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Abstract: The paper presents an analysis of heat loss and reductions of annual emissions of air
pollutants of a quadruple pre-insulated heating network by comparing this solution with the existing
pre-insulated network consisting of four pre-insulated single pipes and the variant consisting of two
twin pipe pre-insulated. For calculations, an existing heating network located in central Poland was
adopted, where heat is transported for heating purposes of buildings and domestic hot water with
circulation of domestic hot water through four separate pre-insulated underground pipes. The idea of
the construction of four pre-insulated pipes presented in the paper consists in the location of four steel
pipes in a common round thermal insulation, which perform the role of heat transport for heating
purposes in multi-family buildings (supply and return) and two pipes transporting hot water (a pipe
with domestic hot water with circulation). In Poland, heating pipes used in multi-family housing have
a larger diameter compared to domestic hot water pipes, which is why standard twin pipe heating
pipes have been used in the construction of four pre-insulated networks, in which the domestic hot
water pipe has been added to the thermal insulation and circulation of domestic hot water. In order to
determine heat losses, a simplified two-dimensional model of conductive heat transfer was developed
using Fortran to create a computer program. The results of numerical simulations show that the
use of twin pipes for the construction of pre-insulated quadruple networks has contributed to a
significant reduction in heat loss in relation to the existing single pre-insulated network (up to 57.1%),
while reducing the thermal insulation field of the cross-section of the pre-insulated pipe by 21.4%.

Keywords: quadruple pipes; single pipes; twin pipes; pre-insulated district heating; network; energy
savings; pollutants emission

1. Introduction

Energy-efficient operation of heating networks is primarily associated with the reduction of
heat losses in pre-insulated pipes. The simplest method of reducing heat loss is to reduce the
network operating temperature [1–5]. Unfortunately, the reduction of network operation parameters
is associated with costly thermal modernization of the building, i.e., insulation of buildings and
replacement of the heating system [6]. Reduction of heat loss in heating networks can also be
achieved by using thicker layers of thermal insulation or heating networks with a lower thermal
conduction coefficient of thermal insulation, which is associated with a higher cost of heating networks.
Heat exchange in single pre-insulated heating networks, which are the most commonly used, has
been thoroughly studied [7–11]. Heat losses in single pre-insulated pipes can be determined using
analytical methods [3,7,9,12,13] as well as using numerical methods in two-dimensional [10,12] and
three-dimensional [14] problems. Another method of reducing heat loss is to place a few pipes in
common thermal insulation. This method is mainly used in twin pipes, where the supply and return
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pipes are located in circular insulation [15,16]. One of the methods to reduce heat loss in pre-insulated
twin pipes is to change the cross-sectional shape of the twin pipe thermal insulation from round
to oval [17], elliptical [18] or egg shape [19,20] while maintaining the same cross-sectional area of
thermal insulation. Heat losses in pre-insulated twin pipes can be determined by simplified analytical
methods [12,21,22] and numerical methods [16–19,23]. Heat losses in pre-insulated double pipes with
round thermal insulation are about 30% lower than heat losses in pre-insulated single pipes [19,20,22].
It should be noted here that the improvement of thermal insulation also depends on the size of the pipes.
In the case of double pre-insulated heating pipes with an egg-shaped cross-section, heat losses are
smaller by about 45% compared to heat losses in single pre-insulated pipes [19,20]. The pre-insulated
triple pipes are also described in the literature [15,19] in which heat is transported by means of two
supply pipes and one return pipe.

Another alternative is pre-insulated quadruple pipes, where all four pipes are encased in common
round thermal insulation. Pre-insulated quadruple ducts can be used for heat transport during the
heating season and for the transport of domestic hot water along with the circulation of domestic hot
water. While single pre-insulated and twin pipes have been thoroughly investigated [1–22], the heat
loss analysis of four-pre-insulated pipes has not yet been performed.

