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ABSTRACT 

BACKGROUND 

The cotton leafworm, Spodoptera littoralis, is one of the most destructive pests in the Mediterranean 

basin, being predominantly controlled using synthetic chemical pesticides. Strain EAMa 01/58-Su of the 

fungus Metarhizium brunneum and the parasitoid Hyposoter didymator are promising biological control 

agents for this pest. In this study, we assessed the compatibility between these two agents to control S. 

littoralis under joint attack scenarios. 

RESULTS 

Firstly, the direct and indirect effects of the fungus towards parasitoid adults were studied. The fungus 

significantly decreased life expectancy of the parasitoid (mortality=62.5%; mean lethal 

concentration=1.85×106 conidia ml-1; average survival time=92.2h) when applied at high concentrations 

(108 conidia ml-1), whereas it did not affect the reproductive potential of the parasitoid females during the 

three days after treatment. Secondly, the combinations between the two agents to control S. littoralis 

under different simultaneous use scenarios (inoculation of S. littoralis larvae with the fungus before being 

exposed to parasitoid females and vice versa) were investigated, with additive effect in all cases. A 

significant effect on fitness (preimaginal development time and reproductive potential) of the F1 

parasitoid generation were detected. Moreover, parasitization significantly reduced the total haemocytes 

in S. littoralis haemolymph compared with the control, promoting fungal infection. Finally, parasitoids 

showed a significant preference for non-inoculated S. littoralis larvae. 

CONCLUSIONS 

We demonstrated compatibility (additive effect) between fungus and parasitoid under different joint 

attack scenarios to control S. littoralis in laboratory conditions. However, this will be supported by our 

ongoing greenhouse and field studies. 
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1 INTRODUCTION 

Phytophagous insects are a major constraint to crop production and often cause huge yield losses. One of 

the most destructive and ubiquitous insect pests in the Mediterranean basin is the cotton leafworm, 

Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). This species is widespread in many northern 

and southern European countries, particularly Spain, Greece and Italy, and has been detected in Africa 

and Asia Minor.1,2 The polyphagous habit of S. littoralis makes it a noxious pest on numerous 

economically-important crops in both greenhouses and open fields: tomato, pepper, eggplant, lettuce, 

artichoke, strawberry, asparagus, spinach, ornamentals and herbs.2,3 Chemical control has been the 

traditional control method for S. littoralis.4 However, chemical control is not a sustainable approach for 

the future. The environmental impact of chemical compounds threatens food and water security5,6 and 

their use has led to the development of resistance in S. littoralis to several active ingredients, mainly 

among orgaphosphorus,7 IGRs8 and pyrethroids.9 Moreover, chemical insecticides may be harmful for the 

natural enemies of insect pests.10 As a result, research has increasingly focussed on non-chemical 

measures for control of S. littoralis with a particular emphasis on biological control.11 Biological control 

agents are important alternatives to chemical pesticides and one of the principal components of any 

Integrated Pest Management (IPM) programme.12 The European Directive on the sustainable use of 

pesticides (2009/128/EC) promotes the use of biological control as an environmentally friendly, 

sustainable and financially viable tool for pest control. 

The endoparasitoid, Hyposoter didymator (Thunberg) (Hymenoptera: Ichneumonidae), is also a 

promising biological control agent for consideration in any IPM programme for control of noctuid pest 

species including S. littoralis.13 This solitary koinobiont wasp is indigenous in many European countries, 

including Spain, and it actively searches for and parasitizes larval stages of the genera Spodoptera, 

Heliothis and Helicoverpa. As an ichneumonid wasp, H. didymator has been described as a polydnavirus 

secretor, which is injected onto the host larva during oviposition.14 The polydnaviruses produced by 

hymenopteran parasitoids cause a suppression of the host immune response, affecting the presence of 

haemocytes in the host haemolymph.15 As defence units that modulate the cellular immune responses, 
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haemocytes are a very important component of the insect immune system,16 and the affection of the 

immune system of the host may increase its susceptibility to other biocontrol agents.17 The well-known 

efficacy of H. didymator controlling several insect pests, including S. littoralis, have led different authors 

to emphasize on the interest of developing biocontrol strategies using this parasitoid.13 Although several 

authors have reported difficulties rearing this parasitoid, and generally considered time-consuming and 

easily biassed towards males,18 the recent develop of new rearing methods is leading to a more efficient 

production which could be used if a commercial H. didymator production is aimed.13 

On the other hand, entomopathogenic fungi have great potential as biological control agents against 

many insect pests.19,20 Their contact mode of action and ability to secrete insecticidal compounds put 

them at the vanguard of the global development of alternative control strategies.19 Among them, it is 

worth mentioning the genus Metarhizium, which comprehends several species of a great efficacy as 

biocontrol agents, such as Metarhizium anisopliae (Metsch) (Hypocreales: Clavicipitaceae) and 

Metarhizium brunneum Petch (Hypocreales: Clavicipitaceae).21 As generalist entomopathogenic fungi, 

Metarhizium spp. have a broad host range, although their virulence, and thus, their efficacy as biocontrol 

agents depends largely on the strain more than the species.22 Indeed, our previous studies have reported 

the efficacy of several isolates of entomopathogenic fungi for control of S. littoralis, both by direct 

inoculation of larvae with the fungus11 and by feeding larvae with leaves from endophytically-colonised 

plants.23 The M. brunneum isolate EAMa 01/58-Su, in particular, has showed to be virulent against S. 

littoralis11 and other economically important insect pests.20,24 

Combined use of multiple micro- and macro-biological control agents may enhance the effectiveness 

of any IPM programme. However, to ensure positive outcomes, it is important that the complex 

interactions between entomopathogens and arthropod natural enemies are fully understood before they are 

used together in IPM. Although hypocrealean fungi, including some Metarhizium species, have broad 

host ranges and may infect some non-target and/or beneficial insects, such as parasitoids, they are 

generally considered as organisms that have a low environmental risk.25 Indeed, many recent studies have 

demonstrated both the safety of these fungi to non-target insects and the potential for their combined use 
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with arthropod natural enemies.26-28 However, interactions between natural enemies in a multitrophic 

context are complex and should be evaluated case by case if they are to be exploited effectively for pest 

control.  

