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Abstract Supervised discretization is one of basic data pre-

processing techniques used in data mining. CAIM (Class-

Attribute Interdependence Maximization) is a discretization

algorithm of data for which the classes are known. However,

new arising challenges such as the presence of unbalanced

data sets, call for new algorithms capable of handling them,

in addition to balanced data. This paper presents a new dis-

cretization algorithm named ur-CAIM, which improves on

the CAIM algorithm in three important ways. First, it gen-

erates more flexible discretization schemes while producing

a small number of intervals. Second, the quality of the in-

tervals is improved based on the data classes distribution,

which leads to better classification performance on balanced

and, especially, unbalanced data. Third, the runtime of the

algorithm is lower than CAIM’s. The algorithm has been

designed free-parameter and it self-adapts to the problem

complexity and the data class distribution. The ur-CAIM

was compared with 9 well-known discretization methods

on 28 balanced, and 70 unbalanced data sets. The results

obtained were contrasted through non-parametric statistical

tests, which show that our proposal outperforms CAIM and

many of the other methods on both types of data but espe-

cially on unbalanced data, which is its significant advantage.

Keywords Supervised discretization · class-attribute inter-

dependency maximization · unbalanced data · classification

A. Cano and S. Ventura are with the Department of Computer Science

and Numerical Analysis. University of Cordoba, Spain.

S. Ventura is also with the Computer Sciences Department.

Faculty of Computing and Information Technology.

King Abdulaziz University. 21589 Jeddah (Saudi Arabia).

E-mail: {acano,sventura}@uco.es

D. T. Nguyen and K. J. Cios

Department of Computer Science, Virginia Commonwealth Univer-

sity, Richmond, VA 23284, USA

K. J. Cios is also with the IITiS Polish Academy of Sciences, Poland.

E-mail: {nguyendt22,kcios}@vcu.edu

1 Introduction

Discretization is a data preprocessing technique which trans-

forms continuous attributes into discrete ones by dividing

the continuous values into intervals, or bins [12,28,59]. There

are two basic types of discretization methods: unsupervised

and supervised [18]. Unsupervised discretization methods,

such as Equal-Width (EW) and Equal-Frequency (EF) [8]

do not take advantage of the class labels (even if known)

in the discretization process. On the other hand, supervised

methods make use of this information to generate intervals

that are correlated with the data classes.

Class-Attribute Interdependence Maximization (CAIM)

[44] is a top-down discretization algorithm that generates

good discretization schemes. Data discretized by CAIM and

used as the input of a classifier, produced high predictive

accuracy on many data sets [44]. Although CAIM outper-

forms many other methods it has two drawbacks [54]. First,

it generates discretization schemes where the number of in-

tervals is equal or very close to the number of classes. This

behavior biases the outcome of discretization regardless of

the data distribution and the problem properties. Second, the

formula of the CAIM criterion only takes into account the

data class with the highest number of instances while it ig-

nores all other classes. This behavior may lower the qual-

ity of the discretization scheme, in particular for unbalanced

data sets. The problem of learning from unbalanced data is

a challenging task in data mining that has attracted attention

of both academical and industrial researchers [34,40]. Un-

balanced data problems concern the performance of learning

algorithms in the presence of severe class distribution skews

(some classes have many times more instances than other

classes). The CAIM criterion formula is biased to majority

class instances and it is not capable of handling such highly

unbalanced data.
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This paper introduces a new algorithm, named ur-CAIM,

which solves the aforementioned issues of the original CAIM

algorithm. We will analyze the behavior and the performance

of the original CAIM on unbalanced data. We will discuss

how we can address this issue and propose an heuristic which

takes into account the data class distributions. We will show

that the new algorithm outperforms the original CAIM on

both balanced and especially, unbalanced data sets, while

generating a small number of intervals and better discretiza-

tion schemes (as measured by the subsequently used clas-

sifiers), and at the lower computational cost. The ur-CAIM

algorithm is free-parameter, which means that it does not

require any parameter settings introduced by the user. The

algorithm is capable to select automatically the most appro-

priate number of discrete intervals. Moreover, it overcomes

the bias of the CAIM algorithm of choosing a number of in-

tervals very close to the number of classes, which provides

more flexible discretization schemes that adapt better to the

specific data problem properties.

The algorithm is evaluated and compared with 9 other

discretization algorithms, including well-known and recently

published methods [28], on 28 balanced and 70 unbalanced

data sets. Many different performance measures are used to

evaluate performance of the algorithms and the discretiza-

tion intervals they generate. The results from the experimen-

tal study show that it performs very well, as measured by

the number of intervals, execution time, accuracy, Cohen’s

kappa rate [3,4] and area under the curve (AUC) [6,36]. The

experimental results are contrasted through the analysis of

non-parametric statistical tests [17,26], namely the Fried-

man [14], Holm’s [35] and Wilcoxon [56] tests that evalu-

ate whether there are statistically significant differences be-

tween the algorithms.

The remainder of this paper is organized as follows. The

next section reviews related works on discretization meth-

ods. Section 3 presents the ur-CAIM algorithm. Section 4

describes the experiments performed, whose results are dis-

cussed in Section 5. Finally, Section 6 presents some con-

cluding remarks.

2 Background

The literature review provide a vast number of related works

on discretization methods. These methods are based on a

wide number of heuristics such as information entropy [21],

or likelihood [5], or statistics [47]. Specifically, Kotsiantis et

al. [43] and Garcı́a et al. [28] presented two recent surveys

on discretization methods. From the theoretical perspective,

they developed a categorization and taxonomy based on the

main properties pointed out in previous research, and unified

the notation. Empirically, they conducted an experimental

study in supervised classification involving the most repre-

sentative and the newest discretizers, different types of clas-

sifiers, and a large number of data sets. They concluded with

a selection of some best performing discretizers, which we

included in our experimental study. This set of discretiza-

tion algorithms include Information Entropy Maximization

(IEM) [21], Class-Attribute Interdependence Maximization

(CAIM) [44], ChiMerge [41], Modified-χ2 [53], Ameva [30],

Hypercube Division-based Discretization (HDD) [58], Class-

Attribute Contingency Coefficient (CACC) [54], and Inter-

val Distance-Based Method for Discretization (IDD) [52].

These top-ranked algorithms are reviewed next.

Fayyad et al. [21] used entropy minimization heuristic

for discretizing the range of a continuous-valued attribute

into multiple intervals (IEM). They presented theoretical ev-

idence for the appropriateness of this heuristic in the binary

discretization algorithm used in ID3, C4, CART, etc. IEM

is known to achieve both good accuracy and low number of

intervals. The entropy-based heuristic defined in Equation 1

measures the class information entropy of an interval. It is

based on the probabilities P in a set of examples T to be-

long to the class i, where C is the number of classes. The

algorithm measures the entropy of partitions it may gener-

ate. The cut point of intervals are selected as the ones which

minimize the entropy measure. Even the algorithm was not

specifically designed for unbalanced data, the entropy takes

into account the data class probabilities. Therefore, it is ex-

pected to produce appropriate discretization intervals under

the presence of unbalanced data.

Entropy(T ) = −
C∑

i=1

P (T, i) log (P (T, i)) (1)

Kerber [41] presented ChiMerge, a general and robust

algorithm that employed the χ2 statistic to discretize nu-

meric attributes. While the χ2 statistic is general and should

have nearly the same meaning regardless of the number of

classes or examples, ChiMerge does tend to produce more

intervals when there are more examples. Another shortcom-

ing of ChiMerge is its lack of global evaluation. When de-

ciding which intervals to merge, the algorithm only exam-

ines adjacent intervals, ignoring other surrounding intervals.

