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Abstract

Understanding the molecular link between diet and health is a key goal in nutritional systems biology. As an alternative to
pathway analysis, we have developed a joint multivariate and network-based approach to analysis of a dataset of habitual
dietary records, adipose tissue transcriptomics and comprehensive plasma marker profiles from human volunteers with the
Metabolic Syndrome. With this approach we identified prominent co-expressed sub-networks in the global metabolic
network, which showed correlated expression with habitual n-3 PUFA intake and urinary levels of the oxidative stress
marker 8-iso-PGF2a. These sub-networks illustrated inherent cross-talk between distinct metabolic pathways, such as
between triglyceride metabolism and production of lipid signalling molecules. In a parallel promoter analysis, we identified
several adipogenic transcription factors as potential transcriptional regulators associated with habitual n-3 PUFA intake. Our
results illustrate advantages of network-based analysis, and generate novel hypotheses on the transcriptomic link between
habitual n-3 PUFA intake, adipose tissue function and oxidative stress.
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Introduction

Dietary fat intake has profound effects on molecular processes of

metabolic health. These effects are diverse and often subtle,

representing a considerable analytical challenge in reaching system-

level understanding. Transcriptomics has become a central technol-

ogy in the development of molecular nutrition, having the capacity to

produce expression data for every gene in a given genome. However,

the major challenge is to apply appropriate techniques for extracting

information from high-throughput datasets. Differentially expressed

gene lists are an intuitive first choice, but they are hard to interpret in

a biological context. Pathway analysis – typically implemented using

gene set enrichment analysis – has become a standard method in the

field of transcriptomic analysis [1,2]. It is easy to implement and can

simplify and contextualize large lists of differentially expressed genes,

although this approach possesses technical limitations due to inherent

redundancy among pathways and interconnectedness between one

pathway and the next. Failure to appropriately account for these

features can substantially limit biological interpretation of high-

throughput datasets.

Network-level analysis has revealed detailed insight on

metabolic regulation in type 2 diabetes and insulin resistance

[3,4]. Del Sol et al., have proposed that in the emerging systems-

level view of molecular biology, diseases should be viewed as a

function of network perturbation rather than as isolated local

changes [5]. Molecular networks may be classified in two

categories: metabolic networks and protein interaction networks.

Metabolic networks are inclusive, intuitive abstractions for

representing system-level metabolism, as they incorporate all

known metabolic interactions in a given species. Due to their size

and complexity, however, they are analytically challenging.

Previously applied analytical approaches include topological

analysis (e.g., identification of hub nodes and functional modules)

[6] and reporter metabolite analysis [4].

A number of methods exist for analyzing transcriptomic data in

the context of a global interaction network [7]. The majority of

these methods focus on protein interaction networks, and aim to

partition a global network into clusters/modules of genes, and

identify clusters showing coordinated transcriptomic response.

When modelling transcriptomic activity in metabolic networks,
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however, it is instructive to use path (rather than cluster)

constructs, because paths match the native pattern of energy flux

through a metabolic network. Cluster-based analysis of metabolic

network activity performs well in identifying regions of a network

with altered transcriptomic activity, but the identified clusters may

contain disconnected sections of different paths of metabolite

conversion. A given path of interest may thus be fractioned across

several different neighbouring clusters, making it difficult to

identify coordinated alteration of activity across that entire path.

We therefore defined a method that identifies altered transcrip-

tomic activity in the context of network paths rather than clusters.

With this approach, we identified local coexpressed paths in the

metabolic network showing covariance with recorded dietary

intake of n-3 PUFA, and correlation with a urinary marker of

oxidative stress. In a parallel analysis, investigation of the promoter

regions of n-3 PUFA-correlated genes highlighted significantly

over-represented binding sites for transcription factors related to

adipogenesis.

Materials and Methods

Ethics statement
The LIPGENE human dietary intervention study was a

randomized, controlled trial that complied with the 1983 Helsinki

Declarations, approved by the local ethics committees of the 8

intervention centres (Dublin, Ireland; Reading, UK; Oslo, Nor-

way; Marseille, France; Maastricht, The Netherlands; Cordoba,

Spain; Krakow, Poland; Uppsala, Sweden). Written informed

consent was attained from every participant as approved by each

institutional ethical committee.

Study design
The current study was conducted within the framework of the

LIPGENE Integrated Project ‘‘Diet, genomics and the metabolic

syndrome: an integrated nutrition, agro-food, social and economic

analysis’’ (Clinical Trials. gov number: NCT00429195) and

NuGO, The Nutrigenomics Organization (www.nugo.org); both

European Union FP 6 initiatives. The subjects participated in the

LIPGENE human dietary intervention study [8], although only

baseline, pre-intervention samples were used in the present study.

