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Abstract 

Depth-averaged modelling of river flows is a widely used technique in hydraulic 

engineering, given the reduced computational work as compared to a three dimensional 

numerical solution. Typically, depth-averaged models rely on the assumptions of a 

hydrostatic pressure distribution, and depth-independent velocity and concentration 

distributions. However, even though Saint-Venant type models produce good results for 

the solution of a wide range of engineering problems, a significant increase in accuracy 

is achieved by using more realistic assumptions for the vertical structure of the flow. 

The main objective of this thesis is to study the effect of higher-order closure hypothesis 

for the vertical distributions of pressure, velocity and concentration, on the solution of 

one-dimensional depth-averaged models for river flow problems. This main objective is 

developed in the following specific studies: (i) The effect of the non-hydrostatic 

pressure distribution is first investigated in a basic section of river flow, namely the 

compound channel. Here, the energy and momentum balances in steady-state are 

investigated; (ii) Unsteadiness is introduced using the dam break flood wave over a 

rigid bed as a test case. Here, the accuracy of the velocity and pressure distributions of 

Serre-type, depth-averaged, non-hydrostatic flows is assessed; (iii) The finite-volume 

numerical model developed for dam break waves over rigid beds is expanded to dam 

break wave flows over movable beds by introducing a non-equilibrium sediment 

transport model, and the suspended sediment flux; (iv) An analytical solution for the 

equilibrium suspended-load flux is proposed used a power-law for the turbulent velocity 

profile, and a wall-wake concentration profile; (v) The effect of highly non-uniform 

distributions of velocity and concentration is investigated introducing a similarity 

approximation for erosive/depositional flows in turbidity currents. 
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Chapter 1           
            
         
 Introduction 
 
 
 

Mathematical modelling of open-channel flows for engineering applications is 

routinely conducted using vertically-integrated models, given the reduction of the 

computational work as compared to a complete three-dimensional analysis (Steffler and 

Jin 1993, Chaudhry 2008, Castro-Orgaz et al. 2015). Most of these computational 

models numerically solve the Saint-Venant equations (implying a hydrostatic pressure 

distribution) in 1D or 2D, using finite-difference, finite element or finite volume 

schemes (Toro 2001, Chaudhry 2008). For sediment transport problems, the 

generalization of the Saint-Venant equations for a mixture of fluid and sediments over 

an erodible bed is available (Wu 2008). However, the assumption of a hydrostatic 

pressure distribution is not accurate for flows where the vertical length scale is of the 

order of the horizontal length scale, or, if the shallowness parameter is not 

asymptotically tending to zero. Typical problems are the flow in open channel structures 

like weirs and overfalls, water wave motion, and bed-form development and migration 

(Steffler and Jin 1993, Castro-Orgaz et al. 2015). Given the importance of modelling 

non-hydrostatic flows, this feature has been a topic of intense research since the 1980's, 

starting with the classical work of Hager and Hutter (1984). Most of the research 

conducted focussed on steady flows in a vertical plane (see Castro-Orgaz et al. 2015 for 

a recent review), but no extensions to cross-sectional shapes relevant for river-flows, 

like a compound channel (Blalock and Sturm 1981), are available. Unsteady non-

hydrostatic flow solutions are rare, with the accurate development of Khan and Steffler 

(1996) as a notable exception. However, this model is limited to clear-water flows over 

rigid beds. Non-hydrostatic computations for sediment-laden flows over movable beds 

remain unaddressed (Wu 2008). Even though some erosion-deposition flows can be 

tackled using a hydrostatic pressure assumption, the velocity and concentration 

distributions in turbulent flow can be relevant (Dey 2014), like those in turbidity 

currents. 
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Therefore, a sediment transport model for non-uniform flow conditions should allow 

for the inclusion of a non-hydrostatic pressure distribution, and non-uniform velocity 

and concentration distributions. Typically, a non-equilibrium sediment transport model 

is required, and an accurate finite-volume or finite-element solution is desirable. At the 

current state-of-the-art, these issues are not addressed in the literature in a single and 

structured research work (Wu 2008), and, thus, this is the starting point of the present 

work. 

References 
Castro-Orgaz, O., Hutter, K., Giraldez, J. V., & Hager, W. H. (2015). Nonhydrostatic 

granular mass flow over 3-D terrain: New Boussinesq-type gravity waves?. Journal 

of Geophysical Research: Earth Surface, 120(1), 1−28. 

Chaudhry, M. H. (2008). Open-channel flow. Springer, Berlin, Germany. 

Dey, S. (2014). Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport 

Phenomena. Springer, Berlin. 

Hager, W. H., & Hutter, K. (1984). On pseudo-uniform flow in open channel 

hydraulics. Acta Mechanica, 53(3−4), 183-200. 

Khan, A. A., Steffler, P. M. (1996). Vertically averaged and moment equations model 

for flow over curved beds. Journal of Hydraulic Engineering, 122(1), 3−9. 

Steffler, P. M., & Jin, Y. C. (1993). Depth averaged and moment equations for 

moderately shallow free surface flow. Journal of Hydraulic Research, 31(1), 517. 

Wu, W. (2008). Computational river dynamics. CRC Press. 

Blalock, M. E., & Sturm, T. W. (1981). Minimum specific energy in compound open 

channel. Journal of the Hydraulics Division, 107(6), 699−717. 

Toro, E .F. (2001). Shock-capturing methods for free-surface shallow flows. John Wiley 

and Sons, Singapore. 
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Chapter 2           
            
          
 Objectives 
 
 
 

The general objective of this work is to study the use of higher-order physical closure 

hypothesis, as compared to Saint-Venant type models, for the vertical distributions 

needed mathematically in a depth-averaged model. Specific objectives are as 

follows:  

i. Studying the effect of including the non-hydrostatic pressure distribution in 

compound channel flows. This problem was selected as a basic section in river-

type flows. This work is presented in Appendix I. 

ii. Studying the effect of including the non-hydrostatic pressure distribution in 

unsteady dam break flows over rigid beds. This is a basic water wave including 

rarefaction and shock-waves. This work is presented in Appendix II. 

iii.  Studying the effect of including the non-hydrostatic pressure distribution in 

unsteady dam break flows over movable beds, with suspended and bed-load 

sediment transport modes. This is a key problem is fluvial hydrodynamics. This 

work is presented in Appendix III. 

iv. Developing an analytical model for suspended load computations based on a 

power-law turbulent velocity profile. This work is presented in Appendix IV. 

v. Including the velocity and suspended-load concentration distributions in 

erosion/deposition models. This work is presented in Appendix V. 
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Chapter 3           
            
          
 General Conclusions 
 
 
 

The general conclusions drawn from this work are: 

i. Inclusion of the non-hydrostatic pressure distribution in compound open channel 

flows produces energy and momentum equations that can simulate flow profiles 

not described by the gradually-varied (hydrostatic) flow theory. The momentum 

model was found to yield better results, using as a test case the free overfall in a 

compound channel. 

ii. A high-resolution finite-volume model was developed to solve the weakly 

dispersive, fully non-linear Serre equations, for the dam break flood wave. The 

model was used to show that velocity and pressure distributions predicted by the 

theory are accurate, and that it is not needed to enhance the linear frequency 

dispersion relation in shallow flows, given the dominant role of non-linear effects 

as the ratio of wave amplitude to depth increases. 

iii.  A generalized Serre-type model was formulated for unsteady flow over movable 

beds, accounting for suspended and bed-load sediment transport modes. The 

model was solved using a high-resolution finite-volume scheme, and the results 

compared well with experimental observations and 3D numerical results available 

in the literature. The model produced a significant improvement in free surface 

predictions as compared to Saint-Venant type simulations. 

iv. Using a power-law model for the turbulent velocity profile, an analytical solution 

to the suspended-load concentration profile was produced using a wall-wake 

approximation. The proposed velocity and concentration distributions were used 

to find an analytical solution to the suspended-load transport rate, which is an 

alternative to the numerical solution to Einstein’s integrals. 

v. An accurate description of the velocity and suspended-load concentration 

distributions using self-similarity functions produced a significant increase in 
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accuracy for turbidity current modelling (a strong erosion/deposition flow), as 

compared to classical models based on depth-independent distributions.  
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Appendix I           
            
           
 Free surface profiles in river flows: Can standard energy-
based gradually-varied flow computations be pursued? 
 
Francisco Nicolás Cantero-Chinchilla1; Oscar Castro-Orgaz2, Amanda Garcia-Marín3, José Luis 
Ayuso-Muñoz3, Subhasish Dey4 
 
 
Journal of Hydrology, 529(1), 1644−1656, doi:10.1016/j.jhydrol.2015.07.056. Impact factor 
(JCR 2014): 3.053 / Q1 (4/125 Civil Engineering) 
 

Summary 
Is the energy equation for gradually-varied flow the best approximation for the free 

surface profile computations in river flows? Determination of flood inundation in rivers 

and natural waterways is based on the hydraulic computation of flow profiles. This is 

usually done using energy-based gradually-varied flow models, like HEC-RAS, that 

adopts a vertical division method for discharge prediction in compound channel 

sections. However, this discharge prediction method is not so accurate in the context of 

advancements over the last three decades. This paper firstly presents a study of the 

impact of discharge prediction on the gradually-varied flow computations by comparing 

thirteen different methods for compound channels, where both energy and momentum 

equations are applied. The discharge, velocity distribution coefficients, specific energy, 

momentum and flow profiles are determined. After the study of gradually-varied flow 

predictions, a new theory is developed to produce higher-order energy and momentum 

equations for rapidly-varied flow in compound channels. These generalized equations 

enable to describe the flow profiles with more generality than the gradually-varied flow 

computations. As an outcome, results of gradually-varied flow provide realistic 

conclusions for computations of flow in compound channels, showing that momentum-
                                                 
1 PhD Student, Hydraulic Engineering Area, Dept. of Agronomy, Univ. of Cordoba, Campus Rabanales, 
Edif. da Vinci, Cra Madrid Km 396, 14071 Cordoba, Spain. 
2 Professor, Hydraulic Engineering Area, Univ. of Cordoba, Campus Rabanales, Edif. da Vinci, Cra 
Madrid Km 396, 14071 Cordoba, Spain. E-mail: oscarcastro@ias.csic.es (author for correspondence) 
3 Professor, Dept. of Rural Engineering, Univ. of Cordoba, Campus Rabanales, Edif. da Vinci, Cra 
Madrid Km 396, 14071 Cordoba, Spain.  
4 Professor and Head, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, 
West Bengal, India.  
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based models are in general more accurate; whereas the new theory developed for 

rapidly-varied flow opens a new research direction, so far not investigated in flows 

through compound channels.  

1. Introduction 
Discharge hydrographs from heavy rainfall events are conveyed as a free surface flow 

through natural waterways and rivers, which are normally compound channels. The 

cross-sections of these channels are complex and can be divided into a main channel 

and the flood plains, with a large variation of hydraulic roughness between them 

(Sturm, 2001). The computation of free surface levels in natural channels is an 

important procedure and it is required to demarcate the flow inundation areas as a 

function of the return period of peak flood (Chow et al., 1988; Brutsaert, 2005). The 

accuracy in flow profile predictions relies on hydraulic computations based on one-

dimensional gradually-varied flow models (Chow et al., 1988). Programs like HEC-

RAS (Hydrologic Engineering Center-River Analysis System) are used to compute one-

dimensional gradually-varied flow in natural channels by using the energy equation 

(Sturm, 2001; Chaudhry, 2008). A decisive aspect in these computations is the selection 

of an appropriate method to calculate the discharge taking into account the variation of 

hydraulics roughness within the cross-section. The HEC-RAS program, for example, 

subdivides the channel cross-section with vertical planes and turbulent stresses are 

neglected along the division lines. This is a traditional approximation in open channel 

flows (Chow, 1959; Montes, 1998; Sturm, 2001; Chaudhry, 2008). However, in the past 

30 years, a large number of studies analyzed the discharge prediction method for 

compound channel sections. Most of them argued that the subdivision method is not 

accurate for the discharge prediction. The strong lateral velocity gradients and 

turbulence result in a significant linear momentum transfer between the main channel 

and the flood plains (Sellin, 1964; Myers, 1978; Rajaratnam and Ahmadi, 1981; 

Wormleaton et al., 1982; Knight and Demetriou, 1983; Shiono and Knight, 1991; 

Knight and April, 1996; Lambert and Sellin, 1996; Bousmar and Zech, 1999; Kathua et 

al., 2011). Prinos (1985) and Chatila and Townsend (1996) compared the methods 

based on virtual plane divisions between the main channel and the floodplains. The 

interaction between the flood plain and the main channel flows induces secondary flows 

and turbulent stresses at the virtual planes, which can be introduced in the governing 

equations by a momentum balance (Wormleaton et al., 1982). Wormleaton et al. (1982), 
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Prinos and Townsend (1984) and Wormleaton and Merrett (1990) solved the 

momentum equation by introducing an apparent shear stress at the interfaces, and 

parameterized it in terms of velocity of the main channel and the floodplains. Dracos 

and Hardegger (1987) suggested the use of the ratio of hydraulic radius to total depth 

for the single-channel method, which involves several empirical parameters related to 

the geometry of the cross-sections. Ackers (1993a, b) proposed the coherence method, 

that introduces an empirical correction to the vertical (virtual) division method. Khatua 

et al. (2011) developed an equation to quantify the momentum transfer in terms of an 

appropriate interface length. Thus, despite it is well established that the momentum 

transfer between the main channel and the flood plains must be considered for an 

accurate determination of the discharge, this knowledge has so far been hardly 

transmitted to the basic hydraulic computations involving free surface flows. It is, 

however, unclear amongst various available methods, which discharge prediction 

method should be included in one-dimensional compound channel models. Further, it is 

also unclear, which is the best, whether the use of momentum or energy principle for the 

computations of flow in compound channels. 

The prediction of the stage-discharge relationship in a compound channel directly 

influences other relevant gradually-varied flow computations. The discharge curve is 

needed to perform flow profile computations using gradually-varied energy or 

momentum models (Sturm and Sadiq, 1996; Sturm, 2001; Chaudhry, 2008). An aspect 

that particularly makes these computations in compound channels complicated relates to 

the nonuniform lateral velocity distribution within the cross-section induced by the large 

variation of hydraulic roughness. It results in velocity distribution coefficients much 

larger than unity that needs to be accounted for (Sturm and Sadiq, 1996; Sturm, 2001). 

The computations of these coefficients as well as the determination of the energy line 

slope are highly dependent on the discharge prediction method. Thus, the flow profile 

computations are reliant on the discharge predictor model. Critical depth is used to 

compute stage-discharge rating curves by using the energy or momentum principles 

(Petryk and Grant, 1978; Blalock and Sturm, 1981; Schoellhamer et al., 1985; Chaudhry 

and Ballamudi, 1988; Yuen and Knight, 1990; Lee et al., 2002), and it is as well a 

boundary condition to initiate flow profile computations (Sturm and Sadiq, 1996; Field 

et al., 1998). The impact of the discharge predictor on the critical depth computations is 

also unclear. Field et al. (1998) compared energy and momentum equations of 
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gradually-varied flows for the computation of flow profiles in compound channels. 

They concluded that more research was needed to evaluate both approximations, that 

give large differences. Errors in discharge prediction may result in large inaccuracies in 

computing energy and momentum fluxes, thereby provoking problems when solving the 

dynamic flow equations (Wormleaton and Hadjipanos, 1985). Further, the flow 

discharge measurement in open channels is usually done by weirs and flumes 

(Clemmens et al., 2001). If a long throated flume is installed into a compound channel 

to measure discharge, then the rating curve of the flume relates flow discharge Q to the 

specific energy E in the upstream compound channel (Montes, 1998; Clemmens et al., 

2001). Given the large magnitude of the energy correction coefficient of flow in this 

type of channel, the measurement of discharge may be highly sensitive to errors in the 

computation of E. However, like in the former problems, no assessment of the impact of 

discharge prediction methods in the computation of the specific energy and momentum 

is so far available in the literature to the best of authors’ knowledge. In short, no 

assessment of the impact of the discharge prediction method on the computation of 

velocity distribution coefficients, uses of energy and momentum principles, critical 

depth and flow profile computations appears to be available in the literature in a single 

and structured study.  

The compound channel studies summarized above are related to gradually-varied 

flow, where the pressure distribution is assumed to preserve a hydrostatic variation. 

Within the range of multiple critical depths, the free surface at the cross-sectional plane 

in a compound channel is no longer horizontal in the vicinity of free overfalls (Dey and 

Lambert, 2006); the velocity field is then three-dimensional and the pressure non-

hydrostatic (Sturm and Sadiq, 1996). For a higher discharge outside this range, there is 

only one critical depth in the specific energy curve and the free surface is horizontal at 

the cross-sectional plane. In this case, the free surface is only a function of the 

longitudinal distance (or streamwise coordinate); and thus one-dimensional models 

apply. Near overfalls, however, there is a significant vertical velocity component and 

hence the velocity field is two-dimensional despite the flow depth is a one-dimensional 

magnitude. Given the non-hydrostatic pressure, this type of flow cannot be solved by 

standard gradually-varied flow computations so far dominating this field of research. 

One-dimensional non-hydrostatic, or rapidly-varied, flows have been successfully 

modelled in open channel hydraulics by means of the Boussinesq-type approximation 
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(Serre, 1953; Hager and Hutter, 1984a; Chaudhry, 2008; Castro-Orgaz and Hager, 

2011). Experimental flow profiles measured by Sturm and Sadiq (1996) indicated the 

presence of non-hydrostatic pressure effects near the drawdown at a free overfall and at 

the oscillatory wave train around the normal depth. Both free surface flow 

configurations were explained by Serre (1953) in rectangular channels using the higher-

order energy and momentum equations. However, there exists no work in the literature 

making such an analysis for flows in compound channels. In particular, the higher-order 

Boussinesq-type non-hydrostatic pressure equations for compound channels were so far 

not developed to the best of authors' knowledge. 

The objective of this research is twofold:  

(i) The first objective relates to gradually-varied flow and the impact of the 

discharge prediction method. For this purpose, thirteen relevant discharge prediction 

methods available in the literature are analyzed to reveal the impact of momentum 

transfer on basic flow profile computations. The methods are first compared in terms of 

discharge prediction to highlight their accuracy to predict the stage-discharge rating 

curve under uniform flow conditions. The methods are then used to compute the 

velocity distribution coefficients, namely, Coriolis (energy) and Boussinesq 

(momentum) coefficients. After evaluating the discharge and the velocity correction 

coefficients, their interaction is investigated computing the specific energy and 

momentum functions of gradually-varied flow in open channels. Critical flow 

computations are presented using the energy and the momentum equations; and the 

impact of the discharge prediction method is then analyzed. Further, the discharge 

prediction methods are used to solve numerically the differential equations of gradually-

varied flow describing the flow profiles, using both energy and momentum principles. 

(ii) The second objective is the theoretical development of the higher-order energy 

and momentum equations for flow in compound channels. The computation of rapidly-

varied flow profiles using the higher-order energy and the dynamic momentum 

equations requires simultaneous consideration of the vertical distribution of non-

hydrostatic pressure and the nonuniform lateral velocity of flow in compound channels. 

A new theoretical development is introduced and the higher-order specific energy E and 

momentum S of flow in compound channels are presented for the first time. This 

permits to simulate the flow profiles in a wider range of flow conditions as compared to 

previous methods. In particular, the new theoretical equations are found to describe the 
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drawdown curve near the free overfall in a compound channel and the undulating flow 

around the normal depth. These flow profiles are not predicted by the gradually-varied 

flow formulations, showing the physical relevance of the new set of equations. The 

higher-order flow profiles are the result of a complex interaction between the non-

hydrostatic pressure, the nonuniformity of the velocity profile originating from the 

variation of hydraulic roughness and the linear momentum transfer between the main 

channel and the flood plains. 

Based on the analysis of gradually-varied flow, practical recommendations for the 

use in flood inundation hydraulic studies are given, whereas the new theoretical 

development of rapidly-varied flow opens a new research direction. 

2. Gradually-varied flow 

2.1. Discharge prediction methods 

The discharge prediction methods evaluated, in this study, are divided into two groups: 

single channel and separate channel methods (Table 1). For specific details of each 

method, one may consult the corresponding publications. Here, the primary focus is to 

the use of the methods. Single channel methods are based on the Manning equation to 

predict Q as 

 2/3 1/2
0

1

e

Q AR S
n

=  (1) 

where ne = equivalent manning coefficient for the entire cross-section, A = flow cross-

sectional area, R = hydraulic radius of the cross-section and S0 = channel slope. The 

Manning roughness ne is given by the equation (Chow, 1959; Prinos and Townsend, 

1984) 
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where pi, ni = wetted perimeter and Manning coefficient of the i-th subsection, 

respectively. Equation (2) is obtained assuming that the average velocity at each 

subsection is constant (Prinos and Townsend, 1984). In this work, two additional single 

channel methods by Dracos and Hardegger (1987) and French (1987), who used a 

weighted hydraulic radius proposal, are evaluated.  
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Nomenclature Method Reference 
SGCM Single channel method Prinos and Townsend (1984) 
SGCME Single channel method empirical hydraulic 

radius 
Dracos and Hardegger (1987) 

SGCMW Single channel method weighted hydraulic 
radius 

French (1987) 

SCMV Separate channel method 
vertical divisions 

Chow (1959) 

SCMH Separate channel method 
horizontal divisions 

Chatila and Townsend (1996) 

SCMI Separate channel method 
inward diagonal divisions 

Yen and Overton (1973) 

SCME Separate channel method 
extended side slope 

Chow (1959) 

SCMO Separate Channel Method 
Outward diagonal 

Chatila (1992) 

SCMASSP Separate channel method 
apparent shear stress Prinos 

Prinos and Townsend (1984) 

SCMASSW Separate channel method 
apparent shear stress Wormleaton 

Wormleaton et al. (1982) 

SCMASSM Separate channel method 
apparent shear stress Merrett 

Wormleaton and Merrett 
(1990) 

SCMA Separate channel method 
Ackers 

Ackers (1993) 

SCMK Separate channel method 
Khatua 

Khatua et al. (2011) 

Table 1. Discharge prediction methods 

 

The second group of methods divides the channel into main channel and floodplains 

by virtual division planes. Depending on the slope of the virtual planes and its location 

within the cross-section, a number of methods are available in the literature (SCMV, 

SCMH, SCMI, SCME and SCMO in Table 1) (Fig. 1a). In Fig. 1(a), the point-dot lines 

represent the virtual division planes (O=outwards, I=inwards, H=horizontal, 

V=Vertical, E=Extended) using in each method. Following Chatila and Townsend 

(1996), the discharge is predicted by 

 2/3 1/2
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Equation (3) neglects the turbulent stresses at virtual divisions, that are accounted 

for in other methods by using a momentum approach (methods SCMASSP, SCMASSW 

and SCMASSM in Table 1). A momentum balance yields an averaged velocity U in 

main channel and flood plain as (Wormleaton et al., 1982) 
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where ρ = density of water, f = Darcy-Weisbach friction factor, γ = specific weight, y = 

flood plain water depth (Fig.1) and τa = apparent shear stress acting at the virtual planes. 

Subscripts c and f refer to the main channel and floodplain, respectively. For the 

computation of Pc, Pf, Ac and Af in this method vertical division lines are taken. Note 

that these virtual division lines are excluded for the computation of both Pc and Pf. The 

apparent stress can be estimated by empirical relationships available in the literature 

(Rajaratnam and Ahmadi, 1981). From equations (4) and (5), the discharge for 

symmetrical flood plains is given by 

 2c c f fQ A U A U= +  (6) 

Two additional methods which originated from the study of Wormleaton et al. 

(1982) are due to Ackers (1993a, b) and Khatua et al. (2011), SCMA and SCMK, 

respectively (Table 1). Ackers (1993a, b) improved discharge prediction by introducing 

a corrector factor which depends on the relative depth between the main channel and the 

flood plain. Khatua et al. (2011) developed two wetted perimeter coefficients derived 

from a new momentum transfer approach at the interfaces. These coefficients, Xc and Xf, 

are 
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where λ=4.1045(100Af/A)0.6917, which is an empirical correlation. The discharge is then 

given by 
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Fig. 1. Compound channel flow definition sketch (a) cross-section, (b) longitudinal profile 

2.2. Velocity correction coefficients 

The roughness variation in a compound channel section provokes a nonuniform lateral 

velocity distribution. The kinetic energy correction coefficient (or Coriolis coefficient) α 

is given by (Blalock and Sturm, 1981; Field et al., 1998) 
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∑∫
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where ui = velocity in a subsection, ia = area of a subsection and U=Q/A, that is the 

mean flow velocity of the whole section. The momentum correction coefficient (or 

Boussinesq coefficient) β coefficient is (Chaudhry and Bhallamudi, 1988; Field et al., 

1998) 
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For a given discharge prediction method, the discharge in each subsection ui can be 

determined and therefore, α and β. The correction coefficients are needed to compute 

the specific energy (E) and momentum (S) functions, and thus, the flow profiles h=h(x), 

where x = streamwise distance (Fig. 1b). 
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2.3. Energy equation 

The specific energy (E) of gradually-varied flow in open channels is defined as 

(Montes, 1998; Sturm, 2001; Chaudhry, 2008; Dey, 2014) 

 
2

22

Q
E h

gA
α= +  (12) 

where h = maximum water depth in the main channel (= y+y1) [Fig. 1(b)] and g = 

gravitational acceleration. In Eq. (12), the channel slope is assumed to be small, as usual 

for most of the river flows. For a sloping channel, the gravity term h in Eq. (12) can be 

simply replaced by the pressure head hcosθ, where θ = angle of channel bed with the 

horizontal (Chow, 1959). Introducing Eq. (12) into the one-dimensional energy balance 

(Montes, 1998; Sturm, 2001) 
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results in (Blalock and Sturm, 1981; Sturm and Sadiq, 1996; Jain, 2001) 
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where Se = gradient of dissipated energy, T = free surface width and Fα = compound 

channel Froude number based on the specific energy. The latter was approximated by 

Blalock and Sturm (1981) as  
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where 
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In the equations above, ti = subsection top width, pi = subsection wetted perimeter, ri 

= subsection hydraulic radius, ik  = subsection conveyance [= (1/ni)air i
2/3], K = total 

conveyance of the flow section and ni = subsection n. Compound channels may exhibit 

different flow regimes in the plane of the cross-section, that is, subcritical or 

supercritical flow may exist in the same flow section (Lee et al., 2002; Kordi et al., 

2009). However, this analysis relates to the local 2D flow conditions in a channel cross-

section; whereas for one-dimensional computations, changes in flow state are 

mathematically described by the bulk cross-sectional Froude number given by Eq. (15), 

and not by a local Froude number valid for different points in a section (Blalock and 

Sturm, 1981, 1983; Costabile and Macchione, 2012). 