The purpose of the work is to analyze heat loss and the ecological effect of pre-insulated
quadruple pipes by comparing this solution with the existing pre-insulated network built of four
single pre-insulated pipes and an additional adopted variant of the network consisting of two twin
pipes. The reduction of heat loss is associated with lower emissions of pollutants into the air from
heat sources if the heat source is fossil fuel, i.e., it significantly affects the ecological effect of heating
networks operation [24,25]. The paper adopts the geometry of pre-insulated quadruple pipes by
placing additional pipes for domestic hot water and circulation of domestic hot water in the thermal
insulation of a standard twin pipe designed for heat transport for the purposes of heat demand
of buildings.

2. Description of the Model for Determining Heat Loss in Pre-Insulated Quadruple Pipes

In order to determine heat losses through pre-insulated pipes, a computer program was created
using the Fortran language using the boundary element method (BEM) [26], which is often used
in many heat transfer analysis [27–29]. The boundary element method is a non-mesh method and
for given boundary conditions in the form of temperature or heat flux, it allows the determination
of heat fluxes for individual pipes inside thermal insulation. It should be noted that in the case of
single heating networks and twin pipes, analytical formulas may be used to determine heat losses,
the results of which are consistent with the results of numerical methods [12], while in the case of
pre-insulated quadruple heating pipes in common thermal insulation, analytical formulas are not
known. A two-dimensional simplified model of heat conduction described in Laplace’s equation and
the Fourier equations were used for calculations:

∂2T
∂x2 +

∂2T
∂y2 = 0, qx = −λ

∂T
∂x

, qy = −λ
∂T
∂y

, (1)

where T is the temperature, x and y are the coordinates of the Cartesian system in the cross section of
the pre-insulated pipe, qx and qy are heat-flow quantities that are directed in the x and y directions,
while λ is the thermal conductivity coefficient of the thermal insulation (polyurethane foam).

Figure 1 presents the boundary conditions of heat transfer using a simplified model of heat
exchange inside a quadruple pre-insulated pipe. The Dirichlet boundary condition in the form of the
external surface temperature of the thermal insulation TG = 8 ◦C and the temperature of the walls of
steel pipes equal to the temperature of the heating medium flowing on the TS supply and return TR as
well as domestic hot water TH together with the circulation of domestic hot water TC was adopted
for calculations. The thermal conductivity coefficient of thermally insulating materials depends on
temperatures, material age and density. Standard thermal insulation made of polyurethane foam
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with an average thermal conductivity coefficient of λ = 0.0265 W/mK was used in the calculations.
Parameters of thermal insulation made of polyurethane foam can be found in [30,31]. The unit heat
losses q through the quadruple pre-insulated pipe consist of heat losses through the heating supply
pipe qS and return qR and heat losses through the domestic hot water pipe qH and domestic hot water
circulation qC:

q = qS + qR + qH + qC (2)

where heat losses for individual pipes are described by the heat flux balance according to Figure 1:

qR = qR2 − qR1 (3)

qH = qH3 − qH2 − qH1 (4)

qC = qC3 − qC2 − qC1 (5)
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2.1. Statistical Descriptors and Reconstruction 

Figure 1. Geometry, boundary conditions and heat fluxes in pre-insulated quadruple pipes.

The solution of Equation (1) for given boundary conditions is the heat flux density at the boundary
of thermal insulation. To determine heat loss by the boundary element method, no mesh inside the
thermal insulation cross-section is required, only the boundary of the thermal insulation is discretized.
After determining the heat flux density at the boundary of thermal insulation by the boundary element
method, the temperature or density of the heat flux at any point within the cross-section of thermal
insulation is also determined without the use of meshes. The computer program verification was
carried out in the works [18,32]. A boundary of 5000 linear elements was used for calculations.