Samples were collected under standardised conditions according

to a strict SOP [9]. Briefly, volunteers attended the clinics

following a 12 h overnight fast; they were asked to abstain from

alcohol, medications or vigorous exercise in the 24 h prior to

assessment. For inclusion in the study, volunteers were required to

be age 35–70 years, BMI 20–40 kg/m3 and show 3 or more of the

following MetS criteria (based on slightly modified NCEP ATP-

III): fasting plasma glucose 5.5–7.8 mmol/L, serum TAG

$1.5 mmol/L, serum HDL-cholesterol ,1.0 mmol/L in males,

and ,1.3 mmol/L in females, waist circumference .102 cm in

males and .88 cm in females, and elevated blood pressure

(systolic blood pressure $130 mmHg, diastolic blood pressure

$85 mmHg or on prescribed blood pressure lowering medica-

tion). Habitual dietary intake was monitored for each volunteer by

a 3 day weighed food dietary record, and assessed for daily intake

of energy, carbohydrate, protein, fat, saturated fat (SFA),

monounsaturated fat (MUFA), polyunsaturated fat (PUFA), and

n-3 and n-6 PUFA [10]. Extensive metabolic profiling including

plasma markers of inflammation, fatty acid pattern, plasma

lipoproteins and apolipoprotein profiles, and markers of insulin

sensitivity (Table 1), was performed as described by Tierney et al.

[9]. Means and standard deviations for all dietary and plasma

marker variables in our cohort are provided in supplementary

Tables S1 and S2.

Adipose tissue biopsy collection, RNA extraction and
microarray hybridization

Subcutaneous adipose tissue samples were taken from the

periumbilical area of 19 volunteers from the Norwegian and

Spanish cohorts (10 female, 9 male) after an overnight fast. Needle

biopsies were obtained after a 5 mm transdermal incision under

local anaesthesia. Samples were rinsed in saline, put in RNA later

and frozen immediately (280uC) for subsequent analysis. Total

RNA was extracted from adipose tissue using the RNeasy lipid

tissue mini kit (Qiagen, U.K.). Briefly, 100 mg of adipose tissue

was homogenised in Qiazol lysis reagent. After addition of

chloroform, the homogenate was centrifuged to separate the

aqueous and organic phases. Ethanol was added to the upper

aqueous phase, and applied to the RNeasy spin column, where the

total RNA was bound to the membrane, and phenol and other

contaminants were washed away. RNA was then eluted in RNase-

free water.

Extracted RNA was sent to ServiceXS (a high-throughput data

service provider; www.servicexs.com) for labelling with the 3’ IVT

express kit and hybridization to Affymetrix arrays. The microarray

platform used in this study was custom designed by NuGO, and

contained 16554 probe sets. This platform is designated

‘nugohs1a520180’, and we used the ‘entrezg’ version 12.1.0

annotation from the MBNI custom cdf database, reflecting the

latest remapping of Affymetrix probes based on current data in the

NCBI database (http://brainarray.mbni.med.umich.edu). Raw

and GCRMA-normalized data are available from the Gene

Expression Omnibus database, under accession GSE28070.

Microarray QC and pre-processing
Raw microarray data were first assessed for quality using a set of

standard QC tests, including array intensity distribution, positive

and negative border element distribution, GAPDH and b-actin

3’/5’ ratios, centre of intensity and array-array correlation check.

All QC tests were implemented in the R programming language

(Version 2.11.1l, R Foundation for Statistical Computing), using

the affyQCReport library. A batch effect was noted due to the

arrays being hybridized on two separate days; thus, all subsequent

analyses accounted for this effect by including batch number as a

covariate in statistical models. It was also noted that the b-actin 3’/

5’ ratios were higher than recommended (i.e., greater than 3-fold

intensity difference) in most samples, although this ratio has been

Author Summary

A fundamental goal in the field of nutritional genomics is
defining the molecular link between diet and health.
Human nutritional genomic studies are frequently hin-
dered by a high level of unexplained variation in gene
expression, protein and metabolite abundance, and clinical
parameters – potentially attributable to variation in
genotype, background diet, anthropometry, physical
activity and health status. In our present study, relation-
ships between adipose tissue gene expression, habitual
diet and clinical markers of metabolic health were
investigated in a cohort of individuals with impaired
metabolic health, typical of the Metabolic Syndrome
(MetS). Using multivariate statistics in conjunction with a
novel approach to metabolic network analysis, we
identified regions of the human metabolic network
showing coordinated transcriptomic response to variation
in n-3 PUFA intake and correlation with markers of
metabolic health.

Habitual Diet, Transcriptome and Metabolic Health
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shown to be higher when cRNA is synthesized using the Affymetrix

3’ IVT express kit, particularly with low input RNA quantities

(http://media.affymetrix.com/support/technical/whitepapers/3_

ivtexpresskit_whitepaper.pdf). Furthermore, all samples except 2

showed 3’/5’ GAPDH ratios within expected range of 1.25-fold,

and no samples appeared suspect in RNA degradation plots. The

2 samples that did not meet the GAPDH ratio recommendation

were removed from further analysis. All QC-verified samples were

background corrected and normalized using the GCRMA

normalization method, which accounts for nucleotide specific

differences in hybridization efficiency. The normalized dataset

was then filtered to remove genes with Mas5 ‘absent’ call on all

arrays, and those showing the lowest 10% variance, resulting in a

final dataset of 10618 genes.