2.4. Momentum equation 

The specific momentum (S) of gradually-varied flow in open channels is (Montes, 1998; 

Sturm, 2001; Chaudhry, 2008; Dey, 2014) 
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gA
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where z = distance from the free surface to the centroid of the section. The gradually-

varied flow equation from the momentum approach is obtained inserting Eq. (19) into 

the streamwise momentum balance (Field et al., 1998) 
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where Sf = friction slope, resulting in  
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where Fβ = compound channel Froude number based on the momentum principle. It 

should be noted that the definition of Fβ in Eq. (21) arises mathematically from the 

momentum balance equation. It can be demonstrated that dS/dh=1−Fβ
2. Chaudhry and 

Bhallamudi (1988) defined a compound channel Froude number Fc based on the 

characteristics lines of the unsteady momentum equation (see Appendix I). The Fc 

defined by them has been widely accepted as the compound channel Froude number 

based on the momentum principle. Costabile and Macchione (2012) recently re-derived 
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Fc [Eq. (37), Appendix I)] and used it to produce a critical flow boundary condition to 

solve the unsteady, gradually-varied compound channel equations. It is found that the Fc 

as defined by Chaudhry and Bhallamudi (1988) is relevant to obtain an expression for 

critical depth computations (Fc=1), but it cannot be used to perform flow profile 

computations using Eq. (21) as dh/dx=(So−Sf)/(1−Fc
2). Instead, Fβ in Eq. (21) is the 

general Froude number for compound channels relevant to flow profile computations 

(see Appendix I). Following a similar development to Blalock and Sturm (1981), Fβ is 

estimated by the equation 
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The coefficients τ1, τ2 and τ3 and the corresponding theoretical development are 

presented in the Appendix I.  

2.5. Critical flow 

Setting Fα =1 in Eq. (15), one finds the critical flow condition from the energy equation 

as 
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that is the critical flow condition originating from the minimum specific energy 

(dE/dh=0) (Blalock and Sturm, 1981). Setting Fβ =1 in Eq. (22) yields 
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Equation (24) is the critical flow condition originating from the minimum 

momentum function (dS/dh=0). In general, Eqs. (23) and (24) are different; so the 

computed critical depths differ. Both methods produce different results for each 

discharge predictor. 

3. Rapidly-varied flow 

3.1. Introduction 

Gradually-varied flow computations using Eqs. (12) and (19) for E and S, respectively, 

are limited to portions of the flow domain, where the vertical acceleration can be 

neglected (Sturm, 2001; Chaudhry, 2008). This is not fulfilled at the drawdown curve of 
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free overfalls or at undulating wave trains, like those measured by Sturm and Sadiq 

(1996). To our knowledge, these flow profiles have so far not been modelled with a 

higher-order one-dimensional model. Higher-order free surface computations require 

resort to Boussinesq-type equations (Serre, 1953; Hager and Hutter, 1984a; Chaudhry, 

2008; Castro-Orgaz and Hager, 2011). This mathematical technique leads Serre (1953), 

Hager and Hutter (1984a, b), Hosada and Tada (1994), Khan and Steffler (1996) and 

Bose and Dey (2007) to explain a number of flow profiles exhibiting non-hydrostatic 

effects in rectangular channels, in addition to standard free surface profiles. However, 

the Serre (1953) equations for channels of arbitrary cross-sections are not available; so a 

higher-order theory has so far not been presented in the literature for compound open 

channels. Boussinesq-type equations are relevant for river flow processes, like the 

development of form resistance due to sand-waves, for both subcritical and supercritical 

flows associated with dunes and antidunes, respectively (Bose and Dey, 2009; Dey, 

2014).  

3.2. Pressure 

Consider a channel of arbitrary cross-section, where the origin of z is taken at the lowest 

point. Integrating the corresponding Euler equation along the depth, yields the pressure 

distribution as (Serre, 1953; Chaudhry, 2008) (Appendix II) 
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        (25) 

Using the depth-averaged velocity U, the continuity equations yields the vertical 

velocity profile as v=−(∂U/∂x)z. Inserting it into Eq. (25), yields (Appendix II) 
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        (26) 

where Ux=∂U/∂x and Uxx=∂
2U/∂x2. This pressure distribution is the basis to produce 

higher-order energy and momentum equations for flow in compound channels. Non-

hydrostatic contributions are given by the terms Ux and Uxx; so for significant variations 

of velocity, the hydrostatic pressure approach becomes invalid. 

3.3. Momentum equation 

The specific momentum S in flow at a cross-sectional area A is given by (Montes, 1998; 

Sturm, 2001) 
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Inserting Eq. (26) into Eq. (27) results in  
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where the integral term is the moment of inertia I of the cross-sectional area A. The 

derivatives of U=Q/A are given by 
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where hx=dh/dx, hxx=d2h/dx2, Ah=∂A/∂h and Ahh=∂
2A/∂h2. Inserting Eq. (29) into Eq. 

(28) results in higher-order momentum function S for flow in compound channels as 
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In Eq. (30) for the developed new Boussinesq-type theory, the significant lateral 

velocity variation of compound channel flow is accounted for by the coefficient β; 

whereas non-hydrostatic pressures are approximately accounted for on the basis of Eq. 

(26). To the best of the authors' knowledge, this theory is the one that first accounts for 

both effects in flows through compound channels. Thus, this development may be 

regarded as a first step to model the one-dimensional rapidly-varied flow profiles in 

compound channels. More rigorous theories can be constructed by studying the 

interaction of the lateral velocity profile with the vertical non-hydrostatic pressure. 

Limitations of Eq. (26) are stated in Appendix II, thereby opening a new research 

direction on the problems of free surface flow computation in compound channels. If 

Eq. (30) is particularized to a flow with no-lateral velocity variation (β=1, that is, a 

simple channel flow), the resulting equation applies for a channel cross-sectional of 

general geometry. Also, this development seems to have been not given an attention, 

thereby indicating that the Boussinesq-type equations available in other works are only 

applicable to rectangular cross-sections. 
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3.4. Energy equation 

The specific energy E in open channel flow is given by the general equation (Montes, 

1998; Sturm, 2001) 
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Following a similar development to that used with the momentum equation, E can 

be written as function of the derivatives of U, using the functions for p and v as 
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Also, after using Eqs. (29), the higher-order specific energy for flow in compound 

channels is 
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      (33) 

Equations (30) and (33) are the higher-order expressions for E and S in flow through 

compound channels, thereby generalizing Serre (1953) theory. Inserting Eqs. (33) and 

(30) into Eqs. (13) and (20), respectively, results in higher-order energy and momentum 

models for flow in compound channels. Compared to the first-order equations of 

gradually-varied flow [Eqs. (14) or (21)], the higher-order model results in a third-order 

differential equation. Comparatively, additional boundary conditions are thus required. 

Non-hydrostatic pressure is modelled by the terms d2h/dx2 and (dh/dx)2 inside the 

brackets of Eqs. (30) and (33). Thus, in Eqs. (30) and (33), the lateral variation of 

velocity in the compound channel is accounted for by α and β; whereas the non-

hydrostatic pressure is modelled by the higher-order derivative terms. These equations 

apply to one-dimensional flow with non-hydrostatic pressure in compound channels, 

that is, without lateral variation of the free surface. If the free surface in the main 

channel falls beyond certain limit, a lateral free surface gradient appears, and the flow in 

main channel and flood plain must be analyzed separately (Dey and Lambert, 2006). In 

this case, the flow cannot be tackled with a one-dimensional approach as presented 

herein.  
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3.5. Simplifications 

For a rectangular channel, A=b1h and Eqs. (30) and (33) reduce to 
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which are the higher-order E and S equations currently available (Hager and Hutter, 

1984a; Montes 1998; Castro-Orgaz and Hager, 2011). However, these are not valid for 

other channel cross-sections, including compound channels. It highlights that a 

generalized result is missing so far for the flow in compound channels and in general, 

for open channel flow of arbitrary cross-sectional shapes. 

4. Results 

4.1. General 

Prinos (1985) laboratory data is used to evaluate thirteen discharge prediction methods 

by computing errors in the prediction of discharge, velocity distribution coefficients, 

specific energy and momentum. Yuen (1989) data is used to evaluate the critical depth 

computations, and the performance of the discharge predictors in free surface 

computations using energy and momentum equations is evaluated using the 

experimental data of Sturm and Sadiq (1996). 

4.2. Discharge 

Prinos (1985) made experiments in a 12.2 m long flume of trapezoidal section, 0.102 m 

deep, with 2V:1H side slopes and base widths of 0.203, 0.305 and 0.406 m. The channel 

slope in the experiments was 0.0003, n1=0.011 and n2 varied from 0.011 to 0.022. This 

data is used to evaluate the discharge prediction error as 
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where e refers to estimation and o to observed value. The results are plotted in Fig. 2 for 

the experiments of Prinos’ (1985) dataset corresponding to n2/n1=2, where the relative 

flood plain depth is yr=y/h. Results indicate that the error is considerable and even 

higher than 40% for the SCMO method. Single-channel schemes are demonstrated to 
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perform poorly and so is the SCMV method. The analysis of Fig. 2, and that of the 

remaining part of Prinos dataset (1985) for n2/n1=1, 1.27 and 1.64, that are not presented 

herein for brevity, essentially indicate that the SCMASSM performs the best among all 

the methods.  

 

Fig. 2. Discharge errors %Q∆  as function of ry  

4.3. Velocity correction coefficients 

Equations (10) and (11) are used to compute α and β using the predicted values of 

discharge in the main channel and the flood plains. Both discharges are also available 

from the experimental measurements of Prinos (1985), permitting to estimate the values 

of α and β experimentally. Error indexes ∆α% and ∆β% analogue to Eq. (36) are 

computed and the results are depicted in Figs. 3 and 4. Errors in discharge prediction are 

transmitted to the computation of velocity correction coefficients. The magnitude of 

errors is so large that it confirms that the discharge prediction method has a significant 

effect on the estimation of velocity correction coefficients. The SCMASSM method 

performs well in this test.  
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Fig. 3. Coriolis coefficient errors %α∆  as function of ry  

 

 

Fig. 4. Boussinesq coefficient errors %β∆  as function of ry  

4.4. Specific energy and momentum 

With the computed values of Q, α and β used to plot Figs. 2–4, the specific energy E 

and momentum S are evaluated using Eqs. (12) and (19), respectively. Experimental 

values of the same three variables permit the corresponding computation of E and S, 

from which error indexes ∆E% and ∆S% are computed and plotted in Figs. 5 and 6. 

Errors in discharge prediction and velocity correction coefficients computation are 

transmitted to the computation of energy and momentum fluxes. Figure 5 reveals that 

the error in E is generally small and that in S is higher, although both are of small 
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magnitude. It indicates that the flow phenomena in compound channels based on 

E=constant (i.e. channel transitions in subcritical flow) may not be very sensitive to the 

discharge prediction method. Other problems based on S=const, like the hydraulic jump, 

could be more sensitive. These errors are potentially transmitted to the flow profile 

computations, when the dynamical equations stating conservation of energy and 

momentum fluxes are used. Although errors in E and S are small, the free surface 

profile computations depend on the estimations of Se(Q) and Sf(Q). The interaction of 

these terms [see Eqs. (13) and (20)] with E(Q) and S(Q) could not produce accurate free 

surface profile predictions. This is examined in the next section. The SCMASSM 

method gives errors close to zero for both E and S. 

 

Fig. 5. Specific energy errors %E∆  as function of ry  
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Fig. 6. Specific momentum errors %S∆  as function of ry  

4.5. Critical depth computation 

Critical depth is computed using Eqs. (23) and (24) for each discharge prediction 

method. Results from the energy and the momentum principles are found to differ, but 

the divergence is in general small. Some of the simulations performed are plotted in Fig. 

6, and compared with the experimental data of Yuen (1989). Critical depth hc and Q are 

scaled using y1 and Qu, respectively. The latter is defined as the upper discharge at 

which two critical depths exit (Sturm and Sadiq, 1996). The results are, in general, in 

agreement with the experimental data and suggest that both the energy and the 

momentum equations yield similar accuracy, regardless the discharge prediction 

methods. 
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Fig. 7. Dimensionless critical depth hc/y1 as function of Q/Qu calculated using the specific energy and 
momentum 

4.6. Gradually-varied free surface profiles  

An experimental time-averaged free surface profile for Q=0.113m3/s measured by 

Sturm and Sadiq (1996) is considered in Fig. 8. The measurements were taken in a 17.1 

m long flume with b1=0.267m, b2=0.934m, y1=0.152m and S0=0.005. The measured free 

surface profile in Fig. 8 corresponds to a tailwater level position of 0.243 m. Free 

surface profiles are simulated using the energy principle with the thirteen discharge 

prediction methods for the model closure of the gradient of dissipated energy Se(Q) and 

the velocity correction coefficient α(Q). Solution of Eq. (14) is done using the 4th-order 

Runge Kutta method (Press et al., 2007). The boundary condition to solve the first-order 

differential equation is taken at the experimental point in the tailwater section. The 

Manning coefficient n is computed for each subsection using Keulegan's equation 

(Sturm and Sadiq, 1996). Initial computations considering dn/dh revealed a negligible 

impact of this term and it is not further considered for the final analysis presented 

herein. Representative results for some of the methods are shown in Figs. 8(a–d). It can 

be observed that the interaction of main channel and flood plain is extremely important 

to model the flow profiles adequately. The method of Khatua et al. (2011) performs 

quite well. The role of the interaction of the main channel and the flood plains is clearly 

depicted in Fig. 8(e), where the flow profiles are computed using the standard vertical 

division method and then compared with same simulations using 1.19n1 as the Manning 
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n in the main channel. This empirical factor in n1 was introduced by Sturm and Sadiq 

(1996) to account empirically for the linear momentum transfer effects between the 

main channel and the flood plains in their experiments. Thus, Fig. 8(e) reveals that 

accounting for the momentum transfer results in very accurate simulations, or that if this 

interaction is not accounted for flow profile computation, predictions may be highly 

unrealistic. 

The same computations are repeated using the momentum approach. Equation (21) 

is numerically integrated and the results are plotted in Figs. 8(a–d) for the different 

discharge prediction methods. Predicted free surface levels using the momentum 

equation are found to be overall in better agreement with the measured data than those 

using the energy equation for the same method. Energy and momentum simulations for 

other free surface profiles measured by Sturm and Sadiq (1996) are in conformity with 

this observation. The method SCMASSM gives good predictions for the free surface 

profile [Fig. 8(e)], but the method SCMK performs better [Fig. 8(d)]. Given the small 

deviations between both methods using the momentum principle and the better 

performance of SCMASSM in the former evaluations, it can be proposed for the flow 

profile computations. 
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Fig. 8. Gradually-varied water surface profiles using the energy and momentum equations 

4.7. Rapidly-varied free surface profiles 

An experimental free surface profile for a free overfall for Q=0.113m3/s measured by 

Sturm and Sadiq (1996) is presented in Fig. 9. The discharge is outside the range of 

multiple critical depths, and the flow profile is therefore one-dimensional. It is well 

known that the gradually-varied flow computations cannot tackle this kind of flow 

profile (Hager and Hutter, 1984a, b), where streamlines at the fall are highly curvilinear. 

In addition, upstream of the free overfall, a wave train around the normal depth is 

revealed from the experiments. This wavy free surface cannot be explained by using the 

gradually-varied flow theory (Hager and Hutter, 1984b). Simulations are performed 

using the new higher-order specific energy equation given by Eq. (33). Variation of E 

along the x-direction is generally given by the dynamic equation, Eq. (13). Both 

equations can be written as a system of three first-order ordinary differential equations 
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for the unknowns h(x), hx(x) and E(x), that can be solved using the 4th-order Runge-

Kutta method (Press et al., 2007). Three boundary conditions are needed to solve the 

resulting system of differential equations. The flow depth at the first experimental point 

(x=2.47 m) is used as a boundary condition. The flow depth at the brink of the free 

overfall (x=17.1 m) is used as a second boundary condition. The specific energy at the 

boundary section upstream from the free overfall is estimated from Eq. (33), neglecting 

the flow curvature. At this section, however, hx is unknown. The system of equations is 

then solved using a shooting approach. A value of hx is assumed at the upstream flow 

section and the system of equations is then integrated up to the brink section. The flow 

depth computed there is, therefore, compared with the measured value; and if the results 

do not match, then the process is repeated with a new value of hx. The process continues 

until a convergence within a prescribed tolerance is reached. Computations are done 

using the vertical division method without an interaction of main channel and flood 

plains, and also modelling the interaction effects with the main channel Manning n 

adjusted as 1.19n1. Computational results are presented in Fig. 9. The first notable 

aspect is that the higher-order energy model with interaction effects is capable to 

produce a realistic flow profile taking the upstream and brink depths as boundary 

conditions. Upstream of the brink, a wave train appears with oscillations around the 

normal depth with wave-amplitude that is dissipated as the flow approaches to the brink 

section. Experimental measurements indicate also an upstream wave train that is 

attenuated as the flow approaches to the brink. The agreement between the measured 

and the simulated profiles can only be regarded as fair, but the main flow features of the 

flow, namely, the wave train and the drawdown curve at the overfall are correctly 

accounted for by the new higher-order theory. Predicted wave-amplitude is also quite 

close to the experimental measurements. The flow profile without interaction effects is 

unrealistic, indicating the important interaction of the lateral momentum transfer and the 

streamwise energy balance when the vertical velocity is accounted for. 

Following the same technique, the higher-order specific momentum, Eq. (30), is 

solved coupled with Eq. (20) for the variation of S in the x-direction. Results for the 

same test case are presented in Fig. 9 with and without interaction effects. Likewise the 

energy computations, the momentum approach with interaction effects provides a 

realistic flow profile; whereas the results without interaction effects are not in 

agreement with the experimental results. Given the reduced wave-amplitude, some 
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improvements of the momentum approach over energy formulations appear to be 

evident.  

 

Fig. 9. Rapidly-varied water surface profiles using the energy and momentum equations for flow profile 
with free overfall 

Another test case for the same discharge and a different tailwater level is considered 

in Fig. 10, where the corresponding simulations using the energy and the momentum 

higher-order models are plotted, respectively. In this experimental configuration, the 

tailgate was regulated to raise the tailwater level. No free overfall exits in this case, and 

the downstream boundary condition is taken as the free surface level at the tailwater 

section. This flow problem is presented in Fig. 8 using the gradually-varied flow theory. 

In the current test, the upstream wave train is attenuated in the downstream direction 

due to friction, but close to the tailwater section, a wavy flow profile is still evident. 

Wave-amplitude of the simulations is in fair agreement with experimental observations. 

Like the former test case (Fig. 9), the results without interaction effects between the 

main channel and the flood plain are unrealistic, and simulations using the momentum 

principle appear to be more accurate. 
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Fig. 10. Rapidly-varied water surface profiles using the energy and momentum equations for flow profile 
with high tailwater level 

To show the improvement of higher-order energy and momentum models over 

gradually-varied flow theory, both models are compared in Fig. 11 for the flow profile 

of a free overfall. The simulated rapidly-varied flow profile using the energy equation 

with interaction effects is presented along with the experimental results. The gradually-

varied flow equation, Eq. (14), is solved with interaction effects (1.19n1) taking the 

critical depth as a boundary condition. Computations started in the upstream direction at 

a distance 4hc from the free overfall (Chow, 1959). Comparison of both theories in Fig. 

15 indicates that the gradually-varied flow theory simulates a monotonic increase in 

flow profiles in the upstream direction, being asymptotic to the uniform flow condition. 

Experimental observations, however, show clear oscillations around the normal depth, 

that in turn, is predicted theoretically by the rapidly-varied flow theory. Gradually-

varied flow computations start away from the free overfall, given that this model cannot 

simulate the flow profiles there. In contrast, the new rapidly-varied flow theory 

simulates the drawdown curve near the free overfall. Overall, the gradually-varied flow 

theory can only be used to simulate the flow in a limited portion of the computational 

domain with the results that are not physically in agreement with the observations. In 

contrast, the rapidly-varied flow model simulates the flow in the whole computational 

domain and provides results that are physically in agreement with the observations. The 

relevant simulations using the momentum principle are presented in Fig. 11, supporting 

the previous discussion.  
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Fig. 11. Comparison of gradually-varied and rapidly-varied flow theories using the energy and 
momentum equations for flow profile with free overfall 

In this study a spatial step size of 1mm was selected for application of the Runge-

Kutta integration. A reduction of the spatial step below this value produced identical 

results, thereby indicating that all computations presented using gradually varied and 

rapidly-varied flow models are grid size independent. 

5. Conclusions 
In this study, thirteen discharge prediction methods are used to evaluate its impact on 

the computations of gradually-varied flow in compound channels. It is found that the 

interaction of main channel and flood plains is not only essential for discharge 

prediction, but also for the computation of velocity correction coefficients and free 

surface profiles. A method of interaction is therefore required, and the method of 

Wormleaton and Merrett (1990) is found to perform well. However, the impact on 

energy and momentum fluxes is small. In general, the dynamic computations based on 

momentum provide better results than the relevant simulations using the energy 

principle. It is suggested that the gradually-varied flow computations in natural channels 

should be a momentum-based computation accounting for the interaction effects. The 

results presented herein could assist to revise the codes used in hydrological 

computations, like HEC-RAS. A generalized definition of the compound channel 

Froude number based on the momentum equation is given for that purpose. 
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Gradually-varied flow computations can only be regarded as approximate 

mathematical solutions, not necessarily in agreement with the real physical behavior of 

the flow. A new higher-order theory for dynamical computations by using energy and 

momentum equations in flows through compound channels is presented. The new 

theory was found to describe the free surface profile in compound channels at the 

drawdown of free overfalls and at the wave train around the normal depth. These 

physical aspects cannot be modeled by using the gradually-varied flow computations as 

detailed herein. Results using a momentum approach are found to be better than using 

the energy equation. The new higher-order theory opens a new research direction in 

flows through compound channels, so far limited to the gradually-varied flow 

conditions only. More experimental research is needed with detailed observation of the 

flow profiles. The new theory then could be further expanded to more complex flow 

conditions, including depth-averaged two-dimensional simulations in the horizontal 

plane, and mobile-bed conditions with sediment transport.  
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Appendix A. Momentum based compound channel Froude number 
Chaudhry and Bhallamudi (1988) defined the compound channel Froude number based 

on the characteristic directions of the unsteady momentum equation as 
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Using U=Q/A, Eq. (37) can be rewritten after some manipulations as 
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The definition of Fβ for flow profile computations is 
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which is inserted into Eq. (38) to produce 
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For critical flow conditions given by vertical characteristic lines, that is, dx/dt=0, 

Fc=1 (Chaudhry and Bhallamudi, 1988). Equation (40) then yields Fβ=1. It means that 

both the momentum based compound channel Froude numbers results in an identical 

critical flow condition, demonstrating the equivalence of dx/dt=0 and dS/dh=0 to define 

the critical flow. However, both Froude numbers are not equivalent for flow conditions 

different from critical. Therefore, the correct momentum based Froude number in 

compound channels for the flow profile computations is given by Eq. (39). Following 

the developments of Blalock and Sturm (1981, 1983) for the specific energy, Fβ can be 

written as 
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Appendix B. Pressure distribution in rapidly-varied flow 
The Euler equation in z-direction, that is normal to the channel bed, is (Serre, 1953, 

Montes, 1998) (Fig. 1b) 

1
cos

u v v v p

g x g z g z
θ

ρ
∂ ∂ ∂+ + = −
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            (45) 

which can be integrated to obtain the pressure distribution. Using the differential 

identity 
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Eq. (45) is then rewritten as 
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Further, using the continuity equation 
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Eq. (47) is transformed to 
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which is integrated to yield 
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Here, the Leibnitz rule and the bed kinematic boundary condition vs(z=0)=0 are 

used. To integrate Eq. (50), an approximation for the velocity components (u, v) is 

required. In this research, the simplest basic approach for flow in compound channels is 

elaborated. In flow through a single channel having significant curvature in a vertical 

plane, it is permissible to assume that the vertical variation of flow velocity is neglected; 

thereby the approximation of u by its depth-averaged value U is given by 
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U u z z
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However, the significant departure of the vertical distribution of pressure from the 

hydrostatic law must be accounted for. This is the usual approximation when deriving 

Boussinesq-type equations in open channel flows (Serre, 1953; Montes, 1998; 

Chaudhry, 2008). The approximation u≈U is in agreement with the gradually-varied 

flow computations, where the depth-averaged velocity is used in the main channel and 

the flood plains. Using this approach, the continuity equations yields the vertical 

velocity profile from Eq. (48) as 

    
U

v z
x
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          (52) 

Inserting it into Eq. (50), yields  
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Integrating Eq. (53), results in 
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where Ux=∂U/∂x and Uxx=∂
2U/∂x2. In flow through compound channels, there is a 

significant variation of the depth-averaged velocity U along the cross-section (from the 

main channel to the flood plain). In the new Boussinesq-type equations, this effect is 

accounted for, like in former gradually-varied flow computations, using energy (α) and 

momentum (β) coefficients. For the inclusion of non-hydrostatic effects in the one-

dimensional model equations, the simplest approach is adopted, thereby using the cross-

sectional averaged velocity as an approximation to find a mathematically closed form of 

the pressure distribution. Then, the depth-averaged continuity yields  

                 ( ) 0x xUh hU Uh
x

∂ = + =
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           (55) 

Inserting Eq. (55) into Eq. (54), finally yileds 

     ( ) ( )
2 2

2cos
2x xx

p h z
h z U UU

g
θ

γ
 −= − + −  
 

       (56) 



 - 47 - 

6. Notation 
A = total flow area (m2) 

Ah = ∂A/∂h (m) 

Ahh = ∂2A/∂h2 (–) 

ai =  subsection flow area (m2) 

b1 = main channel bottom width (m) 

b2 = floodplain bottom width (m) 

E = specific energy (m) 

F = friction factor (–) 

Fα = compound channel Froude number based on specific energy (–) 

Fβ = compound channel Froude number based on specific momentum (–) 

Fc = compound channel Froude number (–) 

g = gravitational acceleration (m/s2) 

h = maximum flow depth in compound section (m) 

hc = critical depth (m) 

I =  moment of inertia of cross-section (m4) 

K = total conveyance (m3/s) 

ki = subsection conveyance (m3/s) 

Q = total discharge (m3/s) 

Qu = upper discharge for multiple critical depths (m3/s) 

n  = Manning coefficient (m−1/3s) 

ni  = subsection Manning coefficient (m−1/3s) 

n1 = main channel Manning coefficient (m−1/3s) 

n2 = floodplain Manning coefficient (m−1/3s) 

ne = equivalent Manning coefficient (m−1/3s) 

P = total wetted perimeter (m) 

pi = subsection wetted perimeter (m) 

p =pressure (Pa) 

R = hydraulic radius (m) 

r i = subsection hydraulic radius (m) 

S  = specific momentum (m3) 

S0  = channel slope (-) 

Se  = gradient of dissipated energy (–) 
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Sf  = friction slope (–) 

t = time (s) 

T = total top width (m) 

ti = subsection top width (m/s) 

U = mean flow velocity (m/s) 

Uc = mean flow velocity in main channel (m/s) 

Uf = mean flow velocity in flood plain (m/s) 

ui = subsection flow velocity (m/s) 

u = point velocity (m/s) 

v = vertical velocity (m/s) 

X  = wetted perimeter corrector parameter (m) 

x = longitudinal coordinate along the channel bed (m) 

y  = floodplain depth (m) 

y1  = main channel bank-full depth (m) 

yr  = relative compound channel depth (–) 

z = coordinate normal to the channel bed, positive upwards (m) 

α  = Coriolis coefficient (–) 

β  = Boussinesq coefficient (–) 

λ = shear force percentage for floodplain perimeter (–) 

γ = specific weight of water (N/m3) 

ρ  = density of water (kg/m3) 

σ1, σ2, σ3 = compound channel Froude number terms in energy equation (–)  

τ1, τ2, τ3 = compound channel Froude number terms in momentum equation (–)  

τa  =  apparent shear stress (Pa) 

z  = distance from the free surface to the total-section centroid (m) 

θ = angle of channel bed with the horizontal (–) 
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Abstract 
Modeling of dam break flows is frequently required in civil and environmental 

engineering, given the risk associated with this catastrophic flow. Typically, model 

predictions are conducted using the Saint-Venant hydrostatic theory, which, however, 

can lead to unrealistic predictions. The prediction of the amplitude of non-hydrostatic 

waves generated during dam break flows is an important engineering problem, given the 

risk of overtopping of flow in manmade canals, or the increasing of flooding areas in 

natural watercourses. The weakly non-dispersive and fully non-linear Serre equations 

are suitable choice for modelling these flows, but there is a lack of a systematic 

assessment of this system of equations for dam break flow modelling reported in the 

literature. In this paper, the Serre equations are applied to dam break flows over 

horizontal rigid bottoms, whereas in the second part of this research, the non-hydrostatic 

dam break waves over erodible beds are considered. Here, a high resolution finite 

volume model is developed, where a suitable time stepping scheme is systematically 

investigated. The impact of the vertical pressure distribution shape, non-linear terms in 

the equations, and the enhancement of the linear frequency dispersion are examined in 

detail. The model is successfully tested against the experimental data, a solitary wave 
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propagation test, and the 3D simulations. The results obtained from finite volume 

method are further compared with those obtained from finite element and finite 

difference methods available in the literature. 