Tay et al. [53] proposed a modified χ2 algorithm as an

automated discretization method. It replaced the inconsis-

tency check in the original χ2 algorithm using a level of

consistency which maintains the fidelity of the training set

after discretization. In contrast to the original χ2 algorithm,

this modified algorithm takes into consideration the effect of

the degree of freedom, that consequently results in greater

accuracy. The formula for computing the χ2 value considers

the expected frequency of examples belonging to each of

the data classes. Therefore, it should create appropriate dis-

cretization intervals under the presence of unbalanced data.

Gonzalez et al. [30] introduced Ameva, an autonomous

discretization algorithm designed to work with supervised
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learning algorithms. It maximizes a contingency coefficient

based on χ2 statistics and generates a potentially minimal

number of discrete intervals. The maximum value of the

Ameva coefficient indicates the best correlation between the

class labels and the discrete intervals, i.e. the highest value

of the Ameva coefficient is achieved when all values within

a particular interval belong to the same associated class for

each interval. Therefore, we would expect that examples from

minority classes should be intervalized into partitions sepa-

rated from majority classes.

Yang et al. [58] introduced a hypercube division-based

(HDD) top-down algorithm for supervised discretization. The

algorithm considers the distribution of both the class and

continuous attributes and the underlying correlation struc-

ture in the data set to divide the continuous attribute space

into a number of hypercubes. Objects within each hypercube

belong to the same decision class. HDD is known to perform

slow and generate high number of intervals. The algorithm

is motivated after the performance of class-attribute inter-

dependence maximization. The bias of this criterion to data

classes with the most samples would decrease the quality of

the produced discretization scheme.

Tsai et al. [54] proposed a static, global, incremental, su-

pervised top-down discretization algorithm called CACC, to

raise quality of the generated discretization scheme by ex-

tending the idea of contingency coefficient and combining

it with the greedy search. The contingency coefficient takes

into account the distribution of all samples and it is a very

good criterion to measure the interdependence between par-

titions. However, CACC requires very long runtimes, which

reduces its appeal when applying on real-world problems.

Ruiz et al. [52] introduced a method for supervised dis-

cretization based on interval distances, using a concept of

neighborhood in the target’s space (IDD). The method takes

into consideration order of the class attribute, when it ex-

ists, so that it can be used with ordinal classes. However,

the neighborhood concept suffers from data class skews and

therefore, it may not be capable of producing appropriate

discretization intervals under the presence of unbalanced data.

Moreover, IDD may create high number of intervals depend-

ing on the distances between data examples.

There are many other discretization methods based on

multiple heuristics. Chmielewski and Grzymala-Busse [11]

presented a method of transforming any local discretization

method into a global one based on cluster analysis. Elo-

maa and Rousu [19] presented a multisplitting approach and

they demonstrate that the cumulative functions information

gain and training set error as well as the non-cumulative

function gain ratio and normalized distance measure are all

well-behaved. Grzymala-Busse [31,32] also presented en-

tropy driven methodologies based on dominant attribute and

multiple scanning.

In spite of the large number of discretization algorithms

and publications, little attention has been given to the un-

balanced data discretization problem. Janssens et al. [38]

included the concept of misclassification costs (cost-based

discretization) to find an optimal multi-split. This idea fol-

lowed the cost-based classification principles [46] that class-

distributions may vary significantly. In order to test its per-

formance, they compared against entropy-based and error-

based discretization methods with decision tree learning.

2.1 CAIM discretization

Kurgan et al. [44] presented CAIM, a supervised discretiza-

tion algorithm which maximizes the class-attribute interde-

pendence and generates minimal number of discrete inter-

vals. However, CAIM has two drawbacks [54]. First, the al-

gorithm is designed to generate a number of intervals very

close to the number of classes. This behavior is not flexi-

ble and it does not adapt to the specific properties of each

data set distribution. Second, the CAIM criterion formula

only takes into account the data class with the highest num-

ber of instances. Therefore, discretization schemes gener-

ated by CAIM for unbalanced data are biased to majority

class examples. Next, we analyze the behavior of the CAIM

criterion, giving special attention to its performance on un-

balanced data.

Supervised discretization builds a model from a training

data set, where classes are known. The data consists of M

instances, where each instance belongs to only one of the S

classes; F indicates any continuous attribute. We can define

a discretization scheme D on F , which discretizes a con-

tinuous attribute F into n discrete intervals bounded by the

pairs of numbers:

D : {[d0, d1], (d1, d2], ..., (dn-1, dn]} (2)

where d0 is the minimal value and dn is the maximal value

of attribute F , and the values in Equation 2 are arranged in

ascending order.

The class variable and the discretization variable of at-

tribute F are treated as two random variables defining a

two-dimensional frequency/quanta matrix that is shown in

Table 1, where qir is the total number of continuous values

belonging to the i-th class that are within interval (dr−1, dr].

Mi+ is the total number of objects belonging to the i-th

class and M+r is the total number of continuous values of

attribute F that are within the interval (dr−1, dr], for i =

1, 2, ..., S and r = 1, 2, ..., n.

The Class-Attribute Interdependency Maximization cri-

terion defines dependence between the class variable C and

the discretization scheme D for attribute F as follows:
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Table 1: Discretization Quanta Matrix.

Class
Interval

Class Total
[d0 ,d1] ... (dr-1 ,dr] ... (dn-1 ,dn]

C1 q11 ... q1r ... q1n M1+

: : ... : ... : :

Ci qi1 ... qir ... qin Mi+

: : ... : ... : :

CS qS1 ... qSr ... qSn MS+

Interval Total M+1 ... M+r ... M+n M

CAIM(C,D|F ) =
1

n
·

n∑

r=1

maxr
2

M+r

(3)

where n is the number of intervals, r iterates through all

intervals, maxr is the maximum value among all qir val-

ues (maximum value within the r-th column of the quanta

matrix), M+r is the total number of continuous values of

attribute F that are within the interval (dr−1, dr].
The CAIM criterion shown in Equation 3 is a heuris-

tic measure used to quantify the interdependence between

classes and the discretized attribute, and it favors a lower

number of intervals for which maxr
2 is maximized. The

theoretical and mathematical analysis of the formula shows

that it focuses on the data class for which the number of

instances is highest (majority class). However, it does not

take into account data class distribution of instances in the

intervals, i.e., given the same maxr and M+r but different

minority data class distributions, the CAIM value remains a

constant value. The outcome is a discretization scheme that

may not be the best for unbalanced data, and this is an im-

portant disadvantage of CAIM. Therefore, it is necessary to

improve the heuristic to address the unbalanced data prob-

lem, which is the main motivation of this work.

3 ur-CAIM algorithm

This section introduces the definitions of three well-known

class-attribute interdependence criteria and shows how they

can be used in tandem to achieve the goal of designing a

robust discretization criterion, the ur-CAIM criterion. Next,

the ur-CAIM algorithm, based on the ur-CAIM criterion, is

described in detail.