Statistical analysis of diet-gene and clinical marker-gene
associations

Diet and plasma marker variables were first normalized with log

or square root transformation as appropriate to reduce skewness

and kurtosis. Sparse partial least squares regression (sPLS; [11])

and regularized canonical correlation analysis (rCCA; [12]) were

used to assess relationships between dietary components and gene

expression levels, and between clinical markers and gene

expression levels, respectively. The mixOmics library of R

functions was used to carry out the analysis [12]. Specifically,

the spls function was used to fit the sPLS model, and the network

function to produce the network of interactions. An sPLS model

was fitted using dietary variables, sex, nationality and array batch

number as predictors (sex, nationality and array batch number

were included in order to identify and control for correlations

between gene expression and these variables), and gene expression

as response variables. Choice of PLS dimensions was determined

using the Qh
2 variable previously proposed by Tenenhaus [13]

which measures the relative contribution of each dimension h to

the predictive power of the PLS model (see 11 and 13 for further

details on sPLS and use of Qh
2). With this approach, we retained 5

dimensions in the model, and retained all diet-gene pairs showing

a similarity score .0.7 (using ‘threshold’ argument of the network

function in the mixOmics library). This similarity score is a

convention used in multivariate statistical methods; it ranges from

0 to 1, and corresponds to the distance between two given

variables in the number of chosen dimensions [14].

The mixOmics library was used for rCCA modelling of plasma

marker and gene expression data. The rcc function was used to

define the canonical correlations and the canonical variates,

estim.regul for estimation of regularization parameters and the

network function to produce the network of interactions. In this

case, datasets were not interpreted as predictors or responses given

the more complex two-way relationship between plasma marker

profile and tissue gene expression. Initial rCCA modelling

including all plasma markers showed that correlations between

gene expression and plasma fatty acid and lipid profile were so

strong that they masked more subtle correlations between the

remaining plasma markers and expression data. Consequently,

separate rCCA analyses were performed: first, comparing adipose

tissue gene expression to plasma fatty acids, lipids and apolipo-

protein profile (including sex, nationality and array batch number

as variables in the model); and second, comparing gene expression

to plasma cytokines, IVGTT measurements, prostaglandin and

urinary isoprostane (as before, including sex, nationality and array

batch number as variables in the model). For comparison of gene

expression vs. plasma fatty acids, lipids and apolipoproteins, the

first 11 dimensions were retained in the model (as subsequent

dimensions did not provide additional information to the model)

and all gene-plasma marker pairs with a similarity score .0.75

were retained for subsequent analysis. Due to the very strong

relationship between gene expression and plasma fatty acids, we

observed that using a similarity score threshold of 0.7 resulted in a

very high number of plasma marker-gene correlations (571 plasma

marker-gene pairs passing threshold). Therefore, the higher

threshold was chosen in this comparison in order to highlight

only the strongest plasma marker-gene correlations, thereby

Table 1. Plasma markers measured in the LIPGENE study.

Fatty acid profile Lipids Apolipoproteins IVGTT Inflammatory markers

C14:0 Triglycerides ApoA1 Glucose AUC* C-Reactive protein

C16: Cholesterol ApoB IL-6

C16:1 NEFA ApoCII TNFa

C18:0 TRL-TG ApoCIII sICAM

C18:1 TRL-C ApoE sVCAM

C18:2 n-6 LDL-C TRL Apo B Resistin

C18:3 n-6 T-HDL Adiponectin

C18:4 n-3 PAI-1

C20:1 tPA

C20:3 n-6 Fibrinogen

C20:4 n-6 Leptin

C20:4 n-3 8-iso-PGF2a (urinary)

C20:5 n-3 15-keto-PGF2a (plasma)

C22: 4 n-6

C22:5 n-3

C22:6 n-3

*Derived from relative area under the curve (AUC) of plasma glucose measurements (mmol/L) at 12 time points from 0 to 180 minutes following intravenous glucose
challenge.
doi:10.1371/journal.pcbi.1002223.t001

Habitual Diet, Transcriptome and Metabolic Health
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facilitating downstream biological interpretation. For the second

comparison (gene expression vs plasma cytokines, IVGTT

measurements, prostaglandin and urinary isoprostane) the first 6

dimensions and all gene-plasma marker pairs with a similarity

score .0.7, were retained in the model.

Metabolic network analysis
We used the Edinburgh human metabolic network reconstruc-

tion [15]; (www.ehmn.bioinformatics.ed.ac.uk/), which contains

reaction information for 1627 unique metabolites and 1371

unique metabolic enzymes. In its native form, this reconstruction is

a metabolite-centred network (i.e., nodes represent metabolites and

edges are the enzymes that catalyze reactions between metabo-

lites). For our analysis, the network was first transformed to an

enzyme-centric construction (where 2 genes/proteins are linked if

gene 1 produces a metabolite that is used as a metabolic substrate

by gene 2). As is the norm in topology-based network analyses, we

excluded currency metabolites (such as H2O, ATP and O2) from

the network [16].