1. Introduction  
Dam break waves originate from overtopping or foundation failure among others, 

thereby leading to a natural hazard that may cause huge damage. Investigation of non-

hydrostatic pressure distribution effects on dam break flows is not only relevant to the 

real failure of dams, but also to the instantaneous gate operations in canals (Mignot and 

Cienfuegos 2009). Dam break flood waves are typically modelled using the Saint-

Venant equations (De Almeida and Franco 1994; Chaudhry 2008). These flow 

equations imply a hydrostatic pressure distribution and a uniform streamwise velocity 

distribution. For engineering practice, this approach is routinely adopted, typically using 

finite difference (Chaudhry 2008) or finite volume schemes (Toro 2001) to find a 

numerical solution. The discontinous Galerkin method is becoming a useful tool, 

combining in a hybrid technique the advantages of the finite element and finite volume 

methods (Khan and Lai 2014). However, the hydrostatic pressure approach can lead to 

physically unrealistic results (Kim and Lynett 2011). Dam break waves propagate both 

in the upstream and the downstream directions forming a rarefaction wave and a bore 

front (Fig. 1) (Stoker 1958). The Saint-Venant equations predict a parabolic rarefaction 

fan and a sharp shock front. However, the non-hydrostatic pressure provokes 

undulations on the flow profile, not predicted by the Saint-Venant equations (Soares-

Frazão and Zech 2002; Kim and Lynett 2011). Some of the Boussinesq-type models 

available in the literature suffer from two limitations, namely, the modelling of weak 

curvature effects (small amplitude waves) and non-breaking wave conditions. 

Therefore, it is necessary to consider full non-linearity (arbitrary amplitude waves) and 

wave breaking model in the Boussinesq-type equations. Mohapatra and Chaudhry 

(2004) ellaborated a higher order prediction of dam break flood waves by applying a 

finite-difference predictor-corrector scheme to the Serre equations. The Serre equations 

are a Boussinesq-type system of equations for modelling weakly dispersive and fully 

non-linear non-hydrostatic waves (Serre 1953; Su and Gardner 1969; Batherlemy 2004). 

These equations were originally derived by Serre (1953) assuming that the velocity field 

is represented by the depth-averaged horizontal velocity, and a linear vertical velocity 

profile. Later, Su and Gardner (1969) re-derived the systems based on the potential flow 
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assumption, and demonstrated that the horizontal velocity profile of the Serre equations 

is non-uniform. Using a Picard iteration method, Castro-Orgaz and Hager (2014) found 

that this profile is parabolic. Solving the Serre equations, Mohapatra and Chaudhry 

(2004) found that the position of the shock front was very close to that predicted by the 

Saint-Venant equations. Mignot and Cienfuegos (2009) applied a finite volume model 

to the Serre equations and simulated dam break flows accounting for the wave breaking 

based on diffusivity-like terms. They obtained good results. The frequency dispersion 

for a shallow flow implies that the celerity of propagation of small amplitude Serre-type 

waves is different from that of the shallow water (hydrostatic) waves, and close to the 

exact relation obtained from the Euler equations (Nwogu 1993; Batherlemy 2004). 

However, in shallow flow, the non-linearity implicit in the Serre equations is by far 

more important than the frequency dispersion. It means that finite amplitude waves are 

generated at the shock front, provoking higher flow depths at the wave front than those 

predicted by the Saint-Venant theory. Problems like overtopping of flow in canals due 

to sudden gate operation (Mignot and Cienfuegos 2009) or the spreading of the flood 

inundation area in rivers are therefore to be expected. Further, structures implanted in a 

natural watercourse, such as bridge piers, experiences dynamic forces as the flood wave 

propagates, where non-hydrostatic pressure can play a leading role. Therefore, it is 

preferable to compute dam break flood waves using non-hydrostatic models. If under a 

given flow condition the flood wave is essentially hydrostatic, then this should be an 

automatic result of the non-hydrostatic model rather than an external patching of the 

modeller between the hydrostatic and the non-hydrostatic computations. The non-

hydrostatic model should therefore account for a smooth transition from non-hydrostatic 

to hydrostatic flow conditions. This issue was extensively investigated in coastal 

engineering applications for the propagation of breaking waves (Tonelli and Petti 2009; 

Bonneton et al. 2011; Tissier et al. 2012; Shi et al. 2012). The computational approach 

is based on the assumption that when the dispersive terms become less important, the 

results from the Boussinesq equations should collapse to those from the Saint Venant 

equations. 
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Fig. 1. Definition sketch of non-hydrostatic dam break flow 

Three-dimensional (3D) numerical computations are used to account for non-

hydrostatic flow simulations (Marsooli and Wu 2014). However, the depth-averaged 

models are also used to simulate non-hydrostatic open channel flows (Khan and Steffler 

1996a,b), which are computationally less expensive. Despite the potentiality of the 

Serre-type models to simulate the dam break flood waves, only the isolated work of 

Mignot and Cienfuegos (2009) is available. However, issues such as the selection of the 

time-stepping scheme, enhancement of the dispersion relation, and the shape of the 

vertical pressure distribution are not systematically assessed in a single and structured 

work. Further, for the case of dam break waves over erodible beds, to the best of the 

authors’ knowledge, there is not a single study considering the non-hydrostatic 

simulations with depth-averaged models. This research is organized in two companion 

papers. In this paper, the non-hydrostatic dam break waves over rigid bottoms are 

systematically investigated as described below. In Cantero-Chinchilla et al. (2016, 

companion paper) the physical equations and numerical schemes are extended to 

simulate the non-hydrostatic dam break flow waves over erodible beds. 

Here, we consider the propagation of dam break flood waves over rigid and 

horizontal bottoms. First, the physical equations need to be assessed, given that a 

number of “Boussinesq-type” models can be used a priori. The following issues are 

therefore in need of assessment: 

1. The classical Serre equations are obtained assuming that the streamwise velocity 

distribution is uniform with depth (Serre 1953; Castro-Orgaz et al. 2015), thereby 

leading to a parabolic pressure distribution along the vertical direction. The Serre 

equations are formulated in terms of the depth-averaged horizontal velocity, but not 

necessarily assuming a uniform horizontal velocity distribution (Su and Gardner 1969; 
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Cienfuegos et al. 2006). If second order dispersive terms are disregarded, then the 

vertical distribution for horizontal velocity is uniform and the vertical distribution for 

vertical velocity is linear (Cienfuegos et al. 2006). However, other modelling 

approximations are considered in the literature, as the linear, non-hydrostatic, vertical 

pressure distribution (Khan and Steffler 1996a,b). Castro-Orgaz et al. (2015) found that 

the shape of the vertical pressure distribution can lead to a significant difference in 

results when the depth-averaged non-hydrostatic models are used. Therefore, the impact 

of the vertical pressure distribution in 1D computations needs to be investigated for 

modelling the dam break waves. 

2. For shallow water flows, the frequency dispersion is rather weak, given that the 

waves are long, with a wavelength typically greater than 6 times the flow depth (Steffler 

and Jin 1993). Thus, the wave amplitude prediction is the main engineering concern. 

The accurate prediction of the wave amplitude relies on the consideration of non-

hydrostatic terms in the Serre equations originating from the convective acceleration 

term in the Euler equations, like ∂2U/∂x2 and (∂U/∂x)2, where U is the depth-averaged 

velocity. However, various models available in the literature neglect some terms 

(Peregrine 1966; Nwogu 1993; Soares-Frazão and Zech 2002). 

3. The dam break waves lead to undulations near the bore front and rarefaction wave 

for a ratio of the downstream (hd) to upstream (hu) flow depth greater, approximately, 

than 0.45 (Fig. 1) (De Almeida and Franco 1994). For smaller values, wave breaking at 

the shock front progressively suppresses the undulations. Inviscid simulations of non-

hydrostatic waves using the Serre-type equations yield wave amplitudes that increase 

without bounds, given that the physical equations are unable to produce wave breaking. 

Therefore, a wave breaking model is needed to correctly propagate the dam break waves 

accounting for the change from a non-breaking to a breaking wave condition. This issue 

is extensively investigated in coastal engineering applications, where different wave 

breaking models are used (Schäffer et al. 1993; Kennedy et al. 2000; Cienfuegos et al. 

2010). However, this issue appears to be not specifically addressed in the dam break 

literature to the best of the authors’ knowledge. 

Secondly, a robust numerical scheme is needed, but there is no methodical 

recommendation to select it: 
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4. The isolated works of Mohapatra and Chaudhry (2004) and Kim and Lynett 

(2011) suggested very different numerical schemes, but no critical comparison is 

available. Mohapatra and Chaudhry (2004) proposed to use a high-order finite 

difference scheme where the mixed space-time derivatives are included in the scheme 

with a fractional step approach. The scheme used artificial viscosity to suppress 

spurious oscillations originating from the Gibbs phenomenon. It had the disadvantage 

that the determination of the artificial viscosity is case dependent, and, therefore, 

universal results cannot be generated. Kim and Lynett (2011) used Boussinesq-type 

equations with enhanced frequency dispersion following Nwogu (1993). Detailed 

discussions on the enhancing of frequency dispersion were given by Barthélemy (2004) 

and Cienfuegos et al. (2006). Kim and Lynett (2011) used the finite volume method, 

computing the numerical fluxes with an approximate Riemann solver. The solution was 

reconstructed at each time level using a high-order MUSCL. The cost of enhancing the 

linear dispersion relation is to solve a more complex system of physical equations as 

compared to the standard Serre equations. However, given that both systems are fully 

non-linear, it is unclear if the solution of this enhanced system under shallow flow 

conditions is really necessary. The use of frequency dispersion enhanced models using 

the Nwogu-type approach should therefore be examined. 

5. The performance of a Serre-type depth-averaged non-hydrostatic model heavily 

depends on the numerical scheme considered (Mohapatra and Chaudhry 2004; Kim et 

al. 2009; Kim and Lynett 2011; Mitsotakis et al. 2014). Mohapatra and Chaudhry 

(2004) applied the two-four finite difference scheme. In this scheme, numerical 

oscillations are suppressed by applying the artificial viscosity (Jameson et al. 1981). 

Mitsotakis et al. (2014) used the standard Galerkin finite element scheme and solved the 

Serre equations in dam break flows, obtaining accurate results. Higher-order finite 

volume schemes are reported in the literature. Kim et al. (2009) applied the fourth-order 

TVD monotone upstream centred scheme for conservation laws (MUSCL-TVD-4th) 

(Yamamoto and Daiguji 1993) to get a high resolution scheme for the spatial 

reconstructing of the flow variables at the control volume interfaces. Following Erduran 

et al. (2005), a high-resolution scheme is required to ensure that the dispersive terms are 

not of the same order of magnitude than the truncation errors originating from the 

leading Saint-Venant type terms (Abbott 1979). However, these higher-order spatial 

reconstruction schemes are used in ocean research, but not so typically for non-
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hydrostatic free surface flow problems in civil and environmental engineering. An 

exception is the work of Mignot and Cienfuegos (2009), who applied the finite volume 

model SERR-1D (Cienfuegos et al. 2006; 2010) to river flows with shocks. 

6. The time stepping method is a crucial component of a numerical scheme. Gottlieb 

and Shu (1998) developed high-order TVD Runge-Kutta (TVD-RK) schemes for 

hyperbolic problems. The third-order TVD-RK scheme (TVD-RK3th) was applied to 

dam break flows with satisfactory results (Li et al. 2013). The fourth-order TVD-RK 

scheme (TVD-RK4th) can also be used for the time stepping scheme coupled with the 

MUSCL-TVD-4th spatial reconstruction. Nevertheless, the TVD-RK methods usually 

require low values of the Courant-Friedrichs-Lewy number (CFL) for stability, which is 

a disadvantage in terms of computational work. The higher-order Adams-

Bashforth/Adams-Moulton (AB-AM) time stepping scheme (Wei and Kirby 1995; Wei 

et al. 1995; Kim et al. 2009; Kim and Lynett 2011) shows stability with moderate CFL 

values (typically greater than 0.5). It has accuracy to fourth-order. This time stepping 

scheme is also used in ocean research, but it is not commonly used in civil engineering. 

An exception is the work of Maleki and Khan (2015), where the efficiency and accuracy 

of several time-stepping schemes, including the Adams-Bashforth scheme, are 

evaluated for dam break flows using the Saint Venant equations. 

In this paper, the Serre-type equations for weakly dispersive and fully non-linear 

non-hydrostatic waves are presented as a function of a pressure distribution coefficient. 

A high resolution finite volume scheme is therefore presented, which is used to evaluate 

several time stepping methods. Once a suitable time stepping scheme is selected, the 

impacts of the pressure distribution coefficient and the non-linear terms are investigated. 

The simulations are used further to select a suitable wave breaking model. A 

generalized Serre model with enhanced linear frequency dispersion is then presented 

based on the potential velocity distribution obtained from the Picard iteration method, 

and used to test, if this improvement of the governing equations is relevant in shallow 

open channel flows. Potential velocity and pressure fields of the Serre equations are 

evaluated using the 2D distributions of a solitary wave test. The 1D simulations using 

the finite volume scheme presented here are compared with experimental data (Stansby 

et al. 1998), the analytical solution of a solitary wave propagation test, 3D simulations 

of the Reynolds averaged Navier-Stokes (RANS) equations (Marsooli and Wu 2014), 
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finite element simulations (Mitsotakis et al. 2014) and finite difference simulations 

(Mohapatra and Chaudhry 2004). 

2. Governing Equations 

2.1. Depth-Averaged Conservation Laws 

The depth-averaged conservation of mass and momentum equations for non-hydrostatic 

frictionless flow over a horizontal rigid bottom are (Castro-Orgaz et al. 2015) 
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where U, F and S = vector of unknowns, fluxes and source terms, respectively; h=flow 

depth; U=depth-averaged velocity; g=gravitational acceleration; ψ=non-hydrostatic 

term; m=pressure coefficient (4 for a linear pressure distribution and 3 for a parabolic 

pressure distribution); x=longitudinal coordinate; and t=time.  

The non-hydrostatic terms in Eq. (1) are usually treated as a source term S (Erduran 

et al. 2005; Soares-Frazão and Guinot 2008). Therefore, the vectors in Eq. (1) are 

rewritten for numerical modelling as 
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2.2. Non-Hydrostatic Source Term 

The pressure coefficient m depends on the mathematical law for the vertical pressure 

distribution (Castro-Orgaz et al. 2015). A parabolic pressure distribution gives m=3, 

whereas a linear vertical pressure distribution results in m=4. The case m=3 corresponds 

to the Serre equations (Serre 1953; De Almeida and Franco 1994; Mitsotakis et al. 

2014; Castro-Orgaz et al. 2015). The Boussinesq-type equations by Khan and Steffler 

(1996a,b) are a particular case for m=4 (Castro-Orgaz et al. 2015). Soares-Frazão and 

Zech (2002) and Soares-Frazão and Guinot (2008) developed a Boussinesq-type model 
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that is regained from Eq. (4) by expanding ∂ψ/∂x, neglecting the derivative products, 

and using m=3. The resulting source term vector is then 

 3 3 3

2 3

0

3

h U U
U

x t x

 
 =  ∂ ∂ +  ∂ ∂ ∂  

S . (5) 

This is not a fully non-nonlinear model, and its ability in predicting the wave amplitudes 

need to be evaluated. 

2.3. Wave Breaking 

The main computational tool used to account for the wave breaking is based on the 

assumption that if the non-hydrostatic terms are not important, then the results from the 

Boussinesq equations should collapse to those from the Saint Venant equations. 

Basically, it means that if a wave breaks, then the non-hydrostatic terms are switched-

off, and the Saint Venant equations are solved. Thus, the wave breaking energy 

dissipation is accounted for by the Rankine-Hugoniot conditions across the moving 

shocks modelled using the Saint Venant equations (Toro 2001). 

A first approximation for wave breaking is based on the results for undular 

hydraulic jumps. Wave breaking initiates based on the extended energy equation if 

(Hager and Hutter 1984), 

 
2

1

2
1 0

3
xx xhh hγ −= + ≤ , (6) 

where γ1= wave-breaking factor; hx =∂h/∂x; and hxx=∂
2h/∂x2. Eq. (6) states that the free 

surface velocity becomes zero or negative.  

Serre (1953) proposed the wave breaking condition  

 2
2 1 0xxhhγ = + ≤F , (7) 

where γ2=wave breaking factor; and F= Froude number [=U/(gh)1/2]. Eq. (7) states that 

the wave breaking initiates if a particle on the free surface separates due to the 

centripetal acceleration. If wave breaking conditions are fulfilled, based on either Eq. 

(6) or (7), in any node of the computational domain, the non-hydrostatic source terms 

are deactivated in the model. Therefore, at some nodes of the computational mesh, the 

full non-hydrostatic equations are solved, whereas at the breaking nodes, the Saint-
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Venant equations are applied. The wave breaking condition is checked at the end of 

each computational step. A disadvantage of the two conditions presented above is that 

the transition from non-breaking to breaking flow conditions is sharp. 

Hosoda and Tada (1994) proposed a continuous wave breaking factor that gradually 

attenuates the non-hydrostatic term ψ as follows: 
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where γ3=wave breaking factor; in Eq. (9), φ=empirical factor (=2); and hcr=free surface 

slope threshold to initiate the damping of non-hydrostatic terms. Hosoda and Tada 

(1994) determined this limiting slope based on the solitary wave profile. The Favre 

waves are considered to break, approximately, at Fo
2
≈1.5625 based on the experimental 

observations (Favre 1935), where Fo=Froude number of the first wave crest. This gave 

the maximum amplitude of the leading wave of a train of Favre waves. It is accepted 

that this leading wave is approximately a portion of a solitary wave profile. Hosoda and 

Tada (1994) pursued this idea and determined based on a solitary wave profile, the 

maximum free surface slope (at the inflection point) for Fo
2
≈1.5625, resulting 

hcr=0.225. This is the maximum free surface slope under breaking conditions to be used 

in Eq. (9). Other wave breaking models used in coastal engineering applications are 

available (Schäffer et al. 1993; Kennedy et al. 2000; Cienfuegos et al. 2010).  

3. Governing Equations 

3.1. Finite Volume Method 

The integral solution of Eq.(1) over a rectangular control volume in the x-t plane is as 

follows (Toro 2001, 2009): 

 1/2 1/2( )i i

t
t t

t x + −
∂ ∆ ∆ = − − + ∆ ∂ ∆ 

U
F F S , (10) 

where S, F and ∂U/∂t are cell averaged values; and ∆x and ∆t = dimensions of the 

control volume in the x- and t-directions, respectively. The index i ±1/2 refers to the 

control volume interfaces between nodes i and i±1. A MUSCL-TVD-4th reconstruction 

of U gives (Yamamoto and Daiguji 1993; Kim et al. 2009; Kim and Lynett 2011) 
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where the coefficients b1 = 2 and 1<b<4 (Yamamoto and Daiguji 1993). 

3.2. Numerical Flux 

The HLL approximate Riemann solver is used to compute the intercell numerical flux 

as follows (Toro 2001, 2009): 
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where L and R=left and right subscripts for the cell interface, respectively. The signal 

speeds SL and SR are defined as 
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 L L L LS U a q= − , R R R RS U a q= + , (25) 

where aL and aR=shallow water wave celerity at the corresponding side of the 

interface[=(ghL,R)
1/2]. 

The correction factor qL,R is given by 
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where h* is defined as 
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3.3. Time Stepping 

After mathematical manipulation of ∂ψ/∂x using the depth-averaged continuity equation 

∂h/∂t=−∂(hU)/∂x, the system given by Eq. (10) is rewritten in integral form as 
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Similarly, the x-momentum equation in the Boussinesq-type model of Soares-Frazão 

and Zech (2002) can be rewritten for numerical modelling as 

 
3 2 2 3 3

2 2 2
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t x x x x x
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. (31) 
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Several time stepping schemes for Eq. (28) are investigated. The classical Euler 

scheme reads 

 1
1/2 1/2( )k k k k k

i i i i i

t
t

x
+

+ −
∆= − − + ∆
∆

W W F F Z , (32) 

where ∆t=time step, defined using the CFL condition; and k=time level index. 

Alternatively, the TVD-RK schemes are higher-order time stepping methods (Glottieb 

and Shu 1998). Usual high-order TVD-RK schemes are TVD-RK3th 

 1/2 1/2( )q k k k
i i i i

t

x + −
∆= − −
∆

W W F F , (33) 
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k q
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and TVD-RK4th 
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where q, (1), (2) and (3)=auxiliary time step index; k=actual time step index; and 

k+1=next time step index. 
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The third-order Adams-Bashforth predictor and the fourth-order Adams-Moulton 

corrector equations can be coupled to produce a high resolution predictor-corrector 

scheme (Wei and Kirby 1995; Wei et al. 1995; Kim et al. 2009; Kim and Lynett 2011). 

The cell averaged derivative in Eq. (28) is denoted by 

 ( )
t

∂ =
∂
W

E U , (41) 

where E is  

 1 2 1 2

1
( )

∆
i / i /x + −= − − +E F F Z . (42) 

The Adams-Bashforth predictor step for Eq. (41) is given by 

 1 1 2(23 16 5 )
12

k k k k k
i i i i i

t+ − −∆= + − +W W E E E .  (43) 

The Adams-Moulton corrector step for Eq. (41) then reads 

 1 1 1 2(9 19 5 )
24

k k k k k k
i i i i i i

t+ + − −∆= + + − +W W E E E E .  (44) 

The predictor step results from Eq. (43) are used to calculate an initial value for 

Ei
k+1 in Eq. (44) and in turn, to initiate the Adams-Moulton iterative process. Then, 

Wi
k+1 from Eq. (44) is used to recompute Ei

k+1 iteratively. The Adams-Moulton iterative 

corrector step is repeated until converges with a prescribed tolerance ∆f  
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−
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∑

∑
, (45) 

where f is any of the variables of W; and *  denotes the previous iteration. Here, the 

convergence criterion ∆f<10−4 is adopted, such that the iterations are continued if any of 

the f exceeds this value. The AB-AM scheme requires initial values for the first two 

time steps [Ei
k-1 and Ei

k-2 in Eqs. (43) and (44)]. The TVD-RK3th and TVD-RK4th 

schemes are considered in this study to produce the first two time steps in the AB-AM 

scheme. Both numerical schemes for the time stepping are denoted as TVD-RK3th AB-

AM and TVD-RK4th AB-AM, respectively. 



