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Abstract 

The hypothesis of a rebound effect as a consequence of water saving investments is taken 

analogically from the Jevons paradox models in energy economics. The European 

Commission (EC) alert about the consequences in water stressed regions that are 

investing heavily in modernization of irrigation networks and systems. This paper reviews 

the literature, linking water savings with water diversion and water depletion, both from 

theoretical models and empirical evidence from the published research. In order to 

increase knowledge of this phenomenon, a new empirical case study is presented based 

on a survey of 36,000 ha of recently modernized irrigated areas in the Guadalquivir basin 

(southern Spain). The results of the case study illustrates the conditions that may avoid 

rebound effect, although the results of the available empirical evidence and the published 

theoretical research are diverse and lead to contradictory results. Further research is 

therefore needed to determine the causes and solutions of water saving investment 

impacts and the possible speculative rebound effect. 

Keywords: Water conservation; Jevons paradox; Rebound effect; Water pricing; Water 

use; Water consumption; Spain  

Highlights  

 The present study analyzes the theoretical and empirical evidence that water 

saving investments may lead to increased water use and/or consumption. 

 Some authors suggest that if irrigated land expansion is not constrained, 

increased water abstractions are likely to occur. 

 When land expansion is constrained and water rights are controlled, water 

depletion does not increase. 

 The results of published research are diverse and have yielded contradictory 

results regarding the rebound effect as a consequence of water saving 

investments. 
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Literature review on rebound effect of water saving measures and 

analysis of a Spanish case study 

1. Introduction 

The analysis of the irrigation modernization rebound effect is an urgent scientific task. 

The rebound effect is the proposition that the increase in efficiency of use of a resource 

tends to increase (rather than decrease) the rate of consumption of that resource. The 

European Commission (2012) has recently identified this effect as a potential problem 

and it has received attention in the academic sphere. Irrigation modernization, which is 

understood as the enhancement of efficiency, flexibility and reliability through the 

transformation of water delivery and application systems, may have consequences in 

terms of the amount of water used and consumed. 

Water scarcity is a growing concern on the environmental policy agenda and a 

structural problem in arid and semi-arid regions across the world. In the Mediterranean 

region, the problem of demand exceeding sustainable supply has been tackled recently 

with ‘demand side’ policies, particularly through investment in water saving technologies 

and reduction of losses in distribution networks associated to the promotion of water 

pricing. The public policy supporting network improvement and water saving investment 

has been implemented since 1996 and receives the name of ‘modernization’ as defined in 

the Spanish National Irrigation Program (MAPA, 2001). 

To investigate a potential rebound effect in irrigation, it is important to distinguish 

between water use (extraction) and water consumption as only part of the extracted water 

is consumed in irrigation agriculture. The extracted water ends up as: (1) beneficial 

evapotranspiration; (2) non-beneficial evapotranspiration; (3) non-recoverable 

runoff/percolation; and (4) recoverable runoff/percolation (Burt et al. 1997). The first 

three components constitute the consumed or depleted fraction, implying that water is not 

available for further use as it is consumed as evapotranspiration, incorporated into a 

product, flows to a location where it cannot be readily reused, or becomes heavily loaded 

with salts. 

The Water Framework Directive (WFD, EC 2000) promotes the use of full cost 

recovery (including environmental and resource costs) as an efficient measure to reduce 

water demand and reach a sort of sustainable and win-win situation. Many authors have 

argued that water pricing is useless when water has a higher value and farmers adapt to 

deficit irrigation due to the structural scarcity of the region (e.g. Berbel and Gómez Limón 

2000; De Fraiture and Perry 2002; Berbel and Mateos 2014). Water pricing advocates, 

however, do not consider this a relevant argument and believe that increasing water price 

is the main solution to reach the sustainable nirvana. Following a critical analysis of the 

ten years since the WFD was implemented, the EC (2012) proposed a ‘blueprint’ to 

improve the state of water bodies in Europe and announced a future revision of the WFD 

by 2019. The EC (2012) has raised public awareness about the rebound effect assuming 

that there exists an analogy of energy economics (Jevons paradox), although caution must 
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be taken with the analogy due to differences between water and energy. The EC (2012) 

document fully accepts the rebound effect without questioning scientific evidence, and 

simultaneously promotes ‘water pricing’ as a solution to the hypothetical rebound effect. 