Assessment of gene-gene coexpression in the human

metabolic network. Coexpression was assessed for each

gene-gene pair in the metabolic network reconstruction using

Akaike’s information criterion (AIC), a criterion used to select an

optimal model among competing possibilities [17]. As our network

construction contains directionality information, coexpression

between two genes could be assessed using a linear model of

gene 2 expression as a function of gene 1 expression. In our human

sample, however, we would expect the variables sex and nationality

to be related to expression of some (but not all) genes in the

dataset. The AIC approach allows selection of the optimal model

among all possible combinations of predictor variables, thus

including additional variables only where appropriate. The exact

value of AIC is determined by

AIC~2k{2ln Lð Þ

where k refers to the number of parameters in the statistical model,

and L is the maximized likelihood value for the fitted model. An

optimal model will have high likelihood while being parsimonious;

thus, lower AIC values indicate a better model. As each gene pair

in the network possesses directionality information (i.e., gene 1

produces a compound that is metabolized by gene 2), expression

level of gene 2 can be estimated as a function of gene 1 expression

plus additional factors, batch, sex and nationality:

Y~b0zXb1zbb2zsb3znb4ze

where Y and X represent expression of gene 2 and 1, respectively;

b, s and n represent batch, sex and nationality; b0, b1, b2, b3 and b4

represent the intercept and partial regression coefficients for each

variable; and e represents random error. We would expect a batch

effect to be present across the entire platform; thus, this variable

was included in all models. The AIC values were calculated for

models containing b plus all possible combinations of the

additional factors (X, s and n); gene 1 and gene 2 were

considered to be coexpressed if gene 1 expression was present as

a predictor variable in the optimal model.

Extraction of diet-sensitive paths from the
transcriptionally coordinated network

To identify paths of interest in the global interaction network,

Dijkstra’s shortest paths [18] were calculated from each diet-sensitive

node to all others in the coexpressed subset of the global network (as

determined above), taking into consideration directionality of node

pair interactions. An algorithm was written in R to evaluate

metabolic feasibility of each putative path – i.e. whether an unbroken

path of metabolite conversion could be traced from one end to

another (most recent scripts available on request). This concept of

metabolic feasibility is an important consideration in analysis of

global networks, because a connected path through the network does

not necessarily indicate an unbroken path of metabolite conversion.

Figure 1 illustrates the rationale behind metabolic feasibility (see

supplementary Figure S1 for detailed description of the algorithm).

The output of this algorithm is a list of feasible paths of metabolite

conversion, wherein each path is strongly coexpressed (i.e., between

each gene pair in the path) and possesses a diet-correlated gene at the

upstream end. To our knowledge, this is the first metabolic network

analysis algorithm that explicitly considers metabolic feasibility and

Figure 1. Assessing metabolic feasibility in network paths. The algorithm of network analysis in this study includes a two-step process: 1)
extraction of connected paths from the node of interest to all others in the network; and 2) evaluation of metabolic feasibility of each candidate path.
Given a candidate (i.e., connected) path in the network through genes [ARBRCRD], the goal of the second step of the algorithm is to determine if a
path of metabolite conversion can be traced from the first node to the last. In this simplified example, although a connectivity path can be traced
from A to D, metabolite conversion cannot, emphasizing the importance of assessing metabolic feasibility in putative paths. A feasible path can only
be traced from [ZRBRCRD] through conversion of metabolites [C3RC4RC5].
doi:10.1371/journal.pcbi.1002223.g001

Habitual Diet, Transcriptome and Metabolic Health
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adjacent pair-wise coexpression in analysis of network paths. This

represents an informative alternative to network clustering analysis.

Promoter analysis
The TFM-explorer tool [19] was used to identify significantly

over-represented transcription factor binding sites (TFBSs) among

genes with expression showing positive correlation with n-3-PUFA

intake. Using the promoter regions spanning -2000+200 bp

relative to the transcription start site and all vertebrate

transcription factor matrices from the Jaspar database (jaspar.cgb.-

ki.se), TFM-explorer returned all TFBSs that were significantly

over-represented at a level of p,0.0001.