The objective of our study was to assess, at laboratory conditions, the compatibility of the 

entomopathogenic fungus M. brunneum and the parasitoid H. didymator, when used together to control S. 

littoralis. The main goal was to ascertain whether the joint use of both agents could help controlling the 

pest S. littoralis when the fungal infection occurred before or after parasitization. Furthermore, lethal and 

sublethal effects of the fungus on parasitoid adults and sublethal effects on F1 generation, the parasitoid 

capacity to discriminate between healthy and fungus-infected host larvae and effects of parasitism on host 

haemocyte counts were studied. 

2 MATERIALS & METHODS 

2.1 Spodoptera littoralis and Hyposoter didymator rearings 

All insect cultures were maintained in a growth chamber at 26 ± 2°C, 70 ± 5% RH and a photoperiod of 

16:8 (L:D) h at the Department of Agricultural and Forestry Sciences of the University of Cordoba, 

Spain. 

A stock colony of S. littoralis was established and reared using the method proposed by Poitout and 

Bues29 and modified by Santiago-Alvarez.30 The detailed rearing procedure is described in one of our own 

previous studies.11  

The H. didymator colony was established in 2016 from pupae provided by Dr Anne-Nathalie Volkoff 

(University of Montpellier, France), and reared following the protocol described by Schneider and 

Viñuela18 with some modifications. Specifically, adult wasps (two males and one female) were placed in 

12 × 5 cm methacrylate cages and provided with a solution of 10% honey. A circular hole (3 cm in 

diameter) covered with a net cloth allowed ventilation of the cage. For oviposition the parasitoids were 

routinely provided with third-instar (L3) larvae of S. littoralis; L3 is the best instar for obtaining high 

numbers of females and a low encapsulation rate.31 Larvae of S. littoralis were introduced into the cages 
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in groups of ten with small cubes of artificial diet30 and oviposition allowed to proceed for 24 h. After this 

time, the adult parasitoids were removed and the S. littoralis larvae transferred individually to cylindrical 

plastic boxes (4 cm diameter) and provided with the aforementioned diet ad libitum until their death due 

to parasitism and the subsequent emergence of L3 larvae of the parasitoid, which immediately spun 

cocoons and pupated. Hyposoter didymator pupae were incubated in the same conditions until adults 

emerged. Adults were fed with 10% honey. Emerging adult parasitoids were used in experiments or for 

rearing after they were sexed (female:male  ratio = 1:2).  

 

2.2 Inoculum preparation 

The M. brunneum EAMa 01/58-Su strain was used in all bioassays; this strain was originally isolated 

from soil in which a wheat crop was growing at Hinojosa del Duque, Cordoba, Spain; it was deposited 

(accession number CECT 20764) in the Spanish collection of culture types (CECT) located at the 

University of Valencia, Spain. The fungus was sub-cultured from stored slant cultures onto malt agar in 

Petri dishes and grown for 12 days at 25 ˚C in darkness to provide inoculum for experiments. Conidia 

were scraped from the Petri plates into a sterile solution of 0.1 % Tween 80, sonicated (Ultrasons HD 

3000865; J.P. Selecta S.A.; Barcelona, Spain) for 5 min and then filtered through several layers of 

cheesecloth to remove any mycelia. The concentration of the conidial suspension was determined by 

counting using a haemocytometer (Malassez chamber; Blau Brand, Wertheim, Germany). The viability of 

the conidia was verified before the preparation of suspensions using germination tests in Sabouraud 

Dextrose Broth medium (BioCult B. Laboratories, Madrid, Spain). In all the experiments, germination 

rates were higher than 90%.  

 

2.3 Direct (lethal) and indirect (pre-mortality) effects of M. brunneum EAMa 01/58-Su on adult H. 

didymator 
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To quantify lethal effects, a virulence bioassay of EAMa 01/58-Su was done against newly-emerged 

H. didymator adults. Four concentrations of conidia in suspension were prepared in a sterile solution of 

0.1 % Tween 80 (105, 106, 107 and 108 conidia ml-1); the control was 0.1 % Tween 80 without conidia. 

These concentrations were selected based on our previous studies.11,24 Newly-emerged adult parasitoids 

were cold-anesthetized and sprayed, in replicate groups of ten, with conidial suspensions (or 0.1 % Tween 

80 [control]) in a Potter tower (Burkard Manufacturing Co. Ltd, Rickmansworth, United Kingdom), 

which deposited 1.54 ± 0.06 mg cm–2 at 0.7 bars of pressure. The quantity of conidial suspension used for 

each replicate was 1 ml and there were five replicates per treatment (n = 50 adult parasitoids per treatment 

in total). After treatment, replicate groups of parasitoids were placed in methacrylate cages (10 × 10 × 6 

cm) with covers; each cage contained a circular hole (4 cm in diameter) covered with a net cloth for 

ventilation. They were all provided with a liquid diet daily consisting of 10 % honey in water and 

incubated at 26 ± 2˚ C, 50–60 % RH in a photoperiod of 16:8 (L:D) h. Mortality was monitored daily for 

5 days. Dead parasitoids were removed daily, processed as described by Quesada-Moraga et al.,32 and 

inspected for fungal outgrowth as an indicator of fungal-induced mortality.  

The mean lethal concentration (estimated concentration required to kill 50% of the test insects, LC50) 

was estimated by Probit analysis,33 after assessing fit and overdispersion with other distributions such as 

logit, and not getting a better fit compared to Probit analysis. The values of average survival times (ASTs) 

were obtained by the Kaplan-Meier method and compared using the log-rank test calculated with SPSS 

15.0 software for Windows (SPSS Inc., Chicago, IL).  

To evaluate potential pre-mortality effects due to the fungus we compared reproductive potential of 

fungus-treated and untreated (control) female parasitoids in a second bioassay. Newly-emerged adult 

females were sprayed individually, as described above, with the two highest fungal concentrations among 

the assayed before, i.e., 107 and 108 conidia ml–1 (or 0.1 % Tween 80 [control]). There were eight 

replicate parasitoids for each treatment and control, and they were incubated as described previously. One 

day after treatment, second-instar (L2) larvae (ten) of S. littoralis were offered to each female parasitoid 

in each cage for oviposition; this was repeated on the subsequent two days (30 larvae per female offered 
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in total). The number of F1 generation pupal parasitoids that developed on S. littoralis larvae was used as 

an indication of reproductive potential of fungus-treated and untreated female parasitoids in the three days 

following inoculation. 