The European Commission (2012) has taken a simplistic approach to the problem as a 

result of the dominant ideology advocated by a network of institutions (environmental 

NGOs, political bodies and research institutes) that support this type of narrative: 

irrigation demand is inefficient because water cost is heavily subsidized and 

consequently, water is too cheap. When water price increases, the demand will be reduced 

and then sustainability is achieved. 

An example of this narrative can be found in reports issued by the European 

Environmental Agency (EEA), which include statements such as the following: “[…] 

increasing irrigation water prices to meet full cost recovery would maximise water use 

efficiency” (EEA 2012:34). However, this statement contradicts the empirical 

observation contained in the same document, which holds that water-conserving 

investments depend on “incentives generated by quantity constraints and the limited role 

of prices” (EEA 2012:43). 

This paper is organised into two main sections. Firstly a case study in southern Spain 

is presented to illustrate the situation 'ex ante' and 'ex post' of water saving investment 

concluding that presently there is not any rebound effect observed. Secondly the results 

of this case are confronted with the contradictory results of the published research on the 

rebound effect. 

 

2. Case study: Impact of water-conserving investments in the Guadalquivir  

The Spanish Government developed the National Irrigation Plan (MAPA, 2001) with 

the aim of converting the old open channel distribution infrastructure into pressurized 

pipe networks and to achieve annual water savings of 3,000 Mm3. These new pressurized 

pipe systems operate on demand, which has allowed high frequency irrigation, optimal 

crop irrigation scheduling, and the diversification of cropping patterns towards higher 

value crops (Fernández-García et al. 2014). The modernization of irrigated systems and 

projected water savings is a key measure in the implementation of River Basin 

Management Plans (RBMP) in Spain. Berbel et al. (2012) described the role of water 

saving measures in the implementation of the WFD in the Guadalquivir River in southern 

Spain. 

The hydrological plans in Spain have been developed in line with the WFD agenda 

(EC 2000). They include water saving investment measures as part of the RBMP. The 

Guadalquivir River Hydrological Plan (Berbel et al. 2012) includes water provisions 

linked to water savings that amount to 25% of water rights prior to investment. These 

provisions are imposed by the government in order to improve water management 
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sustainability. Berbel et al. (2011) analysed the cost effectiveness of water saving 

measures in the basin and studied the impact of deficit irrigation.   

This section presents original empirical research based on large Water User 

Associations (WUAs) in the Guadalquivir River Basin. The Guadalquivir River is the 

longest river in southern Spain with a length of around 650 km. The basin covers an area 

of 57,527 km2 and has a population of 4,107,598 inhabitants. It has a Mediterranean 

climate with a heterogeneous precipitation distribution. The annual average temperature 

is 16.8C and the mean annual precipitation is 573 mm, with a range of 260-983 mm 

(standard deviation of 161 mm).  A description of the evolution of the basin can be found 

in Berbel et al. (2013). The RBMP focuses on improving water quality through urban 

sanitation and reducing the quantitative gap through water-conserving investments 

(called modernization) as an increase in supply is not considered. The RBMP has not 

contemplated new irrigated areas since 2005 (Berbel et al. 2013).  

Figure 1. Guadalquivir River Basin 

 

The survey of WUAs is interesting because it covers a significant area (around 36,000 

ha) in different locations of the Guadalquivir valley that went through water-conserving 

investments during the 2005-2008 period. Location of selected areas can be seen in Figure 

1. We initially had good quality data from the 1999-2001 period and we made a new 

survey for the 2009-2011 seasons when farmers were adapted to the new situation. The 

new infrastructures have been fully working for 2-3 seasons. Thus, this sample is 

representative of an intensive transformation process where open channels and surface 

irrigation have been converted to pressurized networks and drip or sprinkler irrigation. 