Results

Multivariate analysis identifies a strong relationship
between dietary n-3 PUFA, adipose tissue gene
expression and markers of metabolic health

Results from sPLS indicated that among all dietary variables,

the registered dietary intake of n-3-PUFA showed the strongest

covariance with adipose tissue gene expression. Of the 53 n-3-

PUFA-correlated genes identified in the sPLS analysis, 41

positively correlated and 12 negatively correlated with n-3-PUFA

intake (Figure 2; Supplementary Table S3). Dietary intake of

MUFA also showed strong covariance with expression of three of

these genes (one positive: GALNTL1; two negative: CDIPT,

PRPS1). It was also noted that the expression level of these three

genes covaried in opposing direction with intake of n-3-PUFA and

MUFA, reflecting the inverse relationship between habitual

dietary consumption of these two dietary fatty acids in our

population. To assess if . = 53 n-3 PUFA-correlated genes would

be detected by chance alone, we permuted the sample labels and

re-ran the sPLS analysis 100 times. These permutation tests

yielded an average of 2.38 and median of 0 n-3 PUFA-correlated

genes, suggesting that the 53 genes identified in our original

dataset were unlikely to be identified by chance alone.

rCCA results showed that among the measured plasma lipids,

fatty acids and apolipoproteins, plasma DHA, stearic acid and

EPA correlated most strongly with adipose tissue gene expression

(Figure 2; Supplementary Table S4). At the chosen threshold of

0.75, DHA [C22:6 n-3] correlated with the expression of 113

genes, followed by plasma stearic acid [C18:0]: 60 genes, and EPA

[C20:5 n-3]: 21 genes. Comparison of sPLS and rCCA results

highlighted 26 genes that were related to dietary n-3-PUFA intake

as well as plasma DHA levels, reflecting the expected correlation

between dietary fat intake and plasma fatty acid profile [20].

Among markers of inflammation, oxidative stress and insulin

resistance, urinary 8-iso-PGF2a correlated most strongly with

adipose gene expression, resulting in 96 gene correlations, 48 of

which also correlated with plasma DHA (Figure 2; Supplementary

Table S5). Any variables not included in Figure 2 (e.g., IVGTT)

did not correlate with any adipose tissue genes at the chosen

threshold.

The complete metabolic network included 1371 nodes and 65637

directed edges; the transcriptionally coexpressed (TC) subset

contained 602 nodes and 5414 directed edges (supplementary

Figure S2). To identify the biological functions predominant in this

network, the largest connected subset of the TC subset network was

partitioned into topological modules using a simulated annealing

approach [21], as implemented by the spinglass.community function in

the igraph library in R. This modular partitioning identified 3

topological modules. Hypergeometric tests were performed using

the Category library in R to identify significantly over-represented

Figure 2. Network of associations between dietary intake, adipose gene expression, and phenotypic markers, determined by sPLS
and rCCA. Green nodes: dietary variables; yellow: lipid, fatty acid and apolipoprotein variables; red: inflammatory and oxidative stress markers; blue:
genes (enzymes). Solid lines: positive correlation (rCCA)/covariance (sPLS); dashed lines: negative correlation/covariance.
doi:10.1371/journal.pcbi.1002223.g002

Habitual Diet, Transcriptome and Metabolic Health
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gene ontology (www.geneontology.org) ‘biological process’ terms in

each module. Briefly, over-represented terms in the first module

related primarily to phosphatidylinositol and lipid metabolism;

those in second related to nucleic acid metabolism; and the third

module was more heterogeneous, consisting of cellular ketone

metabolism, red-ox processes, and lipid and protein catabolism

terms (see supplementary Table S6 for expanded results).

Coexpressed paths in the metabolic network related to
n-3 PUFA intake

Diet-sensitive path extraction from the TC network revealed

755 unique paths greater than length 2 originating from 30 n-3

PUFA-sensitive genes, although paths leading from each diet-

sensitive gene collapsed into tree-like structures (Figure 3). The

most complex n-3 PUFA-sensitive path (in terms of path size and

link density) centred on the AK1 gene (Figure 3A). The genes in the

AK1 path are mostly involved in the highly redundant processes of

energy and nucleotide metabolism, explaining the high link density

in this region of the network. The majority of metabolic links in

the AK1 path are different nucleotides and energy metabolism

cofactors such as ATP, ADP and AMP. These metabolites are

normally classified as currency metabolites and were removed

from the rest of the network, although they were retained in this

region where they act as primary reactants and products. Of the

nodes in this path, an additional 7 correlated with dietary intake of

n-3 PUFA, 28 strongly correlated with plasma fatty acid levels,

and 14 with urinary 8-iso-PGF2a, suggesting that activity in this

region of the metabolic network is sensitive to dietary intake of n-3

PUFA and correlated with metabolic health.

The ANXA3, PTEN and MTMR12-linked paths (Figure 3B-D)

are interesting from a biological perspective because they each

incorporate elements of lipid metabolism. The ANXA3-linked path

primarily includes reactions involved in metabolism of glyceroli-

pids, glycerophospholipids, arachidonic acid (AA) and linoleic acid

(LA). ANXA3 is connected to ADH5 and LPL via the glycerol

metabolite, which is further metabolized by LIPA and DGKA to

form 1,2-diacyl-sn-glycerol (1,2-diacylglycerol) and phosphatidate

on one branch of the path, and by ALDH isoforms to form d-

glyceraldehyde and d-glycerate on the other. Five genes in this

path correlated strongly with plasma levels of DHA, stearic acid,

dihomo-gamma-linolenic acid and/or EPA.