 - 67 - 

3.4. Computation of Depth-Averaged Velocity Field 

After applying the corresponding time stepping scheme, the values of h and y at time 

level k+1 are available. To calculate U for each node at this time level, it is necessary to 

solve the following equation for each computational node: 

 
3 2 2

2

3h U h h U
y hU

m x m x x

∂ ∂ ∂= − −
∂ ∂ ∂

. (46) 

Eq. (46) is discretized using second order central finite differences resulting in a 

tridiagonal system of linear equations 
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Eq. (47) is rewritten as follows  
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With known values of yi
k+1, Ai, Bi, and Ci, the corresponding tridiagonal matrix is 

solved using the Thomas algorithm to find Ui
k+1 (Wei et al. 1995). For the weakly non-

linear Boussinesq model of Soares-Frazão and Zech (2002), y is defined as  
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23
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. (52) 

Using second order central finite differences, Eq. (52) is discretized as 
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Then, Eq. (53) can be written in the form of Eq. (48), where 
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3.5. Computational Sequence 

The model solution encompasses the following steps: 

(1) The solution U at time level k is reconstructed using MUSCL-TVD-4th. 

(2) The numerical flux Fi+1/2 is computed at cell interfaces with the HLL Riemann 

solver using the reconstructed values of h and U. 

(3) Source vector Z [Eq. (30)] is calculated at time level k. The derivatives are 

discretized using second order central finite differences. 

(4) A time stepping scheme to Eq. (28) is applied to compute W at time level k+1. 

Values of hi
k+1 and yi

k+1 are therefore determined. 

(5) The tridiagonal matrix is solved by the Thomas algorithm to find Ui
k+1. 

(6) For a new time level, steps 1 to 5 are repeated.  

4. Serre Equations with Enhanced Frequency Dispersion 
Su and Gardner (1969) derived the Serre equations based on potential flow without 

assuming that the velocity distribution in the x-direction is uniform with depth 

u(x,z,t)=U(x,t) as originally done by Serre (1953). In fact, the second-order irrotational 

velocity distribution is parabolic. Castro-Orgaz and Hager (2014) determined the 

irrotational velocity field of unsteady water waves by systematic Picard iteration and 

found for the particle kinematics 

 ( )
2 2 2

2 6 2

U h z
u x,z,t U

x

 ∂= + − ∂  
, (57) 

 ( ) U
w x,z,t z

x

∂= −
∂

, (58) 

where u and w = velocity components in the x- and z-directions respectively; and 
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z=vertical coordinate. Using Eqs. (57) and (58), the Serre equations are obtained using 

the depth-averaged conservation of mass and momentum equations (Castro-Orgaz and 

Hager 2014). Therefore, the Serre equations are regained if the non-uniform irrotational 

velocity distribution is accounted for to this order of expansion. Cienfuegos et al. (2006) 

determined the irrotational velocity field (u,w) of unsteady water waves based on series 

expansions. They found that the Serre equations, formulated in terms of U, are not 

necessarily based on a uniform u(z) profile. A limitation of the Serre equations is that 

the system is weakly dispersive. Nwogu (1993) presented a challenging approach where 

the linear dispersion relation of Boussinesq-type equations is enhanced expressing the 

conservation laws as a function of the velocity uα at an undetermined elevation zα 

instead of U. Castro-Orgaz and Hager (2014) indicated that Eq. (57) can be used 

following the Nwogu approach to produce the Serre-type equations with enhanced 

frequency dispersion. The resulting system is identical to that presented by Dias and 

Milewski (2010) 
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where α=(3)1/2zα/h. Eqs. (59) and (60) can be rewritten as Eq. (28), where 
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Therefore, the coefficients to solve the tridiagonal matrix associated to W are 
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For α2=1, Eqs. (59) and (60) reduce to Eqs. (1)–(3) with m=3, which is the standard 

Serre model. The optimized value α2=0.66 permits to apply Eqs. (59) and (60) from 

shallow to intermediate flow depths (Dias and Milweski 2010).  

5. Test Cases 
In this section, experimental data and computational results are selected to assess the 

governing equations and the numerical schemes. Firstly, the Serre equations are 

evaluated using the experimental data of Stansby et al. (1998), focusing on the stability 

of the time stepping scheme and carrying out a grid dependence analysis of the models. 

Then, the ability of the model to reproduce a solitary wave propagation is tested. 

Secondly, 3D Reynolds-Averaged Navier-Stokes (RANS) simulations presented by 

Marsooli and Wu (2014) and the experimental data of Stansby et al. (1998) are 

compared with the Serre equations by using different wave breaking criteria. Thirdly, 

the impact of the pressure coefficient, the use of a frequency dispersion enhanced 

model, and consideration of all non-linear terms are highlighted. The velocity and 

pressure distributions of the Serre equations are tested using a highly non-linear solitary 

wave. Finally, the finite volume solution of the Serre equations is compared with those 

originating from other numerical schemes. In particular, the finite element scheme used 

by Mitsotakis et al. (2014) and the finite difference method proposed by Mohapatra and 

Chaudhry (2004) are considered. A large scale test, long term simulation, and dry bed 

propagation are finally conducted. 
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Fig. 2. Definition sketch of experimental setup used by Stansby et al. (1998) 

 

5.1. Evaluation of Time Stepping Schemes 

A sketch of the experimental setup used by Stansby et al. is shown in Fig. 2. The 

assessment of the different time steeping schemes is presented in Fig. 3 using the 

experimental data of Stansby et al. (1998). The experiment selected herein was 

conducted in a 15.24 m long, 0.4 m wide, and 0.4 m high laboratory flume. The initial 

conditions are the upstream depth hu=0.1 m and the depth ratio r=hd/hu=0.45, where 

hd=initial downstream depth. The measured flow profile (free surface) is plotted in Fig. 

3 after 0.76 s of the dam break. The computations presented in Fig. 3 correspond to the 

solution of the Serre equations (m=3). Fig. 3(a) depicts the time stepping analysis using 

CFL=0.1. The results obtained by using the TVD-RK3th AB-AM and TVD-RK4th AB-

AM schemes are as close to the data than those using the Euler, TVD- RK3th, and TVD- 

RK4th schemes. Fig. 3(b) presents the same computations using CFL=0.5. The Euler, 

TVD- RK3th, and TVD- RK4th schemes produce results that are dependent on the time 

resolution, especially in the vicinity of the shock front, where the wave amplitudes are 

increased. Finally, Fig. 3(c) presents the computations for CFL=0.9. The Euler scheme 

breaks down given the instabilities generated and therefore, the results cannot be 

plotted. The TVD- RK3th and TVD- RK4th schemes increase the amplitude at the bore 

front due to accumulated numerical errors. Nevertheless, the TVD-RK3th AB-AM and 

TVD-RK4th AB-AM schemes show good results that are in agreement with their 

previous computations [Figs. 3(a and b)]. Thus, the only time stepping scheme that was 

found to produce stable results for practical values of CFL is the AB-AM scheme. 
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Fig. 3. Time stepping assessment for the Serre equations (m=3) using the experimental data of Stansby et 
al. (1998): (a) CFL=0.1; (b) CFL=0.5; (c) CFL=0.9 for ∆x=0.75 cm 

The grid size dependence is analyzed in Fig. 4. The TVD-RK3th AB-AM scheme is 

one of the best time stepping schemes; so henceforth it is selected for the computations. 

In Fig. 4, simulations using the Serre equations are compared with the experimental data 

of Stansby et al. (1998) measured at 0.2, 0.3, 0.52 and 0.76 s [Fig. 4(a–d)] after the dam 

break. Both the boundary and the initial conditions are the same as those considered in 

Fig. 3. Following Marsooli and Wu (2014), three different grid sizes ∆x=2, 0.75, and 

0.5 cm are tested. It is evident that the results for ∆x=2 cm are grid size dependent. 

However, the results are unaltered for ∆x values lower than 0.75 cm. The model 

produces convergent results reducing both ∆x and CFL, thereby showing mesh size 

independency of results. 



 - 73 - 

 

Fig. 4. Grid size dependence analysis for the Serre equations (m=3) using the experimental data of 
Stansby et al. (1998): (a) t=0.2 s; (b) t=0.3 s; (c) t=0.52 s; (d) t=0.76 s for CFL =0.9 

5.2. Solitary Wave Propagation Test 

The TVD-RK3th AB-AM scheme is evaluated in Figs. 5 and 6, using the solitary wave 

solution of the Serre equations (Carter and Cienfuegos 2011), which is given by 
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where Fo=solitary wave Froude number=(1+H/ho)
1/2; H=wave amplitude; ho=still water 

depth; and c=solitary wave celerity=(gho)
1/2 Fo. A solitary wave test for ho=1 m and 

H=0.5 m was used. The numerical computations are accomplished using CFL=0.1 and 

∆x=0.05 m. Fig. 5 shows a time-dependence analysis of the Serre equations by 

comparing the analytical and numerical solutions at times t=15s [Fig. 5(a) and (c)] and 

t=50s [Fig. 5(b) and (d)], showing that the numerical model correctly propagates the 

solitary wave with a satisfactory accuracy. The Root-Mean-Square Deviation (RMSD) 

and the square of the Pearson product-moment correlation coefficient (R) are calculated 

on the basis of Fig. 5 for the free surface level in the computational domain, it is x∈[-

10,200] m, thereby providing a quantitative model accuracy test (Table 1). As it can be 

inferred from Fig. 5 and Table 1, the numerical solutions of the Serre equations at both 
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t=15s and t=50s are in good agreement with the analytical solutions. Furthermore, Fig. 6 

illustrates a grid size dependence analysis at t=50s, for testing grid sizes ∆x=0.2 m, 

∆x=0.15 m, ∆x=0.1 m, and ∆x=0.05 m, with CFL=0.1. The qualitative (visual) and 

quantitative (RMSD and R in Table 1) assessment of the solutions the Serre equations 

suggest the grid independency of the numerical solutions.  

 

Fig. 5. Solitary wave propagation test for the Serre equations (m=3): (a) Free surface profile at t=15 s; (b) 
free surface profile at t=50 s; (c) depth-averaged velocity at t=15 s; (d) depth-averaged velocity at t=50 s 

 

 

Fig. 6. Grid size independence test for the Serre equations (m=3) during solitary wave propagation at t=50 
s for grid sizes: ∆x=0.05 m, ∆x=0.1 m, ∆x=0.15 m and ∆x=0.2 m 
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1D model, m=3 RMSD R 

t=15 s, ∆x=0.05 m 3.46×10-4 0.999 

t=50 s, ∆x=0.05 m 4.44×10-3 0.994 

t=50 s, ∆x=0.1 m 1.73×10-2 0.903 

t=50 s, ∆x=0.15 m 3.43×10-2 0.631 

t=50 s, ∆x=0.2 m 4.98×10-2 0.287 

Table 1. RMSD and R Tests to the Serre equations (m=3) Model Using the Analytical Solution for the 
Free surface profile of a Solitary wave 

5.3. Solitary Wave Propagation Test 

Figs. 7−9 presents the 1D computations using the Serre equations with the three 

different wave breaking models studied here. The results are compared with the 3D 

simulations by Marsooli and Wu (2014) for ∆x=0.75 cm and the experimental data of 

Stansby et al. (1998). The computational results of the present model are generated 

using ∆x=0.75 cm and CFL=0.9. Fig. 7 shows the results generated using the first wave 

breaking criterion [Eq. (6)]. Fig. 8 displays the results obtained from the second wave 

breaking criterion [Eq. (7)]. Both factors induce wave breaking at early stages of the 

dam break flow, thereby damping the undulations of the flow profile. These breaking-

type model computations rely on the assumption that once breaking is generated at a 

node, the Saint-Venant equations apply. The disadvantage is that the transition from 

Serre to Saint-Venant equations is sharp at every node of the computational domain, 

and the undulations are unrealistically suppressed. Eqs. (6) and (7) are obtained under 

steady, irrotational flow conditions, implying that the applications in unsteady 

irrotational flow models may not be guaranteed. Fig. 9 presents the result of the third 

wave breaking criterion [Eq. (9)]. The 1D simulation provides a good agreement with 

both 3D simulations by Marsooli and Wu’s (2014) and the experimental data of Stansby 

et al. (1998), providing a smooth transition from non-breaking to breaking wave 

conditions. 
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Fig. 7. Assessment of first wave breaking criterion [Eq. (6)] using the 3D simulation by Marsooli and Wu 
(2014) and the experimental data of Stansby et al. (1998): (a) t=0.22 s; (b) t=0.32 s; (c) t=0.52 s; (d) 

t=0.76 s 

 
Fig. 8. Assessment of second wave breaking criterion [Eq. (7)] using the 3D simulation by Marsooli and 
Wu (2014) and the experimental data of Stansby et al. (1998): (a) t=0.22 s; (b) t=0.32 s; (c) t=0.52 s; (d) 

t=0.76 s 
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Fig. 9. Assessment of third wave breaking criterion [Eq. (9)] using the 3D simulation by Marsooli and 

Wu (2014) and the experimental data of Stansby et al. (1998): (a) t=0.22 s; (b) t=0.32 s; (c) t=0.52 s; (d) 
t=0.76 s 

5.4. Evaluation of Pressure Coefficient, Frequency Dispersion and Non-
Linear Terms 

The impact of the pressure coefficient m is considered in Fig. 10(a), where Eq. (10) was 

solved without wave breaking for the typical values m=3 (Serre 1953) and m=4 (Khan 

and Steffler 1996a,b). It can be observed that the computed flow profiles are not greatly 

affected by the pressure coefficient value. In turn, the variation of the linear dispersion 

relation as a function of m induces a phase lag, but it is not of great importance in dam 

break waves. The simulation for m=4 is however closer to the experimental data. The 

solution of Eq. (10) using the weakly-nonlinear source term Eq. (5) is presented in the 

same figure. This is a simulation for m=3, where the full non-linearity is not preserved. 

On inspection of the simulation using the fully non-linear Serre model, it is observed 

that the wave amplitude predicted by the weakly non-linear Boussinesq model is 

significantly high and not in agreement with the experimental data. There is no 

significant phase lag as compared to the Serre model, given that the pressure coefficient 

is identical and therefore the linear dispersion relation remains unaffected. The same set 

of simulations is repeated using Eq. (9) to account for the wave breaking, and the results 

are plotted in Fig. 10(b). The agreement with the experimental data improves, especially 

for the weakly non-linear Boussinesq model, which significantly modifies its prediction 

for the wave amplitude. In general, the simulations with m=4 accounting for wave 

breaking produce the best results. The effects of improving the linear frequency 
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dispersion relation are considered in Fig. 10(c). Eqs. (59) and (60) are solved and 

compared with the standard Serre equations. From Fig. 10, it can be observed that the 

enhanced Serre equations produce a certain phase lag, but also some variation in the 

prediction of wave amplitude as compared to the standard Serre equations. However, 

the enhanced equations are not giving more accurate predictions as compared to the 

standard Serre equations. The use of Nwogu-type enhanced models is mandatory in 

ocean research, where the solution of water wave problems from deep to shallow depths 

is common. However, in shallow flows, the frequency dispersion that is implicit in the 

standard Serre equations expressed as a function of U is reasonably good. Use of the 

enhanced equations produces further variations in the non-linear effects, which are not 

desirable. Therefore, the solution of the more complex system of Nwogu-type equations 

is not recommended for common civil engineering applications, where the full non-

linearity of the standard Serre equations gives good results. A quantitative model 

accuracy test was performed by calculating the RMSD and the R statistics (Table 2). 

The application of the wave breaking criterion, Eq. (9), allows to control the amplitude 

of the advancing wave train. Its application leads to less accuracy in the prediction of 

the rarefaction wave, thereby giving greater RMSD and lower R values (Table 2). 

However, despite a slight lose of accuracy in the rarefaction wave, it is physically 

necessary to control wave amplitude with a wave breaking model.  
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Fig. 10. Assessment of (a) pressure coefficient and non-linear terms without wave breaking; (b) idem to 
(a) with Eq. (9) for wave breaking; (c) standard Serre equations (m=3 and α2=1) versus enhanced Serre 

equations (m=3 and α2=0.66), and non-linear effects, without wave breaking 
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Model RMSD R 

1D model, m=3 0.079 0.663 

1D model, m=4 0.072 0.725 

1D model, Boussinesq 0.099 0.549 

1D model, Eq. (9), m=3 0.092 0.575 

1D model, Eq. (9), m=4 0.085 0.638 

1D model, Eq. (9), Boussinesq 0.107 0.474 

1D Nowgu-type model [Eqs. (59) and (60)] 0.091 0.566 

Table 2. RMSD and R Tests for Non-Hydrostatic Models Using the Experimental Data of Stansby et al. 
(1998) for r=0.45 at t=0.76 s 

5.5. Evaluation of Non-Hydrostatic Velocity and Pressure Distributions 

In this section, the accuracy of the irrotational velocity field (u,w) obtained using the 

Picard iteration method, Eqs. (57) and (58), is examined. To do this, an idealized test 

case is used. The shock front of a non-hydrostatic dam break wave is essentially a train 

of waves, usually called Favre waves. These waves can be considered, approximately, 

to be composed of a leading solitary wave-like front, followed by a train of secondary 

cnoidal waves (Favre 1935; Mitsotakis et al. 2014). Therefore, characteristic features of 

the non-hydrostatic dam break wave front can be inferred by an analogy to a solitary 

wave propagating over the same undisturbed water level. It may be noted that some of 

the wave breaking models for water wave propagation in coastal engineering are based 

on such an analogy. To test the accuracy of Eqs. (57) and (58), the 2D irrotational 

velocity field of a solitary wave is generated. In a system of reference moving with the 

solitary wave, it reduces to a steady flow. Therefore, the 2D irrotational, steady velocity 

field of a solitary wave is investigated using the x-Ψ method developed by Montes 

(1994). In this method, the Laplacian for the vertical coordinate z as a function of the 

pair of variables (Ψ,x) is solved, where Ψ=stream function. The Laplacian of this semi-

inverse transformation z=z(x,Ψ) is as follows (Montes 1994): 
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Montes (1994) developed a finite-difference numerical scheme to solve Eq. (68), 

that was applied in this test case. Details of the numerical scheme are not repeated here, 

given that these are extensively described by Montes (1994). The steady irrotational 

velocity field from Eqs. (57)–(58) is with q=U(x)h(x)=constant (Castro-Orgaz and 

Hager 2014), 
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The accuracy of Eqs. (69)–(70) is tested in Fig. 11. The full 2D solution of the 

irrotational velocity field (u,w) of a steady solitary wave for Fo
2=1.6 is determined using 

the x-Ψ method (Montes 1994). The free surface streamline (Ψ=q) is prescribed using 

Eq. (66); and the flow field was numerically determined solving Eq. (68). The flow was 

modelled using ten streamlines. The computed streamline flow pattern is plotted in Fig. 

11(b). The pressure residuals at the free surface are small, so that the position of the free 

surface is not iterated. Experimental observations indicate the breaking of Favre waves, 

approximately, at Fo
2
≈1.5625 (Favre 1935). Therefore, the simulated solitary wave in 

Fig. 11 is close to breaking conditions of Favre waves, and thus, it is a limiting test case. 

It may be further noted that the ratio of wave amplitude to depth is 0.6, which 

corresponds to a highly non-linear wave. The computed 2D velocity field (u,w) at 

selected locations is plotted in Fig. 11(b and c), and compared with Eqs. (69)–(70), 

resulting in a good agreement. At the solitary wave crest (x/hc=0), the free surface is 

convex, implying a u-velocity profile decreasing with the elevation. The pressure 

distributions for both the 2D and analytical solutions at these selected locations were 

determined based on the energy conservation in a potential flow. Again, the agreement 

is good. Naheer (1978) made the experimental observations of solitary wave 

propagation, from which experimental results for Fo
2=1.6 are plotted in Fig. 11(e). 

These experimental results are compared with Eq. (66), showing a good agreement. 
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Fig. 11. Solitary wave for Fo
2=1.6: (a) Definition sketch; (b) computed streamline flow pattern, (c) 

velocity and pressure distributions at an approach flow section, (d) velocity and pressure distributions at 
crest, (d) comparison of the wave profile with experiments. Note: hc and Uc are the critical depth and 

velocity, respectively 

5.6. Evaluation of Non-Hydrostatic Velocity and Pressure Distributions 

Mitsotakis et al. (2014) presented a solution of the Serre equations using the standard 

Galerkin finite-element method with smooth periodic splines and the fourth-order 

Runge Kutta method. A simulation presented by Mitsotakis et al. (2014) for 

hu/hd=1.4182 is plotted in Fig. 12. The results are presented in dimensionless form with 

u=U/(ghd)
1/2 and η=(h−hd)/hd. The same simulation is conducted with the present finite 

volume scheme without wave breaking, and the results are plotted in Fig. 12. The 

results of both numerical models are similar. 
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Fig. 12. Comparison of present finite volume solution and Galerkin finite element solution (Mitsotakis et 
al. 2014) for (a) normalized free surface elevation η(X,T); (b) normalized depth-averaged velocity u(X,T), 

for dimensionless time T=150 

5.7. Comparison with Finite Difference Scheme 

Mohapatra and Chaudhry (2004) developed the two-four finite difference predictor-

corrector scheme to solve the Serre equations. This numerical scheme requires the use 

of artificial viscosity to suppress spurious oscillations. Otherwise, the solution becomes 

unstable and ultimately breaks down. The proposed finite volume numerical scheme is 

compared with the solution using the two-four finite difference scheme for the solution 

of the Serre equations (m=3) in Fig. 13, where computational results are compared with 

the experimental data of Stansby et al. (1998). Values of CFL=0.1 and ∆x=0.05 m were 

used for the two-four simulations. For the finite volume model, CFL=0.1, ∆x=0.05 m 

and ∆x=0.0075 m were taken. The CFL value was reduced as much as possible in the 

two-four scheme to reduce truncation errors, given that it was found not possible to 

produce stable simulations reducing ∆x below 0.05 m, during the computational work. 

Calibration of artificial viscosity by trial-and-error was necessary until getting a stable 

output. In contrast, it was possible to reduce both CFL and ∆x in the finite volume 

scheme and then produce grid size independent results. The two-four scheme produce 

results that are in fair agreement with the experimental data. However, the finite volume 

simulation shows an overall improved performance by reducing ∆x. Further, it may be 
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noted that the finite volume scheme lacks case-dependent parameters to be tuned for 

each simulation. 

 

Fig. 13. Comparison of present finite volume solution and finite difference solution (Mohapatra and 
Chaudhry 2004) with the experimental data of Stansby et al. (1998) at times (a) t=0.22 s; (b) t=0.32 s; (c) 

t=0.52 s; (d) t=0.76 s. 

5.8. Long-Term Simulation 

To test the temporal stability of the present numerical model, Fig. 14 presents a long-

term simulation. The test case by Stansby et al. (1998) for r=0.45 previously analyzed is 

selected. The results of the present 1D model with m=4 and using Eq. (9) are presented 

for t=1s [Fig. 14(a)], t=2s [Fig. 14(b)], t=5s [Fig. 14(c)], t=10s [Fig. 14(d)] and t=20s 

[Fig. 14(e)]. These computational results are generated using ∆x=0.0075 m and 

CFL=0.9. It is shown that the present model results are stable. The wave breaking factor 

efficiently controls the wave amplitude of the shock front, which would grow without 

limits if wave breaking is not accounted for. 
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Fig. 14. Long-term simulation for the present model accounting for Eq. (9) and m=4 at: (a) t=1 s; (b) t=2 
s; (c) t=5 s; (d) t=10 s; (d) t=20 s 

5.9. Large Scale Test 

A large scale test case is conducted in Fig. 15 to check the stability of the numerical 

scheme in a real life configuration. The upstream condition used in the numerical model 

is hu=20m with depth ratio as r=0.45. The computational results are generated using 

CFL=0.9 and ∆x=1 m. The results are presented for t=10s. Fig. 15 shows that the model 

results are stable. 
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Fig. 15. Assessment of the present model accounting for Eq. (9) for a large scale test-case 

5.10. Dry Downstream Bed 

Dam break wave propagation over a dry downstream bed is a challenging test for a 

numerical model. Non-hydrostatic effects are significant for hu/hd>0.45, which is a 

threshold value and above which physical undulations appear both in the shock front 

and the rarefaction wave. However, the model was applied to a dry bed condition to test 

its stability. Fig. 16 depicts the comparison of the present model using Eq. (9) as 

damping factor, and m=4 (linear, non-hydrostatic, vertical pressure distribution) with 

the experimental data of Ozmen-Cagatay and Kocaman (2010). Computational results 

are compared with the experimental measurements at t=0.44 s [Fig. 16(a)], t=0.62 s 

[Fig. 16(b)], t=0.8 s [Fig. 16(c)] and t=1.06 s [Fig. 16(d)]. The computational results are 

generated using ∆x=0.05 m, and CFL=0.4. The downstream reach is artificially wetted 

to produce a stable wet-dry front computation (Wu and Wang 2007, 2008). The 

downstream flow depth used in the model is hd=0.00001 m, whilst the initial upstream 

flow depth is hu=0.25m. In this test case, the high free surface slopes and curvatures 

numerically computed during the initial stages of the dam break generated small 

numerical ripples in the vicinity of the dam axis. The accuracy and the stability of the 

solution are however not affected. To remove these ripples, rather than introducing any 

numerical manipulation, the dam break flow is initiated using the Saint Venant 

equations up to t=0.1 s. The correct solution corresponding to the Serre equations was 

quickly set only after a few time steps, and it was verified that the initial run of the 

model had no impact on the solution but to reduce the numerical ripples near the dam 

axis. It can be observed that the non-hydrostatic simulations are in good agreement with 
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the experimental data. The analytical solution of the Saint Venant equations for the 

instantaneous free surface profile given by Ritter (Toro 2001) 
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is plotted for the same test case in Fig. 16. The rarefaction wave was accurately 

predicted by the Serre equations, showing an improved result as compared to Ritter’s 

solution. For the positive wave, both models gave almost identical results.  