The percentage of pupal parasitoids was subjected to ANOVA. Data analysis was done using 

Statistix® 10 (Analytical Software, Tallahassee, USA). Prior to analysis, data were checked for linear 

model assumptions: homogeneity of variances (Brown and Forsythe test), normality (Shapiro-Wilk test) 

and independence of residues (graphical test). In order to meet these assumptions, the variable 

parasitization, expressed as a percentage, was transformed using the arcsine transformation, Y = 

𝑎𝑟𝑐𝑠𝑖𝑛𝑒�𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒
100

. Means from different treatments were compared using a Tukey’s test (α=0.05).  

 

2.4 Compatibility of M. brunneum EAMa 01/58-Su and the endoparasitoid H. didymator for control 

of S. littoralis  

Two bioassays were done to evaluate interactions between M. brunneum EAMa 01/58-Su and H. 

didymator when used together for control of S. littoralis. 

2.4.1 Fungal infection of host larvae before parasitism 

In the first bioassay, we evaluated the outcomes of dual infection/ parasitism when infection occurred 

before parasitism. Specifically, replicate groups of early L2 S. littoralis were inoculated by immersion for 

60 seconds in a 108 conidia ml–1 fungal suspension (10 ml). Replicate groups of control larvae were 

immersed in the same volume of sterile 0.1% Tween 80. Twenty-four, 48 and 72 h after immersion 

individual treated and control S. littoralis larvae were offered to individual newly-emerged mated female 

parasitoids (females were kept with two males the same day they emerged from cocoon and were 

monitored for 24 h to ensure mating occurrence; only 48-h mated females were used in all the bioassays) 

and oviposition allowed to proceed for 24 h. A small cube of artificial diet was introduced into each 

oviposition cage. The assay included the following treatments: i) three treatments in which S. littoralis 
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larvae were inoculated with the fungus and exposed to the parasitoid at different times (24, 48 and 72 h 

after inoculation); ii) three control treatments in which S. littoralis larvae were immersed in 0.1% Tween 

80 and exposed to the parasitoid at 24, 48 and 72 h; iii) a control treatment in which S. littoralis larvae 

were inoculated with the fungus; iv) an absolute control treatment in which larvae were immersed in 0.1% 

Tween 80. There were ten replications of each treatment and control, each replication including a group 

of ten S. littoralis larvae that were inoculated and/or offered to a H. didymator female depending on the 

treatment as described before. After oviposition, the S. littoralis larvae were individually transferred to 

cylindrical plastic boxes (as described previously) and provided with artificial diet ad libitum until the 

emergence of H. didymator larvae and pupae. Fungus-induced mortality of S. littoralis larvae, the 

parasitoid reproductive potential and total mortality were all recorded. To determine whether mortality 

was due to the fungus, dead S. littoralis larvae were removed daily and were immediately surface-

sterilised with 1 % sodium hypochlorite followed by three rinses in sterile distilled water for 1 min each. 

They were then placed on sterile wet filter paper in sterile Petri plates, sealed with laboratory film, 

incubated at 25 ˚C and inspected for fungal outgrowth.32 The parasitoid reproductive potential, referred as 

H. didymator complete parasitism, was represented by the number of emerging parasitoid pupae.13 

Finally, total mortality was expressed as the sum of the two former variables (larvae with fungal 

outgrowth and larvae showing a complete parasitism) and the rest of S. littoralis larvae which died not 

evidencing fungal outgrowth nor complete parasitism, i.e. died by unknown reasons. The experiment was 

repeated twice with fresh fungal suspensions and a new parasitoid generation.  

Total mortality (%), Parasitized larvae (%) and Larvae with fungal outgrowth (%) were analyzed 

using the linear mixed model: Y = μ + treatment + experiment, where treatment was modeled as a fixed 

effect and experiment was modeled as a random effect. In order to improve the normality and 

homogeneity of variance of the datasets values were transformed using the arcsine transformation. The 

estimation method was Restricted Maximum Likelihood (REML) with Kenward-Roger’s for degrees of 

freedom. Significance of the fixed effect (Treatment) was evaluated using the F-approximate test (α = 
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0.05) and means from the different treatments were compared with Tukey’s test (α = 0.05).34 Data 

analyses were performed using JMP 14.2 (SAS Institute Inc., Cary, NC). 

Furthermore, the reproductive potential of the F1 generation of parasitoids emerging from the 24 h 

treatment (fungus+parasitoid) S. littoralis larvae was also evaluated. For that, the newly-emerged adults 

(2 males and 1 female) were mated during 24 h and then offered ten L2 S. littoralis larvae as described 

previously. After 24 h, the parasitoids were removed and S. littoralis larvae were individualized and fed 

routinely. The number of F2 generation pupal parasitoids that developed on S. littoralis larvae was used 

as an indication of reproductive potential. There were six replications as only six females emerged in this 

treatment. As a control, the same procedure was done with those parasitoids from the 24 h parasitized 

control treatment (parasitoid alone). 

Reproductive potential, expressed as % pupal parasitoids, was analyzed as expressed before: briefly, 

data were subjected to ANOVA, after using the arcsine transformation. Means from different treatments 

were compared using a Tukey’s test (α=0.05). 

2.4.2. Parasitism of host larvae before fungal infection 

 In the second bioassay, we evaluated the outcomes of dual infection/ parasitism when parasitism 

occurred before infection. Specifically, individual early L2 S. littoralis larvae were offered to individual 

mated female parasitoids and oviposition allowed to proceed for 24 h, as described previously. The 

parasitoids were then removed and the parasitized S. littoralis larvae incubated in groups of ten with food. 

Twenty-four, 48, and 72 h after parasitization replicate groups of parasitized S. littoralis larvae were 

inoculated by immersion for 60 s a 108 conidia ml–1 fungal suspension (10 ml). Replicate groups of 

control larvae were immersed in a sterile solution of 0.1% Tween 80. All S. littoralis larvae were then 

incubated individually and routinely fed with artificial diet. Fungus-induced mortality of S. littoralis 

larvae, the parasitoid reproductive potential (represented by number of parasitoid pupae emerging) and 

total mortality were recorded as described previously. The assay included the following treatments: i) 

three treatments in which S. littoralis larvae were exposed to the parasitoid and inoculated with the fungus 
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at different times (24, 48 and 72 h after parasitization); ii) three control treatments in which S. littoralis 

larvae were inoculated with the fungus at 24, 48 and 72 h; iii) a control treatment in which S. littoralis 

larvae were exposed to the parasitoid; iv) an absolute control treatment in which larvae were immersed in 

0.1% Tween 80. There were five replications of each treatment and control, each replication including a 

group of ten S. littoralis larvae that were inoculated and/or offered to a H. didymator female depending on 

the treatment as described before. 