3. Analysis of Heat Losses of Pre-Insulated Quadruple Networks on the Basis of Operating
Parameters of the Existing Pre-Insulated Single Network and the Adopted Twin Pipe Network

The analysis of quadruple pre-insulated network heat loss in a common thermal insulation was
made on the basis of the operating parameters of the existing single pre-insulated network investment
made in 2012, supplying heat from the local coal-fired heating plant during the heating season and
domestic hot water for multi-family and service buildings located in central Poland. A satellite view of
the housing estate of multi-family buildings connected to the heating network is shown in Figure 2a [33],
while a diagram of the existing pre-insulated network with the diameters of single pre-insulated pipes
is shown in Figure 2b.
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Figure 2. View of the analyzed housing estate from googlemaps.com [33] (a) and diagram (b) of an
existing single heating network built of four separate pre-insulated pipes.

In order to analyze the energy losses for the purposes of heat loss and the ecological effect of
the quadruple pre-insulated heating network, three variants of the pre-insulated network design
were used for heating in the heating season and transporting hot water (Figure 3). The first variant
marked as “I” is the existing state of a single pre-insulated network built of four pipes: the supply and
return pipes of the heating system marked as S and R respectively (Figure 3a) and the pipe supplying
domestic hot water to buildings and circulation of domestic hot water marked respectively as H and C
(Figure 3a). Pre-insulated heating network pipes S and R with a flow temperature TS =80 ◦C and return
temperature TR = 60 ◦C work only during the heating season for a period of 255 days, while hot utility
water pipes with a temperature TH = 55 ◦C and TC = 55 ◦C work all year round. The temperature
of pre-insulated heating network, domestic hot water and circulation of domestic hot water is kept
constant. The heating medium is transported through a pre-insulated network to local heating centers
located in buildings, where behind the heat exchangers inside buildings the temperature of the heating
medium is regulated depending on the outside temperature. Linear heat density for the analysed
network was estimated at 3.3 MWh/(m year). Fluid flow was in a range from 1.58 t/h to 21.5 t/h in
heating pipes and between 0.2 t/h and 0.45 t/h in hot water and circulation pipes. Loss of pressure for
the design flow was 27.5 kPa and 5.0 kPa, respectively. The detailed geometry with the description
of the pipe diameters and thermal insulation fields as well as the unit heat losses determined for the
supply and return pipes of the existing heating network, respectively as qIa, qIb and the unit heat
losses for existing domestic hot water pipes and domestic hot water circulation marked as qIc and qId,
respectively, are presented in Table 1. The description of the geometric parameters from Table 1 is in
Figure 3a.



Energies 2019, 12, 4699 5 of 12

Energies 2019, 12, x FOR PEER REVIEW 5 of 12 

 

 
Figure 3. Variants of the analyzed heating network (Ai-area of thermal insulation; si-distance between 
pipes inside the thermal insulation; Di, di - pipe diameters, and i-pipe numbers inside the thermal 
insulation): (a) variant I, (b) variant II and (c) variant III. 

Table 1. Geometry of heating pipes of variant “I” (existing condition) with unit heat losses through 
single pre-insulated pipes. 

No. 

Pipes 

(Figure 

2b) 

Supply Pipe Return Pipe Hot Water Pipe Circulation Pipe Thermal 

Insulation 

Field 𝟐 ×  𝑨𝟏+ 𝑨𝟐 + 𝑨𝟑 

D1 d1 A1 qIa D1 d1 A1 qIb D2 d2 A2 qIc D3 d3 A3 qId 

mm mm m2 W/m mm mm m2 W/m mm mm m2 W/m mm mm m2 W/m m2 

1,2 200 114.3 0.0212 21.4 200 114.3 0.0212 15.5 140 76.1 0.0108 19.7 110 48.3 0.0077 14.6 0.0608 

3 160 88.9 0.0139 20.4 160 88.9 0.0139 14.7 125 60.3 0.0094 16.4 110 48.3 0.0077 14.6 0.0449 

4 160 88.9 0.0139 20.4 160 88.9 0.0139 14.7 110 48.3 0.0077 14.6 90 33.7 0.0055 12.2 0.0409 