 

Fig. 16. Dry bed propagation test using Eq. (9) and m=4 at: (a) t=0.44 s; (b) t=0.62 s; (c) t=0.8 s; (d) 
t=1.06 s 

6. Conclusions 
The following conclusions are drawn from this study: 

•  Evaluation of several time stepping schemes, including the Euler and the Runge-Kutta 

TVD methods, shows that the third-order Adams-Bashforth predictor and the fourth-

order Adams-Moulton corrector scheme produce stable results solving the Serre 

equations with a value of CFL close to 1, for instance, 0.9. The other schemes produce 

unstable results and require a significant reduction of CFL, increasing the 

computational cost. 

• Wave breaking models based on steady irrotational flow considerations produce 

computational results that are in disagreement with the experimental data. In contrast, 

the damping factor proposed by Hosoda and Tada (1994) produces a smooth transition 
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from non-breaking to breaking wave condition, providing results in good agreement 

with the experimental data. This is in agreement with former results in the coastal 

engineering field since the pioneering work of Schäffer et al. (1993) (Tonelli and Petti 

2009; Bonneton et al. 2011; Tissier et al. 2012; Shi et al. 2012). 

• The impact of the vertical pressure distribution coefficient is not significant, and the 

results of the Serre equations (Serre 1953) and Khan and Steffler’s (1996a,b) depth-

averaged equations are similar. The latter model produces results slightly in better 

agreement with the experimental data; so the use of a linear pressure distribution for 

dam break wave modelling is recommended. 

• The consideration of the full non-linearity in the Serre-type equations is found to be 

important for predicting the wave amplitudes of dam break waves. The weakly non-

linear Boussinesq-type model produces exaggerated wave amplitudes, although this 

effect diminished when wave breaking is included. In general, the consideration of the 

full non-linearity is preferable. 

• The use of the Serre equations with enhanced linear frequency dispersion is found to 

not giving an improvement of computational predictions as compared to the 

experimental data. Therefore, use of this more complex system of equations is not 

needed in shallow open channel flows. 

• The proposed finite volume scheme for solving the Serre equations with wave 

breaking produces results in agreement with the experimental data (Stansby et al. 1998) 

and the 3D solution of the RANS equations (Marsooli and Wu 2014). The accuracy of 

the solution without wave breaking is found to be similar to that developed by 

Mitsotakis et al. (2014) with the standard Galerkin finite element solution. The present 

finite volume results are better than those generated by using the finite difference 

methods (Mohapatra and Chaudhry 2004). 

7. Acknowledgements 
This study, which is part of the PhD thesis of the first author, was supported by the 

Spanish project CTM2013-45666-R, Ministerio de Economía y Competitividad. 



 - 89 - 

8. Notation 
The following symbols are used in this paper:  

a = shallow water wave celerity (m/s); 

b = MUSCL-TVD-4th coefficient; 

b1 = MUSCL-TVD-4th coefficient; 

c = solitary wave celerity (m/s); 

CFL = Courant-Friedrichs-Lewy number; 

E = auxiliary vector (m/s, m2/s2); 

F = Froude number; 

 Fo = Froude number of solitary wave; 

F = vector of fluxes in x-direction (m2/s, m3/s2); 

g = gravitational acceleration (m/s2); 

H = solitary wave amplitude (m); 

h = flow depth (m); 

hc = critical flow depth (m); 

h* = flow depth in star region of Riemann problem (m); 

hcr = critical free surface slope; 

hd = initial downstream flow depth (m); 

ho =  still water depth (m); 

hu = initial upstream flow depth (m); 

hx = free surface slope, ∂h/∂x; 

hxx = free surface curvature, ∂2h/∂x2 (1/m); 

i = cell index in x-direction; 

k = time step index; 

m = pressure distribution coefficient; 

q = non-dimensional correction factor to shallow water wave celerity in HLL 
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solver; 

q = discharge (m2/s); 

r = depth ratio; 

S = signal speed (m/s); 

S, Z = source terms vectors (m/s, m2/s2); 

T = normalized time; 

t = time (s); 

U = depth-averaged velocity (m/s); 

Uc = critical velocity (m/s); 

U, W = vectors of unknowns (m, m2/s); 

u = velocity in x-direction (m/s); 

u = non-dimensional depth-averaged velocity; 

uα = velocity at a reference level (m/s); 

w = velocity in z-direction (m/s); 

X = normalized horizontal coordinate (m); 

x = horizontal coordinate (m); 

y = auxiliary variable (m2/s); 

z = vertical coordinate (m); 

zα = reference elevation (m); 

α = normalized reference elevation; 

∆t = time step (s); 

∆x = grid size (m); 

φ = wave-breaking empirical factor; 

γ1, γ1, γ3= wave breaking factors; 

η = normalized free surface elevation; 

ψ = non-hydrostatic term (m3/s2); and 
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Ψ = stream function (m2/s). 

 

Subscripts  

* = previous iteration; 

L, R = left and right control volume interface; and 

q, (1), (2), (3)= time stepping intermediate levels. 
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Abstract 
The dam break flow over a movable bed is an important problem in fluvial flow 

processes. These flows are usually predicted by a one-dimensional (1D) approach based 

on a hydrostatic pressure distribution. Recent 3D non-hydrostatic simulations of dam 

break waves over movable beds based on the Reynolds-averaged Navier-Stokes 

(RANS) equations revealed that Saint Venant theory is not accurate predicting the flow 

dynamics within the scour hole developed. In this work, a generalized 1D non-

hydrostatic model for flow over movable beds is proposed assuming a linear, non-

hydrostatic, pressure distribution. The new set of 1D equations account for the vertical 

acceleration, which is important in dam break waves over movable beds, given the 

instantaneous curved beds generated over the erodible terrain. These equations account 

for both the bed- and suspended-load transport modes. A high-resolution finite volume 

numerical scheme with a semi-implicit treatment of non-hydrostatic terms is developed 

to solve the governing equations, producing solutions that are in good agreement with 

3D computational results and experimental data. The free surface profiles predicted by 

the new model show a significant improvement as compared to those obtained from the 

existing hydrostatic simulations. The unsteady non-hydrostatic simulations are shown to 

be convergent to steady flow solutions with non-hydrostatic pressure. 
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1. Introduction  
Dam break flow is a topic of continued research interest given its tremendous 

detrimental effects. The usual engineering approach to predict these flows relies on the 

use of depth-averaged shallow water wave models based on a hydrostatic pressure 

distribution (Wu 2008). In recent years, hydrostatic shallow-water flow models were 

extensively investigated. Wu and Wang (1999, 2007, 2008) developed Saint Venant-

type mixture flow equations for dam break flows over erodible beds. Fraccarollo and 

Capart (2002) proposed a two-layer movable bed dam break flow model with separate 

simulations of clear water and mixture sediment-water layers. Li et al. (2013) developed 

a double-layer averaged model. Capart and Young (1998, 2002), Cao et al. (2004) and 

Zhang et al. (2013) developed models for dam break waves over erodible bed 

considering non-equilibrium sediment transport conditions. Wu et al. (2000, 2004) 

studied non-uniform sediment transport using 3D and depth-averaged models. Wu et al. 

(2012) treated the non-cohesive embankment breaching. Geomorphic shallow water 

flows, as the dam break waves over an erodible bed, requires consideration of fluid 

motion and erosion/deposition of particles. It is widely accepted that the shallow water 

flow approximation with hydrostatic pressure produces a reasonable balance between 

computational efforts and accuracy of results (Greco et al. 2012). An alternative to the 

two-layer formulation follows the two-phase flow approach pursued by Greco et al. 

(2012). Therefore, the development of a model for fast geomorphic flows require the 

study of a number of components, including the type of formulation to simulate 

sediment transport processes (mixture model, two-layer model or two-phase flow 

model), and the hypothesis to close the momentum equations for the fluid flow above 

the erodible beds. While huge efforts were made to produce physically accurate 

sediment transport components, the fluid flow above the erodible bed is routinely 

assumed to be governed by a hydrostatic pressure distribution. This limitation is 

important, given that the models based on the hydrostatic pressure distribution ignore 

the vertical flow acceleration. Marsooli and Wu (2015) conducted a detailed and 

accurate assessment of the importance of non-hydrostatic simulations over movable 

beds using three-dimensional (3D) computations. Non-hydrostatic pressures are 

generated by local and convective accelerations in a variety of flow problems. Examples 

are the initial stages of the dam break flow over rigid beds, the flow above the scour 

hole formed in the dam break wave over an erodible bed, or the flow at obstacles 

embedded in the natural streambed downstream of the dam, such as a bridge pier 
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(Marsooli and Wu 2015). However, to the best of the authors’ knowledge, no attempt 

has so far been made to develop a depth-averaged model considering the non-

hydrostatic pressure distribution and the sediment transport for dam break waves over 

movable beds. Thus, it remains untested to what extent the non-hydrostatic pressure 

distribution closure law to the 1D momentum equations of the fluid flow above an 

erodible bed produces results in conformity with nature. 

The literature on depth-averaged non-hydrostatic open channel flow is extensive. It 

is well known that Boussinesq-type equations can simulate undular bores and the 

formation of dunes and anti-dunes in erodible beds (Wu 1987; Onda and Hosoda 2004; 

Onda et al. 2010; Bashiri et al. 2015). Castro-Orgaz et al. (2015) presented a recent 

review of the topic of Boussinesq equations, and detailed applications in geophysical 

contexts, including avalanche dynamics. The process to produce vertically integrated 

systems for unsteady non-hydrostatic flows is described in detail therein. One of the 

most accurate models developed for unsteady non-hydrostatic flow over rigid beds was 

presented by Khan and Steffler (1996a,b). It is a finite element numerical model based 

on the momentum and moment of momentum equations developed by Steffler and Jin 

(1993). In this method, each degree of freedown assigned to velocity and pressure fields 

in the form of a perturbation-type function was handled by a closure transport equation 

derived by using a weighted residual method. Khan and Steffler (1996a,b) showed that 

this system may be simplified to a Boussinesq-type model, and physically good results 

were still feasible. Both the original momentum and moment equations model, and its 

simplified Boussinesq-type version, were developed, however, for clear water flow over 

rigid beds. Khan and Steffler (1996a,b) demonstrated that the consideration of non-

hydrostatic pressures in flows over curved beds was of great importance. Given the 

scour hole generated in dam break flows over erodible beds, where the bed is curved 

(Wu 2008), some influence on the computation of flow profiles in dam break waves 

over erodible beds is expected. The free surface profile in the vicinity of this scour hole 

shows, experimentally, an undulating free surface, which suggests the influence of a 

non-hydrostatic pressure on the flow dynamics (Onda et al. 2004, 2010). Based on these 

observations, the main motivation of this study is to investigate the impact of non-

hydrostatic pressures on dam break flows over erodible beds. For this task, a new 1D-

depth-averaged, unsteady, non-hydrostatic model for flow over curved, erodible beds, is 

developed. Formulation of such a model requires the integration of the RANS equations 
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in a vertical plane considering that the bed is deforming in space and time due to 

erosion/deposition processes, whilst the fluid flow is composed of a mixture of water 

and sediment with an average density, which is also a function of time and space 

variables. The developed equations are shown to be a generalization of the Boussinesq-

type equations by Khan and Steffler (1996a,b). A non-equilibrium sediment transport 

model is used based on Wu and Wang (2007) with some modifications (Wu 2015). A 

robust and accurate high-resolution finite volume scheme was developed for the new set 

of physical equations, and the solutions are tested against the experimental data of 

Fraccarollo and Capart (2002) and the results of the 3D numerical solution by Marsooli 

and Wu (2015). 

2. Governing Equations 
We consider 1D unsteady non-hydrostatic free surface flow over an erodible bed in a 

vertical plane (Fig. 1). The elevation of the static erodible bed of sediment is zb(x,t), and 

the fluid flow above is composed of a mixture of water and sediments. The dynamic 

flow above the bed is composed of a bed-load layer, where the flux per unit width is qb, 

and a suspended-load layer. The flow depth is h(x,t), the discharge is q(x,t) and the 

depth-averaged velocity in the x-direction is U(x,t)=q/h. The depth-averaged mass 

conservation equation for the mixture flow layer integrating the RANS mass 

conservation equation in a vertical plane is 

 
( )( ) ( )

0b bzh hU

t x t

ρρ ρ ∂∂ ∂+ + =
∂ ∂ ∂

, (1) 

where ρ(x,t)=mass density of water-sediment mixture, given by ρ=ρw(1−Ct)+ρsCt; 

ρw=clear water mass density; ρs=sediment mass density; Ct(x,t)=depth-averaged total 

sediment concentration in the fluid layer of thickness h (suspended plus bed-load 

layers); ρb=mass density of static bed layer, defined as ρb=ρwpm+ρs(1−pm); pm=sediment 

porosity; t=time; and x=streamwise coordinate. Integrating the RANS x- and z- 

momentum equations for a mixture flow in a vertical plane yields, respectively, 

 2 2 1
1

( ) 1

2 2
b b

b

z z hphU
hU gh gh p

t x x x x
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Fig. 1. Definition sketch of 1D non-hydrostatic flow over an erodible bed 

To obtain Eqs. (2)–(3), it was assumed that the velocity in the x-direction is uniform 

and equal to its depth-averaged value U, that the vertical velocity and non-hydrostatic 

pressure distributions are linear, and the stress state at the bed is of pure shear. 

Mathematical details of the vertically-integration process are given in Steffler and Jin 

(1993) and Castro-Orgaz et al. (2015). In the above, g=gravitational acceleration; 

τb(x,t)=bed shear stress; p1(x,t)= pressure at bed in excess of hydrostatic; and 

W(x,t)=depth-averaged vertical velocity component. The depth-averaged vertical 

velocity W can be expressed in terms of the depth-averaged streamwise velocity U using 

the kinematic boundary conditions at the bed and the free surface levels. The resulting 

equation is (Castro-Orgaz et al. 2015)  

 
1 1

( )
2 2

s s b b
b s

z z z z
W w w U U

t x t x

∂ ∂ ∂ ∂ = + = + + + ∂ ∂ ∂ ∂ 
, (4) 

where ws and wb=vertical velocity at the free surface and the bed sediment surfaces, 

respectively; and zs=free surface level (=h+zb). Eqs. (1)–(4) are generalized equations 

for unsteady non-hydrostatic flow with bed- and suspended-load transport over erodible 

beds. Note the presence of ∂zb/∂t allowing for a movable bed, and the Ct concentration 

of the sediment mixture. These terms are absent in Khan and Steffler (1996a,b) model. 

Further, in the original model solved by Khan and Steffler (1996a,b), the horizontal 

velocity profile was set using a linear function as a perturbation from uniformity, whilst 

the vertical velocity and pressure varied quadratically. Letting the streamwise velocity 

profile be uniform and equal to its depth-averaged value U, and assuming linear 

variations for the vertical velocity and pressure, they obtained a Boussinesq-type model. 
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For clear water flow over rigid beds, Eqs.(2)–(4) simplify to the Boussinesq model by 

Khan and Steffler (1996a,b), that was verified to be a significant improvement over 

Saint Venant equations for flow over curved beds. Therefore, in Eqs. (2) and (3), the 

non-hydrostatic pressure distribution is prescribed using a linear function (Fig. 1) 

(Castro-Orgaz et al. 2015), following Khan and Steffler (1996a,b) Boussinesq-type 

version of their momentum and moment of momentum model. The rigorous 

mathematical formulation for Boussinesq-type equations, however, relies on a 

hydrostatic pressure component corrected by a quadratic variation due to non-

hydrostatic terms (Iwasa 1956; Onda et al. 2010; Castro-Orgaz et al. 2015). Castro-

Orgaz et al. (2015) compared "exact" Boussinesq-type equations based on the quadratic 

pressure distribution with Khan and Steffler (1996a,b) Boussinesq-type equations based 

on the linear pressure distribution. They found that the non-hydrostatic terms accounted 

for in both formulations were similar, with an identical bottom pressure head function. 

However, a different correction factor emerged in the dispersion part of the differential 

equation describing cnoidal and solitary wave solutions. For steady flow solutions (or 

travelling waves), the momentum is conserved, leading to the differential momentum 

equation describing cnoidal and solitary waves 

 
22 2

1 const
2 4

xx xhh hh q

gh

 −+ + = 
 

, (5) 

where hx=dh/dx; and hxx=d2h/dx2. Eq. (5) is derived from Eqs. (2)–(4) assuming steady, 

clear water, frictionless flow over a rigid and horizontal bed. For the "exact" Boussinesq 

equations, the non-hydrostatic term in Eq. (5) is divided by a factor equal to 3, rather 

than by 4, as it is based on the linear pressure distribution. Therefore, Eqs. (2)–(4) are a 

Boussinesq-type model where cnoidal and solitary wave solutions are embedded, with a 

particular averaging factor affecting the dispersion part of the model. The linear, non-

hydrostatic pressure law gave good results for dam break flow over rigid beds (Cantero-

Chinchilla et al. 2016), and it is therefore adopted here. 

The bed shear stress is computed from 

 
2

1 3
w

b

n U U
g

R
τ ρ= , (6) 

where nw=roughness coefficient including sidewalls effects; and R=hydraulic radius. 

The value of nw is estimated from the following expression (Wu 2015): 
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, (7) 

where fw and n=Manning roughness coefficients for sidewalls and bed, respectively; and 

b=channel width. 

The sediment transport phenomenon is included in the vertically-integrated flow 

equations with non-hydrostatic pressure [Eqs. (1)–(3)] as highlighted by the presence of 

the functions ρ(x,t) and zb(x,t). These flow variables are related to the bed- and 

suspended-load fluxes, thereby implying that additional transport equations are needed. 

Here, the sediment transport model of Wu and Wang (2007) is used to complete the 

system of governing equations. The 1D depth-averaged mass conservation equation for 

the suspended sediment, neglecting the thickness of bed-load layer, is (Wu and Wang 

2007; Wu 2008): 

 
( ) ( )s shC hUC

E D
t x

∂ ∂+ = −
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, (8) 

where Cs(x,t)=depth-averaged suspended sediment concentration; and E(x,t) and 

D(x,t)=entrainment and depositional rates of sediment, respectively. The mass balance 

in the bed-load layer is (Wu and Wang 2007; Wu 2008) 
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t x t

∂ ∂ ∂+ + − = −
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, (9) 

where hb(x,t)=thickness of the bed-load layer; Cb(x,t)= depth-averaged bed-load 

sediment concentration; and qb(x,t)=bed-load flux. Following Wu (2004), the evolution 

of the static bed of sediment can be determined from 

 *1

1
b b b

m

z q q
D E

t p L

∂ − = − + ∂ −  
, (10) 

where L=non-equilibrium adaptation length of total-load transport; and qb*(x,t) = 

equilibrium bed-load flux. Nakagawa and Tsujimoto (1980) developed an alternative 

1D non-equilibrium sediment transport model, extended to 2D flows by Nagata et al. 

(2000, 2005). Inserting Eq. (10) into Eq. (9), and using qb=hbUbCb, the bed-load mass 

balance equation is rewritten as 

 *b b b b

b

q q q q

t U x L

  ∂ −∂ + = ∂ ∂ 
, (11) 
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where Ub=bed-load velocity, approximated here as U (Wu and Wang 2007). Inserting 

the definitions ρ=ρw(1−Ct)+ρsCt and Ct=Cs+qb/(hU) into Eqs. (1)−(3), the complete 

system of conservation laws is rewritten as 

 *( ) 1

1
b b

m

q qh hU
E D

t x p L

−∂ ∂  + = − + ∂ ∂ −  
, (12) 
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Inserting Eqs. (10) and (12) into Eq. (4) permits to rewrite W as 

 
1 1 ( )

2 1
b* b s b

m

q q z zhU
W E D U U

p L x x x

 − ∂ ∂∂ = − − + − + +  − ∂ ∂ ∂  
, (15) 

which is the form used in the numerical model. 

3. Governing Equations 
To close the depth-averaged non-hydrostatic erosion model presented in the preceding 

section, it is required to determine the sediment transport functions D, E, qb*, and L. The 

bed sediment fluxes are defined as D=ωsCa and E=ωsCa*, where ωs=settling velocity of 

a sediment particle; and Ca and Ca*=actual and equilibrium near-bed suspended 

sediment concentrations, respectively. These are computed following the work of Wu 

and Wang (2007). To compute the equilibrium bed-load flux qb*, several empirical 

formulations are considered for comparative purposes, including the classical equations 

by Meyer-Peter and Müller, Yalin and van Rijn’s (Dey 2014), and also the recent one 

by Wu et al. (2000). In unsteady flows, a certain distance is required to reach the 

equilibrium condition of the sediment transport. This length L is defined as the non-

equilibrium adaptation length, and it is computed here following Wu (2008). Non-

equilibrium adaptation lengths can be defined for the total sediment load (L), suspended 

load (Ls) and bed-load (Lb). 



 - 105 - 

4. Numerical Scheme 

4.1. Finite volume Method 

The governing equations for non-hydrostatic unsteady open channel flow over an 

erodible bed can be written in conservative form as follows: 
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, (18) 

where U, F, and S = vector of unknowns, fluxes, and source terms, respectively.  

According to Toro (2001, 2009), the integral solution of Eq. (16) over a rectangular 

control volume in the x-t plane is  

 1/2 1/2

1
( )i i i

it x + −
∂  = − − + ∂ ∆ 

U
F F S , (19) 

where F, S, and ∂U/∂t=cell-averaged vectors within the control volume (∆x·∆t) in the x-

t plane, of fluxes, source terms and time-derivatives of unknown variables, respectively. 
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Here, ∆x and ∆t=dimensions of the control volume in x- and t-directions, respectively. 

The index i ±1/2 refers to the control volume interfaces between nodes i and i±1. 

A finite volume numerical scheme is developed based on Eq. (19). To solve 

Boussinesq-type equations, a high-resolution scheme in both time and space is required 

(Abbott 1979; Wei et al. 1995; Kim et al. 2009). If second-order accuracy is used for the 

discretization of both Saint-Venant and dispersive terms, then the truncation errors 

originating from the Saint-Venant terms have, mathematically, the same form as the 

physical dispersive terms introduced into the governing equations by the Boussinesq 

approximation. Form a practical side, if such a system is numerically solved, the 

dispersion features are a combination of the true frequency dispersion originating from 

the Boussinesq terms, plus a "numerical" frequency dispersion introduced by the 

truncation errors. To avoid such an undesirable phenomenon, discretization of the Saint-

Venant terms on Boussinesq-type equations is conducted using a high-resolution 

scheme, while the discretization itself of the non-hydrostatic (dispersive) source terms is 

conducted using second-order accuracy formulae (Abbott 1979; Wei et al. 1995; Kim et 

al. 2009). Therefore, the fourth-order monotone upstream centred scheme for 

conservation laws (MUSCL-TVD-4th) is used to reconstruct the conservative variables 

at the interfaces of the finite volumes. The Surface Gradient Method (SGM) (Zhou et al. 

2001) is applied to reconstruct zs to avoid unphysical flow over variable topography 

under static conditions. Then, the flow depth is computed as h=zs−zb. The intercell 

numerical fluxes are determined by applying the HLLC approximate Riemann solver 

(Toro 2001, 2009) to the reconstructed variables. 

4.2. Time Stepping 

To reduce truncation errors and produce non-hydrostatic simulations free of any 

numerical influence, a high-resolution time-stepping method is advisable for 

Boussinesq-type equations (Wei et al. 1995; Kim et al. 2009). Thus, the high-order 

Adams-Bashforth/ Adams-Moulton (AB-AM) time stepping scheme is selected to 

compute non-hydrostatic dam break flows over erodible beds. Simulation of these flows 

is, however, complex. The presence of source terms originating from the non-

hydrostatic pressure distribution provokes instabilities if these terms are explicitly 

evaluated at time level k. Therefore, an implicit treatment of the source terms is 

necessary to produce a stable numerical solution of the system of equations. The AB-

AM scheme requires the solution for U at 3 previous time levels (k, k−1 and k−2), given 
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that it is not a self-starting scheme. Thus, the first two time steps must be computed by 

an alternative time-stepping scheme. 

For the first time step, the Euler time stepping formula is used to explicitly solve h, 

U, w, Cs, qb, and zb at time level k+1, because p1 is zero at the initial static condition 

before the dam break. From Eq. (19), one gets 

 1
1/2 1/2( )k k k k k

i i i i i

t
t

x
+

+ −
∆= − − + ∆
∆

U U F F S . (20) 

For the second time step, the Euler time stepping formula is used again. However, 

the momentum equations, Eqs. (13) and (14), require an accurate treatment. Inserting 

Eq. (15) into Eq. (14), the dependence on W in the vertical momentum balance is 

eliminated. Given that U at time level k+1 appears also in Eq. (14) after using Eq. (15), 

p1 cannot be solved explicitly from the z-momentum equation. Therefore, the system 

defined by Eqs. (13)−(14) is implicit. Attempts to solve the system by explicit 

approximations failed, given that strong numerical instabilities were generated, even 

using very small time steps to initiate the computations. Values of p1 and W determined 

by explicit computations using a fractional step approach generated unstable results that 

ultimately crashed the numerical computations. Therefore, an implicit numerical 

scheme is developed as follows. Eqs. (13) and (14) produce an implicit system of two 

equations (x- and z-momentum equations) and two unknown variables (U and p1). Using 

the Euler time stepping, the integral form of Eqs. (13) and (14) reads 
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where  
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Second order central finite differences are used for the spatial derivatives in Eqs. 

(21)−(24), simplifying the implicit scheme. Therefore, the unknown flow variables in 

Eqs. (21) and (22) are Ui-1
k+1, Ui

k+1, Ui+1
k+1, and p1i-1

k, p1i
k, p1i+1

k. The implicit system is 

solved iteratively using the Newton-Rapshon method with an analytical Jacobian 

matrix. At the end of each iteration stage, the values of U and p1 are used to initiate the 

next cycle. The C1
k and C2

k are invariants during the iteration process. After 

convergence of the numerical solution, the Wi at k+1 is given by 
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. (25) 

Once the first two time steps are computed by using the Euler scheme, the AB-AM 

time stepping scheme is initiated and used onwards. 