The PTEN-linked path includes reactions that metabolize

inositol phosphate- and lipid-related metabolites. PTEN is linked

to OXSM and PLCL2 via the 1-phosphatidyl-D-myo-inositol 4,5-

bisphosphate, which is metabolized by these enzymes to form 1-

phosphatidyl-myo-inositol 5-phosphate and 1,2-diacyl-sn-glycer-

ol. This 1,2-diacyl-sn-glycerol is further metabolized by DGKA to

form phosphatidate. Two genes in this path – PTEN and OXSM –

were inversely correlated with urinary 8-iso-PGF2a, and three –

PLCL2, DGKA and CDS2 – were positively correlated with plasma

DHA level.

The MTMR12 path (Figure 3D) is also linked to lipid

metabolism via phosphatidylcholine, through a more complex

upstream path involving inositol phosphate derivatives. At the

downstream end of this path, cytochrome p450 enzymes

(MYP19A1, CYP2B6 and CYP1B1) act on AA and LA as

substrates to form diverse epoxyeicosatrienoic acids (EET),

hydroxyeicosatrienoic acids (HETE) and epoxyoctadecenoic

acids (EpOME), involved in the resolution of inflammation with

subsequent relevance to cardiovascular disease [22,23]. Two

genes in this path – PIK3CAand PIP5K1A – were negatively

correlated with urinary 8-iso-PGF2a; PIKFYVE, PIK3CA, and

CEPT1 were positively correlated with plasma DHA, and

PIP5K1A with plasma stearic acid and dihomo-gamma-linolenic

acid.

To assess whether a similar group of paths would be extracted

from any TC network – e.g., due to higher connectivity in certain

regions of the network – we generated such a TC network from

publicly available muscle tissue microarray data from obese

individuals (GEO accession: GSE474), and extracted paths leading

from the n-3 PUFA-sensitive genes identified in the present study.

In this muscle tissue TC network we found only 24 paths of

maximum length three leading from ten of the n-3-PUFA-sensitive

genes (supplementary Table S7). Furthermore, these paths did not

intersect to form a larger sub-network.

To compare our network analysis with a standard approach to

pathway analysis, hypergeometric tests were performed to identify

KEGG pathways significantly enriched (using the hyperGTest

function in the R ‘Category’ library) for the n-3PUFA-sensitive

genes identified in our sPLS analysis. This analysis returned four

KEGG pathways greater than length four (Table 2). Of these

pathways, the top three - biosynthesis of plant hormones,

biosynthesis of terpenoids and steroids and biosynthesis of

alkaloids derived from terpenoid and polyketide - have 45 genes

in common. Accordingly, the same 7 n-3 PUFA-sensitive genes

(PMVK, FDFT1, ALDOA, IDH3G, PGK1, SDHB, GGPS1) were

present in each pathway. Thus, the apparent enrichment of the

biosynthetic plant hormones pathway is probably an artifact of the

high degree of overlap with other pathways in the database. Closer

inspection of these pathways in the KEGG database showed that

they are large, diverse and disjointed pathways, including many

parallel processes. For example, the pathway for biosynthesis of

terpenoids and steroids includes of subsets of glycolysis, limonene

and pinene degradation, terpenoid backbone biosynthesis, carot-

enoid biosynthesis and geraniol degradation. The n-3 PUFA-

correlated genes were distributed across these processes rather

than occurring in a single one.

Promoter analysis highlights over-represented
adipogenic transcription factors among n-3 PUFA-
correlated genes

Figure 4 illustrates over-represented TFBSs among genes

showing positive correlation with the intake of n-3 PUFA (from

our sPLS results). The three most significantly over-represented

TFBSs were those of Krüppel-like factor 4 (KLF4), specificity

protein 1 (SP1) and E2F1 transcription factors. KLF4 is involved

in adipogenesis, specifically by binding to the promoter of the

CEBPB (C/EBPb) gene [24]. CEBPB was not present in the

Edinburgh human metabolic network (as it is not a metabolic

enzyme). Thus, an expanded sPLS analysis was performed,

comparing dietary intake to all genes on the Affymetrix

microarray. This analysis identified CEBPB expression to be

positively correlated with n-3 PUFA intake (data not shown).

Although no additional adipogenic genes were identified at this

correlation threshold of 0.7, reducing the threshold to 0.6 revealed

a number of additional adipogenic factors showing positive

correlation with n-3 PUFA intake – including ADIPOQ, BMP2,

CFD, FABP4, LIPE, LPL and PLIN.