5,6 140 76.1 0.0108 19.7 140 76.1 0.0108 14.2 110 48.3 0.0077 14.6 90 33.7 0.0055 12.2 0.0348 

7 140 76.1 0.0108 19.7 140 76.1 0.0108 14.2 110 42.4 0.0081 12.6 75 26.9 0.0038 11.7 0.0336 

8,9 110 48.3 0.0077 14.6 110 48.3 0.0077 10.5 90 33.7 0.0055 12.2 75 26.9 0.0038 11.7 0.0247 

In the second variant (Figure 3b, Table 2) a heating network was adopted consisting of two twin 
pipe ducts working for heating purposes and domestic hot water on the same thermal parameters as 
in variant “I”. The dimensions of the diameters of steel heating and domestic hot water were taken 
equal to the dimensions of the pipes in variant “I” and the standard diameters of thermal insulation 
were adopted. The geometry of the twin pipe ducts assumed for calculations (Figure 3b) and the 
determined unit heat losses of pre-insulated heating and domestic hot water pipes, qIIa and qIIb, 
respectively, are presented in Table 2. 

 

(a)

(b)

(c)

Figure 3. Variants of the analyzed heating network (Ai-area of thermal insulation; si-distance between
pipes inside the thermal insulation; Di, di - pipe diameters, and i-pipe numbers inside the thermal
insulation): (a) variant I, (b) variant II and (c) variant III.

Table 1. Geometry of heating pipes of variant “I” (existing condition) with unit heat losses through
single pre-insulated pipes.

No. Pipes
(Figure 2b)

Supply Pipe Return Pipe Hot Water Pipe Circulation Pipe Thermal Insulation
Field

2 × A1 + A2 + A3D1 d1 A1 qIa D1 d1 A1 qIb D2 d2 A2 qIc D3 d3 A3 qId

mm mm m2 W/m mm mm m2 W/m mm mm m2 W/m mm mm m2 W/m m2

1,2 200 114.3 0.0212 21.4 200 114.3 0.0212 15.5 140 76.1 0.0108 19.7 110 48.3 0.0077 14.6 0.0608
3 160 88.9 0.0139 20.4 160 88.9 0.0139 14.7 125 60.3 0.0094 16.4 110 48.3 0.0077 14.6 0.0449
4 160 88.9 0.0139 20.4 160 88.9 0.0139 14.7 110 48.3 0.0077 14.6 90 33.7 0.0055 12.2 0.0409

5,6 140 76.1 0.0108 19.7 140 76.1 0.0108 14.2 110 48.3 0.0077 14.6 90 33.7 0.0055 12.2 0.0348
7 140 76.1 0.0108 19.7 140 76.1 0.0108 14.2 110 42.4 0.0081 12.6 75 26.9 0.0038 11.7 0.0336

8,9 110 48.3 0.0077 14.6 110 48.3 0.0077 10.5 90 33.7 0.0055 12.2 75 26.9 0.0038 11.7 0.0247

In the second variant (Figure 3b, Table 2) a heating network was adopted consisting of two twin
pipe ducts working for heating purposes and domestic hot water on the same thermal parameters as in
variant “I”. The dimensions of the diameters of steel heating and domestic hot water were taken equal
to the dimensions of the pipes in variant “I” and the standard diameters of thermal insulation were
adopted. The geometry of the twin pipe ducts assumed for calculations (Figure 3b) and the determined
unit heat losses of pre-insulated heating and domestic hot water pipes, qIIa and qIIb, respectively, are
presented in Table 2.
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Table 2. Geometry of heating and domestic hot water pipes variant “II” (two twin pipes) with unit
heat losses.