Total mortality (%), Parasitized larvae (%) and Larvae with fungal outgrowth (%) were analyzed as 

the bioassay described before, but in this case the experiment was not replicated in time, therefore the 

model used was: Y =μ + treatment. Variables were also arcsine transformed. Means from the different 

treatments were compared with Tukey’s test (α = 0.05).  

Data from the dual infection/ parasitism bioassays (2.4.1 and 2.4.2) were analyzed to determine 

whether there were synergistic, additive or antagonistic interactions between M. brunneum EAMa 01/58-

Su and the parasitoid H. didymator. A χ2 test was done as described by Hernandez et al.35 In this test, the 

expected mortality due to the effect of both treatments (ME) was calculated from the observed mortality 

with the formula used by Colby:36 ME = MP + MF – (MP × MF/100), where MP and MF represent, 

respectively, the mortality caused by the parasitoid and the fungus corrected according to Abbott.37 The χ2 

was calculated using the formula χ2 = (MO – ME)2/ME, where MO is the corrected observed mortality. The 

obtained values were compared with the χ2 table values for 1 degree of freedom and P > 0.05. If the 

calculated values were lower than the values of the table, the interaction between treatments was 

considered additive; otherwise, the interaction could be synergistic or antagonistic depending on the 

relationship of MO and MP with ME.11 

2.5 Effects of the inoculation of S. littoralis on the preimaginal development time of the F1 

generation of parasitoids 

We assessed the development time of the preimaginal stages of H. didymator when the parasitoid 

developed at the expense of S. littoralis larvae inoculated with the EAMa 01/58-Su strain, in order to 
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determine whether the presence of the fungus inside the host could affect the preimaginal development 

time of the F1 of the parasitoid. We reproduced the same methodology of the 24 h treatments (on the one 

hand, inoculation with the fungus and exposure to the parasitoid 24 h after inoculation; on the other hand, 

immersion in 0.1% Tween 80 and exposure to the parasitoid at 24 h as a control) described in 2.4.1., 

including five replications instead of ten. Briefly, each replication of 10 larvae was inoculated with the 

fungus (treatment) or immersed in 0.1% Tween 80 (control) and, after 24 h, was offered to one H. 

didymator female in the same conditions than those described in 2.4.1. After a 24 h offering time, the 

parasitoids were removed and S. littoralis larvae were individualized and routinely fed as described 

before. We selected three random parasitized S. littoralis larvae from both treatment (fungus and 

parasitoid) and control (Tween 80 and parasitoid) and monitored the larval and pupal development time. 

The larval development time was expressed as the time from the parasitization by the H. didymator 

female to the emergence of H. didymator L3 larvae from the host cadaver, whereas the pupal 

development time was the time from pupation (when the parasitoid larvae finished their spinning) to the 

emergence of H. didymator adults from the cocoons. 

The larval development time and pupal development time were analyzed separately. Data were 

subjected to ANOVA. No transformations were needed to fulfill ANOVA’s requirements. Means from 

different treatments were compared using a Tukey’s test (α=0.05).  

  

2.6 Impact of parasitization by H. didymator on the total haemocyte count in S. littoralis larvae 

In this bioassay, which aim was to ascertain whether a depletion in S. littoralis could be caused by H. 

didymator, individual L3 S. littoralis larvae were offered to individual mated female parasitoids and 

oviposition allowed to proceed for 24 h. The parasitoids were then removed and the S. littoralis larvae fed 

with diet and incubated, as described previously. Control larvae were treated in the same way but were 

not parasitized. There were three replicates, each of five larvae, for each treatment (parasitized or non-

parasitized control) and each sampling day (from day one to five after parasitization). Haemolymph was 
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only extracted from larvae in the treatment group that had actually been parasitized (three of the five 

larvae in each replication), which were first identified on the basis of their distinctive appearance (small 

size, reduced movement, paleness) and confirmed by dissection (presence of an egg or larva inside). For 

the control, three of the five larvae of each replication were selected randomly. Parasitized larvae did not 

die in the sampling period from days 1 to 5 days after treatment. 

Before collecting haemolymph, larvae were surface-sterilised with 70% ethanol followed by one rinse 

in sterile distilled water. Haemolymph was collected by laterally severing the anterior region of each larva 

with micro scissors and extracting the haemolymph from within using a micropipette. The haemolymph 

was mixed with an anticoagulant PBS buffer in a 2:1 ratio of PBS: haemolymph (v/v) to avoid haemocyte 

aggregation. A sample containing haemolymph (3 μl pooled from three S. littoralis larvae from each 

replication) was used to count haemocytes, and this procedure was repeated for each replication and day. 

Haemocyte counts were performed daily for 5 days after parasitization using a haemocytometer 

(Malassez chamber; Blau Brand, Wertheim, Germany). 

The effect of treatment and time on the number of haemocytes were evaluated using a factorial linear 

model (ANOVA): Y =μ + treatment + time + treatment × time. Data was log transformed, Y = log10 (nº 

haemocytes + 1), to meet linear models assumptions. 

 

2.7 Can H. didymator females distinguish between untreated and fungus-treated S. littoralis larvae?  

A choice assay was done to evaluate whether female parasitoids showed a preference for fungus-treated 

or untreated S. littoralis larvae when offered both at the same time. Specifically, L2 S. littoralis larvae 

were inoculated (nine groups of five), by immersion (60 seconds) in a 108 conidia ml–1 suspension (10 ml) 

of the fungus. Control larvae (nine groups of five larvae) were immersed in a sterile solution of 0.1% 

Tween 80. The fungus-treated larvae were given a distinctive marking on the thorax using acrylic paint 

(Nail Polish Yesensy España S.L.; Madrid, Spain). After letting the paint dry, ten S. littoralis larvae (five 

inoculated + five non-inoculated) were offered to a mated female parasitoid for 5 hours (nine replicates in 
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total). The parasitoids were removed and the larvae incubated individually and routinely fed with diet for 

10 days. The parasitoid reproductive potential (represented by the number of emerged adults) was 

evaluated. 

Choice test (oviposition preference for uninoculated vs. inoculated larvae of S. littoralis) was analyzed 

using a likelihood-ratio Chi-square test (p ≤ 0.05) to determine whether the observed frequencies were 

significantly different to the expected ones under the hypothesis of no treatment effect (50% : 50%).38 

Data analysis was performed using JMP 14.2. 