The estimated joint probability of the occurrence that at-

tribute F values are within the interval Dr = (dr−1, dr] and

they belong to class Ci is calculated as:

pir = p(Ci, Dr|F ) =
qir

M
(4)

The estimated class marginal probability that attribute F

values belong to class Ci , pi+, and the estimated interval

marginal probability that attribute F values are within the

interval Dr = (dr−1, dr] p+r are as follows:

pi+ = p(Ci) =
Mi+

M
(5)

p+r = p(Dr|F ) =
M+r

M
(6)

The class-attribute mutual information between the class

variable C and the discretization variable D for attribute F ,

given the frequency matrix shown in Table 1, is defined as:

I(C,D|F ) =

S∑

i=1

n∑

r=1

pir · log2
pir

pi+ · p+r

(7)

Similarly, the class-attribute information [20] and the

Shannon’s entropy are defined, respectively, as:

INFO(C,D|F ) =
S∑

i=1

n∑

r=1

pir · log2
p+r

pir
(8)

H(C,D|F ) =

S∑

i=1

n∑

r=1

pir · log2
1

pir
(9)

Given Equations 7, 8, and 9, the Class-Attribute Inter-

dependence Redundancy (CAIR) [57] criterion and Class-

Attribute Interdependence Uncertainty (CAIU) [37] criteria

are defined as follows:

CAIR(C,D|F ) =
I(C,D|F )

H(C,D|F )
(10)

CAIU(C,D|F ) =
INFO(C,D|F )

H(C,D|F )
(11)

The CAIR criterion is used to measure the interdepen-

dence between classes and the discretized attribute (the larger
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the value the better correlated are the class labels with dis-

crete intervals). It is independent of the number of class

labels and the number of unique values of the continuous

attribute. The same holds true for the CAIU criterion but

with a reverse relationship. Namely, CAIU optimizes for

discretization schemes with larger number of intervals. Both

CAIR and CAIU values are in the range [0,1]. On the other

hand, the CAIM criterion can be normalized to the range

[0,1] as follows:

CAIMN (C,D|F ) =
1

M
·

n∑

r=1

maxr
2

M+r

(12)

To address the unbalanced data problem, we introduced

the unbalanced ratio factor (class probability pi) into the for-

mulas by means of the class-attribute mutual information (I)

defined in Equation 7. Thus, we redefine the class-attribute

mutual information in Equation 13, and consequently the

CAIR factor is modified to handle unbalanced data more ap-

propriately.

I ′(C,D|F ) =

S∑

i=1

n∑

r=1

(1− pi+) · pir · log2
pir

pi+ · p+r

(13)

All of the above described criteria serve for different

discretization goals and cover different aspects of the dis-

cretization task. We decided to combine them to propose the

new criterion, called ur-CAIM, which combines the CAIM,

CAIR (modified) and CAIU into one, which is defined as

follows:

ur -CAIM = CAIMN · CAIR · (1− CAIU) (14)

This way, the ur-CAIM criterion takes into account pos-

sibly unbalanced classes, so that minority class instances are

not “squashed” by instances from classes with much larger

number of instances. As a result, it improves generation of

intervals for the under-represented classes with small num-

ber of instances.

Figure 1 shows and analyzes the discretization behavior

of CAIM and ur-CAIM on an extremely unbalanced sim-

ple data. Positive class (minority) and negative class (ma-

jority) instances are located in a continuous attribute do-

main. We want discretization to successfully separate the

minority class instance by taking into consideration the data

class distribution. The minority class is under-represented

and overlapped with the other class. Thus, it should be dis-

cretized even though it would mean covering a higher num-

ber of instances from the negative class. The question is:

is the success ratio for the positive class worth the failure

Fig. 1: CAIM and ur-CAIM unbalanced discretization.

Algorithm 1 ur-CAIM algorithm

Input: Data of M instances, S classes, and F attributes

1: for every Fi do

2: Sort all distinct values of Fi in ascending order.

3: Find the minimum dmin, maximum dmax values of Fi.

4: Initialize interval boundaries B with dmin , dmax, and all mid-

points of adjacent pairs in the set.

5: Set discretization scheme D = {[dmin ,dmax]}.
6: ur-CAIMD ← ur-CAIM value of D.

7: Evaluate the ur-CAIM value of the tentative schemes using D

and the points from B.

8: ur-CAIMmax← Select the highest valued midpoint.

9: if (ur-CAIMmax > ur-CAIMD) then

10: Update D with the midpoint from ur-CAIMmax.

11: Go to step 6.

12: else

13: return Discretization scheme D for attribute Fi.

14: end if

15: end for

Output: Discretization scheme for all attributes

ratio of the negative class?. The answer is that if the in-

terval had not been discretized, a classification algorithm,

subsequently used, would be set for almost certain failure

because the minority class instance is included in intervals

where majority class instances prevail. It is better to fail the

prediction of the two negative examples that failing the pre-

diction of the minority positive example.

The ur-CAIM criterion represents a trade-off for dealing

with the number of intervals. The CAIM part of the formula

advocates for a more generalized scheme with lower number

of intervals, whereas the CAIR and CAIU advocate for the

larger number. The ur-CAIM criterion thus allows for eval-

uating different behaviors of different metrics and presents

a single-value quality measure of the discretization scheme

that works well on both balanced and unbalanced data, as

will be shown in the experimentation.

The ur-CAIM algorithm is based on the ur-CAIM crite-

rion, which evaluates the quality of the tentative discretiza-

tion schemes and finds the one with the highest ur-CAIM

value. Discretization schemes are iteratively improved by

splitting the feature domain into intervals. The algorithm

procedure is shown in Algorithm 1. It follows a top-down

scheme, similar to CAIM, IEM and HDD algorithms. It first

initializes the tentative discretization intervals based on the

attribute values present on the data set. It evaluates the ur-

CAIM formula for each of the intervals and it selects the

one with the highest value. The stop criterion is triggered

when the ur-CAIM value is not further improved.
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In contrast to the CAIM algorithm, the ur-CAIM does

not use any assumption, such as that every discretized at-

tribute needs at least the number of intervals that are equal

to the number of classes. Therefore, the ur-CAIM algorithm

is free-parameter and it self-adapts automatically to the data

problem properties. The ur-CAIM complexity is O(m log m),

where m is the number of distinct values of the discretized

attribute. We designed a fast implementation of the ur-CAIM

criterion computation that minimizes the number of calcu-

lations by reusing the quanta matrix values. Moreover, the

discretization process for each attribute is an independent

operation and therefore, current multi-core CPUs can take

advantage of the concurrent computation of discretization

for each attribute. This makes the ur-CAIM algorithm fast

and scalable to large data. Details about execution times are

provided in the experiments section.

4 Experiments

This section describes experiments performed to evaluate

the performance and compare ur-CAIM with other discretiza-

tion algorithms. First, performance measures used in evalu-

ation of the algorithms are presented. Second, information

about the data sets and algorithms is detailed. Finally, the

tests for the statistical analysis are presented.

4.1 Performance measures

There are many performance measures to evaluate discretiza-

tion methods and the quality of the discretization schemes

generated. Different measures allow to observe different be-

havior of algorithms. Evaluating different complementary

measures increases the strength of the experimental study.

Two direct measures are the number of intervals created

and the execution time of the algorithms. The number of

intervals evaluates complexity of the discretization scheme.

The lower the number of intervals the simpler discretization,

but it its important to highlight that too simple discretization

schemes may lead to worse classification performance. The

computational cost of the algorithms is especially relevant

for their scalability to large data sets, not only in terms of

the number of data instances but also their dimensionality.

The quality of the intervals generated is usually evaluated in

terms of the classification error [45].

The most frequently used performance measure for clas-

sification is accuracy, but unfortunately it may be mislead-

ing when classes are strongly unbalanced. In this situation a

default-hypothesis classifier could achieve a very good ac-

curacy by just predicting the majority class. Therefore, we

should perform evaluation of the discretization by using also

other measures. These measures are based on the values of
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Fig. 2: Example of ROC plot. The solid line is a good per-

forming classifier whereas the dashed line represents a ran-

dom classifier.

the confusion matrix, where each column of the matrix rep-

resents the count of instances in a predicted class, while each

row represents the number of instances in the actual class.

Cohen’s kappa rate [3,4] is an alternative measure to

predictive accuracy that compensates for random hits. The

kappa measure evaluates the merit of the classifier, i.e., the

actual hits (coverage of true positives) that can be attributed

to the classifier and not to a mere chance. Kappa statistic

values range from -1 (total disagreement) through 0 (ran-

dom classification) to 1 (total agreement). It is calculated

from the confusion matrix as follows:

Kappa =

N

k∑

i=1

xii −

k∑

i=1

xi.x.i

N2 −
k∑

i=1

xi.x.i

(15)

where xii is the count of cases in the main diagonal of the

confusion matrix, N is the number of instances, and x.i, xi.

are the column and the row total counts, respectively. Kappa

penalizes all-positive or all-negative predictions (default hy-

pothesis), which is crucial to consider when dealing with

unbalanced data sets.