No. Pipes
(Figure 2b)

Twin Pipe (Supply Pipe + Return Pipe) Twin Pipe (Hot Water Pipe + Circulation Pipe) Thermal Insulation
Field A4 + A5D4 d1 s1 A4 qIIa D5 d2 d3 s2 A5 qIIb

mm mm mm m2 W/m mm mm mm mm m2 W/m m2

1,2 315 114.3 25 0.0574 23.4 225 76.1 48.3 20 0.0270 11.4 0.0844
3 250 88.9 25 0.0367 24.0 200 60.3 48.3 20 0.0220 11.0 0.0587
4 250 88.9 25 0.0367 24.0 160 48.3 33.7 19 0.0147 10.6 0.0513

5,6 225 76.1 20 0.0307 20.6 160 48.3 33.7 19 0.0147 10.6 0.0453
7 225 76.1 20 0.0307 20.6 160 42.4 26.9 19 0.0161 8.8 0.0468

8,9 160 48.3 19 0.0164 17.5 140 33.7 26.9 19 0.0125 8.9 0.0289

The third variant (III) is a quadruple pre-insulated network, where two heat pipes and two
domestic hot water pipes are located in one thermal insulation (Figure 3c, Table 3). Pre-insulated
quadruple ducts have been designed using the assumed “II” heating ducts for twin pipe heating
purposes. Figure 4a–d show an example of temperature and density distribution in a twin pipe,
assuming D4 = 250 mm and d1 = 88.9 mm. Based on significant values of heat flux density (Figure 4b),
local areas of significant intensification of heat exchange between the pipe and the environment and
areas with low heat transfer, which are characterized by a low heat flux density, can be identified.
Additional domestic hot water and domestic hot water circulation pipes can be placed in the area
of thermal insulation where the heat flux density is low. The smallest heat flux density values are
located on the left and right of the supply and return pipes (Figure 4b) and additional hot water pipes
have been located here. It should be pointed out here that the pipes transporting domestic hot water
used in Poland have smaller diameters than district heating pipes. The result of adding domestic hot
water pipes and domestic hot water circulation is a reduction in the cross-sectional area of thermal
insulation in pre-insulated quadruple pipes by about 40% compared to two twin pipes from variant II
(Tables 1 and 3).

Table 3. Geometry of pre-insulated pipes of variant “III” (four pipes in common thermal insulation)
and unit heat losses through quadruple pre-insulated pipes in the heating season qIIIa and out of the
heating season qIIIb.

No. Pipes
(Figure 1)

Quadruple Pre-Insulated Pipe

D4 d1 (S,R) d2 d3 s1

Thermal
Insulation
Field A6

Heating Season
(S+R+H+C)

qIIIa

Out of the
Heating Season

(H+C) qIIIb

mm mm mm mm mm m2 W/m W/m

1,2 315 114.3 76.1 48.3 25 0.0510 28.8 11.7
3 250 88.9 60.3 48.3 25 0.0320 33.6 14.8
4 250 88.9 48.3 33.7 25 0.0339 28.3 10.2

5,6 225 76.1 48.3 33.7 20 0.0279 25.7 10.0
7 225 76.1 42.4 26.9 20 0.0287 23.9 10.0

8,9 160 48.3 33.7 26.9 19 0.0150 23.7 11.6
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Figure 4. Temperature distribution with heatlines and heat flux density distribution for a twin pipe
(a,b) and a quadruple pre-insulated pipes (c,d).

In quadruple pre-insulated pipes, an increase in the temperature gradient was observed (Figure 4c)
as well as an increase in heat flux density (Figure 4d) inside the thermal insulation compared to
twin pipes, however, the total heat loss of the quadruple pre-insulated network compared to two
double-pre-insulated pipes are smaller. In order to reduce the heat exchange between four pipes in
common thermal insulation, the minimum distances between these pipes s1 (Table 3) have been adopted
equal to the distances s1 between pipes in twin pipe pre-insulated pipes (Table 4). The impact of distance
between heating pipes on heat losses of pre-insulated pipes has been described in papers [15,18,19].
By analysing heat exchange in pre-insulated pipes, it is also possible to reduce heat losses by modifying
the shape of thermal insulation, which was also done in works for twin pipe pre-insulated pipes [17,20].

