not detected by gait assessment systems, which are based on an
asymmetry or gait deviation that is considered ‘normal’ or ‘perfect’. Mild asymmetries
may have gone unnoticed during the clinical examination, particularly when more than
one limb was affected and/or when compensatory movements affected the other limbs.
In fact, at a subclinical level, the human ability to detect very mild asymmetries may be
limited. This idea was supported by the finding that the limb(s) considered lame during
the clinical examination were also detected as asymmetric by the two gait analysis systems
assessed. However, the number of affected limb(s) was greater with AI-MTS initially,
followed by IMUs, compared to the number of limb(s) identified as lame by clinical
examination. Moreover, of the horses considered lame on clinical examination (n = 11),
seven presented lameness in the forelimbs. The detection of very subtle hindlimb lameness
is more complex and may go unnoticed, and this fact may partially justify the detection of
a greater number of asymmetrical limbs with the IMU and AI-MTS systems compared to
clinical examination. This result deserves to be highlighted, since the correct identification
of hindlimb lameness by clinical examination is very challenging, mainly because vertical
movements of the pelvis and pelvic rotations are highly dependent on factors other than
lameness, such as physical anatomy, conformation [41], as well as different movement
patterns and hip rotation adaptations [41–44]. Interestingly, we have also noticed that the
previously published cut-off values for the distinction between symmetry and asymmetry
by the IMUs [16,45] are less sensitive compared to the ranges adopted in the present study
for the classification of asymmetry severity [46,47]. Indeed, when defining asymmetry in a
dichotomous way (presence/absence), very mild asymmetries may go under-diagnosed.
The thresholds used in this study did not consider breed, age, or sex groups, so it may be
interesting to perform gait analysis using these systems in the near future, establishing
reference threshold cut-off values tailored for different populations.

There is much debate about the clinical significance of asymmetries detected by gait
assessment systems. As mentioned previously, gait asymmetry does not imply lameness,
which is a clinical concept with several different implications, such as a reduction in athletic
performance or an impact on welfare during exercise and training. In fact, numerous
studies [46,48,49] have shown that 50–72% of the horses considered sound by their owners
exhibited gait asymmetry outside normal values when quantified using IMUs. The rele-
vance of these asymmetries to athletic performance is currently unknown. In a population
of 33 elite eventing horses in competition [47], authors found that 61% of these animals
exhibited locomotor asymmetries. However, the clinical relevance of these asymmetries
was not demonstrated, as no differences were found between pre- and post-competition,
and the horses were considered ‘fit for competition’ by the veterinary staff. Interesting
results were described by Lopes et al. (2018) [50] in endurance horses in competition. Using
an IMU system, 21 of the 22 endurance horses evaluated were considered asymmetric, and
there was a significant disagreement between these results and the clinical assessment of
the competition veterinarians, although this disagreement disappeared when the sensitivity
of the IMUs was reduced. Considering these data together, it seems that gait analysis
systems are too sensitive, and perhaps the sensitivity should be reduced so it can be used
in a competitive setting, but this hypothesis must be analyzed in further detail.

In our case, all horses assessed performed as expected by their owners. However,
it should be considered that none of the horses studied were elite athletes. In the near
future, it would be interesting to include these locomotor assessments in performance
tests and to analyze their changes throughout the competitive season for each individ-
ual. There are numerous physiological factors that may influence locomotor asymmetry
without being associated with lameness. This idea is supported by data provided by
Jansson et al. (2021) [51], who found that horses subjected to a high-energy diet experi-
enced weight gain and exhibited greater locomotor asymmetry compared to those animals
subjected to a 36-day dietary restriction.
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The greatest agreement between IMUs and AI-MTS was found for MinDiffhead in SH
conditions. This is possibly due to a greater regularity of the assessment surface, together
with easier identification of anatomical landmarks in the case of AI-MTS. In addition, horses
have highly symmetrical peak vertical forces, stance duration, and limb impulses during
the stance phase when trotting in a straight line [52], which explains the higher level of
head agreement in this condition. The lower level of agreement between the two systems
for MinDiffpelvis can be explained by the fact that the AI-MTS recorded a lower number of
hindlimb strides compared to IMUs, since the pelvis was predominantly visible when the
horse trotted away from the camera. This can lead to biases since the resulting asymmetries
will be influenced by variations in the underlying data in terms of stride selection. Finally,
we observed that the absolute values of MinDiffhead (SH and SS) and MinDiffpelvis (SH
and LCS) were higher when measured by IMUs compared to AI-MTS, while those of
MaxDiffhead (LCS) were higher when measured by AI-MTS. These results suggest that
IMUs may be more sensitive for detecting impact asymmetries, while AI-MTS for push-off
asymmetries. Since these differences were significant only in some assessment conditions,
further studies should be conducted to confirm our hypothesis.

5. Conclusions

In this study, horses of different breeds were clinically assessed for lameness, and their
locomotor asymmetry was analyzed by two different methods: IMUs and AI-MTS. The
number of horses considered sound by clinical examination was greater than the number of
asymmetrical animals detected by the two different gait analysis systems. However, limb(s)
identified as lame by clinical examination were also identified as asymmetrical by both
IMU and AI-MTS. A greater number of limbs were identified asymmetrical by AI-MTS and
IMUs, suggesting a greater sensitivity of these technologies compared to visual assessment,
particularly in the hind limbs, but the different thresholds set for asymmetry might have to
be taken into consideration. The agreement between both IMUs and AI-MTS was greater
for straight lines and hard surfaces, particularly for MinDiffhead. The lowest agreement
was found for MinDiffpelvis, reflecting the difficulties in assessing asymmetry in the hind
limbs. Some degree of asymmetry is likely to be clinically relevant, suggesting the need
for regular assessment. In the future, the introduction of these measures in training horses,
together with those derived from physiological adaptations to exercise tests (such as heart
rate and blood lactate accumulation), is strongly recommended.
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