The area under the ROC curve (AUC) [6,36] is also

commonly used as it shows the trade-off between the true

positive rate (TPrate) and the false positive rate (FPrate) as

demonstrated in [22,25,48,49]. The way to build the ROC

space is to plot on a two-dimensional chart the true positive

rate (Y-axis) against the false positive rate (X-axis) as shown

in Figure 2. The points (0,0) and (1,1) are trivial classifiers

in which the class is always predicted as negative and pos-

itive, respectively, while the point (0,1) represents perfect

classification. AUC is calculated using the graphic’s area as:

AUC =
1+ TPrate − FPrate

2
(16)
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4.2 Data sets and algorithms

The data sets used in the experiments were collected from

the KEEL [1] and UCI [50] machine learning repositories.

These data sets are very different in terms of complexity,

number of classes, number of attributes, number of instances,

and unbalance ratio (ratio of size of the majority class to

the minority class). There are 28 balanced and 70 unbal-

anced data sets. Detailed information about the data sets

is provided as the additional material that can be found at

this link online1. The balanced data sets are partitioned us-

ing the stratified 10-fold cross-validation procedure [42,55].

The unbalanced data sets are partitioned using the stratified

5-fold cross-validation procedure to ensure the presence of

minority class instances in the test sets.

Discretization algorithms used in comparisons were run

from the KEEL [2] and WEKA [33] software tools, that

facilitate the replicability of the experiments. Algorithms

employed are the ones reviewed in the background section

and were recommended by Garcı́a et al. [28]: Equal-Width

(EW) [8], Equal-Frequency (EF) [8], Information Entropy

Maximization (IEM) [21], Class-Attribute Interdependence

Maximization (CAIM) [44], Ameva [30], Modified-χ2 [53],

Hypercube Division-based Discretization (HDD) [58], Class-

Attribute Contingency Coefficient (CACC) [54], and Inter-

val Distance-Based Method for Discretization (IDD) [52].

The source code of ur-CAIM is made publicly available

at this link online1. Moreover, it is provided as a WEKA

plugin to enable its utilization in the WEKA software tool.

Quality of discretization intervals is evaluated by means

of the classification performance of the subsequently used

classifiers. In order to avoid the bias of particular classifica-

tion algorithms to data, 8 different classification algorithms

belonging to different families are used to evaluate the clas-

sification performance, which increases the strength of the

experimental study. They are NaiveBayes [39], SVM [9],

KNN [15], AdaBoost [24], JRip [13], PART [23], C45 [51],

and RandomForest [7]. Details about the algorithms and ex-

perimental settings are also available online1.

4.3 Statistical analysis

The statistical analysis supports the results obtained through

the experimental study. We use hypothesis testing techniques

to find significant differences between algorithms [26]. We

1 The data sets description along with their partitions, the ur-CAIM

source code and WEKA plugin, the experimental settings and results

for all data sets and algorithms are fully described and publicly

available to facilitate the replicability of the experiments and future

comparisons at the website:

http://www.uco.es/grupos/kdis/wiki/ur-CAIM

employ non-parametric tests according to the recommenda-

tions made in [16,17,26,27].

The Friedman test [14] identifies statistical differences

among a group of results and can be used to test the hy-

pothesis of equality of medians between the results of the

algorithms. If the Friedman test hypothesis of equality is re-

jected (that is, a low p-value is obtained), then it is assumed

that there are significant differences among the different al-

gorithms of the experiment. These differences can then be

assessed by using a post-hoc method. The Holm [35] post-

hoc test finds which algorithms are distinctive among a 1×n

comparison. Moreover, we compute the p-value associated

with each comparison, which represents the lowest level of

significance of a hypothesis that results in a rejection. That

is the adjusted p-value. This way, we can know whether two

algorithms are significantly different and how different they

are. We also obtain the average ranking of the algorithms,

according to the Friedman procedure, which shows the per-

formance of an algorithm with respect to the others and it

is based on the ranking of the algorithms in each data set.

Finally, we perform the Wilcoxon [56] test, which aims to

detect significant differences between pairs of algorithms.

5 Results

This section presents and discusses the experimental study

in order to compare the performance of ur-CAIM in a sce-

nario of both balanced and unbalanced data sets. First, the

number of intervals, execution time, and accuracy for bal-

anced data sets are analyzed. Second, the number of inter-

vals, execution time, AUC and the Cohen’s kappa rate for

unbalanced data sets are analyzed. Finally, the performance

of ur-CAIM is compared with regards of the unbalance ratio.

Due to the article’s space limitations and the large num-

ber of data sets and methods employed, we show only the

results of the statistical tests. Tables with the results of the

cross validation, for each data set and for each method, are

available online for the readers1.

5.1 Balanced data sets

Table 2 show the results of the statistical analysis for the

balanced data sets. Algorithms are ranked according to the

Friedman’s ranking procedure for each measure. The lower

the rank value the better performance of the algorithm. The

Friedman test run on all the measures outcomes a p-value

lower than 0.01 (except for AdaBoost accuracy which is

0.015), which is low enough to reject the null equality hy-

pothesis with a high confidence level (≥ 99%). Therefore, as

we know there are significant differences, we proceed with

the application of the Holm’s post-hoc procedure. In Table 2
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Table 2: Friedman ranks and p-values using Holm’s post-hoc procedure for the balanced data sets.

Number of intervals

Algorithm Rank p-value

IEM 3.5357

ur-CAIM 3.5536 0.9824

CAIM 4.1964 0.4142

CACC 4.3929 0.2895

Ameva 4.6786 0.1578

Modified-χ2 5.6964 0.0076

EW 6.5000 2.5E-4

EF 6.5000 2.5E-4

IDD 7.1429 8.0E-6

HDD 8.8036 0.0000

Runtime

Algorithm Rank p-value

EW 1.0893

EF 2.3750 0.1121

IEM 3.4643 0.0033

ur-CAIM 3.8929 5.3E-4

IDD 4.3571 5.4E-5

Ameva 6.4643 0.0000

Modified-χ2 7.6429 0.0000

CAIM 7.7143 0.0000

HDD 8.5357 0.0000

CACC 9.4643 0.0000

Accuracy

AdaBoost KNN C45 JRip

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value

IEM 4.2321 ur-CAIM 3.8571 ur-CAIM 2.8036 IEM 3.3393

ur-CAIM 4.4464 0.7912 IEM 3.8571 1.0000 IEM 3.5179 0.3774 ur-CAIM 3.3929 0.9472

IDD 4.9286 0.3894 CAIM 4.6250 0.3427 CAIM 4.4286 0.0446 CAIM 4.6250 0.1121

Modified-χ2 5.1607 0.2511 Modified-χ2 4.7143 0.2895 CACC 5.4821 9.3E-4 Modified-χ2 5.1786 0.0230

CACC 5.2857 0.1929 Ameva 5.5357 0.0380 Modified-χ2 5.6607 4.1E-4 CACC 5.4286 0.0098