In order to analyze the thermal insulation of the quadruple heating pre-insulated network, energy
for heat losses was determined for the existing condition of the pre-insulated network and for two
assumed variants. Energy for heat losses on individual sections of pre-insulated pipes was determined
in accordance with the following relationship:

Ei =
N∑

j=1

q jiL jt (6)

where j is the pipe number according to Figure 2b and Tables 1–3, Li is the length of the pipe according
to Figure 2b, t is time, qji is the unit heat loss depending on the adopted variant, N- total number of
pipes, which is described by the relationships in Table 4 and the unit heat loss values from Tables 1–3,
while the lower index i is the type of variant (i = I, II, III).
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Table 4. Formulas describing unit heat losses for the adopted variants.

Unit Heat Losses During the Heating Season Unit Heat Losses in the Off-Heating Season

Case I

qIj = qIa + qIb + qIc + qId qIj = qIc + qId

Case II

qIIj = qIIa qIIj = qIIb

Case III

qIIIj = qIIIa qIIIj = qIIIb

Table 5 shows energy consumption for heat losses for three heating network variants (I, II,
III) detailing the heating season (255 days), non-heating season (110 days), when the network only
transports domestic hot water with circulation and annual energy consumption for heat losses
(365 days).

Table 5. Energy for heat losses for the three variants adopted.

Heating Network Variant
Energy Consumed for Heat
Losses During the Heating

Season (255 Days) [GJ]

Energy Consumed for
Heat Losses in the

Off-Heating Season
(110 Days) [GJ]

Annual Energy
Consumed for Heat

Losses (365 Days) [GJ]

Pre-insulated single heating
network, current condition

(S, R, H, C), Case I
493.7 95.9 589.6

Two pre-insulated twin pipe
heating networks

(S + R, H + C), Case II
254 35.3 289.3

Quadruple heating
pre-insulated network

(S + R + H + C), Case III
214.7 38.2 252.8

Figure 5a presents the percentage comparison of the cross-sectional area of thermal insulation of
selected pre-insulated pipes, while Figure 5b presents the percentage comparison of the annual energy
consumption for heat losses of selected pipes, assuming that the existing condition (variant I) is equal
to 100% both in the case of surface area thermal insulation and energy consumption for heat losses.
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Annual energy consumption for heat losses in quadruple networks (variant III) is about 57.1%
and 12.6% (Table 5) lower than for four single pre-insulated networks (variant I) and two double
pre-insulated networks (variant II) respectively. It should be noted here that the average surface area
of thermal insulation in adopted quadruple pre-insulated heating networks is lower by 21.4% and
40.2%, respectively, than four single pre-insulated networks and two double pre-insulated networks.

The main assumption of this work was the use of pre-insulated double thermal insulation for the
construction of quadruple pipes by adding two domestic hot water pipes to twin pipe heating pipes
in common thermal insulation, therefore it was not decided to increase the surface area of thermal
insulation in quadruple pipes. In the case of increasing the surface area of thermal insulation of
quadruple pipes (variant III) to the value of the field of thermal insulation of double pre-insulated
pipes (variant II), the heat loss of the quadruple pipe in relation to two double pipes would be much
smaller. The largest area of thermal insulation in the cross-section of pre-insulated pipe has two double
pre-insulated networks in which the insulation area is 31.1% larger (Figure 5a) than the insulation field
for four single pre-insulated networks (variant I), resulting in annual energy (Figure 5b) for heat losses
of two twin pipe pre-insulated pipes (variant II) is about 51% smaller than in variant I.