SP1 is a broadly acting transcription factor operating in

conjunction with NF-YA, SREBP and PPARc in promoting

lipogenesis. The NF-YA and PPARc TFBSs were also significantly

over-represented in our group of n-3 PUFA-sensitive genes,

although SREBP TFBS was not. E2F1 is a transcription factor

involved in early adipogenesis, and positively regulates transcrip-

tion of PPARc [25]. Interestingly, all but one PPARc TFBS-

containing genes in our sample also contained an E2F1 TFBS.
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Discussion

An emerging limitation to pathway analysis of transcriptomic

data is that documented pathway models tend to overlap and

intersect, yielding analytical results that are biased, incomplete or

both [26]. Our network approach did not segregate metabolic

processes into discrete pathway models, thereby revealing inherent

overlaps and intersections between pathways. Examples of this

pattern are seen in the ANXA3, PTEN and MTMR12 paths, which

incorporate connected reactions from the metabolic pathways of

inositol phosphate derivatives, glycerolipids, glycerophospholipids,

arachidonic and linoleic acid. Intersections of these pathways are

clear when viewed in the network context, but less evident when

each canonical pathway is assessed separately. Cross-talk between

metabolism of lipids/fatty acids and inositol phosphate derivatives

plays an important role in the induction of signalling cascades by

dietary and fat [27]. Figure 3B-D illustrates paths of triglyceride

metabolism including formation of intermediate metabolites such

as diacylglycerol and phosphatidate. These metabolites act as

signalling molecules that affect a wide range of cellular functions

like insulin signalling, inflammation, cellular differentiation and

proliferation and oxidative stress [28,29]. Thus, it is of particular

interest that genes in the PTEN and MTMR12 paths show strong

inverse correlation with urinary 8-iso-PGF2a – a marker of

systemic oxidative stress.

Previous work has described an inverse relationship between n-3

PUFA intake and n-6 fatty acid-derived prostaglandins (e.g.,

PGF2a) in the plasma of Alzheimer’s disease patients [30], urine of

healthy males [31] and plasma and urine of dyslipidaemic and

type 2 diabetic individuals [32]. A prevalent hypothesis for this

relationship is that n-3 and n-6 PUFA compete for the same

enzyme systems, and consequently, increased n-3 PUFA intake

precludes production of n-6 fatty acid-derived prostaglandins [33].

In addition, n-3 PUFA may exert independent anti-inflammatory

effects through unique receptors and enzyme systems, regardless of

n-6 fatty acid intake [34]. Our analysis identified 17 genes showing

opposing direction of correlation with n-3 PUFA intake and

urinary 8-iso-PGF2a (Figure 2). Furthermore, results from network

analysis identified precise coexpressed regions of the metabolic

network showing positive correlation with dietary n-3 PUFA

intake and plasma DHA, and negative correlation with urinary 8-

iso-PGF2a in the cohort of MetS subjects (Figure 3). The sub-

network illustrated in Figure 3A is interesting in this context

because it contains numerous members of the electron transport

chain, including 20 isoforms of ATPase/ATP synthase, six of

which were negatively correlated with 8-iso-PGF2a. Further

investigation of diet-dependent energy flux through these network

regions may provide insight on the precise relationship between n-

3 PUFA intake and adipose tissue oxidative stress. Comparing n-3

PUFA intake directly to urinary 8-iso-PGF2a resulted in only a

near-significant trend (p = 0.077; p = 0.0828 after adjusting for

sex); a recent publication of findings from the larger LIPGENE

cohort reported a similar near-significant trend [35]. This may be

due to the number of molecular intermediates between dietary

intake and urinary output, highlighting the increased clarity

provided by analysis of tissue-level high throughput data in the

framework of a global metabolic network.

To understand the potential regulatory consequences of dietary

n-3 PUFA intake on adipose tissue biology, we analysed the

promoter regions of n-3 PUFA-correlated genes to identify

significantly over-represented transcription factor binding sites.

Results from this analysis highlighted significantly over-represent-

ed transcription factors related to adipogenesis. The most strongly

over-represented transcription factors were KLF4, SP1 and E2F1.

SP1 and KLF4 share similar GC-rich target binding sites [36],

which is evident in their overlapping binding sites in Figure 4.

Although limited work has focused on joint activity of these

transcription factors in adipose tissue, KLF4 has been shown to

inhibit SP1 activity in the gut by competitive TFBS binding [37].

PPARc was also identified as significantly over-represented among

genes correlated with habitual n-3 PUFA intake. PPARc is

arguably the most well-studied transcription factor in the field of

diet-related transcriptomic regulation, and is the subject of many

reviews on the subject [38,39,40,41]. In addition to its role as a

central regulator of adipogenesis, lipid storage and combustion,

PPARc also protects against oxidative stress and inflammation

[42]. Dietary n-3 PUFA are potent inducers of PPARc expression

in adipocytes [43] and preadipocytes [44]. Accordingly, n-3 PUFA

supplementation has yielded positive effects on weight gain in

cancer [45] and Alzheimer’s patients [46], and reduced lipotoxi-

city in a range of experimental models [47]. Future work should

clarify the contribution of these adipogenic transcription factors to

adipose tissue function, particularly given the positive correlation

in our present study between dietary n-3 PUFA intake and

expression of additional adipogenic genes, including CEBPB,

ADIPOQ, BMP2, CFD, FABP4, LIPE, LPL and PLIN1.

