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The changes in the covalent bond of the hydrogen molecule limited in the space by a spherical
hard boundary are studied. The sphere is moved along an axis parallel or orthogonal to the
molecular axis. The diffusion Monte Carlo approach is used to solve the Schrödinger equation
with the relevant boundary conditions and to evaluate the changes in the bond energy versus
the location of the sphere. The vertical and lateral quantum forces exerted on the sphere are
evaluated by calculating the energy derivative versus the distances to the sphere. The results
show that the quantum forces present an important dependence with the distance and vanish
rapidly as the separation between the sphere and the molecule increases. In the limiting case the
molecular bond becomes broken due to the electronic depletion induced in the covalent bond. An
application of this study is the modelisation of the forces exerted on the passivated cantilever of
an Atomic Force Microscope probing the electron cloud in the contact mode in the Pauli exclusion
regime.

1 Introduction
In a free isolated molecule the electrons are allowed to span all
the space, but when atoms or molecules are present in the sur-
roundings the well known coulomb forces between the charged
particles of the system induce changes in the state, as for example
the polarization. Another situation of interest is when two atoms
come very close together, the overlap of the wave functions in-
creases and a strong repulsion force appears. Atoms therefore oc-
cupy a volume and cannot be squeezed too closely together. This
interaction is similar to a hard wall repulsion. This force has a
quantum mechanical character rooted in the Pauli exclusion prin-
ciple, and is often called the Exclusion Principle Repulsion. The cel-
ebrated term 1/r12 in the Lennard-Jones potential accounts em-
pirically for this strong repulsive force appearing when the atoms
become separated by short distances of the order of a few Bohr ra-
dius, a0. Even inside homopolar molecules, a pure covalent bond
can be modified by Pauli repulsion due to steric constraints inside
the molecule on the bonding electrons1–3. A new state emerges
with a component of ionic bonding resulting from the electron
depletion induced by Pauli repulsion. This charge-shifted mecha-
nism accounts for the resonant energy between covalent and ionic
states, which becomes a major part of the bonding.
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Pauli exclusion principle contributes in an important way to
the stability of the matter. For example, Pauli repulsion force
overcomes gravity for star masses below the Chandrasekar limit
leading to the formation of white dwarfs while for higher masses
avoids gravitational collapse giving rise to neutron stars. Author-
itative reviews devoted to this principle4,5 are recommended for
further details and analysis. Effects of Pauli repulsion force are
very important in other fields as for example in Nuclear Physics
where it leads to a significant reduction of the tunneling probabil-
ity hindering the fusion rates of atomic nuclei6. Pauli repulsion
force is also the reason for the high resolution achieved with the
use of noncontact Atomic Force Microscopy (AFM) when then mi-
croscope’s tip apex is functionalized with CO molecules7,8. Verti-
cal and lateral forces appear when manipulating individual atoms
and molecules by scanning probe microscocopy, playing a major
role when atoms move on metal surfaces9.

In principle, exchange forces between the atom and its sur-
roundings could be accounted by employing completely antisym-
metric state functions including the electrons of both subsys-
tems10,11. This scheme may pose important computational com-
plications. Besides the contribution of exchange forces due to
the Pauli’s principle for electrons of different atoms will be entan-
gled with other forces, as coulomb repulsion or exchange within
the target molecule. Therefore, changes induced in the molecule
under consideration by the exclusion principle repulsion are not
easy to isolate.

Confinement effects can be studied theoretically by placing the
atom inside a closed cavity described in terms of a potential. Dif-
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ferent works have been carried out to analyse the change of the
atomic and molecular properties as a function of the confinement,
see e.g.12–21. Less is known for other conditions of spatial restric-
tion in which a particular region of the space is forbidden22,23.
This situation is found when a large molecule is close to another
molecule giving rise to a restriction of the space available to the
bonding electrons due to the exclusion principle. A physical ex-
ample for this is provided by high resolution AFM images with
cantilever’s deflection at the picometre scale, where rapidly vary-
ing interatomic forces are of critical importance in the measure-
ment process24. Another example is given by the supramolecular
cavities that accelerate some chemical reactions25,26 and consti-
tute a model to study the chemical activity of the enzymes.