 

3 RESULTS 

3.1 Direct (lethal) and indirect (pre-mortality) effects of M. brunneum EAMa 01/58-Su on adult H. 

didymator  

Mortality values of adult parasitoids ranged from 37.5% (105 conidia ml-1) to 62.5% (108 conidia ml-1). 

Furthermore, the following fungal outgrowth values were scored: 0% (105 conidia ml-1); 6.6% (106 

conidia ml-1); 23.8% (107 conidia ml-1); and 39.6% (108 conidia ml-1). Mortality data were subjected to 

Probit regression analysis (slope = 2.9; χ2 = 1.3, with 3 df), which gave an LC50 value of 1.85×106 conidia 

ml-1. The AST of adult parasitoids treated with the highest conidial concentration (108 conidia ml-1), 

determined by Kaplan-Meier survival analysis, was 92.2 h, equivalent to a 20.7% reduction in AST 

compared with the control, which was 116.2 h. This difference was significant (P < 0.05) according to the 

log-rank test. 

The reproductive potential of female parasitoids over three days was not significantly influenced by 

the fungal treatment based on the percentages of S. littoralis larvae parasitized between one and three 

days after fungal infection either the first day (F2, 21 = 0.46; P = 0.6383), the second (F2, 21 = 1.51; P = 

0.2446) or the third (F2, 21 = 0.81; P = 0.4593) (Table 1). 
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Table 1. Percentage of S. littoralis larvae parasitized by H. didymator females treated with suspensions of 
the M. brunneum EAMa 01/58-Su conidia  

Fungal concentration 
(conidia ml-1) 

% Parasitized (mean ± SE) 
24 h after treatment 48 h after treatment 72 h after treatment 

0 55.00 ± 12.96a 65.00 ± 8.24a 75.00 ± 4.63a 
107 41.25 ± 13.15a 41.25 ± 9.90a 68.75 ± 11.72a 
108 57.50 ± 12.64a 61.25 ± 12.60a 58.75 ± 9.53a 

Means within columns with the same letter are not significantly different from each other (P < 0.05) 
according to the Tukey’s HSD test. 

 

3.2 Compatibility of M. brunneum EAMa 01/58-Su and the endoparasitoid H. didymator for control 

of S. littoralis  

3.2.1 Fungal infection of host larvae before parasitism 

In the first bioassay, where S. littoralis larvae were inoculated with M. brunneum prior to being exposed 

to the parasitoid, treatments had a significant effect on the total mortality of S. littoralis larvae (F6, 110 = 

13.74; P < 0.001), which ranged from 32.8% (when parasitism occurred 24 h after fungal inoculation) to 

77.0% (when parasitism occurred 48 h after fungal inoculation) (Fig. 1). Parasitism of S. littoralis by H. 

didymator females was significantly affected by treatment (F5, 101 = 17.63; P < 0.001) with mean values of 

21.4% (when parasitism occurred 24 h after fungal inoculation) to 64.9% (control: when parasitism 

occurred 48 h after experiment initiation). Fungal outgrowth from S. littoralis cadavers was not 

significantly affected by treatment (F3, 30 = 1.79; P = 0.1695), which ranged from 9.0% (when parasitism 

occurred 24 h after fungal inoculation) to 23.0% (control: fungal inoculation only). Mortality in the 

absolute negative control (no fungus + no parasitoid) was of 0% and was excluded from data analysis. 

Finally, there was a significant effect of fungal treatment on the reproductive potential of the F1 

generation of female parasitoids (F1, 10 = 9.33; P = 0.01); 48.8% of S. littoralis larvae were parasitized by 

F1 female parasitoids that originated from fungus-treated hosts compared with 65.9% by F1 female 

parasitoids originating from control hosts that had not been treated with fungus. 

 

3.2.2 Parasitism of host larvae before fungal infection 
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In the second bioassay, where S. littoralis larvae were offered to the parasitoid prior to fungal inoculation, 

the total mortality of S. littoralis larvae was significantly influenced by treatment (F6, 28 = 20.46; P < 

0.001) with values ranging from 10% (fungus inoculation alone at 72 h) to 60.3% (fungus inoculation 48 

h after parasitism) (Fig. 1). Treatment also had a significant effect on the proportion of cadavers with 

fungal outgrowth (F5, 24 = 4.12; P = 0.0076), ranging from 8.0% (fungus inoculation alone at 72 h) to 

30.0% (fungus inoculation 48 h after parasitism). However, there were no significant differences in 

reproductive potential (F3, 16 = 1.07; P = 0.3886), with parasitism values that ranged from 30.0% (fungus 

inoculation 24 h after parasitism) to 40.0% (control parasitized larvae). When averaging the results, larvae 

exposed to parasitoids had an average mortality caused by the fungus of 22%, while for larvae not 

exposed to parasitoids, the value was 15.7%. Mortality in the absolute negative control (no fungus + no 

parasitoid) was of 0% and was excluded from data analysis. 

We used a χ2 test to assess whether there were synergistic, additive or antagonistic interactions 

between the fungus and the parasitoid. According to this test, the effect of their combined application on 

S. littoralis mortality was additive in both strategies (Table 2).  

Table 2. Total percent mortality of Spodoptera littoralis larvae exposed to the parasitoid Hyposoter 
didymator and/or inoculated with the entomopathogenic fungus Metarhizium brunneum EAMa 01/58-Su 
within two different application strategies: (A) Fungal inoculation before exposure to the parasitoid; (B) 
Exposure to the parasitoid before fungal inoculation.  

Strategy Treatment Mortality mean 
(%) ± SE 

Expected 
mortality  

χ2 calculated 
(gf=1) 

χ2 table value 
(P>0.05) 

Effect on larvae 
 

A 
Fungal inoculation 

before exposure to the 
parasitoid 

EFP24 32.8 ± 5.5 29.2 0.4 3.8 Additive 

EFP48 77.0 ± 3.4 65.2 2.1 3.8 Additive 

EFP72 57.3 ± 3.7 48.2 1.7 3.8 Additive 

P24 39.5 ± 4.9 - - - - 
P48 65.6 ± 3.2 - - - - 
P72 62.5 ± 2.3 - - - - 

EF control 36.0 ± 4.0 - - - - 
Negative control 0.0 ± 0.0 - - - - 

B 
Exposure to the 
parasitoid before 

fungal inoculation  

PEF24 48.0 ± 4.9 43.0 0.6 3.8 Additive 
PEF48 60.3 ± 3.2 51.2 1.6 3.8 Additive 
PEF72 56.0 ± 5.1 49.8 0.8 3.8 Additive 
EF24 20.0 ± 3.2 - - - - 
EF48 18.0 ± 3.7 - - - - 
EF72 10.0 ± 3.2 - - - - 

P control 40.0 ± 4.5 - - - - 
Negative control 0.0 ± 0.0 - - - - 
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(A) EFP, S. littoralis larvae exposed to the parasitoid 24- 48- and 72 h after inoculation with the fungus. 
P, larvae only exposed to the parasitoid at 24- 48- 72 h after starting the experiment. EF control, larvae 
only inoculated with the fungus; 
(B) PEF, S. littoralis larvae inoculated with the fungus 24- 48- and 72h after exposure to the parasitoid. 
EF, larvae only inoculated with the fungus at 24- 48- 72h after starting the experiment. P control, larvae 
only exposed to the parasitoid; 
(A)(B) Negative control, larvae treated with aqueous 0.1% Tween 80 solution. 
 