Complete information on the main parameters (water diverted, irrigated area, water cost, 

crop distribution, etc) can be found in Fernández-García et al. (2014). 
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Table 1 summarizes the main indicators. Average water use prior to the investment 

was 6,525 m3ha-1, which is below the allocated water rights (on average 8,000 m3ha-1). 

Applied water was slightly below the estimated irrigation needs that are computed as crop 

evapotranspiration, ETc, as a function of the potential evapotranspiration and the crop 

coefficient (Allen et al. 1998) minus the effective rain. 

Table 1. Main indicators for a sample of water conserving investment in the a survey of 

Guadalquivir River Basin WUA 

Year 1999-2002 2009-2012 Increase 

Irrigated area (ha) 36,040 33,132 - 8% 

Water rights (m3ha-1) 8,000 6,000 - 25% 

Water use (m3ha-1) 6,526 5,159 - 21% 

ETc 8,259 8,405 + 2% 

Effective Rain (m3ha-1) 1,556 2,372 + 52% 

Irrigation needs (m3ha-1) 6,703 6,033 - 10% 

Relative Irrigation Supply (RIS) 0.97 0.86 - 12% 

Water costs  (€ha-1) 249 278 + 11% 

Water costs (€m-3) €0.038 €0.053 + 41% 

% Energy costs 25% 43% + 77% 

Crops Cotton (26%)  

Maize (24%) 

Sugarbeet (18%) 

Citrus (9%) 

Vegetables (4%) 

Other (9%) 

Citrus (23%)  

Cotton (22%), 

 Maize (16%) 

Sugarbeet (8%) 

Vegetables (5%) 

Other (14%) 

Citrus (+13%) 

Cotton (-4%) Maize 

(-8%) Sugarbeet (-

10%) Vegetables 

(+1%) Other (+5%) 

Source: Fernández-García et al. (2014). Water use refers to controlled abstraction and water consumption 

is computed by estimating evapotranspiration minus usable rain.  

Note: Data on crops and irrigated area refer to the 2001/2002 season; the remaining variables are the 

average for the 1996-2001 period.   

The Spanish government subsidized around 60% of the investment cost of the 

modernization process, while farmers were responsible for financing the remaining 40% 

and are fully responsible for the operation and maintenance. The average total investment 

in the surveyed areas amounted to 6,000 €·ha-1. The cost of water increased from 0.038 

to 0.054 €·m-3 (41% increase). This higher cost was due to new operating and 

maintenance costs, particularly because the cost of energy increased from an average of 

25% of total water costs before the investment, to around 43% after the conversion. 

The legal conditions for obtaining the government subsidies were defined as: 

 Assumption of the remaining capital cost (40%) of the capital investment 

 Reduction of water rights from the existing 8,000 m3ha-1 to 6,000 m3ha-1 

 Implementation of water metering and volumetric billing 

 No increase in irrigated area 

 

This policy has led farmers to substitute the existing crops for crops of higher value 

(increase in citrus and vegetable crops, reduction in sugar beet, cotton and maize crops), 

reduce water use and maintain irrigation water depletion. The government does not allocate 

the reduction of irrigation allocations for any consumptive use, but keeps it for improving the 

water balance and environmental goals (2,000 m3 ha-1 equivalent to 25% of previous water rights).  
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In our case study, we found that there was no rebound effect as the farmers complied 

with the abovementioned legal conditions, namely the (1) strict limitations placed on the 

size of the irrigated area, (2) the reduction of former water rights, and (3) the re-

assignation of water savings to achieve environmental goals. These three conditions in 

our opinion are the key for avoiding rebound effect, and the next sections will review the 

theoretical and empirical evidence on the phenomena. 

 

3. Theoretical models 

Various theoretical approaches have been used to analyse the rebound effect, such as 

analytical models and mathematical programming and simulation.  A short summary of 

these models is presented in Table 2. 

