iTRAQ-based quantitative analysis of protein mixtures with large fold change and dynamic range

Juan Casado-Vela¹, María José Martínez-Esteso², Eva Rodriguez¹, Eva Borrás¹, Felix Elortza¹, Roque Bru-Martínez²

Quantitation of changes in protein abundance is key to discovering novel biomarkers. Currently, reverse phase liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) can be used to quantify changes in protein expression levels. Nevertheless, quantitative analysis of protein mixtures by HPLC-MS/MS is still hampered by the wide range of protein expression levels, the high dynamic range of protein concentrations and the lack of reliable quantitation algorithms. In this context, we describe two different samples (4-protmix and 8-protmix) suitable for relative protein quantitation using isobaric Tags for Relative and Absolute Quantitation (iTRAQ). Using the 4-protmix, relative protein changes of up to 24-fold were measured. The 8-protmix allowed the quantitation of the relative protein changes in a mixture of proteins within the range of two orders of magnitude in concentration and 10-fold differences in relative abundance.

The two reference samples proposed here (4-protmix and 8-protmix) cover a wide range of protein fold changes and protein concentrations, respectively, which can be used to optimize the settings used during acquisition with different mass spectrometers and to test the performance of different quantitation algorithms used for iTRAQ experiments.

Three technical replicates corresponding to 800 fmol of 4-protmix and 8-protmix were analyzed by HPLC-MS/MS using two platforms, a ChipLC coupled to a 6530 Q-ToF (Agilent Technologies) and a 1200 nano-HPLC (Agilent Technologies) coupled to an LTQ Orbitrap (Thermo Fisher Scientific). As a result, the analysis of the 4-protmix and the 8-protmix led to the successful identification and quantitation of all proteins in the samples (Tables 1 and 2).
In conclusion, we described two different samples suitable for iTRAQ analysis that can be used to assess the performance of different mass spectrometers and quantitation algorithms. A considerable part of the proteome of a typical biological sample falls within the fold change and dynamic range windows of these two samples.

Evaluation of MS² based protein quantification methods

Kerman Aloriaⁱ, Miren Josu Omaetxebarria⁴, Mikel Azkargorta⁵, Johannes P. C. Vissers⁴, Asier Fullaondo⁵, Jesus M. Arizmendi¹²

* Current address: Proteomics Core Facility. CIC bioGUNE. Derio, Spain

LC-MS based protein quantification methods have recently gained popularity as powerful technologies capable of addressing protein expression analysis in complex samples. As an alternative to isotope labeling methodologies, which are sample-number and sample-type dependant and require special labeling chemistries, label-free approaches afford greater experimental design and less sample