In this work we study the effects of Pauli exclusion principle re-
pulsion on the covalent bond beyond the Born-Oppenheimer ap-
proximation. We have considered the problem of the H2 molecule
with one surrounding atom. A hard wall spherical potential cen-
tred at different distances from the molecule is used as a model
for the surrounding atom. In this scheme Pauli exclusion Princi-
ple Repulsion is a constraint to the space available for the bonding
electrons. We study the effect of the induced depletion in the elec-
tron cloud of the sigma covalent bond. Vertical and lateral forces
have been obtained by solving the quantum mechanical problem
for different geometries and distances. A non-adiabatic approach,
including both nuclear and electronic motion is employed for the
H2 molecule. The Diffusion Monte Carlo method is employed to
carry out the calculations.

2 Methodology

The Hamiltonian for the H2 molecule is written in terms of Jacobi
relative coordinates, see Fig. 1, by using a similar scheme as18

H =− h̄2

2µ

d2

dZ2 −
h̄2

2ε
∇

2
~r1
− h̄2

2ε
∇

2
~r2
+V (Z,~r1,~r2) (1)

where Z is the internuclear separation, ~ri is the position vector
of the ith-electron with respect to the centre of mass of the nuclei
and V is the interaction potential. The mass polarization term has
been neglected and µ and ε are the reduced masses

ε =
2meMp

me +2Mp
, µ =

Mp

2
. (2)

We have used the following values for the proton mass, Mp =

938.272029 MeV/c2 and the electron mass me = 0.5109989 MeV/c2

obtaining ε = 0.9997278 and µ = 918.0763 in atomic units. In
the non-adiabatic scheme of this work the nuclei are allowed to
vibrate and the direction of the molecular axis is kept fixed.

The interaction potential is written as

V =Vcoul +Vexcl (3)

with Vcoul the coulomb interaction between electrons and nuclei,
in atomic units,
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1
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− 1
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− 1
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+

1
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+
1
Z

(4)

Fig. 1 H2 molecule with an impenetrable spherical volume of radius Rc.
The coordinates of the centre of the sphere are (hx = 0,hy,hz).

where

r12 = |~r1−~r2|, riA =

∣∣∣∣~ri− k̂
Z
2

∣∣∣∣ , riB =

∣∣∣∣~ri + k̂
Z
2

∣∣∣∣ i = 1,2 (5)

where k̂ is the direction of the molecular axis.
The potential, Vexcl, is introduced to account for the fact that

electrons cannot penetrate into a spherical domain of radius Rc

centred at
~h = (0,hy,hz) (6)

We have considered Rc = 1 a0 in our calculations. Then, Vexcl, can
be written as

Vexcl(~r1,~r2) = vexcl(d1)+ vexcl(d2) (7)

where
di = |~di|= |~ri−~h|

and

vexcl(d) =

{
0 if d > Rc

∞ if d ≤ Rc
(8)

Variational and Difussion Monte Carlo methods are employed
to solve the time independent Schrödinger equation

H Ψ(Z,~r1,~r2) = E Ψ(Z,~r1,~r2) (9)

with H given in eqn (1). These methodologies have been re-
viewed in the literature, see for example27. The starting point
is the Variational Monte Carlo (VMC) method. This technique is
based on the Variational approach with the expectation value of
the Hamiltonian calculated by using stochastic integration. As no
analytic integration is done, very general forms of the trial wave
function can be employed. Variational parameters are introduced
in the trial wave function and the expectation value of the Hamil-
tonian is optimised with respect to them. The energy obtained is
an upper bound to the exact energy of the ground state.

The optimised trial wave function is employed as guiding func-
tion in a Diffusion Monte Carlo (DMC) calculation. This method
provides the ground state energy of a quantum many body system
by using random walks to solve the Schrödinger equation. DMC
exploits the formal analogy between a classical diffusion equation
and the Schrödinger equation written in imaginary time. A short
imaginary time approximation is employed to obtain an explicit
expression of the Green’s Function. A stochastic simulation of the
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different terms in the equation (diffusion plus first-order rate) is
carried out. In the asymptotic limit of imaginary time, stationary
behaviour is achieved and the ground state energy can be esti-
mated. In practice, it is very important to use a guiding function
to reduce the statistical uncertainties in the simulation. As the
nodal surface is known exactly for the states here studied, we use
the fixed-node DMC method that provides the exact ground state
energy within the numerical error.

The wave function of this work is written as the product of
different factors containing variational parameters

Ψt(Z,~r1,~r2) = Φ(Z,~r1,~r2) F(Z) J(r12) wexcl(d1)wexcl(d2) (10)

This form has been previously employed18,20 to describe a con-
fined H2 molecule beyond the Born-Oppenheimer approximation.