CAIM 5.3214 0.1782 CACC 5.8571 0.0135 Ameva 5.8036 2.1E-4 Ameva 5.6429 0.0044

Ameva 6.0357 0.0258 EF 6.1607 0.0044 EW 6.2679 1.9E-5 IDD 6.5357 7.8E-5

EW 6.4821 0.0054 IDD 6.3214 0.0023 IDD 6.4464 7.0E-6 EF 6.5714 6.5E-5

EF 6.5000 0.0051 EW 7.0179 9.4E-5 EF 6.9286 0.0000 EW 7.1429 3.0E-6

HDD 6.6071 0.0033 HDD 7.0536 7.8E-5 HDD 7.6607 0.0000 HDD 7.1429 3.0E-6

NaiveBayes PART RamdomForest SVM

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value

CAIM 3.7321 IEM 3.2143 IEM 3.9821 IEM 3.0000

IEM 3.8929 0.8426 ur-CAIM 3.6964 0.5513 CAIM 4.0536 0.9297 Modified-χ2 3.8214 0.3100

Modified-χ2 4.1786 0.5812 CAIM 4.5179 0.1072 ur-CAIM 4.4464 0.5661 ur-CAIM 4.7500 0.0306

ur-CAIM 5.2321 0.0638 Modified-χ2 5.1607 0.0162 Ameva 4.6250 0.4269 CAIM 4.8036 0.0258

Ameva 5.3036 0.0521 EW 5.6429 0.0027 Modified-χ2 4.7679 0.3315 Ameva 5.2679 0.0051

EW 5.4464 0.0341 Ameva 5.7857 0.0015 EF 5.6250 0.0423 IDD 5.8036 5.3E-4

IDD 5.7321 0.0135 CACC 5.9286 7.9E-4 IDD 5.8571 0.0205 EW 5.9643 2.5E-4

HDD 6.6786 2.7E-4 EF 6.2321 1.9E-4 EW 5.9821 0.0135 EF 5.9643 2.5E-4

CACC 7.2321 1.5E-5 IDD 6.7500 1.2E-5 CACC 7.1429 9.4E-5 CACC 7.0893 0.0000

EF 7.5714 2.0E-6 HDD 8.0714 0.0000 HDD 8.5179 0.0000 HDD 8.5357 0.0000

we also show the adjusted p-values that were calculated us-

ing Holm’s post-hoc procedure. The algorithm which ob-

tains the lower rank turns into the control method, and it is

compared against all the other algorithms. The adjusted p-

values associated to the methods which are lower than 0.05

and 0.01 are said to reject the null-hypothesis with a high

confidence level (≥ 95% and ≥ 99%, respectively).

The results indicate that IEM and ur-CAIM produce the

lower number of intervals with a very similar rank, whereas

Modified-χ2, EW, EF, IDD, and HDD obtain much higher

number of intervals and there are statistical differences since

their p-values are lower than 0.01. On the other hand, EW

and EF are the fastest methods, as expected since they are

the simplest algorithms of all used. On the contrary, Ameva,

Modified-χ2, CAIM, HDD and CACC demand significantly

longer runtimes with p-values lower than 1.0E-6. It is also

interesting to point out that ur-CAIM is ranked to be faster

than CAIM.

The accuracy performance is evaluated with regards of

each of the 8 classification methods. IEM achieves the low-

est ranks in 5 methods, ur-CAIM in 2 methods, and CAIM in

just one. Although IEM is ranked better many times, there

are no statistical significant differences with ur-CAIM ex-

cept for SVM with a p-value of 0.03. Moreover, ur-CAIM

is ranked better than CAIM for 6 of the 8 classifiers. On the

other hand, HDD performs significantly worse than the rest

of the algorithms, and many times it is ranked the worst.

The high number of intervals created causes bad classifica-

tion performance and penalizes the accuracy results.

Table 3 shows the p-values of the Wilcoxon test for the

balanced data sets in order to compute multiple pairwise

comparisons among ur-CAIM and the other methods. The

ur-CAIM approach outperforms the original CAIM method

and achieves statistical differences with p-values lower than

0.05 with regards of the number of intervals, the runtime,

and two classifiers.
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Table 3: Wilcoxon test for the balanced data sets.

ur-CAIM vs Intervals Runtime
Accuracy

AdaBoost KNN C45 JRip NaiveBayes PART RandomForest SVM

EW 4.2E-5 ≥ 0.2 0.0036 2.2E-5 1.1E-5 2.8E-6 ≥ 0.2 0.0024 0.0066 0.0280

EF 4.2E-5 ≥ 0.2 0.0006 0.0002 2.2E-5 5.5E-6 0.0010 0.0004 0.0662 0.0280

IEM ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2

CAIM 0.0229 7.4E-9 ≥ 0.2 ≥ 0.2 0.0007 0.0162 ≥ 0.2 0.0794 ≥ 0.2 ≥ 0.2

Ameva 0.0057 0.0002 0.0187 0.0245 4.5E-5 0.0103 ≥ 0.2 0.0042 0.1256 0.1536

Modified-χ2 0.0071 0.0002 0.1936 ≥ 0.2 0.0001 0.0698 ≥ 0.2 0.0521 ≥ 0.2 ≥ 0.2

HDD 7.4E-8 7.4E-9 0.0136 0.0005 3.7E-7 2.4E-5 0.0214 1.3E-6 8.0E-6 3.7E-6

CACC 0.1375 7.4E-9 0.1638 0.0039 1.9E-5 0.0204 0.0004 0.0009 1.1E-5 5.9E-5

IDD 6.7E-6 ≥ 0.2 ≥ 0.2 0.0007 1.0E-5 1.5E-6 0.0426 4.2E-5 0.1936 0.0595

5.2 Unbalanced data sets

Table 4 show the results of the statistical analysis for the

unbalanced balanced data sets. The Friedman test run on all

the measures computes a p-value lower than 0.01, which is

low enough to reject the null equality hypothesis with a high

confidence level (≥ 99%). Therefore, we proceed with the

application of the Holm’s post-hoc procedure and we show

the adjusted p-values.

The results indicate that IEM produces the lower num-

ber of intervals and it achieves statistical significant differ-

ences with all the other discretization methods. However, we

will show that it generates an excessively low number of in-

tervals which eventually, leads classification algorithms to

obtain higher classification errors. Similarly to the perfor-

mance analysis on balanced data, EW and EF are the fastest

methods and ur-CAIM is also faster than CAIM.

The AUC and Cohen’s kappa performances are evalu-

ated with regards of each of the 8 classification methods.

The results show that ur-CAIM consistently achieves better

AUC and kappa ranks than the other discretization meth-

ods for almost all the classification algorithms. This good

performance on unbalanced data is one of the major advan-

tages of ur-CAIM, especially when compared with CAIM.

Specifically, ur-CAIM is ranked in the first place for AUC

in 7 of the 8 classifiers, whereas for Cohen’s kappa, it per-

forms best for all the classifiers evaluated. It is also impor-

tant to note the bad performance of EW and EF on unbal-

anced datasets as measured by their ranks for most of the

classification methods.

Table 5 shows the p-values of the Wilcoxon test for the

AUC and Cohen’s kappa. It is interesting to point out that

ur-CAIM clearly outperforms both IEM and CAIM on un-

balanced data, achieving statistical significant differences on

many of the classifiers. These results are in contrast with

the balanced data scenario, in which IEM outperformed ur-

CAIM, and ur-CAIM had better but very close performance

to the original CAIM. This is the main contribution of the

ur-CAIM algorithm, to improve the CAIM performance on

balanced, but especially, on unbalanced data sets, as seen in

the experimental results.

5.2.1 Performance with data re-sampling

Unbalanced data sets are also commonly evaluated after ap-

plying a data class re-sampling method [29,49]. SMOTE

(Synthetic Minority Over-sampling Technique) [10] is com-

monly used data re-sampling algorithm based on the over-

sampling of the minority class. SMOTE was used after data

were discretized. It creates synthetic instances taking each

minority class sample and introduces new samples.

Based on the results for particular data sets which are

available online, SMOTE demonstrates good re-sampling of

data classes since AUC results are much better than without

using re-sampling for all the classification algorithms.