 

3.3 Effects of the inoculation of S. littoralis on the preimaginal development time of the F1 

generation of parasitoids 

The development time of the preimaginal stages of H. didymator individuals developed at the expense of 

both fungus-treated and non-treated S. littoralis larvae were scored. The fungal treatment applied to S. 

littoralis larvae had no significant effect on the development time of parasitoid larvae (F1,28 = 1.51; P = 

0.223), which was of 10.1 days (H. didymator larvae emerging from fungus-treated S. littoralis larvae) 

and 10.7 days (H. didymator larvae emerging from non-treated S. littoralis larvae). However, the fungal 

treatment had a significant effect on the pupal development time of the parasitoid, causing a slight yet 

significant reduction (F1,28 = 3.9; P = 0.01) in the pupal development time of H. didymator when S. 

littoralis larvae were inoculated with the fungus (6 day) versus the non-inoculated control (6.73 days). 

 

3.4 Impact of parasitization by H. didymator on the total haemocyte count in S. littoralis larvae  

The total haemocyte count (THC) varied significantly both with time after treatment (F4,20 = 7.07; P = 

0.0010) and by treatment (F1,20 = 86.25; P ˂ 0.0001) and there was a significant interaction between the 

two (time × treatment) (F4,20 = 6.66; P = 0.0014). The haemolymph extracted from parasitized S. littoralis 

larvae had significantly fewer haemocytes than control larvae at 72 h (F1,20 = 39.67; P < 0.0001), 96 (F1,20 

= 15.21; P = 0.0009) and 120 h (F1,20 = 52.18; P < 0.0001) (Fig. 2). 
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3.5 Can H. didymator females distinguish between untreated and fungus-treated S. littoralis larvae? 

Parasitoids showed a significant preference for S. littoralis larvae that had not been inoculated with 

fungus (χ2
1df = 3.98; p ˂ 0.05). The percentage parasitism, determined from the number of F1 parasitoid 

pupae emerging was 33.3% from uninoculated S. littoralis larvae compared with 13.3% from larvae 

inoculated with the fungus. 

 

4 DISCUSSION 

Interactions between entomopathogenic fungi and parasitoids have been reported in many papers with 

mixed results. Some indicate high compatibility between these two biological control agents with no 

negative effects of the fungus on the parasitoid,39 or even describe the potential to use parasitoids as 

vectors of entomopathogenic fungi.40 However, other studies indicated antagonistic interactions between 

the two agents.41 Despite this, the majority of investigations have shown that combined use of 

entomopathogenic fungi and parasitoids within IPM programmes is always effective with a suitable 

adaptation of release times, i.e. which agent is applied first, and the correct timing of applications.42  

In the present study, we measured direct lethal effects and pre-mortality effects of M. brunneum 

EAMa 01/58-Su on adult H. didymator. We also evaluated compatibility between these two agents when 

used together but released at different times and in different orders. The results showed that the parasitoid 

was susceptible to infection following direct contact with relatively high concentrations of conidia, with a 

20.7% reduction in AST compared with the control. Few studies have addressed both direct lethal effects 

and pre-mortality effects of entomopathogenic fungi on parasitoids. However, our results confirm those 

obtained by Castillo et al. who found that direct application of the fungus Beauveria bassiana Bals. 

(Vuill) (Hypocreales: Clavicipitaceae) (108 conidia ml-1) caused a 22% reduction in adult longevity of the 

eulophid endoparasitoid Phymastichus coffea LaSalle (Hymenoptera: Eulophidae).43 Furthermore, Matias 

da Silva et al. showed that adult stages of the braconid endoparasitoid, Cotesia flavipes Cam. 

(Hymenoptera: Braconidae), were susceptible to B. bassiana and M. anisopliae.44 Similarly, our previous 
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work with the same strain (EAMa 01/58-Su) and the same concentration (108 conidia ml-1) that we used 

in the present article, showed that the fungus caused a mortality of 21% on adults of the cosmopolitan 

parasitoid Psyttalia concolor Szepliget (Hymenoptera: Braconidae).24 

On the other hand, we calculated the LC50 of H. didymator inoculated with the EAMa 01/58-Su strain, 

which was of 1.85×106 conidia ml-1. Although our results are consistent with those obtained for this strain 

and other parasitoids,24 it is shown that the susceptibility of H. didymator to EAMa 01/58-Su is higher 

than those evidenced by different insect pests.11,20 This result is of a great importance to develop a 

suitable strategy for biological control as it allows to compare the susceptibility of the parasitoid with 

other insects. Moreover, the reproductive potential of H. didymator females, over three days, was not 

affected by direct applications of the fungus on parasitoid adults, even at high conidial concentrations 

(107 and 108 conidia ml-1), as no significant differences in S. littoralis parasitization were scored during 

this time for any treatment (Table 1). As the most productive copulation/egg-laying period for H. 

didymator females and males is 36 h after emergence,13 our results show that fungus-treated H. didymator 

females would have plenty of time to parasitize S. littoralis larvae before being killed by the fungus (≈ 4 

days after treatment), even if they were inoculated as soon as they emerged. It is worth stressing that 

direct contact between the fungus and the parasitoid represents the worst-case scenario under field 

conditions and could be prevented, or at least reduced, if fungus is applied after parasitization. These 

results are similar to those obtained by other authors, who found that the entomopathogenic fungus B. 

bassiana did not affect the reproductive potential of the parasitoid Tamarixia triozae (Burks) 