3.1. Analytical models 

Gómez-Gómez and Pérez-Blanco (2014) used a simple analytical microeconomic 

model with important shortcomings: a) the model did not differentiate between water 

diversion (irrigation or water use) and water depletion (evapotranspiration or water 

consumption); b) it did not integrate agronomic models that link water with yield and 

evaporation; c) it did not include deficit irrigation; and d) it did not analyse water limiting 

and land limiting policies. All these features of the model were crucial to understanding 

farmer response and policy options. Unfortunately, the authors did not provide an 

empirical application of the model where it was tested. The authors concluded that 

assessing the impact of better irrigation technologies in a particular area remains an 

empirical question, thus confirming the scarcity of available evidence. 

Huffaker (2008) presented another conceptual model with some hydrological and 

agronomic considerations for the collection of data to predict the conservation of potential 

subsidies for water saving technologies. According to Huffaker, water conservation 

policies (such as Oregon’s agricultural policy) that guarantee irrigators a portion of 

conserved water estimated as the reduction in diversions before and after the increase in 

on-farm efficiency may have adverse consequences. Nevertheless, as in Gómez-Gómez 

and Pérez-Blanco (2014), Huffaker provides ambiguous results where both the rebound 

effect and the net water saving outcome are possible. 

Scheierling et al. (2006) developed an agro-economic model, concluding that subsidies 

to irrigation efficiency investment may increase consumptive use “if farmers can expand 

irrigated acreage use”. 
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Whittlesey (2003) proposed an analytical framework based on a simplified model that 

linked crop yield, consumptive water use and applied irrigation. The author examined the 

conditions under which improving irrigation efficiency actions conserves water.   

Dinar and Zilberman (1991) make an analytical microeconomic model of technology 

adoption applied to irrigation systems concluding that "When drainage is free of cost, the 

main impact of drip (relative to furrow) is ‘water saving’; but it also has a relatively 

limited ‘yield increasing’ effect. With high drainage costs, drip has strong ‘yield 

increasing’ effects, but it is also ‘water use increasing’". 

Recently, Berbel and Mateos (2014) propose a simple agro-economic model that 

explores the conditions under which improved irrigation application uniformity may lead 

to increased water use and/or consumption. The increase in water depletion due to the 

introduction of more uniform irrigation systems is insignificant if land is limited and 

farmers optimize their profit. If land is not a limiting factor, new water abstractions are 

likely to occur, potentially leading to a vicious circle in which irrigated land expands 

while water resources become overexploited. Additionally these authors conclude that 

water demand (the value of marginal water productivity) becomes inelastic as the 

efficiency increases. 

3.2. Mathematical programming 

Mathematical programming approaches have used different techniques to study the 

problem, such as linear, dynamic, risk, multicriteria and positive programming. 

Based on a mathematical programming model of the Murray Darling basin, Qureshi et 

al. (2010) concluded that efficiency-improving investments could provide some cost-

effective opportunities, but also that the final net result is ambiguous and depends on the 

previous return flows and the use of the water savings. The critical element in most of the 

published research is the existence of a good water accounting framework.   

Peterson and Ding (2005) used a risk programming method to analyse economic 

adjustments to groundwater depletion in the High Plains (Ogallala Aquifer, USA) as a 

response to water saving irrigation systems. They concluded that a cost share program 

would serve the dual objectives of conserving groundwater and improving irrigators’ 

welfare. The authors used a dynamic model to simulate a representative irrigator’s 

optimal technology choice, crop selection, and irrigation water use over time. 

An extension of this simple model implemented by a preference revelation model can 

be found in Gómez and Gutiérrez-Martín (2011). First, they proposed a theoretical model 

that lacked integration with the agronomic system, and then applied the mathematical 

model considering a total bounded area (under Spanish regulations) where the projected 

water increase was based upon the cultivation of higher value crops. Using the same 

programming model in southern Spain, Gutierrez-Martin and Gomez Gomez (2011) 

concluded that there is no rebound effect when the irrigated area is limited to the pre-

investment limits and water savings are re-allocated from irrigation to water conservation 
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objectives. They also found that a water pricing policy would not be effective given the 

inelasticity of the demand curve in areas with a water deficit. 