The function, Φ, in eqn (10) is taken as

Φ(Z,~r1,~r2) = φ(Z,~r1)φ(Z,~r2) (11)

with

φ(Z,~ri) = exp[−(α +βZ)ξi] cosh{[α +(1−β )Z]ηi} (12)

where and α and β are variational parameters and ξi and ηi are
confocal elliptic coordinates of the electron i

ξi =
riA + riB

Z
, 1≤ ξi ≤ ∞

ηi =
riA− riB

Z
, −1≤ ηi ≤ 1 (13)

The factor F(Z) accounts for nuclear vibration. We use the an-
alytic form of the ground state wave function of the one dimen-
sional harmonic oscillator

F(Z) = e−δ (Z−Z0)
2

(14)

with δ and Z0 variational parameters.

The function J(r12) is the electronic correlation factor. The fol-
lowing form has been used

J(r12) = exp
(

br12

1+ cr12

)
(15)

with b and c variational parameters.

Finally the cut-off factors, wexcl(d), account for the boundary
condition imposed by the spatial restriction considered in this
work, eqn (7) and (8). These functions are parameterized here
as

wexcl(d) = 1− e−ac(d−Rc) (16)

with ac a variational parameter.

The variational parameters in the trial wave function of eqn
(10) are α, β , δ , Z0, b, c and ac. The variational energy is ob-
tained for each case here studied from the minimization of the
expectation value of the Hamiltonian by using the VMC method

EVMC =
〈Ψt |H|Ψt〉
〈Ψt |Ψt〉

(17)

The optimal wave function is used in a DMC calculation to obtain

the exact energy. We have employed three different time step
values, 0.0005, 0.0003 and 0.0001 in a.u., for the systems here
studied. All the calculations have been done by using 2000 walk-
ers. A blocking scheme with 100 blocks is employed with 100000
steps per block. Before the calculation is started, a run of two
blocks is carried out to equilibrate the initial ensemble of walk-
ers. The statistical error is estimated as the standard deviation of
the mean over the blocks. The Metropolis acceptance probabil-
ity of the DMC calculation with the importance sampling of this
work is above 99.997% for the time step values here considered.
The mixed and growth energies agree within the numerical er-
ror. Extrapolated energies at zero time step are reported. The
extrapolated energy coincides with the energy obtained by using
smallest time step within the statistical error.

3 Results

3.1 Energy

We first study the case when the impenetrable sphere is located in
the direction of the molecular axis, hy = 0. Location of the sphere
between the nuclei would lead to bond scission. In Table 1 we
report the VMC and DMC energies in hartree (Eh) along with the
expectation value of the nuclear distance calculated variationally.
The trial wave function has been optimised for each distance.

Table 1 VMC, EVMC, and DMC, EDMC, energies of the H2 molecule when
the impenetrable sphere lies in the direction of the molecular axis, hy = 0,
for different hz values. In parentheses we show the statistical error of the
Monte Carlo calculation

hz (a0) EVMC (Eh) EDMC (Eh) 〈Z〉 (a0)
2.5 −1.01745(4) −1.0422(2) 1.26728(2)
3.0 −1.10677(3) −1.1209(1) 1.34570(2)
3.5 −1.13849(3) −1.1488(1) 1.39893(2)
4.0 −1.14913(3) −1.1592(1) 1.43183(2)
5.0 −1.15377(3) −1.1635(1) 1.44706(2)
∞ −1.15475(3) −1.1640(1) 1.44818(2)

A good agreement between the VMC and DMC energies is ob-
tained, showing the good performance of the variational ansatz
here employed. The quality of the variational energy is reduced
as the sphere approaches the molecule. More sophisticated pa-
rameterizations of the cut-off factor, taking into account the steep
decrease in the charge density, will improve the upper bound spe-
cially for the smaller hz values considered in this work. However,
as the DMC method provides the exact ground state energy, that
calculation is not carried out here.

For distances larger than ∼ 5 a0, the effect of the sphere is
very small, the non-adiabatic energy of the free H2 molecule is28

−1.164025 Eh. For hz < 4 a0, the energy increases very rapidly as
the sphere approaches the molecule. For hz = 2.5 a0, the energy
is very close to the dissociation threshold. The expectation value
of the internuclear distance decreases as the sphere approaches
the molecule. This is due to the depletion of the charge density
in the neighbourhood of the sphere, that leads to larger values
of the electron density in the region between the nuclei, as it
is illustrated in Fig. 2. This gives rise to a shorter internuclear
distance. The overall molecular size is reduced and both, the
electrostatic repulsion and the kinetic energy increase. This effect
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is stronger than the lowering of the electrostatic attraction and
the molecular energy rises.