The cell averaged derivative in Eq. (19) is written as 

 
t

∂ =
∂
U

E , (26) 

where E is  

 1 2 1 2

1
( )i / i /x + −= − − +

∆
E F F S . (27) 

The Adams-Bashforth predictor step for Eq. (26) is given by 

 1 2(23 16 5 )
12

p k k k k
i i i i i

t − −∆= + − +U U E E E , (28) 
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where p=predictor step index. In this step, the implicit integral form of Eqs. (13) and 

(14) is discretized as follows 
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The implicit system for the Adams-Bashforth predictor scheme is solved iteratively 

using the Newton-Rapshon method with an analytical Jacobian matrix to compute U 

and p1. After the iterations, the Wi at p is given by 
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From Eq. (28), once the iterative numerical solution converges, the h, U, W, Cs, qb, 

and zb at p and p1 at k are determined and used to initiate the corrector step.  

The iterative Adams-Moulton corrector step for Eq. (26) reads 



 - 110 - 

 1 1 2(9 19 5 )
24

k k p k k k
i i i i i i

t+ − −∆= + + − +U U E E E E .  (34) 

The implicit system formed by the x- and z-momentum equations is solved 

iteratively using the Newton-Raphson method with analytical Jacobian matrix for each 

time step during the iterative Adams-Moulton time stepping scheme. The integral, 

discrete version of Eqs. (13) and (14) for the Adams-Moulton corrector step, gives 
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After the iteration, one gets Wi at k+1 as given by  
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4.3. Computational Sequence 

The numerical solution at each time step is obtained by the following sequence: 
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(1) The solution U at time level k is reconstructed using MUSCL-TVD-4th. 

(2) The numerical flux Fi+1/2 is computed at cell interfaces with the HLLC Riemann 

solver using the reconstructed values of h, U, w, Cs, and qb. The surface gradient 

method is applied. 

(3) The solution U at time level k+1 is computed applying the hybrid time stepping 

sequence: 

(a) The first time level is computed applying the Euler time stepping scheme 

with explicit evaluation of the source terms. 

(b) The second time level is computed applying the Euler time stepping scheme 

with implicit evaluation of the source terms originating from the momentum 

balance in x- and z-directions. The U at k+1 and the p1 at k are calculated by 

solving the x- and z-momentum implicit system using the Newton-Rapshon 

method with analytical Jacobian matrix until a convergence is obtained. The 

variables h, Cs, qb, and zb are explicitly determined at k+1. 

(c) The third time level onwards is accomplished by computing the AB-AM 

scheme. Firstly, the Adams-Bashforth predictor scheme is applied, solving 

an implicit system of equations to obtain U at p and p1 at time level k. 

Hence, using h, U, Cs, qb, and zb at p and p1 at k, the iterative Adams-

Moulton corrector scheme is initiated to calculate h, U, Cs, qb, and zb at k+1 

and p1 at p. Besides, U at k+1 and p1 at p are also solved by using the 

implicit Newton-Rapshon method. The loop is repeated until a convergence 

is obtained. Two Jacobian matrixes are computed at each iteration in the AB-

AM scheme for using in the implicit Newton-Raphson method until a 

convergence is obtained. 

(4) The cell-averaged variables h, U, Cs, qb, and zb at time level k+1 and p1 at time 

level k are accepted.  

(5) The ρ and Ct are computed at time level k+1 using the functions ρ=ρw(1−Ct)+ρsCt 

and Ct=Cs+qb/(hU). 

(6) The W and the sediment transport functions D, E, qb*, and L, are computed at k+1. 

(7) For a new time level, steps 1 to 6 are repeated.  
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The numerical scheme developed here encompasses an accurate predictor-corrector 

time stepping scheme where an implicit solution of the x- and z-momentum equations at 

each time step is required to get a stable contribution of the non-hydrostatic terms in the 

numerical solution. Use of other time stepping schemes like the Euler scheme or 

consideration of an explicit evaluation of the source terms, resulted in highly unstable 

schemes. The application of the Euler time scheme for the first two steps requires use of 

a low CFL number. To reduce errors and instabilities, a value of the Courant-Friedrichs-

Lewy number CFL<0.1 is used in the first 10 time steps and a value of CFL<0.5 

thereafter. The need of using these values of CFL is a disadvantage as compared to 

Godunov-type finite-volume numerical models to solve Saint Venant equations, where a 

value of CFL=0.9 is typical (Toro 2001). Even for the solution of Saint Venant 

equations, it is advisable to use a smaller time step size at the initial stages of the 

motion, to compensate the approximate estimation of the maximum signal speed to 

compute CFL (Toro 2000, code "HW_MUSH.F"). In "HW_MUSH.F", the time step 

size is reduced to 0.2∆t during the first 5 steps. Other methods to solve Saint Venant 

equations require values of CFL below unity. The discontinuous method of Galerkin 

(Khan and Lai 2014) is usually implemented based on TVD Runge-Kutta schemes for 

the time-stepping, with a typical value for stability CFL<1/3 using a linear polynomial 

for space discretization. Solution of Saint Venant equations using the discontinuous 

method of Galerkin based on CFL=0.1 are not unusual. Solution of Boussinesq-type 

equations in coastal engineering problems are typically done based on CFL=0.5 (Kim et 

al. 2009).  

Given the complex system of equations to be modelled, a rigorous analysis of the 

stability was not found possible. By numerical experimentation, we determined that the 

scheme is stable for CFL<0.5. It is pertinent to mention that to initiate the implicit 

system calculations, the information of U at k is used. However, p1 does not need to be 

initiated; so that a zero vector is assumed. The numerical scheme was found to be robust 

as fast converging to the solution. It is more complex than the classical finite volume 

solutions of the hydrostatic Saint-Venant equations. However, by extensive numerical 

experimentation, it was not found possible to implement a fully explicit scheme. Bashiri 

et al. (2015) developed a Bousisnesq-type model for free surface flow in conduits, 

where the dispersion terms were treated implicitly. A possible alternative to the hybrid 

scheme developed in this work is to produce a fully implicit scheme. The convergence 
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criterion ε<10−4 was adopted for both the implicit Newton-Raphson method and the 

AB-AM scheme.  

5. Test Cases 
Non-hydrostatic movable bed computations are compared with experimental data for 

Taipei (Capart and Young 1998) and Louvain (Spinewine 2005) tests cases, following 

the former analysis by Fraccarollo and Capart (2002) using hydrostatic computations. 

The mesh independency of the model is then examined, and several equilibrium bed-

load formulas are assessed. The experimentally-adjustable parameters are determined 

based on experimental observations (Fraccarollo and Capart 2002). Simulations 

conducted with the 1D non-hydrostatic model are compared to the results from the 3D 

simulations by Marsooli and Wu (2015). The convergence of the present model results 

to steady non-hydrostatic flow solutions is finally investigated. 

5.1. Dam Break waves over Movable Beds 

Figs. 2 and 3 present the computational results for dam break waves over erodible beds 

based on the present 1D non-hydrostatic model, and those when non-hydrostatic terms 

are suppressed. The 1D hydrostatic model is obtained neglecting p1 in Eq. (2), and 

removing the z-momentum equation [Eq. (3)] from the system. The resulting physical 

model is then coincident with the 1D hydrostatic model presented by Wu and Wang 

(2007), with differences in the model closure relationships and the numerical scheme. 

The experimental data of Figs. 2 and 3 are selected from the Taipei and Louvain test 

cases (Capart and Young 1998; Fraccarollo and Capart 2002). Both sets of experiments 

correspond to laboratory observations, where the flow depth upstream of the dam was 

hu=0.1 m and the tailwater portion of the flume was dry. The qb* formula proposed by 

Wu et al. (2000) was selected; values of ∆x=0.75 cm, CFL=0.01 for the 10 first time 

steps and CFL=0.4 for the rest of the computational steps are set in the numerical 

model. According to Wu and Wang (2007), Cb=0.6, Lb=0.25 m, α0=2, fw=0.01, and 

n=0.025 are used as simulation data for both test cases. The bed sediment layer 

porosities pm are 0.28 and 0.3 for the Taipei and Louvain tests, respectively. The dry 

downstream bed is simulated by adopting a very small flow depth hd=0.0005 m. This 

technique is accepted for dam break flow simulations (Wu 2008), although this is not 

conceptually correct (Toro 2001). Alternatively, a zero tailwater depth can be prescribed 

if an algorithm to preserve positivity in the computed water depths near the wet-dry 
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front is implemented (Wu 2008).  

In Fig. 2, the Taipei test experiment (Capart and Young 1998) is simulated by using 

both non-hydrostatic and hydrostatic models at times t=3t0, 4t0 and 5t0 after the dam 

failure, where the time scaling is t0=(hu/g)1/2=0.1 s. The sediment particles used in the 

Taipei test were artificial pearls covered with a shiny white coating, having d=6.1 mm, 

ρs=1048 kg/m3, and ωs0=7.6 cm/s. The flume was sufficiently long and deep with b=0.2 

m to satisfactorily carry the experiment. The results obtained from the hydrostatic 

simulation are in agreement with those obtained by Wu and Wang (2007) model. The 

model accurately reproduces the bed profile eroded by the dam break flow at t=3t0 and 

4t0 [Figs. 2(a and b)], whilst the bed profile data at t=5t0 is somewhat overestimated in 

the lowest zone [Fig. 2(c)]. The free surface profile is composed of a negative smooth 

wave (monotone wave with propagation in negative x-direction), followed by a train of 

undulations above the scour hole, ending in a positive wave where its edge is a wet-dry 

front propagating in the positive x-direction. This free surface profile is not accurately 

reproduced by means of the hydrostatic pressure-based model. Note that the 

experimental data shows free surface undulations at the vicinity of the positive wave 

portion, not predicted by hydrostatic computations. Further, the shape of the smooth 

negative wave is also not precisely reproduced by the hydrostatic model. However, the 

position of the wet-dry front predicted by the hydrostatic model is in agreement with the 

experimental data. The non-hydrostatic results for the eroded bed profile at t=3t0 and 4t0 

reasonably reproduce the upward bed slope. The backward bed slope and the trough of 

the bed profile are shifted to the right in the simulations of Figs. 2(a and b) with respect 

to the experimental data. This behaviour is highlighted in the bed profile prediction at 

t=5t0 [Fig. 2(c)]. The present 1D non-hydrostatic model gives improved predictions for 

the free surface profile. The overall trend of the free surface oscillations near the 

positive wave at t=3t0, 4t0 and t=5t0 is reproduced. The smooth negative wave is 

predicted with good accuracy by the non-hydrostatic model. Note that the free surface 

undulations propagate in the upstream direction. The flow profile is somewhat 

underestimated at the early dam break stages [Figs. 2(a and b)]. However, the inclusion 

of non-hydrostatic modelling for the free surface profile results in physically improved 

results as compared to hydrostatic approximations, due to the inclusion of p1 in the x-

momentum balance and W via the z-momentum balance. Non-hydrostatic modelling 

permits to mimic the undulations near the positive wave portion and determine with 



 - 115 - 

accuracy the shape of the negative smooth wave. 

 

Fig. 2. Comparison of the present non-hydrostatic and hydrostatic models with the Taipei test 
experimental data of Capart and Young (1998): (a) at t = 3t0; (b) at t = 4t0; (c) at t = 5t0 

The study of the Louvain test experiment at times t=5t0, 7.5t0 and 10t0 after the dam 

break is presented in Fig. 3. In this experiment, Fraccarollo and Capart (2002) used 

cylindrical PVC pellets as sediment particles, having d=3.5 mm, ρs=1540 kg/m3, and 

ωs0=18 cm/s. The flume had a width b=0.1 m. The hydrostatic model produces 

simulations of the eroded bed profiles with some divergence from the experimental 

results, but in overall agreement with the hydrostatic simulations of Wu and Wang 

(2008). The depth of bed scour is overestimated by the hydrostatic model at the three 

dam break stages. The non-hydrostatic simulations give similar eroded bed profiles. The 

free surface profile predicted by the non-hydrostatic model is however better than that 

predicted by the hydrostatic model. The improved predictions of the negative wave and 
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the undulations near the positive wave portion are evident. It may be noted that the flow 

profile undulations observed in the experimental data are fairly well simulated by the 

non-hydrostatic model.  

 

Fig. 3. Comparison of the present non-hydrostatic and hydrostatic models with the Louvain test 
experimental data of Fraccarollo and Capart (2002): (a) at t = 5t0; (b) at t = 7.5t0; (c) at t = 10t0 

5.2. Grid Size Dependency Test 

The grid dependency test is accomplished by the following analysis, presented in Fig. 4. 

Accordingly, the Taipei test at t=4t0 [Fig. 4(a)] and the Louvain test at t=7.5t0 [Fig. 4(b)] 

are simulated by using ∆x=2, 0.75, and 0.5 cm grid sizes. In the Taipei case, use of 

∆x=2 cm gave poor results. For ∆x=0.75 cm and ∆x=0.5 cm grid sizes, the results are 

identical, thereby giving mesh-independent results.  
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Fig. 4. Grid size dependency analysis for the present 1D non-hydrostatic model using experimental data 
of Capart and Young (1998) and Fraccarollo and Capart (2002): (a) Taipei test at t=4t0; (b) Louvain test at 

t=7.5t0 

5.4. Sensitivity Analysis 

The sensitivity of the 1D non-hydrostatic model to Lb and n is investigated by testing 

different Lb and n values in Figs. 5 and 6. Since the less accurate bed profile prediction 

was obtained for the Louvain case (Fig. 3), it is selected for the current analysis. The 

parameter Lb can be approximated for sand dunes as 5 to 10 times the maximum initial 

flow depth hu, which correspond to 0.5 and 1 m in the Louvain test. Values of Lb=0.25, 

0.5 and 1 m are considered for the simulations as shown in Fig. 5 for the Louvain case 

at times t=5t0, 7.5t0 and 10t0. By increasing Lb, the results are slightly improved for both 

the flow profile and the eroded bed profile predictions. A sensitivity analysis to α0 

provides the same conclusions, and the results are therefore not presented here. A 

sensitivity analysis of the model with respect to n is shown in the new Fig. 6, using the 

values of n = 0.01, 0.025 and 0.05. It can be observed that an increase in n increases the 

free surface wave heights and the scour hole depths. 
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Fig. 5. The Lb sensitivity analysis for the present 1D non-hydrostatic model using the Louvain test 
experimental data of Fraccarollo and Capart (2002): (a) at t=5t0; (b) at t=7.5t0; (c) at t=10t0 
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Fig. 6. The n sensitivity analysis for the present 1D non-hydrostatic model using the Louvain test 
experimental data of Fraccarollo and Capart (2002): (a) at t=5t0; (b) at t=7.5t0; (c) at t=10t0 

5.5. Assessment of Equilibrium Bed-Load Formulas 

The comparison of different qb* formulas is shown in Fig. 7. The Taipei test at t=4t0 is 

considered in the simulations is shown in Figs. 7(a and c) as well as the Louvain test at 

t=7.5t0 in Figs. 7(b and d). The results using the qb* formulas in the non-hydrostatic 

simulations are presented as follows: Results from Meyer-Peter and Müller (1948) and 

Yalin (1963) are presented in Figs. 7(a and b), whereas those from van Rijn (1984) and 

Wu et al. (2000) are shown in Figs. 7(c and d). Although the results from Meyer-Peter 

and Müller’s bed-load formula are in agreement with the experimental free surface 

profile, it produces a poor prediction for the eroded bed profile [Fig. 7(b)]. The Yalin’s 

formula gives better results, but the prediction of the eroded bed profile is still not good 
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[Fig. 7(b)]. The Wu et al.(2000) formula is an improvement of van Rijn (1984) 

equation, which in fact provides the best computational results. 

 

Fig. 7. Assessment of different non-equilibrium bed-load flux formulas applied to the present 1D non-
hydrostatic model using the experimental data of Capart and Young (1998) Fraccarollo and Capart 

(2002): (a) Yalin (1963) and Meyer-Peter and Müller (1948) formulas (see Dey 2014) for Taipei test at 
t=4t0; (b) Yalin (1963) and Meyer-Peter and Müller (1948) formulas for Louvain test at t=7.5t0; (c) van 
Rijn (1984) and Wu et al. (2000) formulas for Taipei test at t = 4t0; (d) van Rijn (1984) and Wu et al. 

(2000) formulas Louvain test at t=7.5t0 

5.6. Comparison with 3D non-Hydrostatic RANS Model Simulations 

The results obtained from the present 1D non-hydrostatic model are compared with 

those obtained from a 3D non-hydrostatic RANS model by Marsooli and Wu (2015), as 

shown in Fig. 8. The experimental data of the Louvain case at t=5t0, 7.5t0 and 10t0 are 

considered for the assessment. It is pertinent to mention that in Fig. 8(b), the simulation 

by the present model is skilful at t=7t0 to match with the 3D simulation shown in Fig. 3 

from Marsooli and Wu (2015). At t=5t0, the 3D simulation data accurately predicts the 

bed profile experimental data, whereas the present model overestimate them [Fig. 8(a)]. 

The present 1D computation predicts a free surface profile that is in good agreement 

with the experimental data (Fraccarollo and Capart 2002) and 3D simulations (Marsooli 

and Wu 2015). Note that in Fig. 8, the free surface undulations predicted by the 3D 

simulations are successfully reproduced by the 1D non-hydrostatic simulation. The 1D 

theoretical simulations are conducted assuming that the dam release is instantaneous, 

whilst the real conditions in experiments diverge to some extent. Thus, simulations and 

experiments are out of phase in Fig. 8. However, this 1D non-hydrostatic simulations 

are reasonably in phase with the 3D simulations in Fig. 8. 



 - 121 - 

 

Fig. 8. Comparison between the present 1D non-hydrostatic model and 3D RANS model of Marsooli and 
Wu (2015) with the Louvain test experimental data of Fraccarollo and Capart (2002): (a) at t=5t0; (b) 

experimental data at t=7.5t0 and present model computed at t=7t0; (c) at t=10t0 

The scour hole profiles are in agreement with the results of the 3D model, showing 

wavelike profiles. However, the scour depths predicted by the 1D non-hydrostatic 

model are larger than those shown by experiments and 3D simulations, indicating that 

this specific aspect needs to be resolved with further research. 

5.7. Convergence to Steady Flow Solutions 

Convergence of the present 1D non-hydrostatic model to a non-hydrostatic steady flow 

solution is tested in Fig. 9. This test is important to check the accuracy of the numerical 

model. The experimental data obtained by Sivakumaran et al. (1983) for the free surface 

profile and bed pressure in transcritical flow over a Gaussian hump are plotted in Figs. 

9(a and b). The experimental discharge q=1119.7 cm2/s and ∆x=2 cm were set in the 
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numerical model. The computational results are shown after 50 s. The results of the bed 

pressure pb=ρgh+p1 are plotted in Fig. 9(b). The results obtained from the present 1D 

non-hydrostatic model show good agreement with the experimental data for both the 

free surface profile [Fig. 9(a)] and bed pressure [Fig. 9(b)], demonstrating converge to a 

steady flow. The predicted unit discharge is seen to be constant and stable and is in 

excellent agreement with the experimental data [Fig. 9(c)]. The present finite volume 

results are compared with the simulations presented by Khan and Steffler (1996a) using 

the dissipative Galerkin finite element scheme, showing a good agreement.  
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Fig. 9. Steady 1D non-hydrostatic flow over a symmetric hump: Comparison of present 1D results with 
experimental data (Sivakumaran et al. 1983) and the 1D simulation by Khan and Steffler (1996a) for: (a) 

free surface profile; (b) bed pressure; (c) unit discharge 

6. Conclusions 
The following conclusions are drawn from this study: 
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• A new depth-averaged 1D non-hydrostatic model for shallow free surface flow over 

movable beds was developed. To the best of the authors’ knowledge, this is the first 1D 

modelling approach presented in the literature for non-hydrostatic dam break waves 

over erodible beds. The model couples a generalization for sediment transport of the 

non-hydrostatic momentum equations of Khan and Steffler (1996a,b) with the sediment 

transport model of Wu and Wang (2007). 

• The physical equations are solved using a high-resolution finite volume scheme, 

needed to accurately solve Boussinesq-type equations. The time stepping scheme that 

produces an accurate, robust and stable solution is the Adams-Bashforth/Adam Moulton 

predictor-corrector scheme, where the non-hydrostatic contributions in the x- and z-

momentum equations are treated implicitly, and solved by the Newton-Rapshon 

method. Schemes used for the solution of hydrostatic dam break waves over movable 

beds were tested, and it was found that all crashed within a few time steps. 

• The predicted free surface profiles using the new set of physical equations are found to 

be in good agreement with results of the 3D non-hydrostatic RANS simulations by 

Marsooli and Wu (2015) and the experimental data of Fraccarollo and Capart (2002). 

The 1D non-hydrostatic model gives a significant improvement in free surface profile 

predictions as compared to the simulations using a hydrostatic model. It produces 

undulations at the vicinity of the positive wave portion, also shown experimentally and 

in the 3D simulations, and yields a good prediction of the smooth negative wave 

portion. The bed scour profiles predicted by the non-hydrostatic model are similar to 

those given by the hydrostatic model, indicating that more research is needed to 

improve the sediment transport model for the non-hydrostatic simulations. 

• The model produces results convergent to steady flow profiles with non-hydrostatic 

pressure. The finite volume scheme gave steady flow results in good agreement with the 

finite element solution by Khan and Steffler (1996a). 
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Appendix: Derivation of Vertically-Integrated Equations for Non-
Hydrostatic Mixture Flows  
The RANS mass and momentum conservation equations in the x- and z-directions for a 

mixture of water and sediments are (Wu 2008, pages 42-43) 

 
( )( )

0
wu

t x z

ρρ ρ ∂∂ ∂+ + =
∂ ∂ ∂

, (A1) 

 ( )2( ) ( ) xz
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u uw
u p

t x z z

τρ ρρ τ ∂∂ ∂ ∂+ + − + =
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, (A2) 

 ( )2( ) ( ) zx
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w p g

t x z x

τρ ρ ρ τ ρ∂∂ ∂ ∂+ + + − = −
∂ ∂ ∂ ∂

, (A3) 

To obtain a 1D system of equations, the equations are first vertically integrated, then 

Leibnitz’s rule is used and finally the kinematic boundary conditions are applied 

(Steffler and Jin 1993, Castro-Orgaz et al. 2015). The terms on the mass conservation 

Eq. (A1) then produce 
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s bz z

z z
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t t t t
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 d
s

b

z

s s b bz
w z w wρ ρ ρ= −∫ . (A6) 

Coupling Eqs. (A4)-(A5) produces the depth-averaged continuity equation as 

 d d 0
s s

b b

z z
s s b b

s s s b b bz z

z z z z
z u z u w u w

t x t x t x
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∫ ∫ , (A7) 

The free surface kinematic boundary conditions is 

 0s s
s s

z z
u w

t x

∂ ∂+ − =
∂ ∂

, (A8) 

and, at the bed, the no-slip condition is 

 0b bu w= = , (A9) 

Inserting Eqs. (A8)-(A9) into Eq.(A7), considering depth-averaged values of density 

ρ and velocity U, finally yields the depth-averaged mass conservation equation as 
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Vertical integration of each term of the x-momentum Eq. (A2) yields 
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Collecting Eqs. (A11)-(A16) the depth-averaged x-momentum equation reads 
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Grouping terms yields 

 

( )

( ) ( )

2d d d d

.

s s s s

b b b b

z z z z

xxz z z z

s s b b
s s s s b b b b

b s
b xxb s xxs xs xb

u z u z p z z
t x

z z z z
u u w u u w

t x t x

z z
p p

x x

ρ ρ τ

ρ ρ

τ τ τ τ

∂ ∂+ + +
∂ ∂

∂ ∂ ∂ ∂   − + − + + −   ∂ ∂ ∂ ∂   

∂ ∂+ + − + = −
∂ ∂

∫ ∫ ∫ ∫

 (A18) 

Inserting Eqs. (A8)-(A9) into Eq.(A18), and considering zero pressure and stresses 

at the free surface, yield 
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Neglecting the integral of the normal Reynolds stresses τxx, and considering depth-

averaged values of density ρ and velocity U, Eq. (A19) reduces to 

 ( ) ( )2( ) d .
s

b

z
b

b xxb xbz

z
hU hU p z p

t x x x
ρ ρ τ τ∂∂ ∂ ∂+ + + + = −
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The pressure distribution is at this stage assumed to be non-hydrostatic and linearly 

distributed with depth, e.g. 

 1 ,b

z
p p

h
 = − 
 

 (A21) 

where the bottom pressure pb can be rewritten as 

 1.bp gh pρ= +  (A22) 

Inserting Eq. (A21) into Eq. (A20), performing the pressure integral, and using Eq. 

(A22) yield 
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Assuming that the stress state at the bed is of pure shear, rotation of the stress tensor 

an angle equal to the bed slope angle permits to express Cartesian stresses as function of 

the shear stress τb locally tangential to the bed (Steffler and Jin 1993; Castro-Orgaz et al. 