Ward and Pulido (2008) used positive mathematical programming (PMP) to simulate 

scaled decreasing returns when an irrigated area is expanded to use the saved water. The 

anticipated increase of water depletion was due to the increased area and the cultivation 

of more intensive and higher value crops. PMP accommodates decreasing marginal yields 

or increasing marginal costs, although one of the drawbacks of PMP is that arbitrary 

assumptions have to be made (e.g. supply elasticity). PMP is a quadratic programming 

method and does not analytically integrate agronomic concepts such as efficiency or 

deficit irrigation. 

Dagnino and Ward (2012) provided another approach to analyse the rebound effect 

using a farm microeconomic model and budget analysis. They concluded that although 

subsidies for drip irrigation in North America’s Rio Grande increased farm income and 

reduced the amount of water applied to crops, such subsidies could increase water 

depletion in the basin. 

Contor and Taylor (2013) recently developed a simulation model of an irrigation 

system based upon a theoretical ‘ad hoc’ approximation to the general function of water 

response proposed by Martin et al. (1984). The authors concluded that there would be a 

small rebound effect (consumptive use from irrigation increases by 3%) when the model 

is applied to the Snake River case study. 

In contrast to the above authors who support the existence of a rebound effect,  

Heumesser et al. (2012) used a stochastic dynamic programming model and found that 

the adoption of water saving investments and subsidies reduces groundwater use in 

Marchfeld region in Austria.   

Graveline et al. (2013) also developed a hydro-economic model for the Gállego 

catchment (Spain), including the modernization of irrigation technology. The authors 

found that total water use decreased by 2%, while the irrigated area increased by 4% in 

the catchment, and concluded that despite the small increase in irrigated area, 

modernization does not enable land extension beyond currently available irrigable land. 

4. Empirical research  

We have found a reduced number of publications examining the situation before and 

after water saving investments, those are condensed in Table 3. When water supply is 

based upon surface delivery systems, most of the studies conclude that there is a 

significant reduction in water diversions. Regarding water depletion through 

evapotranspiration, the analysis of water rebound in the published empirical research 

considers mainly two policy alternatives:  

a) No increase in irrigated area is allowed. 
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b) An increase in irrigated area is allowed and only maximum water volume is 

constrained.  

An example of the first case is the Spanish Water Law (Spanish Government 2001), 

which does not allow water savings to be used to increase irrigated land as water rights 

strictly define the limits of both the maximum volume of diverted water and the location 

of irrigated land.  

Playán and Mateos (2006) analysed the effects of structural and management changes 

in the modernization of irrigation. They found that such changes (in Ebro valley, Spain) 

led to increased productivity, improved water conservation and environmental 

improvement. However, the effects of this improved efficiency are accompanied by an 

increase in evapotranspiration. 

Other empirical analyses of the transformation of irrigated systems in Spain with the 

abovementioned land constraints have been conducted by Soto-García et al. (2013), 

Fernández-García et al. (2014) and García-Mollá et al. (2013). All the authors concluded 

that water diversion (abstraction) was significantly reduced (by 25%-45%), but that water 

depletion (evapotranspiration) did not increase. They also observed other effects such as 

a significant increase in water costs, which were mainly due to a 50%-100% increase in 

energy consumption above previous levels, as well as a significant increase in the 

productivity of land, labour and water.  

García-Garizábal and Causapé (2010) also evaluated the environmental impacts of 

modernization on drainage water and water use in the Bárdenas area of the Ebro River 

Basin. They concluded that after modernization, the decrease in irrigation drainage in 

2007 was a result of the decrease in water requirements (21%) and the increase in 

irrigation efficiency (from 67% to 93%), causing the Riguel River to present a lower flow, 

lower salinity and a lower nitrate concentration. 