In Table 2 we present the results obtained for the energy when
the sphere approaches the molecule in a direction orthogonal to
the molecular axis. We have considered hz = 0.

Table 2 VMC, EVMC, and DMC, EDMC, energies of the H2 molecule when
the impenetrable sphere lies in the direction orthogonal to the molecular
axis, hz = 0, for different hy values. In parentheses we show the statistical
error of the Monte Carlo calculation

hy (a0) EVMC (Eh) EDMC (Eh) 〈Z〉 (a0)
2.2 −1.00805(4) −1.0331(1) 1.49778(2)
2.5 −1.07666(4) −1.0940(1) 1.44937(2)
3.0 −1.12783(3) −1.1398(1) 1.42876(2)
3.5 −1.14550(3) −1.1554(2) 1.42805(2)
4.0 −1.15129(3) −1.1611(1) 1.42550(2)
5.0 −1.15336(3) −1.1635(1) 1.42696(2)

A similar trend on the energy is obtained for this case, i.e. the
energy increases as the sphere gets closer to the molecule. Ap-
proaching in the direction of the molecular axis is more efficient
to rise the energy than in an orthogonal direction. This is illus-
trated in Fig. 3 where we plot the energy when the sphere centre
is either at the y or z axis as a function of hz, or hy respectively.

Contrary to the previous case, the averaged internuclear dis-
tance increases when the sphere approaches the molecule in the
transverse direction. The position of the impenetrable sphere in
this geometry leads to a depletion of the electronic charge in the
internuclear region, see Fig. 2. The attractive electron-nuclear in-
teraction is reduced in absolute value. As a consequence of this,
the internuclear distance is larger and the molecular energy rises.
As it is the case of the covalent bond, the energy increment is
lower when 〈Z〉 increases than when it decreases.

We have studied the case of off-axis approach. In Table 3 we
report the energy obtained for hy = 2.5 a0 and different hz values.
The same is done in Table 4 for fixed hy = 3.0 a0.

Table 3 VMC, EVMC, and DMC, EDMC, energies of the H2 molecule for
hy = 2.5 a0 and different hz values. The distance d between the sphere
centre and the centre of mass of the nuclei is also shown. In parentheses
we show the statistical error of the Monte Carlo calculation

hz (a0) d (a0) EVMC (Eh) EDMC (Eh) 〈Z〉 (a0)
0.7 2.6 −1.08796(4) −1.1038(1) 1.41378(2)
1.5 2.9 −1.11659(4) −1.1300(1) 1.40554(2)
2.0 3.2 −1.13239(3) −1.1443(1) 1.40568(2)
2.5 3.5 −1.14288(3) −1.1537(1) 1.414862)
5.0 5.6 −1.15425(3) −1.1639(1) 1.44520(2)

Table 4 VMC, EVMC, and DMC, EDMC, energies of the H2 molecule for
hy = 3.0 a0 and different hz values. The distance d between the sphere
centre and the centre of mass of the nuclei is also shown. In parentheses
we show the statistical error of the Monte Carlo calculation

hz (a0) d (a0) EVMC (Eh) EDMC (Eh) 〈Z〉 (a0)
0.7 3.1 −1.13137(3) −1.1434(1) 1.41695(2)
1.5 3.4 −1.14028(3) −1.1511(1) 1.40010(2)
2.0 3.6 −1.14529(4) −1.1558(1) 1.41122(2)
2.5 3.9 −1.14932(3) −1.1595(1) 1.43542(2)
5.0 5.8 −1.15395(3) −1.1639(1) 1.43566(2)

The energy rises as the sphere approaches the molecule. How-
ever, the increase on the energy is not as sharp as in the previous
cases. This is illustrated in Fig. 3 where the energy is plotted as a
function of hz for the two fixed hy values considered. For similar
values of the distance between the sphere centre and the centre of
mass of the nuclei, the off-axis approach leads to a lower energy
rise. For small hz values, the rate of the increment of the energy
is reduced due to the symmetry of the electron charge around the
H-H centre of mass.