2015). The x-momentum equation is then written as 
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 (A24) 

Vertical integration of each term of the z-momentum Eq. (A3) yields 
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Therefore, collecting Eqs. (A25)-(A29) yield 
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Neglecting the integral of the tangential Reynolds stresses τzx, applying Eqs. (A8)-

(A9), and considering depth-averaged values of density ρ and velocity U, Eq. (A30) 

reduces to 

 d d .
s s

b b

z z
b

b zzb zxb z z

z
p gh w z uw z

x t x
ρ τ τ ρ ρ∂ ∂ ∂  = + − + +

  ∂ ∂ ∂∫ ∫  (A31) 

Defining the depth-averaged vertical velocity W by 
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Eq. (A31) is rewritten, assuming that the stress state at the bed is of pure shear  
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or 
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Now, the flow density ρ is eliminated from Eq. (A10). The depth-averaged mass 

conservation Eq. (A10) is rewritten as 
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With the definitions ρ=ρw(1−Ct)+ρsCt and ρb=ρwpm+ρs(1−pm), Eq. (A35) is 

transformed to 
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With the definition Ct=Cs+qb/(hU), Eq. (A36) is further written as 
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The mass balance equation in the bed-load layer is  

 *b b b b

b

q q q q

t U x L

  ∂ −∂ + = ∂ ∂ 
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and the suspended sediment mass conservation equation is 
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Summing up Eqs. (A38) and (A39) yields the conservation equation for the total 

mass of sediments as 
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and inserting Eq. (A40) into Eq. (A37) yields 
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With the definition ρ=ρw(1−Ct)+ρsCt, Eq. (A23) for the x-momentum balance reads 
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The left hand side (LHS) of Eq. (A43) is 
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where term I can be expressed as follows 
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and applying the continuity Eq. (A42) yields 
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Finally, after some algebraical manipulations and using the definition 

ρ=ρw(1−Ct)+ρsCt yield 
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Likewise, with the definition ρ=ρw(1−Ct)+ρsCt, Eq. (A34) for the z-momentum 

balance reads 
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,(A48) 

where term II is expressed as follows, 

 

( ) ( ) ( ) ( )

( ) ( )
                                   .

t t t t
t t

t t
t

hWC hUWC hC hUCW W
W hC W hUC

t x t t x x
hC hUC W W

W hC U
t x t x

∂ ∂ ∂ ∂∂ ∂+ = + + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂   = + + +  ∂ ∂ ∂ ∂  

 (A49) 

Eq. (A40) is written as  

 *( )b b b
b

b

q q q
hC hUC q E D

t u x L

  −∂ ∂+ + + = − + ∂ ∂ 
, (A50) 

or as function of the total load using Ct=Cs+qb/(hU) as 

 *( ) ( )
.t t b bhC hUC q q

E D
t x L

∂ ∂ −+ = − +
∂ ∂

 (A51) 

Using this result, Eq. (A49) yields 

 *( ) ( )
.t t b b

t

hWC hUWC q q W W
W E D hC U

t x L t x

∂ ∂ − ∂ ∂   + = − + + +  ∂ ∂ ∂ ∂  
 (A52) 

Further, the last term in Eq. (A52) can be written as 

 
( ) ( ) ( )

t t t

W W hW hUW h hU
hC U C WC

t x t x t x

∂ ∂ ∂ ∂ ∂ ∂     + = + − +     ∂ ∂ ∂ ∂ ∂ ∂     
. (A53) 

and inserting Eq.(A42) into Eq.(A53) results 

 *( ) ( )

1
t b b

t t
m

WC q qW W hW hUW
hC U C E D

t x t x p L

−∂ ∂ ∂ ∂     + = + − − +    ∂ ∂ ∂ ∂ −     
. (A54) 

Inserting Eqs. (A52) and (A54) into Eq. (A48) and using the definition 

ρ=ρw(1−Ct)+ρsCt yield 
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z C q qphW hUW
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τ ρ ρ
ρ ρ ρ
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8. Notation 
The following symbols are used in this paper:  

b = channel width (m); 

Ca = actual near-bed suspended-load sediment concentration; 

Ca* = equilibrium near-bed suspended sediment concentration; 

Cb = depth-averaged bed-load sediment concentration; 

CFL = Courant-Friedrichs-Lewy number; 

Cs = depth-averaged suspended sediment concentration; 

Ct = total-load depth-averaged sediment concentration; 

D = sediment depositional rate (m/s); 

d = sediment particle diameter (m) 

E = sediment entrainment rate (m/s); 

E = auxiliary vector (m/s, m2/s2); 

F = vector of fluxes in x-direction (m2/s, m3/s2); 

fw = roughness coefficient for sidewalls (m-1/3s); 

g = gravitational acceleration (m/s2); 

h = flow depth (m); 

hx = dh/dx; 

hxx = d2h/dx2 (m−1); 

hb = thickness of bed-load layer (m); 

hd = initial downstream flow depth (m); 

hu = initial upstream flow depth (m); 

L = non-equilibrium adaptation length of total-load transport (m); 

Lb = non-equilibrium adaptation length for bed-load transport (m); 

Ls = non-equilibrium adaptation length for suspended-load transport (m), 

n = Manning roughness coefficient for bed (m-1/3s); 
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nw = Manning roughness coefficient for wall (m-1/3s); 

p1 = pressure at bed in excess from hydrostatic (Pa); 

pb = pressure at bed (Pa); 

pm = sediment porosity; 

q = flow discharge per unit width (m2/s); 

qb = bed-load flux (m2/s); 

qb* = equilibrium bed-load flux (m2/s); 

R = hydraulic radius (m); 

S  = source terms vectors (m/s, m2/s2); 

t = time (s); 

t0 = (hu/g)1/2 (s); 

U = depth-averaged streamwise velocity (m/s); 

Ub = bed-load velocity (m/s); 

U = vectors of unknowns (m, m2/s); 

W = depth-averaged vertical velocity (m/s); 

wb = vertical velocity at bed (m/s); 

ws = vertical velocity at free surface (m/s); 

x = horizontal coordinate (m); 

zb = erodible bed elevation (m); 

zs = free surface level (m); 

α = nonequilibrium adaptation coefficient of suspended-load; 

α0 = empirical coefficient; 

∆t = time step (s); 

∆x = grid size (m); 

ε = tolerance; 

ω = settling velocity of a particle (m/s); 
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ρ = mass density of water-sediment mixture (kg/m3); 

ρb = bed layer mass density (kg/m3); 

ρs = sediment mass density (kg/m3); 

ρw = clear water mass density (kg/m3); 

τb = bed shear stress (kg/m/s2); 

 

Subscripts and Superscripts 

i = cell index in x-direction; 

k = time step index; 

p = predictor index. 
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Abstract 
The diffusion equation of suspended sediment concentration in a wide sediment-laden 

stream flow is dependent on the vertical gradient of streamwise velocity and the 

sediment diffusivity. This study aims at investigating the influence of the streamwise 

velocity laws on the suspended sediment concentration distributions, resulting from the 

solution of the diffusion equation. Firstly, the sediment concentration distributions are 

obtained numerically from the solution of the diffusion equation using different velocity 

laws, and compared with the experimental data. It is found that the power-law 

approximation produces good computational results for the concentration distributions. 

The accuracy of using a power law velocity model is comparable with the results 

obtained from other classical velocity laws, namely, log-, log wake-, and stratified log-

law. Secondly, a novel analytical solution is proposed for the determination of sediment 

concentration distribution, where a power-law, wall-concentration profile, is coupled 

with a concentration wake function. The power-law model (for velocity and 

concentration) is calibrated using the experimental data, and then a generalised wake 

function is obtained by choosing a suitable law. The developed power-law model 

involving the wake function adjusted by an exponent predicts the sediment 

concentration distributions quite satisfactorily. Finally, a new explicit formula for the 

suspended-load transport rate is derived from the proposed theory, where numerical 

computation of integrals, as needed in the Einstein theory, is avoided. 
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1. Introduction  
Sediment transport as suspended-load is important in most of the fluvial streams, 

thereby resulting in a number of significant studies over the last eight decades. Dey 

(2014) gave a summary of the important studies on suspended-load. In fluvial streams, 

sediment transport is classified as bed-load, suspended-load, and wash-load. The 

suspended-load is generally the major contributing fraction to the total-load transport 

(van Rijn, 1984; Mateos & Giráldez, 2005; Dey, 2014). It is well known that important 

fluvial processes, like bed stability and bed-form development, are consistently 

influenced by the suspended-load (Bose & Dey, 2009; Dey, 2014). Urban drainage 

flows are good examples containing suspended-load, in which a variation of sediment 

concentration with depth is prevalent (Carnacina & Larrarte, 2014; Larrarte, 2015). 

Thus, the study of suspended-load is still a topic of continued research interest, due to 

its practical importance. 

Suspended-load transport is a complex phenomenon, given the interaction between 

the turbulent flow and the sediment particle motion, resulting in an alteration of the bed 

morphology. Several models were proposed to simulate the sediment suspension in a 

fluvial stream and thus, to compute the suspended-load transport rate. These mainly 

originate from three major theoretical concepts: (i) The diffusion concept (Rouse, 

1937), (ii) the energy concept (Velikanov, 1954, 1958; Bagnold, 1966; Leeder, 1983; 

Wu et al., 2000), and (iii) the stochastic concept (Cheng & Chiew, 1999; Bose & Dey, 

2013). Besides these, Boogerd et al. (2001) pointed out the significance of applying the 

turbulence spectrum, together with an energy approach, as an alternative to the classical 

theoretical concepts. Among these, the methods based on the diffusion concept are 

widely accepted and used to produce the models in fluvial hydraulics related to 

suspended-load. In these methods, the advection-diffusion mechanism constitutes the 

basis involving the turbulent diffusivity (and in turn, sediment diffusivity), which is a 

function of the velocity distribution (Dey, 2014).  

The three-dimensional (3D) continuity equation for suspended sediment motion is 

used in 3D numerical models. However, 3D computations of sediment-laden flows at a 

hydrological catchment scale are still time-consuming and challenging. For this reason, 

most of the practical models for sediment transport in fluvial streams are still based on a 

cross-sectional averaged one-dimensional (1D) flow approximation. To this degree of 

resolution, the vertical distribution of suspended sediment at a section is given by a 



 - 141 - 

diffusion equation involving only the gradient of sediment concentration in the vertical 

direction (Dey, 2014). 

The diffusion equation can be integrated in terms of the reference concentration, 

reference elevation, terminal fall velocity of sediment particles, and sediment 

diffusivity. It is pertinent to mention that Hunter Rouse (1906–1966) (Rouse, 1937) was 

the first to derive the analytical solution for the concentration distribution based on the 

velocity log-law. The resulting equation is commonly called the Rouse equation. 

However, the equation was simultaneously derived by Arthur Thomas Ippen (1907–

1974). For this reason, the equation should be formally called the Ippen-Rouse equation, 

as stated by Montes (1973), the last PhD student of Arthur Ippen (personal 

communication of Montes to the second Author). The Ippen-Rouse equation is a 

common approach to model the suspended sediment concentration distribution in 

sediment transport. 

Lane & Kalinske (1941) proposed another concentration distribution equation by 

using a depth-averaged value of the diffusivity. Their concentration distribution is of 

exponential type. Hunt (1954) considered mass balance for solid (suspended sediment) 

and fluid phases, separately. He introduced the concept of vertical velocity of a 

suspended sediment particle into the governing equation as a sum of the flow velocity 

and the terminal fall velocity of sediment in still water. Hunt’s concentration 

distribution differs from the Ippen-Rouse equation in terms of free parameters. The 

Ippen-Rouse equation involves only the Rouse number Z as a free parameter, while the 

Hunt equation possesses two. Further, coupling of the Ippen-Rouse sediment 

distribution equation with the log-law of velocity for computing the suspended 

sediment-load produces the Einstein’s integrals (Guo & Julien, 2004). A numerical 

computation is required to solve these integrals. Following Hunt’s analysis, van Rijn 

(1984) also replaced the terminal fall velocity of sediment in still water by that in 

sediment-laden water flow, thereby correlating both in terms of sediment concentration 

(Richardson & Zaki, 1954). The determination of terminal fall velocity of sediment is 

an essential prerequisite and plays a key role in predicting sedimentation of suspended 

sediment particles (Lucas-Aigier et al., 1998; Camenen et al., 2011; Chauchat et al., 

2013). Despite the progressive developments since the Ippen-Rouse equation, it is 

extensively used (Cao et al., 2003; Lamb et al., 2008). 



 - 142 - 

It is pertinent to state that the Ippen-Rouse equation produces vanishing sediment 

concentration at the free surface of flow. However, the concentration at the free surface 

may not be zero in natural stream flows. Zagustin (1968) investigated this limitation 

assuming a velocity defect-law mathematically given by a hyperbolic tangent function. 

He derived a concentration distribution equation accounting for a nonzero value at the 

free surface. Importantly, the velocity gradient along the vertical affects the turbulent 

diffusivity. Typically, in urban drainage and open-channel flows, the secondary currents 

induced due to confinement of the flow by the side-walls result in a dip-phenomenon 

(Knight & Sterling, 2000; Yoon et al., 2012; Lassabatere et al., 2013; Guo et al., 2015). 

Therefore, the variations in the velocity laws would provoke variations in the computed 

sediment diffusivity and thus, in the concentration distributions. Accordingly, a family 

of solutions for the concentration distribution is obtained from various velocity laws. 

Thus, it suggests to revisit the solutions for the diffusion equation for different velocity 

laws to explore the viability of the resulting sediment concentration distributions.  

The main objective of this study is therefore to find different solutions for the 

diffusion equation by using some classical velocity laws for the wall-bounded turbulent 

shear flows. After obtaining the concentration distributions by using these velocity laws, 

a new analytical theory for the sediment concentration distribution is developed by 

applying the power-law approximation for the turbulent velocity distribution developed 

by Castro-Orgaz & Dey (2011). Numerical and analytical results of the study are 

compared with the experimental results on the sediment concentration (Coleman, 1986; 

Lyn, 1986; Montes, 1973). Finally, an analytical formula to calculate the suspended-

load transport rate is presented, where the numerical computation of integrals is 

avoided. Thus, it could be a practical tool for the estimation of suspended-load transport 

rate. 

2. Diffusion model 
In sediment-laden flows, the suspended sediment motion is defined by the generalised 

advection-diffusion equation (Dey, 2014) 

 
C C C C u v w

u v w C
t x y z x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

 ( ) ( ) ( )m sx m sy m sz

C C C

x x y y z z
ε ε ε ε ε ε ∂ ∂ ∂ ∂ ∂ ∂   = + + + + +    ∂ ∂ ∂ ∂ ∂ ∂    

 (68) 
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where C is the time-averaged sediment concentration at (x, y, z), t is the time, εm is the 

molecular diffusivity, εsi is the solid diffusivity in i-direction (i = x, y, z), and u, v, and w 

are the time-averaged velocity components in x-, y-, and z-direction, respectively. Under 

a steady-uniform flow condition, the dynamic equilibrium of suspended sediment 

motion is maintained by balancing the sediment diffusion flux in the vertical direction 

with the sediment flux due to settling velocity. Thus, the problem reduces to a 1D 

ordinary differential equation (ODE) in z-direction. The schematic distributions of 

concentration C, streamwise velocity u, and Reynolds shear stress τ in uniform 

sediment-laden flow are shown in Fig. 1. Equation 1 therefore reduces to (Dey 2014) 

 0s s

dC
w C

dz
ε + =  (69) 

where εs is the sediment diffusivity, and ws is the terminal fall velocity of sediment 

particles. The solution for concentration C(z) is obtained from Eq. 2 once the 

appropriate functions for the sediment diffusivity and the terminal fall velocity of 

sediment particles are introduced. 

 

Fig. 1. Schematic of concentration C, streamwise velocity u, and Reynolds shear stress τ distributions in 
uniform sediment-laden flow over a streambed. 

According to the Boussinesq hypothesis (Dey, 2014), 

 t

du

dz
τ ρε≈  (70) 

where εt is the eddy viscosity or turbulent diffusivity, and ρ is the mass density of fluid. 



 - 144 - 

In a two-dimensional (2D) steady-uniform flow, the momentum balance provides 

the linear Reynolds shear stress distribution (Fig. 1) (Dey, 2014) 

 0 1
z

h
τ τ  ≈ − 

 
 (71) 

where τ0 is the bed shear stress (= ρghS), g is the gravitational acceleration, h is the flow 

depth, and S is the friction slope. 

Equating Eqs 3 and 4 yields 

 *

1

/
s

t u h
du d

εηε
η β+

−= =  (72) 

where u* is the shear velocity [=(τ0/ρ)1/2], u+ = u/u*, and η = z/h. The sediment and 

turbulent diffusivities are related as εs = βεt, where β is a proportionality factor.  

Inserting εs from Eq. 5 into Eq. 2 and integrating it between a reference level za and 

an arbitrary level z yield 

 exp
1

a

du d
c Z d

η

η

η ηκ
η

+
+

 
= − 

 − 
∫  (73) 

where κ is the von Kármán constant for clear-water flows (= 0.41), c+ is the 

nondimensional sediment concentration (= C/Ca), Ca is the reference concentration at 

reference level za, ηa is the nondimensional reference level (= za/h), and Z is the Rouse 

number (Rouse, 1937). The Rouse number is given by 

 
*

sw
Z

uβκ
=  (74) 

The proportionality factor β in the Rouse number may be considered to be unity as 

an approximation. 

3. The laws of streamwise velocity distribution 
As previously discussed, different laws for the streamwise velocity distribution produce 

varied sediment concentration distributions. An examination of Eq. 6 suggests that it 

depends on the Rouse number Z and the velocity gradient du+/dη. Therefore, in order to 

investigate the impact of the velocity distributions on the c+-distribution, various well-

established velocity laws are considered. 
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Firstly, the logarithmic-law (henceforth called log-law) is considered (Rouse, 1937; 

Dey, 2014). It is expressed in the defect form as 

 
1

lnU u η
κ

+ +− = −  (75) 

where U+ is the nondimensional maximum streamwise velocity occurring at the free 

surface devoid of any dip (= Umax/u*), and Umax is the maximum streamwise velocity. It 

is pertinent to mention that the dip-phenomenon prevails in the flows through narrow 

channels due to the presence of secondary currents. For example, urban drainage flows 

exhibit the dip-phenomenon significantly in laboratory experimental and field studies 

(Knight & Sterling, 2000; Larrarte, 2015). It may be noted that using Eq. 8 into Eq. 7, 

results in the classical Ippen-Rouse equation for the concentration distributions. 

The log-law is only applicable in the wall-shear layer of turbulent flow. Roughly, it 

limits to about the 20% of the flow depth close to the bed in most practical problems 

(ASCE Task Force, 1963). To generalise the log-law to the entire turbulent boundary 

layer, Coles (1956) proposed the so-called log wake-law. It is 

 21 2
ln cos

2
U u η ηπ

κ κ
+ + Π  − = − +  

 
 (76) 

where Π is the Cole’s wake parameter. It is clear that Eq. 9 differs from Eq. 8 in terms 

of the additional second term in the right hand side of Eq. 9, which is known as wake 

function. 

In sediment-laden flows excluding urban drainage flows (Larrarte, 2015), most of 

the sediment particles are transported in the inner-layer of flow close to the bed 

(Coleman, 1986), whereas the outer-layer is characterised by a lower sediment 

concentration, thus creating a stratification. The particle size distributions of sediment 

suspension also reveal the concept of stratification (Sengupta, 1975, 1979; Mazumder, 

1994). This stratification modifies the turbulent momentum transfer, thereby affecting 

the velocity distribution (Wright & Parker, 2004; García, 2008; Dutta et al., 2014). 

Wright & Parker (2004) stated that the sediment concentration gradient along the 

vertical affects the momentum flux through the change of turbulent diffusivity. Thus, 

they proposed a modified expression for turbulent diffusivity εt involving the flux 

Richardson number. Assuming a constant Richardson number over the entire flow 

depth, the turbulent diffusivity is expressed as 
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 * (1 )t u zε ακ η= −  (77) 

where α is the stratification parameter. Generally, α needs to be determined empirically. 

From Eqs 5 and 10, the velocity gradient is 

 *udu

dz zακ
=  (78) 

Integrating Eq. 11, the streamwise velocity distribution is  

 
1

lnU u
ακ

η+ +− = −   (79) 

Equation 12 is defined as the stratified log-law in velocity defect form. 

Finally, the power-law model for streamwise velocity distribution developed by 

Castro-Orgaz & Dey (2011) is considered. It is 

 
1/n

z
u U

δ
+ +  =  

 
  (80) 

where δ is the boundary layer thickness, and n = κU+[(11 + 12Π)/12]–1 – 1. For a fully 

developed flow in a wide channel (with no-dip), that is δ ≈ h, Eq. 13 is rewritten as 

 1/nu U η+ +=   (81) 

4. Power-law concentration model 
The power-law model, given by Eq. 14, is used to determine the new sediment 

concentration distribution. Lyn (1986) was the first to point out that the c+-distribution 

can be represented by an inner-layer concentration component plus a wake function to 

adjust the concentration distribution in the outer-layer of flow. Later, Lyn (2000) 

developed this concept for the Ippen-Rouse c+-distribution, which was affected by a 

wake parameter. This isolated work is the only appearance of a wake function for the 

c+-distribution. This challenging approach is here considered in combination with the 

power-law model given by Eq. 14. 

Introducing Eq. 14 into Eq. 6 results 
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η η
η

κ
+ −

+
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 − 

∫  (82) 
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A primitive function of Eq. 15 is not known; so a numerical integration is required. 

However, assuming η << 1, the integral in Eq. 15 can be approximated as 
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(1 )/ (1 )
1

a a

n n
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d d
n n

η η

η η

η η η η η
η

+ − +
−⋅ ≈ +

−∫ ∫  (83) 

Using Eq. 16 into Eq. 15 yields 

 
(1 )/ (1 )/

1/ 1/exp
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ac ZU
n

η ηη ηκ +
+ +

+   −= − − +  +  
  (84) 

Further, neglecting the last term inside the parenthesis of right hand side of Eq. 17 

given its small magnitude, Eq. 17 reduces to 

 ( )1/ 1/exp n n
ac ZU η ηκ+ + = − −    (85) 

Considering the wall-layer η << 1, the equivalence between a log-law and a power-

law is given by η1/n ≈ 1 + [(lnη)/(1+n)]. Therefore, Eq. 18 is solved as 

 exp ln
1

ZU
c

n
ηκ η

+
+ −Γ 

= Ψ − = Ψ + 
  (86) 

where Ψ = aηΓ , and Γ = κZU+/(1+n). It may be noted that Eq. 19 is only applicable to 

the inner-layer of flow. To generalise Eq. 19 for the entire flow depth, a wake function 

for the concentration distribution is assumed (Lyn, 1986) 

 ( , )cc Wη η+ −Γ= Ψ Π   (87) 

where W(η, Πc) is the wake function that must preserve the asymptotic conditions as 

follows: 

 
0 1

1 0

W

W

η
η

→ →
→ →

  (88) 

The second condition is based on the fact that the concentration distribution in Eq. 

19 is valid for the inner-layer of flow, but should vanish at the free surface. 

Notwithstanding, there is no evidence of the form of the wake function, which has to be 

plausibly proposed in the light of the experimental data. As a first approach, the wake 

function is assumed in this study as 

 ( , ) 1 c
cW η ηΠΠ = −   (89) 
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where Πc is an exponent of wake parameter that needs to be determined empirically. 

Thus, the power-law model for sediment concentration distribution is finally given 

by 

 (1 )cc η ηΠ+ −Γ= Ψ −   (90) 

5. Suspended-load transport rate 
The suspended-load transport rate qs is calculated from the depth integration of the 

product of the sediment concentration and the streamwise velocity distribution of the 

flow. It is 

 
a

h

s

z

q Cudz= ∫   (91) 

Using nondimensinal forms of the sediment concentration and the streamwise 

velocity distributions, Eq. 24 is given by 

 
1

*

a

s aq C u h c u d
η

η+ += ∫   (92) 

Inserting Eqs 14 and 23 into Eq. 25, the suspended-load transport rate is modified in 

terms of the power-law model as 
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n
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The integral in Eq. 26 is performed as  
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where A = 1 + [(1 – nΓ)/n].  

The nondimensional form of the suspended-load transport rate, called the 

suspended-load transport intensity Φs, is expressed as 

 
( )0.53

50

s
s

q

gd
Φ =

∆
  (95) 

where ∆ is the submerged relative density.  
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Inserting Eq. 27 into Eq. 26 and then using Eq. 28, the suspended-load transport 

intensity Φs for the power-law model is analytically formulated as 

 
( )
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0.53
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1 1 cAA
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aaC u h U
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  (96) 

It may be noted that this function is analytical, and thus numerical computations are 

avoided. In contrast, use of the Ippen-Rouse equation coupled with the log-law of 

velocity distribution produces the well-known Einstein’s integrals to compute Φs, where 

a numerical solution is required. Therefore, Eq. 29 is a new and simple analytical tool 

for the estimation of suspended-load transport rate. 

6. Methodology 
One of the main objectives of this study is to compare the new analytical power-law 

model for concentration (Eq. 23) involving the power-law velocity distribution (Eq. 14) 

with the computational results for the concentration distribution based on Eq. 6. 

Equation 6 needs a mathematical closure in terms of the velocity gradient. Therefore, 

the log-, log wake-, power- and stratified log-law are used to produce c+-distributions. 

Firstly, a critical comparison between the analytical and the numerical c+-distributions 

for all the four velocity laws, discussed in preceding sections, is carried out. Then, Eq. 

23 is compared with Eq. 6 coupled with Eq. 14 for the velocity gradient closure.  

The experimental data sets selected for the comparisons are from Coleman (1986), 

Lyn (1986), and Montes (1973). 

The computational procedure is furnished as follows: 

1. For a given experimental data set (including streamwise velocity and sediment 

concentration distributions), determine U+ from the data near the free surface and ηa 

from the data at the lowest level za. 

2. Adjust Π and α coefficients in Eqs 9, 12, and 14 by evaluating the lowest level of the 

velocity from the data set.  

3. Calculate the vertical distributions of streamwise velocity u+ inserting computations 

from Steps 1 and 2 into Eqs 8, 9, 12, and 14. 

4. Substituting nondimensional velocity gradients du+/dη into Eq. 6, numerically 

compute the distribution of nondimensional sediment concentration c+ by using the 
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Simpson’s rule. Try with different values of Rouse number Z until a best fit for the 

computed c+(η) with the experimental data is obtained. Note that fitting Z, ws is not 

computed.  

5. Use Eq. 20 along with the results obtained from Step 4 to determine the wake 

function distributions W(η). 

The suspended-load transport intensity Φs can be calculated from Eq. 29. 

7. Results 
The experimental data set of Coleman (1986) has been extensively used for the 

validation purposes of sediment concentration models (Bose & Dey, 2009; Ghoshal & 

Kundu, 2013; Kundu & Ghoshal, 2014) and also streamwise velocity laws (Guo & 

Julien, 2008; Absi, 2011). In this study, Runs 12, 27, and 34 from the experimental data 

set of Coleman are selected, representing each one with different bed roughness values. 