In contrast, some authors have detected a certain increase in water depletion. This is 

the case of Lecina et al. (2010), who studied maize and alfalfa crops in the Ebro Basin 

(northeast Spain), where surface irrigation and open channel networks were converted to 

sprinkler and pressurized networks. According to the authors, the observed increase may 

be explained by the evaporation of the drops travelling from the sprinklers to the ground 

(substitution of surface irrigation for sprinklers) and the irrigation of some plots inside 

the perimeter of the WUA that received scarce or no irrigation due to the deficiencies of 

the previous system (surface and open channels). Pfeiffer and Lin (2014) reported a small 

increase (1%-2%) in water depletion when traditional pivots were replaced by drop-

nozzle pivots. The reasons for the increase in evapotranspiration reported by these authors 

are unclear from the biophysical point of view and the authors recognized the need for 

additional research. 
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Rodríguez Díaz et al. (2011 and 2012) used performance indicators related to water 

and energy consumption to analyse systems before and after the process to modernize the 

irrigation community in Bembézar MD (southern Spain), where surface irrigation 

systems were substituted for drip irrigation systems. Their analysis showed that 

approximately 40% less water was diverted for irrigation due to the greater efficiency of 

the irrigation systems. However, this situation has led to the adoption of new crop 

rotations (mainly citrus crops) of higher value and greater water demand, thus increasing 

the consumptive use of water (ETc) by around 20%. They also observed a four-fold 

increase in management, operation and maintenance costs than before modernization 

mainly due to energy costs, as well as an improvement in the apparent economic 

productivity as in Lecina et al. (2010). 

Jackson et al. (2010) analysed two different irrigation areas in Australia after the 

conversion of flood irrigation systems into pressurized systems. The results showed a 

10%-66% reduction in water use, but as much as a 163% increase in energy consumption 

in the area irrigated by surface irrigation systems. In contrast, energy consumption in the 

groundwater dependent area was reduced by 12% to 44% due to the smaller volumes of 

water pumped as a result of increased application efficiency. However, the authors did 

not indicate the evolution of evapotranspiration. 

Some authors sustain academic positions in line with the dominant opinion supported 

by the EC and EEA and make some analysis that is summarized also in Table 3. Dumont 

et al. (2013) made a strong case for the rebound effect in Spain based mainly on the 

mentioned study of Lecina et al. (2010) in the Ebro Valley, but dismissed other examples 

that provided evidence to the contrary, which were also cited but not acknowledged.  

In this line of narrative, López-Gunn et al. (2012) performed an ex-post analysis of 

some modernization of irrigation systems in Spain examining some cases where water 

consumption has been measured ex ante and ex post, concluding that savings have been 

“lower than expected", nevertheless, the analysis of these authors lacks a clear definition 

of the water accounting framework adopted.  

 

5. Discussion  

When traditional surface irrigation systems are replaced by sprinkler and drip 

irrigation systems, which are characterized by high water application efficiency, water 

diversion decreases under all circumstances unless the irrigated area is expanded or 

evapotranspiration may be increased due to changes in crop patterns.  

When irrigated land is constrained and water is unbounded, the introduction of more 

efficiency irrigation systems does not significantly increase evapotranspiration (water 

consumption). This is because the evapotranspiration from fields irrigated by furrow or 

drip systems is similar under full irrigation. Subsurface drip irrigation may reduce soil 

surface evaporation; a non-beneficial component of water consumption. Drop 
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evaporation occurring with sprinkler irrigation is another form of non-beneficial 

consumption. Final impact of modernization in water consumption is uncertain as the 

differences in irrigation system characteristics, change in crop rotation, introduction of 

new crops with higher or lower water demand will made a combined global impact that 

may either increase or decrease water depletion consumption in the long term.  

When irrigated land is unconstrained, modernization is likely to lead to new 

uncontrolled water abstraction, potentially starting a vicious circle in which irrigated land 

expands while water resources are overexploited. Therefore, water saving measures must 

be accompanied by instruments to control water abstraction and the expansion of irrigated 

land. The key for public policy is to understand the difference between pressure reduction 

(diverted water) and impact reduction (consumed water), that is, the difference between 

“dry” (“paper”) and “wet” (“real”) water savings, respectively (Seckler 1996). Again the 

existence of a satisfactory water accounting is crucial for sustainable public policy. 