Analysing the unit heat losses in the heating season without taking into account the domestic
hot water, it can be seen that in the case of twin pipes the unit heat losses (Table 2) are smaller by
about 34.8% than single pre-insulated networks (Table 1). Similar results were obtained in [19,20,22]
(Figure 6), where the differences between the results did not exceed 5%. After taking into account the
heat losses in domestic hot water pipes and circulation of domestic hot water, the unit heat losses in
twin pipes are lower by as much as 50% from the unit heat losses of single pre-insulated pipes. Such
a significant difference in unit heat losses between twin pipes and single pipes, including hot water
pipes, results from the fact that hot water pipes and hot water circulation pipes are characterized by
small diameters, which are much better thermally insulated than single pre-insulated pipes for these
small diameters.
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Figure 6. Percentage decrease in unit heat losses in twin pipe heating pipes without taking into account
hot water pipes compared to single pre-insulated pipes.

In the period outside the heating season, when the network only transports domestic hot water
(Table 5), energy for heat losses in pre-insulated quadruple pipes is slightly higher than in the case
of two double pre-insulated pipes, which is caused by a smaller thickness of thermal insulation in
pre-insulated quadruples relative to twin pipe hot water.

Based on the determined annual energy for heat losses and emissivity coefficients [34,35], the
ecological effect of using pre-insulated quadruple pipes for the following pollutants emitted into the
atmosphere was determined: nitrogen oxides (NOX), carbon monoxide (CO), non-methane volatile
organic compounds (NMVOC), sulfur oxides (SOX), total suspended particles (TSP), particulate matter
(PM10 and PM2.5), carbon dioxide (CO2) and methane (CH4). Reductions of annual emissions of air
pollutants for all variants were determined using the known formula [34]:
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∆EI-i = (EI − Ei) × Ef (7)

where: EI is the annual energy for heat losses in the existing variant of type I, (single four-pipe network),
while Ei (i = II or i = III) is the annual energy for heat losses in variants II and III. Annual energy for the
purposes of heat losses EI, EII and EIII are determined from formula 6.

As showed in Table 6, the average annual emission of pollutants for variant III (quadruple
pre-insulated network) is lower by approximately 57% and 13% compared to the condition of the
existing variant I (single pre-insulated network) and two twin pipe ducts (variant II), respectively.
It should be noted here that pollutants emitted to the atmosphere as a result of fuel combustion depend
on the composition of the fuel and the method of combustion.

Table 6. Annual pollutant emissions determined for variants I, II and III.

Pollutant Ef [g/GJ] EIEf
[kg/year]

EIIEf
[kg/year]

EIIIEf
[kg/year]

∆EI-II
[kg/year]

∆EI-III
[kg/year]

NOx 209.0 123.2 60.5 52.8 62.8 70.4
CO 8.7 5.130 2.517 2.200 2.612 2.930

NMVOC 1.0 0.590 0.289 0.253 0.300 0.337
SOx 820 483.5 237.3 207.3 246.2 276.2
TSP 11.4 6.722 3.298 2.882 3.423 3.839

PM10 7.7 4.540 2.228 1.947 2.312 2.593
PM2.5 3.4 2.005 0.984 0.860 1.021 1.145
CO2 98,300 57,960.0 28,442.3 24,854.2 29,517.7 33,105.8
CH4 1 0.590 0.289 0.253 0.300 0.337

4. Conclusions

Standard thermal insulation in twin pipe ducts used for heat transport allows the placement
of two additional smaller diameter pipes compared to heating pipes. Such pipes can be domestic
hot water pipes and domestic hot water circulation pipe, which together with the heating pipes
form a pre-insulated quadruple pipe. Quadruple pre-insulated pipes significantly reduce heat loss
and increase the ecological effect compared to four single pre-insulated pipes while reducing the
cross-sectional area of the thermal insulation. An additional advantage is the smaller trench in the
ground for a pre-insulated quadruple pipes compared to four single or two pre-insulated double
pipes. The presented solution of pre-insulated quadruple pipes can also be an alternative to two twin
pipes, where one pre-insulated double pipe is transported heat, while the other twin pipe is used for
domestic hot water along with the circulation of domestic hot water. Comparing the pre-insulated
quadruple pipes with two twin pipes, also smaller heat losses and smaller thermal insulation field in
the cross-section of the pipes were obtained.
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