(Hymenoptera: Eulophidae) despite reducing their life expectancy.45 Furthermore, Labbe et al. reported 

that the use of commercial isolates of entomopathogenic fungi had no effect on survival rates of the 

parasitoid, Encarsia formosa Gahan (Hymenoptera: Aphelinidae), and even increased parasitism rates.28 

Other authors have reported that prior inoculation with entomopathogenic fungi could affect fitness of the 

parasitoid wasp Trybliographa rapae Westwood (Hymenoptera: Figitidae), reducing its life expectancy 

but increasing its oviposition rates as an adaptation in response to the presence of the fungus.26  
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Our compatibility bioassays, in which we assayed two different strategies (inoculation before and after 

parasitization) to control S. littoralis, demonstrated high compatibility between M. brunneum EAMa 

01/58-Su and H. didymator since the effect of combined use of fungus and parasitoid on total mortality of 

S. littoralis larvae was additive in both scenarios. In the first scenario (fungal inoculation before exposure 

to the parasitoid), the time that parasitoids were released following fungal inoculation did influence the 

total mortality of S. littoralis larvae; the lowest mortality was obtained when parasitism occurred 24 h 

after fungal inoculation and highest mortality was obtained when parasitism occurred 48 h after fungal 

inoculation. Nonetheless, the mortality caused by both the parasitoid (=parasitization) and the fungus 

(=fungal outgrowth) was slightly higher when applied alone than when combined with the each other, yet 

the total mortality was higher when applied together. Of interest, the combined use of the two agents has 

an additive effect in all combinations with parasitoid time releasing-dependent mortality. Many studies 

have indicated that the time between fungal inoculation and subsequent parasitism is an important factor 

affecting the likelihood of both agents successfully completing their development within the same host.46 

Emami et al. showed that, increasing the release interval for the parasitoid Aphidius colemani Viereck 

(Hymenoptera: Braconidae) after B. bassiana application for control of green peach aphid, Myzus 

persicae (Sulzer) (Hemiptera: Aphididae) reduced the number of parasitoid pupae developing and the 

percent emerging as adults.47 The same result was reported by Mohammed and Hatcher, who found that 

when M. persicae treated with the fungus Lecanicillium muscarium Zare & Gams (Hypocreales: 

Cordycipitaceae) were offered to the parasitoid A. colemani they were less likely to be parasitized if they 

were offered to the parasitoid 3-4 days after fungal infection than if they were offered 1-2 days after 

fungal infection.27 In our study, we think that the time between fungal infection and subsequent parasitism 

was not of great importance since the only day that parasitism was significantly lower (24 h), it was both 

in the combined treatment including fungus + parasitoid (EFP24) and in the treatment including 

parasitoid alone (P24). That led us to think that the most crucial factor for the parasitoid, and the reason 

why a lower parasitization was recorded the first day both in the EFP24 and P24 treatments, was the 

larval instar of the host. It has been shown that H. didymator only parasitizes second (L2) or third (L3) 

instar S. littoralis larvae.13,31 Earlier and later larval stages are considered as low-quality hosts because 
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they provide few nutrients and have strong immune responses that prevent parasitoid development.48 In 

our study, we used early L2 S. littoralis larvae, which are suboptimal for H. didymator,48 which may 

explain why parasitization was higher in all treatments from the second day (48 h) onwards (72 h). On the 

other hand, the lack of significant differences on the larval death with fungal outgrowth in any treatment 

(including or not exposure to parasitoid) suggests that parasitism does not interfere with the fungus. It is 

worth stressing that there was a certain percentage of mortality due to unknown reasons (neither complete 

parasitism nor larval mortality with fungal outgrowth) in most treatments (Fig. 1). However, its relative 

value was very low compared with total mortality except in the treatment including inoculation alone (EF 

control). As stated before, mortality due to unknown reasons was not scored in the absolute negative 

control (no fungus + no parasitoid) in any assay or repetition, what indicates that this mortality was 

caused by the biocontrol agents. In fact, there are two reasons to justify that mortality: in the treatments 

including only parasitoid, it is likely caused by incomplete parasitism, i.e. parasitization of S. littoralis 

without a complete develop of the parasitoid larva, causing the host premature death; incomplete 

parasitism causing S. littoralis larval death after exposure to H. didymator females has been described and 

may reach high values depending on the rearing method, larval age or instar and other factors.13 On the 

other hand, we think that the high mortality without fungal outgrowth in the treatment including only 

inoculation with the fungus is likely due to the production of entomotoxic substances by the fungus. 

Resquin-Romero et al. inoculated S. littoralis larvae by an immersion in conidial suspensions (108 conidia 

ml-1) of different strains of M. brunneum and B. bassiana, using the same methodology we presented 

here.11 The authors reported high rates of larval death without fungal outgrowth after inoculation with 

some of the strains, especially with the EAMa 01/58-Su strain, which was due to the toxins produced by 

the fungus.11 Similar results were obtained by Yousef et al. when using the EAMa 01/58-Su strain against 

P. concolor, with fungal outgrowth values depending on the experimental methods.24  

In the second scenario (exposure to the parasitoid before fungal inoculation), the time between 

parasitism and subsequent fungal inoculation had no effect on the total overall mortality since no 

significant differences were scored any day in the same treatments (Fig. 1); nonetheless total mortality in 
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those treatments including parasitoid was significantly higher than that scored in the treatments lacking 

them (EF24, EF48 and EF72). No significant differences in parasitism were scored for any day or 

treatment, what shows that further inoculation does not interfere with the development of H. didymator. 

However, significant differences in larvae with fungal outgrowth were scored, with its maximum value 

when parasitism occurred 48 hours before fungal application (PEF48). Interestingly, S. littoralis larval 

mortality due to the fungus was higher in this combined treatment than when the fungus was applied first 

(all treatment including fungus and parasitoid in the first scenario: EFP24, EFP48 and EFP72) or alone 

(EF control in the first scenario and EF24, EF48 and EF72 in the second scenario). Most studies on 

tritrophic interactions amongst parasitoids, their hosts, and entomopathogenic fungi, have focused on the 

negative effects of the fungus on parasitoid development within the same host; few studies have 

considered changes in the host susceptibility to the fungus after parasitoid oviposition.46 Labbe et al. 

found that, in whiteflies, application of B. bassiana after parasitism by E. formosa had no effect on either 

the abundance of the parasitoid or parasitism rates.28 Furthermore, Mohammed and Hatcher showed that, 

in M. persicae, application of the fungus, L. muscarium, 3 - 7 days after parasitism by A. colemani had no 

effect on the proportion of aphids that were parasitized.27 It is possible that the fungus may outcompete 

immature parasitoids within the host, but there are no reports of the fungus invading parasitoid tissues 

when they are both attacking the same host;46,49 however, neither of these studies considered the influence 

of the parasitoid on host susceptibility to the fungus. King and Bell have shown that the noctuid moth 

Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) was more susceptible to the hypocrealean fungus, 

Nomuraea rileyi (Farl.) Kepler, Rehner & Humber (Hypocreales: Clavicipitaceae), if it was already 

parasitized by the braconid Microplitis croceipes (Cresson) (Hymenoptera: Braconidae).17 Furthermore, 

Powell et al. reported that Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) aphids that had 

been parasitized for 2 days were more susceptible to infection by the entomophthoralean fungus Pandora 

neoaphidis Humber (Entomophthorales: Entomophthoraceae) than unparasitized ones;49 this is similar to 

our results for inoculation 48h after parasitism (PEF48). We hypothesise that this may occur because 

parasitism reduces immunity to subsequent infection; we showed that parasitized S. littoralis larvae had 

significantly fewer haemocytes than unparasitized larvae. Since haemocytes are a very important 
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component of the insect immune system, a lower number of haemocytes may lead to a lower immune 

response.16 Furthermore, THC in control larvae increased over the five-day observation period, 

particularly between days 3 and 5; this may be because larvae moult from L2 to L3 between days 3 and 5. 

In general, THC increases with the larval age reaching a maximum in pre-pupae50 although THC also 

tends to increase prior to each moult, decrease at moulting, and then increase again.16 Other studies have 

reported the same effect of parasitism on THC.51 When comparing both scenarios, we observed that 

parasitism was the factor which has most contributed to S. littoralis total mortality. Since all S. littoralis 

larvae were offered to the parasitoid in early L2 instar in the second scenario, parasitization, and thus total 

mortality, was lower than in the treatments of the first scenario where larvae were offered from the 

second day (EFP48, EFP72, P48, P72). This finding is interesting and reinforces our idea that larval age 

is a crucial factor for achieving a sustainable S. littoralis control in the assayed conditions. 

Our choice test experiment demonstrated a clear oviposition preference for un-inoculated S. littoralis 

larvae in H. didymator females, which is interesting as indicates that H. didymator is able to detect the 

presence of entomopathogenic fungi and tends to avoid them if possible, which had not been described 

before. However, in our no-choice scenarios (fungal inoculation before exposure to the parasitoid and 

vice versa) we showed that the presence of the fungus EAMa 01/58-Su does not seem to interfere with the 

further development of H. didymator. Furthermore, under a no-choice situation (i.e. presence of only 

inoculated or uninoculated larvae and a 24-h exposure time) the parasitization may be high regardless of 

the presence or absence of fungus (Fig. 1), so this natural avoidance of the fungus under a choice scenario 

(presence of both inoculated and uninoculated larvae and a reduced exposure time) may not be important 

for S. littoralis control if the conditions are appropriate. 

Finally, we showed that the long-term consequences of the presence of fungus on the parasitoid were 

not very serious, resulting in only a slight reduction in parasitoid pupal development time and 

parasitization capacity of F1 H. didymator females. Potrich et al. also described a reduction in the egg-to-

adult period of the parasitoid Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) when 
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used together with M. anisopliae against the Mediterranean flour moth, Anagasta kuehniella (Zeller) 

(Lepidoptera: Pyralidae).52 

This work contributes to a better understanding of intra-host interactions in S. littoralis and may be a 

first step for defining sustainable IPM strategies for this insect based on the joint use of H. didymator and 

M. brunneum. However, more research is necessary in order to assess the efficacy and compatibility of 

both biocontrol agents; thus, experiments evaluating the performance of both fungus and parasitoid 

controlling S. littoralis in real conditions (i.e., infesting a crop established in a greenhouse or directly in 

the field releasing both biocontrol agents) would complete the results presented so far. 

 

5 CONCLUSIONS 

The direct contact (worst case scenario) between the fungus and parasitoid adults could be dangerous for 

the parasitoid at relatively high concentrations of conidia. However, parasitoid reproductive potential was 

not affected during the the pre-mortality period (three days).  

High compatibility between the two biocontrol agents has been demonstrated under different release 

scenarios; an additive effect was observed in all combinations. The time between fungal inoculation and 

subsequent parasitism and vice versa was not an important factor affecting the total mortality of S. 

littoralis larvae. 

When applied together, fungal treatments did not affect the development time of parasitoid larvae. 

However, fungal treatment did significantly reduce the reproductive potential of the F1 parasitoid 

generation. 

Parasitism reduces immunity of the cotton leafworm larvae to subsequent infection by the fungus 

when the fungus was applied 48 h after parasitoids release, resulting in improvement of fungal 

performance. 
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This work is the first step for better understanding the intra-host interactions between H. didymator 

and M. brunneum in S. littoralis when jointly used. The results can help improving the IPM strategies on 

force against this pest, but future studies must be performed to assess the efficacy and compatibility of 

both biocontrol agents under more realistic conditions before reaching a final conclusion. 
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FIGURE CAPTIONS 

Figure 1. Total percent mortality of Spodoptera littoralis larvae at 24- 48- and 72-h: number with 

Metarhizium brunneum fungal outgrowth + parasitized by Hyposoter didymator + died by an 
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unknown reason. Letters show statistical comparisons between treatments within each assay (A or 

B) (Tukey’s test; α=0.05). 

(A) Fungal inoculation before exposure to the parasitoid. EFP, S. littoralis larvae exposed to the 

parasitoid 24- 48- and 72 h after inoculation with the fungus. P, larvae only exposed to the parasitoid 

at 24- 48- 72 h after starting the experiment. EF control, larvae only inoculated with the fungus; 

(B) Exposure to the parasitoid before fungal inoculation. PEF, S. littoralis larvae inoculated with the 

fungus 24- 48- 72h after exposure to the parasitoid. EF, larvae only inoculated with the fungus at 24- 

48- 72h after starting the experiment. P control, larvae only exposed to the parasitoid; 

(A)(B) Both assays included an absolute negative control in which S. littoralis larvae were treated 

with aqueous 0.1% Tween 80 solution. The total mortality was of 0% and was not included in the 

analyses. 

 

Figure 2. Daily total haemocyte count in Spodoptera littoralis larvae parasitized by Hyposoter didymator 

over time. Letters show statistical comparisons between treatments within each evaluation time (α=0.05). 
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