The evidence of the empirical and theoretical literature review suggest that when 

traditional surface (furrow) systems are replaced by sprinkler and drip irrigation, water 

abstraction (use) is reduced in a significant number of studies, among others in:  Jackson 

et al. 2010; López-Gunn et al. 2012; García-Mollá et al. 2013; Soto-García et al. 2013; 

Graveline et al. 2013; Heumesser et al. 2012; Törnqvist and Jarsjö 2012; Peterson and 

Ding 2005). 

Some authors conclude either from simulation models that rebound effect exists but 

the magnitude is minor, below 3% such as Contor and Taylor (2013), Graveline et al. 

(2013) or by empirical research as in Pfeiffer and Lin (2014), this small increase is 

justified by increased productivity or crop change.  

Other authors give ambiguous results such as Dinar and Zilberman (1991), Qureshi et 

al. (2010), Huffaker (2008) and Gómez and Pérez (2013) where the final result of water 

saving investment is ambiguous with the rebound effect that would be a function of water 

cost and water productivity and the implementation measures selected for financing the 

water savings policy. 

As a conclusion of the review of published research, and regarding the mentioned 

water management policy conditions for avoiding the rebound effect, the policy options 

that may avoid any rebound effect implies the achievement of one of several of these 

conditions:   

a) water consumption does not increase significantly unless irrigated area 

increases allowing farmers to use the 'water savings' (Berbel and Mateos 2014; 

Ward and Pulido 2008; Graveline et al. 2013; Soto-García et al. 2013; Scheierling 

et al. 2006). 

b) when the quality of infrastructure in previous systems is very deficient (lack of 

uniformity, fallow land due to water supply restrictions, deficit irrigation applied), 

the modernization may increase productivity and consequently increase ETc 

(Lecina et al. 2010; Playán and Mateos 2006; Pfeiffer and Lin 2014). 
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c) introduction of new crops which are more water intensive is allowed and 

consequently future ETc  increases after modernization (Fernandez et al. 2014; 

Rodríguez-Díaz et al. 2012; Ward and Pulido 2008)  

 

The final section tries to summaries main finding of this research 

 

6. Concluding remarks  

 

The proposal by the EU (2012) to use water pricing to counter the rebound effect may 

be against theoretical and empirical evidence that indicates that marginal water 

productivity becomes less elastic as the application efficiency of the irrigation system 

increases (see López-Baldovín et al. 2006; De Fraiture and Perry 2002 or Contor and 

Taylor 2013). Most of the water scarce regions in the world have implemented subsidies 

for supporting farmers investment in water saving measures, the evidence regarding the 

rebound effect is ambiguous and depends upon previous situation and characteristics of 

both, the agricultural systems and basin or aquifer. Induced changes in crop rotations, 

increase in productivity due to very deficient previous situation and other factors may 

increase or decrease water use and water consumption. 

As a general conclusion, we believe that according to published body of literature, 

there is a need for greater knowledge about the dynamic effects of water saving 

investments, including the rebound effect and economic instruments for the prevention 

of negative outcomes. As Gleick et al. (2011) argue, we must design appropriate water-

accounting procedures in place (both farm and basin) in order to identify the opportunities 

for water savings and then apply specific water conservation and efficiency practices 

based on a combined use of economic, technical, social and political tools to reduce 

pressures on scarce water supplies. 

Therefore additional research in the field of the evaluation of impacts of technical 

improvements on irrigation water demand is required. Evidences are ambiguous and the 

combined impact of water saving investment on water use and consumption is uncertain. 

The differences in the previous situation, basin or aquifer characteristics, induced 

sometimes changes in crop rotations, and many other factors will made a combined global 

impact that may either increase or decrease the water use and water consumption rates. 

Every basin is different, water conservation and efficiency practices offer one set of tools 

to reduce pressures on scarce water supplies although the mix of tools (economic, 

technical, social, political) should be adapted to each specific case. 
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