The expectation value of the internuclear separation decreases
as the distance between the molecule and the impenetrable
sphere decreases. This is the same behaviour found when the im-
penetrable sphere lies in the direction of the molecular axis. The
quantitative effect on 〈Z〉 is smaller now because the increase of
the density in the internuclear region is lower in the lateral ap-
proach and the distance between the molecule and the sphere is
larger.

3.2 Forces on the sphere due to charge depletion

The change of the energy of the molecule induced by the spatial
limitation to the electronic cloud, can be employed as a model to
study the quantum force appearing when two atomic or molec-
ular species approach as for example in an Atomic Force Mi-
croscope. In high resolution AFM imaging, a functionalized tip
probes the atoms or molecules of the sample. At very short dis-
tances, the force between them is responsible for the sharp sub-
molecular resolution29. In the contact mode, where the tip of the
cantilever penetrates inside the charge distribution and probes
the molecular orbitals, Pauli exchange forces are important. An
estimation of the force of the tip on the molecule can be carried
out starting from the results of our model. It is beyond the pur-
pose of this work to develop a realistic model for the different
forces that may arise such as long range forces, capillarity, van
der Waals, etc. that depend on the nature of the sample and the
tip. We will consider only the force due to the exclusion of a part
of the space available for the electrons of the molecule.

3.2.1 Axial and Transverse forces

Here we consider two situations. In the first one, the tip lies in the
direction of the molecular axis, hy = 0. The repulsive axial force
on the sphere can be obtained from our calculations by using the
Hellman-Feynman theorem

Fa = −
〈

∂H
∂hz

〉
hy=0

= − ∂E
∂hz

∣∣∣∣
hy=0

(18)

The second situation is when the tip approaches the molecule
in a direction perpendicular to the its axis with hz = 0. The trans-
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Fig. 2 Density maps of the electron density of the H2 molecule. Left hand side plot: the impenetrable sphere lies in the direction of the molecular axis;
central plot: case without sphere; right hand side plot: the sphere lies in the direction orthogonal to the molecular axis.
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verse force is calculated as

Ft = −
〈

∂H
∂hy

〉
hz=0

= − ∂E
∂hy

∣∣∣∣
hz=0

(19)

The derivatives have been calculated by carrying out an ana-
lytic fit of the energy as a function of hy and hz. In Fig. 4 we
plot the axial and transverse and forces as a function of hz and
hy respectively. The forces increase rapidly as the distance de-
creases between 3 and 2 a0. The force is more intense when tip
approaches the molecule in the axial direction as compared to the
transverse direction.

3.2.2 Lateral forces

Lateral forces have been calculated for off-axis approach for hy =

2.5 a0 and hy = 3.0 a0 for different hz values by using the same
scheme as before. In Fig. 4 we plot these lateral forces as a func-
tion of hz. These forces are smaller than the axial and transverse
ones. The changes in the electron density are less important in
a lateral approach than when the impenetrable domain is in the
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axial or in the transverse directions.

4 Conclusions
Properties of a molecular system are modified when the space
available to the electrons in the free state is restricted. The molec-
ular binding energy is reduced due to the depletion of the electron
density of the covalent bond. All these changes result fundamen-
tally from the modification in the curvature of the wave function
resulting from the wave nature of the particles.

In an AFM the tip of the cantilever, modeled by a hard sphere
here, can induce such changes in the wave function in the Pauli’s
regime. Though the true nature of the force is not known in that
case, the force can be estimated from the knowledge of the varia-
tion of the bond energy under the constraint. The results show an
important dependence of the energy values and the vertical and
lateral forces versus the distance between the bonding electron
cloud and the hard sphere.

It might be of interest to note that, more generally, atoms in
the close surrounding of the molecule can mimic the force due
to the Pauli’s principle and induce bond changes. This mecha-
nism could be relevant in different situations when chemistry in
confined spaces is considered. For example, inside a zeolite cav-
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ity, non-covalent interactions like Pauli repulsion can confine the
substrate at the molecular level and influence the molecular or-
bitals30. Scanning tunneling microscopy can induce chemical re-
actions by the excitation of molecular states31–36. Bond scission
is triggered by electric fields and tunneling currents. In our study
we have considered only the effect of Pauli repulsion by the AFM
tip, by using a hard wall spherical potential as a model for the
surrounding atom. More sophisticated potential barriers can be
implemented to mimic the effect of an electric field and to allow
for the tunneling of the electrons.
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