In conclusion, we have taken a joint multivariate and network-

based approach to transcriptomic analysis, relying on known

metabolic reaction information to reveal coordinated paths of

metabolite conversion. This approach highlighted coexpressed

regions of the metabolic network with opposing direction of

correlation with habitual n-3 PUFA intake and urinary isoprotane

Figure 3. Transcriptionally coordinated paths leading from genes correlated with habitual n-3 PUFA intake. Green nodes: dietary
variables; yellow: lipid, fatty acid and apolipoprotein variables; red: inflammatory and oxidative stress markers; blue: genes (enzymes). Dashed lines
indicate negative correlation. A: Path linked to AK1; B: Detailed path linked to ANXA3; C: Detailed path linked to PTEN; D: Detailed path linked to
MTMR12.
doi:10.1371/journal.pcbi.1002223.g003

Table 2. KEGG pathways differentially regulated by n-3 PUFA intake using a hypergeometric test.

Term Expected count Observed count Pathway size P value

Biosynthesis of plant hormones 3.607 9 60 0.007

Biosynthesis of terpenoids and steroids 2.886 7 48 0.020

Biosynthesis of alkaloids derived from terpenoid and polyketide 3.066 7 51 0.028

3-Chloroacrylic acid degradation 0.361 2 6 0.046

doi:10.1371/journal.pcbi.1002223.t002
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levels - relationships that were not identified using a traditional

pathway enrichment test. Promoter analysis further highlighted

adipogenic transcription factors as potential transcriptional

regulators of n-3 PUFA-correlated genes.

Supporting Information

Figure S1 Schematic illustration of pathway extraction algorithm;

data frame at right shows example network data file at each step of

algorithm. The key goal of this algorithm is to assess a linked path of

nodes (in this case ARBRCRD), to identify if an unbroken path of

metabolite conversion can be traced from the first node to the last.

Given a node of interest (A) and a network path leading from A (as

determined by Djikstra’s algorithm; step 1) the algorithm examines

each reaction pair in sequence, starting with the pair linked to the

node of interest (step 2). The total list of interactions from ARB, and

BRC are extracted from network file (step 3). Metabolites (and

associated reactions) are removed from the pair of reactions if they

cannot be associated with a path of conversion linking reaction 1

(ARB) to reaction 2 (BRC) (step 4). Self-linked reactions are

included – e.g., BRB, where node B produces a metabolite through

interaction with A, and converts the same metabolite to a different

one that is further metabolized by node C (the algorithm only

considers a single self-linked loop within each reaction pair, if

present). If an unbroken path remains after removal of extraneous

metabolites (step 4a), reaction pair is valid and algorithm continues

to next pair of reactions (step 5). If not (step 4b), function exits.

(EPS)

Figure S2 Diet-gene and phenotype-gene relationships, and

modular partitioning mapped to the transcriptionally coordinated

human metabolic network. Green nodes: dietary variables; yellow:

lipid, fatty acid and apolipoprotein variables; red: inflammatory

and oxidative stress markers; blue: genes (enzymes). Enzyme nodes

are connected if they meet two conditions: enzyme 1 produces a

metabolite that is metabolized by enzyme 2, and genes encoding

enzymes 1 and 2 show positive coexpression in the adipose tissue

transcriptomic data. Dashed lines connecting diet-gene and

plasma marker-gene pairs indicate negative correlation. Node

shape indicates assignment in the 3 primary topological modules.

Diamond: module 1; triangle: module 2; square: module 3.

(EPS)

Table S1 Summary of anthropometric characteristics and habit-

ual dietary patterns in the LIPGENE transcriptomic study cohort.

(DOCX)

Table S2 Summary of plasma and urinary markers of metabolic

health in the LIPGENE transcriptomic study cohort.

(DOCX)

Table S3 Results from sPLS of adipose tissue gene expression

and components of recorded habitual diet. Diet-gene pairs passing

the similarity threshold of 0.7 are shown.

(DOCX)

Table S4 Results from rCCA of adipose tissue gene expression

and plasma fatty acids, lipids and apolipoproteins. Plasma marker-

gene pairs passing the similarity threshold of 0.75 are shown.

(DOCX)

Table S5 Results from rCCA of adipose tissue gene expression

and plasma cytokines, IVGTT measurements, prostaglandin and

urinary isoprostane. Plasma marker-gene pairs passing the

similarity threshold of 0.7 are shown.

(DOCX)

Figure 4. Significantly over-represented transcription factor binding sites in promoter regions of genes correlated with habitual n-
3 PUFA intake. The promoter region of each gene is depicted, with coloured boxes denoting binding site location(s) of transcription factors
displayed at right. TSS: transcription start site.
doi:10.1371/journal.pcbi.1002223.g004
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Table S6 Significantly overrepresented Gene Ontology ‘biolog-

ical process’ terms in the adipose tissue TC network modules. Top

10 terms for each module are shown.

(DOCX)

Table S7 Paths detected by applying network analysis algorithm

to test muscle tissue dataset (GEO accession GSE474).

(DOCX)
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factors. Genome Biol 4: 206.

37. Shie JL, Chen ZY, Fu M, Pestell RG, Tseng CC (2000) Gut-enriched Krüppel-
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