Table 6 shows the p-values of the Wilcoxon test for the

AUC and Cohen’s kappa after re-sampling with SMOTE. It

is interesting to point out that the p-values for CAIM are

generally lower with re-sampling than without re-sampling

for both AUC and Cohen’s kappa. Thus, after re-sampling

with SMOTE, ur-CAIM results are even better than those

from the original CAIM.

Table 7 show the results of the Friedman test for the

unbalanced balanced data sets after applying SMOTE re-

sampling. The Friedman test run on all the measures com-

putes a p-value lower than 0.01, which is low enough to

reject the null equality hypothesis with a high confidence

level (≥ 99%). Therefore, we proceed with the application

of the Holm’s post-hoc procedure and we show the adjusted

p-values.

Similarly to the results without re-sampling, ur-CAIM

consistently achieves better AUC and kappa ranks than the

other discretization methods for almost all the classifica-

tion algorithms. On the other hand, EF, EW, and IDD are

commonly ranked among the worst methods for unbalanced

data, both raw and re-sampled. If we look together these

ranks with regards of the number of intervals, we see that

discretization methods that create excessive number of inter-

vals also obtain higher classification errors. Moreover, IEM,

which obtained significantly lower number of intervals, was

also overcame by ur-CAIM. Therefore, we can conclude that

it is important not to generate too few nor too many number

of intervals to minimize the classification error.
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Table 4: Friedman ranks and p-values using Holm’s post-hoc procedure for the unbalanced data sets.

Number of intervals

Algorithm Rank p-value

IEM 1.9857
CAIM 3.1500 0.0229
ur-CAIM 4.0571 5.2E-5
HDD 4.6714 0.0000
Ameva 5.0143 0.0000
CACC 6.0929 0.0000
Modified-χ2 6.5643 0.0000
IDD 7.0357 0.0000
EW 8.2143 0.0000
EF 8.2143 0.0000

Runtime

Algorithm Rank p-value

EW 1.3071
EF 2.3143 0.0491
IEM 2.4643 0.0238
ur-CAIM 4.0643 0.0000
IDD 5.1143 0.0000
CAIM 6.4429 0.0000
Ameva 7.4857 0.0000
HDD 7.4929 0.0000
CACC 8.9714 0.0000
Modified-χ2 9.3429 0.0000

Area Under the Curve (AUC)

AdaBoost KNN C45 JRip

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value

ur-CAIM 4.1286 ur-CAIM 3.5929 ur-CAIM 4.1643 ur-CAIM 4.1714
CACC 4.3929 0.6056 IEM 4.2000 0.2355 Ameva 4.4357 0.5958 CACC 4.6071 0.3946
Ameva 4.4714 0.5029 CAIM 4.8643 0.0130 IEM 4.4786 0.5391 CAIM 4.8000 0.2194
CAIM 4.9571 0.1054 Ameva 5.1357 0.0026 CACC 4.6429 0.3497 Ameva 4.9357 0.1353
IEM 5.2429 0.0295 EF 5.3286 6.9E-4 CAIM 4.6929 0.3017 IEM 5.2214 0.0402
HDD 5.4929 0.0077 Modified-χ2 5.5571 1.2E-4 Modified-χ2 5.2571 0.0327 Modified-χ2 5.5429 0.0074
IDD 5.7786 0.0013 HDD 5.6571 5.5E-5 HDD 5.4857 0.0098 HDD 5.5500 0.0071
Modified-χ2 5.7929 0.0011 CACC 5.7357 2.8E-5 IDD 6.3357 2.2E-5 IDD 6.0000 3.5E-4
EF 6.8929 0.0000 IDD 7.3857 0.0000 EW 7.4143 0.0000 EF 6.3071 3.0E-5
EW 7.8500 0.0000 EW 7.5429 0.0000 EF 8.0929 0.0000 EW 7.8643 0.0000

NaiveBayes PART RamdomForest SVM

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value

EF 4.5429 ur-CAIM 3.9286 ur-CAIM 3.8143 ur-CAIM 4.5286
ur-CAIM 4.5929 0.9222 Ameva 4.1071 0.7271 Ameva 4.2071 0.4427 Ameva 4.6214 0.8560
IEM 4.9643 0.4102 CAIM 4.8643 0.0675 IEM 4.8143 0.0507 Modified-χ2 4.6786 0.7694
Modified-χ2 4.9857 0.3869 IEM 4.9214 0.0524 CAIM 4.8214 0.0491 IEM 4.7643 0.6451
Ameva 5.2714 0.1545 CACC 4.9500 0.0459 Modified-χ2 5.7714 1.3E-4 IDD 5.3214 0.1213
CACC 5.5071 0.0595 Modified-χ2 5.4857 0.0023 HDD 5.8500 7.0E-5 CAIM 5.5214 0.0524
HDD 6.1071 0.0022 HDD 5.5357 0.0017 CACC 5.9929 2.1E-5 EW 5.9714 0.0048
IDD 6.2286 9.9E-4 IDD 5.7571 3.5E-4 EF 6.2214 3.0E-6 HDD 6.3143 4.8E-4
CAIM 6.3500 4.1E-4 EW 7.6857 0.0000 IDD 6.4500 0.0000 CACC 6.5857 5.8E-5
EW 6.4500 1.9E-4 EF 7.7643 0.0000 EW 7.0571 0.0000 EF 6.6929 2.3E-5

Cohen’s Kappa

AdaBoost KNN C45 JRip

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value

ur-CAIM 4.2000 ur-CAIM 3.6357 ur-CAIM 4.0357 ur-CAIM 3.7357
Ameva 4.4071 0.6856 IEM 4.2857 0.2040 Ameva 4.4000 0.4766 CAIM 4.5786 0.0996
CACC 4.4286 0.6551 CAIM 4.8286 0.0198 CACC 4.4857 0.3792 CACC 4.9429 0.0183
CAIM 4.8857 0.1803 Ameva 4.9286 0.0115 CAIM 4.5500 0.3149 Ameva 5.0500 0.0102
IEM 5.3429 0.0255 CACC 5.5071 2.6E-4 IEM 4.7857 0.1428 IEM 5.1000 0.0077
HDD 5.4143 0.0177 Modified-χ2 5.5071 2.6E-4 HDD 5.2714 0.0158 HDD 5.4214 9.9E-4
IDD 5.7571 0.0023 HDD 5.5786 1.5E-4 Modified-χ2 5.5286 0.0035 Modified-χ2 5.8000 5.5E-5
Modified-χ2 6.0000 4.4E-4 EF 5.6571 7.8E-5 IDD 6.2500 1.5E-5 IDD 5.8357 4.1E-5
EF 6.7000 1.0E-6 IDD 7.2857 0.0000 EW 7.4857 0.0000 EF 6.4571 0.0000
EW 7.8643 0.0000 EW 7.7857 0.0000 EF 8.2071 0.0000 EW 8.0786 0.0000

NaiveBayes PART RamdomForest SVM

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value

ur-CAIM 4.6571 ur-CAIM 3.8571 ur-CAIM 3.7714 ur-CAIM 4.4429
Ameva 4.9500 0.5672 Ameva 4.1786 0.5300 CAIM 4.4857 0.1628 Modified-χ2 4.5714 0.8016
Modified-χ2 4.9857 0.5209 CAIM 4.6857 0.1054 Ameva 4.5714 0.1180 Ameva 4.8071 0.4766
IEM 5.0000 0.5029 IEM 4.8571 0.0507 IEM 4.6714 0.0786 IEM 5.0714 0.2194
CACC 5.1429 0.3426 CACC 5.0643 0.0183 HDD 5.7500 1.1E-4 IDD 5.0786 0.2142
EF 5.6286 0.0577 HDD 5.4429 0.0019 Modified-χ2 5.8286 5.8E-5 CAIM 5.6571 0.0177
HDD 5.8357 0.0213 IDD 5.5286 0.0011 EF 6.1214 4.0E-6 EW 5.8214 0.0071
IDD 5.9429 0.0120 Modified-χ2 5.7500 2.2E-4 CACC 6.2071 2.0E-6 CACC 6.4071 1.2E-4
CAIM 6.0857 0.0053 EF 7.8000 0.0000 IDD 6.4000 0.0000 HDD 6.5429 4.1E-5
EW 6.7714 3.6E-5 EW 7.8357 0.0000 EW 7.1929 0.0000 EF 6.6000 2.5E-5
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Table 5: Wilcoxon test for the AUC and Cohen’s kappa on unbalanced data sets.

ur-CAIM vs
Area Under the Curve (AUC)

AdaBoost KNN C45 JRip NaiveBayes PART RandomForest SVM

EW 0.0000 0.0000 0.0000 0.0000 0.0013 0.0000 0.0000 0.0280

EF 0.0000 0.0029 0.0000 3.0E-5 1.0000 0.0000 5.0E-5 0.0280

IEM 0.0220 0.2918 0.2180 0.0205 0.2887 0.0071 0.1286 ≥ 0.2

CAIM 0.0400 5.0E-5 0.2470 0.0939 0.0007 0.0297 0.0293 ≥ 0.2

Ameva 0.0401 1.0E-5 0.5723 0.0207 0.0269 0.3527 0.1278 0.1536

Modified-χ2 4.0E-5 4.0E-5 0.0109 0.0003 0.6881 0.0002 0.0006 ≥ 0.2

HDD 0.0073 0.0000 0.0092 0.0182 0.0064 0.0002 0.0004 3.7E-6

CACC 0.4804 0.0000 0.0720 0.2798 0.0258 0.0094 0.0000 5.9E-5

IDD 7.0E-5 0.0000 2.0E-5 5.0E-5 0.0017 0.0002 0.0000 0.0595

ur-CAIM vs
Cohen’s kappa

AdaBoost KNN C45 JRip NaiveBayes PART RandomForest SVM

EW 0.0000 0.0000 0.0000 0.0000 4.0E-5 0.0000 0.0000 0.0362

EF 1.0E-5 4.0E-5 0.0000 0.0000 0.0297 0.0000 5.0E-5 0.0001

IEM 0.0065 0.1249 0.0354 0.0048 0.4531 0.0053 0.0743 0.1249

CAIM 0.0442 0.0002 0.3431 0.0394 0.0029 0.0288 0.0519 0.0002

Ameva 0.1730 0.0003 0.4209 0.0002 0.1619 0.2687 0.0208 0.2526

Modified-χ2 1.0E-5 5.0E-5 0.0003 3.0E-5 0.8154 0.0000 0.0004 0.5782

HDD 0.0040 1.0E-5 0.0136 0.0034 0.0166 0.0003 0.0006 2.0E-5

CACC 0.4824 0.0000 0.0649 0.0020 0.1700 0.0031 0.0000 0.0001

IDD 0.0002 0.0000 1.0E-5 1.0E-5 0.0781 0.0002 1.0E-5 0.2421

Table 6: Wilcoxon test for the AUC and Cohen’s kappa with SMOTE on unbalanced data sets.

ur-CAIM vs
Area Under the Curve (AUC) with SMOTE

AdaBoost KNN C45 JRip NaiveBayes PART RandomForest SVM

EW 0.0000 0.0000 0.0000 0.0000 3.0E-5 0.0000 0.0000 0.0005

EF 0.0000 0.0613 0.0000 0.0000 4.0E-5 0.0000 0.0000 0.0000

IEM 0.6539 0.2741 0.0767 1.0000 0.5895 0.5309 0.4636 0.2705

CAIM 0.0111 0.0002 0.0290 0.0856 0.0141 0.0082 0.0146 0.0016

Ameva 0.1421 0.0029 0.0008 0.0021 0.0447 0.0038 0.0080 0.0008

Modified-χ2 0.0002 0.0187 2.0E-5 0.0002 0.0416 0.0000 4.0E-5 0.0243

HDD 0.0011 2.0E-5 0.0023 0.0009 0.0159 0.0003 0.0017 2.0E-5

CACC 0.0268 2.0E-5 0.0003 4.0E-5 0.0044 6.0E-5 0.0000 2.0E-5

IDD 0.0013 0.0000 0.0000 3.0E-5 0.0026 0.0000 0.0000 0.0015

ur-CAIM vs
Cohen’s kappa with SMOTE

AdaBoost KNN C45 JRip NaiveBayes PART RandomForest SVM

EW 0.0000 0.0000 0.0000 0.0000 0.0168 0.0000 0.0002 0.3299

EF 0.0019 0.0000 2.0E-5 1.0E-5 0.0318 2.0E-5 0.0408 0.0087

IEM 0.1331 0.1485 0.0115 0.5564 0.0254 0.2073 0.0638 0.0538

CAIM 0.0019 0.0005 0.0056 0.1241 0.0013 0.0025 0.0066 0.0015

Ameva 0.1086 0.0050 0.0004 0.0023 0.3650 0.0079 0.0344 0.0002

Modified-χ2 0.0929 0.3123 0.0455 0.4993 1.0000 0.0042 1.0000 1.0000

HDD 0.0002 2.0E-5 0.0006 0.0019 0.0068 0.0001 0.0008 0.0000

CACC 0.1733 0.0024 0.0008 0.0084 0.6734 0.0432 0.0004 0.0013

IDD 0.0033 0.0000 0.0000 9.0E-5 0.0027 0.0000 1.0E-5 0.0178
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Table 7: Friedman ranks and p-values using Holm’s post-hoc procedure for the unbalanced data sets with re-sampling.

Area Under the Curve (AUC) with SMOTE

AdaBoost KNN C45 JRip

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value

ur-CAIM 4.0143 ur-CAIM 4.0071 ur-CAIM 3.7643 ur-CAIM 4.0286

Ameva 4.4286 0.4182 IEM 4.4714 0.3643 IEM 4.7143 0.0634 IEM 4.1071 0.8780

IEM 4.5500 0.2952 Modified-χ2 4.9857 0.0559 CAIM 4.7714 0.0491 CAIM 4.5500 0.3083

CACC 4.7000 0.1803 Ameva 5.0286 0.0459 Ameva 5.0000 0.0158 Ameva 4.9214 0.0810

CAIM 5.0714 0.0389 EF 5.2286 0.0170 HDD 5.2714 0.0032 CACC 5.3929 0.0077

HDD 5.5929 0.0020 CAIM 5.4000 0.0065 CACC 5.3500 0.0019 HDD 5.6429 0.0016

IDD 5.6714 0.0012 CACC 5.5500 0.0026 Modified-χ2 5.8786 3.6E-5 IDD 6.0714 6.6E-5

Modified-χ2 5.9643 1.4E-4 HDD 6.0357 7.4E-5 EW 6.6214 0.0000 Modified-χ2 6.1357 3.8E-5

EF 6.7786 0.0000 IDD 7.0643 0.0000 EF 6.7929 0.0000 EW 6.8071 0.0000

EW 8.2286 0.0000 EW 7.2286 0.0000 IDD 6.8357 0.0000 EF 7.3429 0.0000

NaiveBayes PART RamdomForest SVM

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value

ur-CAIM 4.2714 ur-CAIM 3.6500 ur-CAIM 3.5571 ur-CAIM 3.9286

IEM 4.8214 0.2825 IEM 4.3286 0.1849 IEM 4.3357 0.1282 IEM 4.4286 0.3286

Ameva 5.2429 0.0577 Ameva 4.3929 0.1466 Ameva 4.6143 0.0389 Ameva 5.0714 0.0255

CAIM 5.3143 0.0416 CAIM 4.6429 0.0524 CAIM 4.9429 0.0068 Modified-χ2 5.0786 0.0246

Modified-χ2 5.4786 0.0183 CACC 5.0143 0.0077 HDD 5.7143 2.5E-5 CAIM 5.1071 0.0213

CACC 5.4857 0.0177 HDD 5.5714 1.7E-4 CACC 5.8286 9.0E-6 CACC 5.7714 3.2E-4

HDD 5.5286 0.0140 Modified-χ2 6.2429 0.0000 Modified-χ2 6.1143 1.0E-6 IDD 5.8286 2.1E-4

IDD 5.8286 0.0023 IDD 6.5857 0.0000 EF 6.1786 0.0000 EW 6.1500 1.4E-5

EF 6.4571 1.9E-5 EF 6.9357 0.0000 IDD 6.7357 0.0000 HDD 6.1929 1.0E-5

EW 6.5714 7.0E-6 EW 7.6357 0.0000 EW 6.9786 0.0000 EF 7.4429 0.0000

Cohen’s Kappa with SMOTE

AdaBoost KNN C45 JRip

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value

ur-CAIM 4.3143 ur-CAIM 3.9286 ur-CAIM 3.8714 ur-CAIM 4.3929

CACC 4.5786 0.6056 Modified-χ2 4.4143 0.3426 Modified-χ2 4.9286 0.0389 IEM 4.6643 0.5958

Ameva 4.7571 0.3869 IEM 4.5571 0.2194 IEM 5.0786 0.0183 CAIM 4.8357 0.3869

IEM 4.8786 0.2702 Ameva 4.5857 0.1991 CACC 5.1286 0.0140 Modified-χ2 4.8429 0.3792

Modified-χ2 5.0571 0.1466 CACC 4.9643 0.0430 Ameva 5.1357 0.0135 Ameva 5.1714 0.1282

CAIM 5.6643 0.0083 CAIM 5.2786 0.0083 CAIM 5.1429 0.0130 CACC 5.3429 0.0634

IDD 5.8643 0.0025 HDD 6.0643 3.0E-5 HDD 5.6643 4.6E-4 HDD 5.9143 0.0029

EF 6.0000 9.9E-4 IDD 6.4786 1.0E-6 IDD 6.5643 0.0000 IDD 6.0786 9.9E-4

HDD 6.1786 2.7E-4 EF 7.0929 0.0000 EF 6.6500 0.0000 EF 6.7714 3.0E-6

EW 7.7071 0.0000 EW 7.6357 0.0000 EW 6.8357 0.0000 EW 6.9857 0.0000

NaiveBayes PART RamdomForest SVM

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value

Modified-χ2 4.3857 ur-CAIM 4.0500 ur-CAIM 4.4000 Modified-χ2 4.2714

ur-CAIM 4.6857 0.5577 CACC 4.7857 0.1505 Modified-χ2 4.6929 0.5672 ur-CAIM 4.4714 0.6959

CACC 5.0000 0.2300 Ameva 4.8214 0.1317 IEM 4.9000 0.3286 IEM 5.3071 0.0430

Ameva 5.1286 0.1466 IEM 4.8286 0.1282 Ameva 5.0214 0.2246 CAIM 5.4714 0.0190

EF 5.7643 0.0071 CAIM 5.2143 0.0229 CAIM 5.5214 0.0284 EW 5.5286 0.0140

IEM 5.8000 0.0057 Modified-χ2 5.3071 0.0140 EF 5.5286 0.0274 Ameva 5.6714 0.0062

CAIM 5.8357 0.0046 HDD 6.0000 1.4E-4 CACC 5.6143 0.0177 CACC 5.7071 0.0050

HDD 5.8429 0.0044 EF 6.4214 4.0E-6 HDD 6.2429 3.2E-4 IDD 5.8286 0.0023

EW 6.1571 5.4E-4 IDD 6.4286 3.0E-6 IDD 6.5214 3.4E-5 EF 6.0214 6.3E-4

IDD 6.4000 8.3E-5 EW 7.1429 0.0000 EW 6.5571 2.5E-5 HDD 6.7214 2.0E-6
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Table 8: Wilcoxon test for the number of intervals and run-

time on unbalanced data sets.

ur-CAIM vs Intervals Runtime

EW 0.0000 1.0000

EF 0.0000 1.0000

IEM 1.0000 1.0000

CAIM 1.0000 0.0000

Ameva 0.0000 0.0000

Modified-χ2 0.0000 0.0000

HDD 0.9071 0.0000

CACC 0.0000 0.0000

IDD 0.0000 0.0000

Finally, Table 8 shows the p-values of the Wilcoxon test

for the number of intervals and the execution time on unbal-

anced datasets. These values are equal or very close to 0 or

1 because algorithms generally generate always more/less

discretization intervals as well as they run faster/slower by

means of pairwise comparisons.

5.3 Unbalance ratio and performance

The ur-CAIM criterion was made to consider the data classes

distribution in order to improve classification performance,

especially on unbalanced data. The experimental results in

the previous section showed the good performance of the

ur-CAIM algorithm. However, to evaluate whether the new

criterion actually improves the performance it its necessary

to perform a more detailed analysis with regards of the un-

balance ratio of the data sets.

The unbalance ratio is the relation of majority class in-

stances to minority class instances. The 70 unbalanced data

sets were categorized into two groups regarding to their un-

balance ratio. The former group comprised low unbalanced

data sets with unbalance ratios from 1 (equal number of ma-

jority and minority class instances) to 5 (there are 5 times

more majority class instances than minority class instances).

The latter group comprised high unbalanced data sets with

unbalance ratios from 5 to 129 (the highest unbalance ratio

among all of the data sets).

When comparing the results available online of ur-CAIM

and CAIM on low unbalanced data, the AUC and Cohen’s

kappa values are very close but in favour of ur-CAIM’s.

On the other hand, when handling high unbalanced data,

ur-CAIM shows that its improved criterion clearly achieves

better classification performance than CAIM’s with larger

differences. Table 9 shows the results of the Wilcoxon test

for the comparison of ur-CAIM with CAIM on the two un-

balanced data groups, considering the results from all data

sets and classifiers. Results indicate the better performance

of ur-CAIM on both groups, but especially on high unbal-

anced data. Specifically, the p-values reported are all lower

than 0.01, i.e., statistical confidence higher than 99%.

Table 9: Wilcoxon test with regards of unbalance ratio.

Unbalance ratio Measure p-value

Low unbalanced [1,5)
AUC 0.0014

Kappa 0.0002

High unbalanced [5,129)
AUC 3.9E-9

Kappa 1.1E-8

6 Conclusion

In this paper we presented the ur-CAIM algorithm for su-

pervised discretization. The ur-CAIM criterion extended the

CAIM criterion to account for the class-attribute interdepen-

dency, redundancy and uncertainty. The new approach con-

sidered the balance of the data classes distribution in terms

of the number of instances in each class in order to improve

the discretization process, especially under the presence of

unbalaced data sets. This resulted in significantly better dis-

cretization schemes than original CAIM algorithm. Experi-

ments carried out over many balanced and unbalanced data

sets demonstrated the good performance of the algorithm

in terms of obtaining high predictive accuracy, high kappa

rate and high AUC, while keeping low number of intervals,

all at the lower computational cost. Classification perfor-

mance was evaluated and compared using 8 different clas-

sification algorithms from different families to avoid bias of

algorithms to data. The results were validated using non-

parametric statistical tests, which support the better perfor-

mance of the ur-CAIM algorithm than the original CAIM

and many other discretization methods used in comparisons.

ur-CAIM proved to be a significant improvement over the

original CAIM, achieving better and faster results, especially

when handling unbalanced data. The performance differences

were specially noteworthy on highly unbalanced data sets, in

which the other discretization methods were not capable of

handling such data appropriately.
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