In brief, Coleman conducted experiments in a 0.356 m wide and 15 m long rectangular 

flume. The flow depth was approximately 0.17 m in all the selected runs having an 

aspect ratio (flume width to flow depth ratio) of about 2. The shear velocity was 0.041 

m s–1; and the von Kármán constant was assumed to be equal to its universal value as 

0.41. With these, Fig. 2 shows the velocity and the sediment concentration distributions 

obtained from the computations using different velocity laws and the experimental data 

used for the calibration of free parameters. The values of Z shown in Fig. 2 are the ones 

which ensured a satisfactory fitting between the computed c+-distribution and the 

experimental data for a given experimental run.  
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Fig. 2. Nondimensional velocity u+(η) and concentration c+(η) distributions obtained using Coleman’s 
(1986) experimental data: (A) Run 12, (B) Run 27 and (C) Run 34. 
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Figures 3 and 4 likewise exhibit velocity and concentration distributions using 

different velocity laws and experimental data of Lyn (1986) and Montes (1973) used for 

the calibration of free parameters. From Lyn’s experimental data, Runs 1957ST2A and 

1957ST2B, characterised as a starved-bed flow, are considered. The Rouse numbers are 

also shown in Figs 3 and 4. In this case, no equilibrium of sediment transport in the flow 

was established. In brief, Lyn’s experiments were conducted in a rectangular flume of 

approximately 0.267 m wide and 13 m long. The main difference between Runs 

1957ST2A and 1957ST2B was the quantity of sediment load in the experiments, where 

Run 1957ST2A corresponded to a larger suspended sediment load than Run 1957ST2B. 

The shear velocity, flow depth, and bed slope of the flume remained same for both the 

runs, being approximately 0.043 m s–1, 0.058 m, and 0.004, respectively. Regarding the 

experimental data of Montes (1973), two experimental data sets (Runs 22 and 44) are 

taken into consideration based on the more number of available data points. Briefly, 

Montes conducted experiments in a rectangular flume of 0.487 m wide and 19.5 m long. 

For Run 22, the shear velocity and flow depth were 0.077 m s–1 and 0.074 m, 

respectively. On the other hand, for Run 44, they were 0.061 m s–1 and 0.077 m. 

Further, Run 44 was performed with a lower sediment load than Run 22. 
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Fig. 3. Nondimensional velocity u+(η) and concentration c+(η) distributions obtained using Lyn’s (1986) 
experimental data: (A) Run 1957ST2A and (B) Run 1957ST2B. 
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Fig. 4. Nondimensional velocity u+(η) and concentration c+(η) distributions obtained using Montes’ 
(1973) experimental data: (A) Run 22 and (B) Run 44. 

Using the relationship between the sediment concentration c+ and the wake function 

W given by Eq. 20, the wake function over the entire flow depth are obtained with the 

aid of the experimental data sets. Figures 5–7 (left side) depict the W(η)-curves obtained 

numerically and analytically for Eqs 20 and 22, respectively. On the other hand, Figs 5–

7 (right side) display the c+(η)-curves obtained numerically from Eq. 6, analytically 

from Eq. 19, and using the power-law model from Eq. 23. Further, Figs 5–7 (both left 

and right sides) show the experimental data plots. The wake function data are the cause 

of the resulting computed c+-curves from Eq. 19 having a departure from the 

experimental data. In this case, the experimental data plots of wake function for W < 1 

in the outer-layer of flow are to produce the overestimated c+-curves from Eq. 19, 

whereas c+-curves corresponding to W > 1 in the inner-layer are to produce 
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underestimated c+-curves. An appropriate wake function therefore was sought that could 

fit most of the experimental data over the entire flow depth. The exponent of wake 

functions Πc and Rouse numbers Z were adjusted by the trial-and-error method until the 

best fitted curves for the computed W(η)- and c+(η)-distributions with the experimental 

data were obtained. To conclude the overall variation of the wake function W(η), Fig. 8 

presents the wake function Z(η) for different values of Πc. However, a scatter of 

Montes’ experimental data in the inner-layer of flow is apparent. 
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Fig. 5. Wake function W(η) and concentration c+(η) distributions obtained using Coleman’s (1986) 
experimental data: (A) Run 12, (B) Run 27 and (C) Run 34. 
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Fig. 6. Wake function W(η) and concentration c+(η) distributions obtained using Lyn’s (1986) 
experimental data: (A) Run 1957ST2A and (B) Run 1957ST2B. 
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Fig. 7. Wake function W(η) and concentration c+(η) distributions obtained using Montes’ (1973) 
experimental data: (A) Run 22 and (B) Run 44. 
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Fig. 8. Wake function W(η) for different values of Πc obtained from Eq. 22 using all experimental data. 

8. Discussion 
The velocity laws are considered here to compare with the experimental data. Figures 

2–4 (left side) show that the log-law corresponds less to the experimental data, whilst 

the log wake-law underestimates the experimental data. This discrepancy is partially 

attributed to the lack of adjustable parameters. Thus, the log-law provides a poor 

prediction. On the other hand, the power- and the stratified log-law compare quite well 

with the experimental data and thus produce satisfactory results. An improved fitting 

could also be achieved by considering the dip phenomenon modification terms in the 

velocity laws (Yang et al., 2004; Guo & Julien, 2008). However, the differences in 

velocity distributions obtained from different velocity laws are somewhat not 

significant. Regarding the concentration distributions in Figs 2–4 (right part), a similar 

observation is inferred. For the given values of Z, as shown in Figs 2–4, the 

experimental data almost collapse on the computed concentration distributions. The 

stratified log-law, which is theoretically sound from the viewpoint of sediment-water 

mixture and agrees well with velocity data, tends to underestimate the experimental data 

of concentration. In contrast, the log-law overestimates the experimental data. The 

power-law produces good results simultaneously for velocity and sediment 

concentration distributions.  

It is pertinent to mention that the wake function distribution W(η) depends on the 

estimation of the Rouse number Z. As shown in Figs 5–7 (right side), Eq. 19 produces 

concentration distributions that in general overestimate the experimental data, yielding 

wake function data from Eq. 20 lower than unity. Nevertheless, the computed 

concentration distributions still overestimate some experimental data in the inner-layer 

of flow. Experimental data of wake function greater than unity in the inner-layer of flow 

are not achievable to be fitted by the proposed wake function in Eq. 22, whilst the 

numerical results of Eq. 20 show that trend in the inner-layer. However, Eq. 23, which 

involves Eq. 22, gives concentration distributions that agree well with the experimental 

data. These computed distributions are better than the distributions obtained numerically 

from Eq. 6. The proposed concentration model, based on the power-law, performs 

satisfactorily with the same value of Rouse number that was used in the numerical 

computation. So, it is not required to perform a double adjustment for the Rouse 

number.  
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In determining the wake function distributions for different values of exponent Πc as 

shown in Fig. 8, the exponent of wake function Πc is set for all the experimental data for 

W-distributions complying with certain values of Πc. To do this, it was convenient to 

adjust the values of Πc for different experimental data. However, in view of the average 

values and the standard deviations, the values of Πc are typically in between 1 and 2, 

with Πc = 1.5 to give the best overall agreement between the fitted W(η)-curve and the 

experimental data.  

In view of the results, it is evident that the power-law velocity model and the 

resulting wall-wake concentration distribution can be used as predictors. Besides the 

novelty of proposing a concentration distribution model based on wall-wake 

components, the analytical developments based on the power law functions are simple. 

Actually, the proposed c+(η)-distribution in Eq. 23 needs to be understood as a semi-

empirical approximation of Eq. 15, which is firstly solved as a wall function (Eq. 19) 

and later expanded across the whole water depth using the wake function (Eq. 22). 

Therefore, it is justified to use Eq. 29 to calculate the suspended-load transport rate, 

which is analytically modelled here. In fact, it also facilitates the calculation avoiding 

the numerical computation of integrals (Guo & Julien, 2004).  

9. Conclusions 
A critical analysis involving different velocity laws, namely, log-, log wake-, stratified 

log-, and power-law, has been carried out. The log-law tends to overestimate both the 

velocity and the sediment concentration data, while log wake-law underestimates. In 

contrast, the log-wake law produces somewhat better results. The log- and stratified log-

law make the upper and lower bounds of the concentration data for a given value of 

Rouse number. On the other hand, as far as the agreement with the experimental data is 

concerned, it is found that the power-law is a good choice for predicting velocity and 

suspended sediment concentration. A new power-law model for concentration 

distributions is therefore proposed here, based on the power-law for velocity 

distribution given by Castro-Orgaz & Dey (2011). 

Subsequently, the proposed power-law model for concentration has been tested 

using the same experimental data. Following a trial-and-error method, the distributions 

of wake function have been calculated. The proposed wake function performs quite well 

in the outer-layer of flow, but it is somewhat not highly satisfactory in the inner-layer of 
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flow. Nonetheless, it is important to point out that this discrepancy has a little effect on 

the computation of sediment concentration distributions. The exponent of wake function 

varies in between 1 and 2, with a typical average value of 1.5. Subsequently, an 

analytical tool to perform the suspended-load transport rate is presented, which 

facilitates the calculation in comparison to the classical approximations involving the 

Einstein’s integrals. Therefore, the strength of the new formula lies in the fact that, in 

contrast to classical approaches, it leads to analytical form for suspended-load transport. 

The wake function can be further improved as a future scope, especially for the 

suspended sediment load with low concentrations, in which the wake function for the 

proposed model shows some departure from the experimental data. In addition, the 

inclusion of the nonuniversal von Kármán constant in sediment-laden flows remains 

unexplored (Gaudio et al., 2010; Gaudio & Dey, 2012).  
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10. Notation 
c+ = nondimensional sediment concentration (= C/Ca); 

C = time-averaged sediment concentration; 

Ca = sediment concentration at reference level; 

d50 = median size of sediment; 

g = gravitational acceleration; 

h = flow depth; 

qs = suspended-load transport rate; 

S = friction slope; 

t = time; 

u = time-averaged streamwise velocity along x-direction; 

u* = shear velocity; 

u+ = nondimensional streamwise velocity (= u/u*); 

U+ = nondimensional maximum streamwise velocity (= Umax/u*); 

Umax = maximum time-averaged streamwise velocity;  

v = time-averaged transverse velocity along y-direction; 

w = time-averaged vertical velocity along z-direction; 

ws = terminal fall velocity of sediment particles; 

W = wake function; 

x, y, z = Cartesian coordinates or streamwise, transverse, and vertical distances, 
respectively; 

za
 = reference level; 

Z = Rouse number; 

α = stratification parameter; 

β = proportionality factor; 

δ = boundary layer thickness; 

∆ = submerged relative density; 

εm = molecular diffusivity; 

εs = solid or sediment diffusivity;  

εt = turbulent diffusivity; 

Φs = suspended-load transport intensity;  

Γ = exponent; 

η = nondimensional vertical distance (= z/h); 

ηa = nondimensional reference level (= za/h); 
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κ = von Kármán constant; 

Π = Cole’s wake parameter; 

Πc = exponent of wake function; 

ρ = mass density of fluid; 

τ = Reynolds shear stress; 

τ0 = bed shear stress; 

υ = kinematic viscosity of fluid; 

Ψ = aηΓ . 



 - 164 - 

11. References 
Absi, R. (2011) An ordinary differential equation for velocity distribution and dip-

phenomenon in open channel flows. J. Hydraul. Res., 49 (1), 82–89. 

ASCE Task Force. (1963) Friction factor in open channels. J. Hydraul. Div., 89 (2), 97–

143. 

Bagnold, R.A. (1966) An approach to the sediment transport problem from general 

physics. Geological Survey Professional Paper 422-I, pp. 231–291. United States 

Geological Survey, Washington, DC, The United States of America.  

Boogerd, P., Scarlett, B. and Brouwer, R. (2001) Recent modelling of sedimentation of 

suspended particles: a survey. Irrig. Drain., 50 (2), 109–128. 

Bose, S.K. and Dey, S. (2009) Suspended load in flows on erodible bed. Int. J. Sediment 

Res., 24 (3), 315–324. 

Bose, S.K. and Dey, S. (2013) Sediment entrainment probability and threshold of 

sediment suspension: Exponential-based approach. J. Hydraul. Eng., 139 (10), 

1099–1106. 

Camenen, B. and van Bang, D.P. (2011) Modelling the settling of suspended sediments 

for concentrations close to the gelling concentration. Continental Shelf Res., 31 (10), 

S106–S116. 

Cao, Z., Egashira, S. and Carling, P.A. (2003) Role of suspended-sediment particle size 

in modifying velocity profiles in open channel flows. Water Resour. Res., 39 (2), 

DOI: 10.1029/2001WR000934. 

Carnacina, I. and Larrarte, F. (2014) Coupling acoustic devices for monitoring 

combined sewer network sediment deposits. Water Sci. Technol., 69 (8), 1653–

1660. 

Castro-Orgaz, O. and Dey, S. (2011) Power-law velocity profile in turbulent boundary 

layers: An integral Reynolds-number dependent solution. Acta Geophysica, 59 (5), 

993–1012. 

Chauchat, J., Guillou, S., Van Bang, D.P. and Nguyen, K.D. (2013) Modelling 

sedimentation-consolidation in the framework of a one-dimensional two-phase flow 

model. J. Hydraul. Res., 51 (3), 293–305. 



 - 165 - 

Cheng, N.-S. and Chiew, Y.-M. (1999) Analysis of initiation of sediment suspension 

from bed load. J. Hydraul. Eng., 125 (8), 855–861. 

Coleman, N.L. (1986) Effects of suspended sediment on the open-channel velocity 

distribution. Water Resour. Res., 22 (10), 1377–1384. 

Dey, S. (2014) Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport 

Phenomena. Springer, Berlin, Germany. 

Dutta, S., Cantero, M.I. and García, M.H. (2014) Effect of self-stratification on 

sediment diffusivity in channel flows and boundary layers: a study using direct 

numerical simulations. Earth Surface Dynamics, 2 (2), 419–431. 

García, M.H. (2008) Sediment transport and morphodynamics. In: Sedimentation 

Engineering: Processes, Measurements, Modeling, and Practice (Ed. M.H. García), 

pp. 21–163. Manuals and Reports on Engineering Practice Number 110, American 

Society of Civil Engineers, Reston, VA, The United States of America. 

Gaudio, R. and Dey, S. (2012) Evidence of non-universality of von Kármán’s κ. In: 

Experimental and Computational Solutions of Hydraulic Problems (Ed. P. 

Rowinski), pp. 71–83. Springer, Heidelberg, Germany.  

Gaudio, R., Miglio, A. and Dey, S. (2010) Non-universality of von Kármán’s κ in 

fluvial streams. J. Hydraul. Res., 48 (5), 658–663. 

Ghoshal, K. and Kundu, S. (2013) Influence of secondary current on vertical 

concentration distribution in an open channel flow. ISH J. Hydraul. Eng., 19 (2), 

88–96. 

Guo, J. and Julien, P.Y. (2004) Efficient algorithm for computing Einstein integrals. J. 

Hydraul. Eng., 130 (12), 1198–1201. 

Guo, J. and Julien, P.Y. (2008) Application of the modified log-wake law in open-

channels. J. Appl. Fluid Mech., 1 (2), 17–23. 

Guo, J., Mohebbi, A., Zhai, Y. and Clark, S.P. (2015) Turbulent velocity distribution 

with dip phenomenon in conic open channels. J. Hydraul. Res., 53 (1), 73–82. 

Hunt, J.N. (1954) The turbulent transport of suspended sediment in open 

channels. Proc. Roy. Soc. London A, 224 (1158), 322–335. 



 - 166 - 

Kundu, S. and Ghoshal, K. (2014) Effects of secondary current and stratification on 

suspension concentration in an open channel flow. Environ. Fluid Mech., 14 (6), 

1357–1380. 

Lamb, M.P., Dietrich, W.E. and Sklar, L.S. (2008) A model for fluvial bedrock incision 

by impacting suspended and bed load sediment. J. Geophys. Res. Earth Surface, 113 

(F3), DOI: 10.1029/2007JF000915. 

Lane, E.W. and Kalinske, A.A. (1941) Engineering calculations of suspended sediment. 

Trans. Am. Geophys. Union, 20 (3), 603–607. 

Larrarte, F. (2015) Velocity and suspended solids distributions in an oval-shaped 

channel with a side bank. Urban Water J., 12 (2), 165–173. 

Lassabatere, L., Pu, J.H., Bonakdari, H., Joannis, C. and Larrarte, F. (2012) Velocity 

distribution in open channel flows: Analytical approach for the outer region. J. 

Hydraul. Eng., 139 (1), 37–43. 

Leeder, M.R. (1983) On the dynamics of sediment suspension by residual Reynolds 

stresses-confirmation of Bagnold’s theory. Sedimentology, 30 (4), 485–491. 

Lucas-Aiguier, E., Chebbo, G., Bertrand-Krajewski, J.-L., Gagné, B. and Hedges, P. 

(1998) Analysis of the methods for determining the settling characteristics of 

sewage and stormwater solids. Water Sci. Tech., 37 (1), 53–60. 

Lyn, D.A. (1986) Turbulence and turbulent transport in sediment-laden open-channel 

flows. PhD Thesis, California Institute of Technology, Padsadena, California, The 

United States of America. 

Lyn, D.A. (2000) Regression residuals and mean profiles in uniform open-channel 

flows. J. Hydraul. Eng., 126 (1), 24–32. 

Mateos, L. and Giráldez, J.V. (2005) Suspended load and bed load in irrigation 

furrows. Catena, 64 (2–3), 232–246. 

Mazumder, B.S. (1994) Grain size distribution in suspension from bed materials. 

Sedimentology, 41 (2), 271–277. 

Montes, J.S. (1973) Interaction of two-dimensional turbulent flow with suspended 

particles. PhD Thesis, Massachusetts Institute of Technology, Cambridge, The 

United States of America.  



 - 167 - 

Richardson, J.F. and Zaki, W.N. (1954) Sedimentation and fluidization: Part I. Trans. 

Inst. Chem. Eng., 32 (1), S82–S100. 

Rouse, H. (1937) Modern conceptions of the mechanics or fluid turbulence. Trans. Am. 

Soc. Civ. Eng., 102 (1), 463–505. 

Sengupta, S. (1975) Size-sorting during suspension transportation - lognormality and 

other characteristics. Sedimentology, 22 (2), 257–273. 

Sengupta, S. (1979) Grain-size distribution of suspended load in relation to bed 

materials and flow velocity. Sedimentology, 26 (1), 63–82. 

van Rijn, L.C. (1984) Sediment transport, part II: suspended load transport. J. Hydraul. 

Eng., 110 (11), 1613–1641. 

Velikanov, M.A. (1954) Principle of the Gravitational Theory of the Movement of 

Sediments. Academy of Sciences Bulletin, Number 4, Geophysical Series, Russia. 

Velikanov, M.A. (1955) Dynamics of Alluvial Stream. State Publishing House of 

Theoretical and Technical Literature, Volume 2, Russia. 

Wright, S. and Parker, G. (2004) Flow resistance and suspended load in sand-bed rivers: 

Simplified stratification model. J. Hydraul. Eng., 130 (8), 796–805. 

Wu, W., Wang, S.S.Y. and Jia, Y. (2000) Nonuniform sediment transport in alluvial 

rivers. J. Hydraul. Res., 38 (6), 427–434. 

Yang, S.-Q., Tan, S.-K. and Lim, S.-Y. (2004) Velocity distribution and dip-

phenomenon in smooth uniform open channel flows. J. Hydraul. Eng., 130 (12), 

1179–1186. 

Yoon, J.-I., Sung, J. and Lee, M.H. (2012) Velocity profiles and friction coefficients in 

circular open channels. J. Hydraul. Res., 50 (3), 304–311. 



 - 168 - 

 

Appendix V           
            
           
 Hydrodynamic analysis of fully-developed turbidity currents 
over plane beds based on self-preserving velocity and 
concentration distributions 
 
 
Francisco Nicolás Cantero-Chinchilla1, Subhasish Dey2, Oscar Castro-Orgaz1, Sk Zeeshan Ali2 

 
Journal of Geophysical Research – Earth Surface, 120(10), 2176−2199. doi: 
10.1002/2015JF003685. Impact factor (JCR 2014): 3.426 / Q1 (19/175 Geosciences, 
Multidisciplinary) 
 

Abstract 
This paper presents a hydrodynamic analysis for the fully developed turbidity currents 

over a plane bed stemming from the classical three-equation model (depth-averaged 

fluid continuity, sediment continuity, and fluid momentum equations). The streamwise 

velocity and the concentration distributions preserve self-similarity characteristics and 

are expressed as single functions of vertical distance over the turbidity current layer. 

Using the experimental data of turbidity and salinity currents, the undetermined 

coefficients and exponents are approximated. The proposed relationships for velocity 

and concentration distributions exhibit self-preserving characteristic for turbidity 

currents. The depth-averaged velocity, momentum, and energy coefficients are thus 

obtained using the proposed expression for velocity law. Also, from the expressions for 

velocity and concentration, the turbulent diffusivity and the Reynolds shear stress 

distributions are deduced with the aid of the diffusion equation of sediment 

concentration and the Boussinesq hypothesis. The generalized equation of unsteady-

nonuniform turbidity current is developed by using the velocity and concentration 

distributions in the moments of the integral scales over the turbidity current layer. Then, 

the equation is applied to analyze the gradually-varied turbidity currents considering 

closure relationships for boundary interaction and shear velocity. The streamwise 

variations of current depth, velocity, concentration, reduced sediment flux, and 
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Richardson number are presented. Further, the self-accelerating and depositional 

characteristics of turbidity currents including the transitional feature from erosional to 

depositional modes are addressed. The effects of the streamwise bed slope are also 

accounted for in the mathematical derivations. The results obtained from the present 

model are compared with those from the classical model. 

1. Introduction 
Turbidity currents are gravity currents, which are often referred to as inclined plumes or 

underflows, consisting of a water-sediment mixture flowing over a sloping bed. In 

nature, high density turbidity currents are able to carry such amount of suspended 

sediment that their erosive power usually produces remarkable geological reforms, e.g., 

submarine canyons [Inman et al., 1976; Fukushima et al., 1985; Mastbergen and Van 

Den Berg, 2003; Sumner and Paull, 2014]. Inland, man-made mining tailings, 

earthquakes or heavy storms, among others, can often originate turbidity currents with 

huge sediment mass, such as, rocks or debris as underwater landslide to produce 

sediment-laden flows [Normark and Dickson, 1976; Piper et al., 1999]. It is 

conceptually helpful to contemplate turbidity currents as a flow constituted by two 

separate parts, current-head (that is the current front) and current-body [Stacey and 

Bowen, 1988]. High suspended sediment concentration in turbidity currents produces a 

pressure gradient downslope arising from the density difference between the current-

head and the ambient water just in front of it and thus providing a driving 

force. The water-sediment mixture forming turbidity current, as a layer, is driven by the 

downslope gravitational component acting on the denser water-sediment mixture. 

Although it is in principle the same hydrodynamics as that driving the head, the 

buoyancy contrast between the turbidity current and the ambient water leads to a system 

where the downslope gradients of flow and sediment transport parameters may be small. 

The sediment laden flow however generates adequate turbulence to hold the sediment 

particles in suspension. Uniform or gradually-varied turbidity currents containing very 

fine sediments over a rigid bed were investigated by several investigators [Bonnefille 

and Goddet, 1959; Stefan, 1973; Ashida and Egashira, 1975]. 

Depending on the flow conditions, turbidity currents are distinguished as erosional 

or depositional underwater sediment-laden flows [Akiyama and Stefan, 1985]. The 

interaction of the turbidity current with the ambient flow can be envisaged as an 

entrainment of water from the ambient flow to the turbidity current through the interface 
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between them. In addition, in erodible beds, the sediment entrainment and deposition 

occur at the same time due to the interaction of the turbidity current with the bed-layer. 

Under high erodible conditions, the sediment entrainment rate from the bed toward the 

turbidity current becomes sufficiently intense so that an inrushing of ambient water 

toward the turbidity current layer takes place to balance the mass and momentum fluxes. 

On the other hand, the entrainment of ambient water into the turbidity current gets 

reduced if sediment deposition occurs at the bed. In turn, the turbidity current becomes 

stagnant when there is no sediment transport. In other words, the thickness of the 

turbidity current layer is dependent on the ability of the flow to carry the suspended 

sediment particles. However, turbidity currents can be considered as a self-generated 

current in which sediment particles are suspended by the turbulence.  

Less erosive gravity currents can be simulated in the laboratory environment by 

creating a salinity or temperature gradient. Stacey and Bowen [1988] stated that the 

competence of the flow to transport and suspend the sediment depends on the terminal 

fall velocity of sediment particles. In the limit, it is believed that for larger sediment 

particles, steady flow is not practically feasible. Salinity currents are good examples of 

containing sediments with a low terminal fall velocity. Sequeiros et al. [2010] 

conducted a large number of experiments on the velocity and the excess density 

distributions of saline and turbidity underflows. They observed the development of 

bedforms with time depending on the flow conditions. They also identified an upward 

shift of the reference level (that is, the demarcation level between bed- and suspended-

load [Dey, 2014]) due to the change in bed roughness, as the bedforms grow with time. 

As a result, the velocity and concentration distributions are modified. Nourmohammadi 

et al. [2011] reported a study on the vertical distribution of gravity currents over a non-

erodible bed. They observed a similarity in velocity and concentration distributions. 

Although the vertical distribution of velocity in turbidity currents seems not to be 

significantly affected by the suspended particle size [Parker et al., 1987; Altinakar et 

al., 1996], it is somehow interesting to analyze the effects of the terminal fall velocity 

on suspended sediment concentration. 

In fact, the governing equations of turbidity current are similar to those used in 

sediment-laden flows. By applying the conservation laws of sediment-laden flows, the 

governing equations of turbidity current are obtained. Akiyama and Stefan [1985] 

introduced an analytical model based on the governing equations of turbidity current 
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along with the entrainment and the depositional fluxes. The model, which was depth-

averaged into the one-dimensional form, constituted an extension of the formulation 

earlier reported by Ellison and Turner [1959]. Besides, the turbulent energy equation 

was accounted for reducing the formula to Bagnold’s auto-suspension concept 

[Bagnold, 1962]. However, their model was not verified due to non-availability of the 

experimental data. Parker et al. [1986] presented a four-equation model, in which the 

mean turbulent kinetic energy (TKE) was considered. By considering the classical 

three-equation model (depth-averaged fluid continuity, sediment continuity, and fluid 

momentum equations [Lai et al., 2015]), as an extension from Ellison and Turner’s 

[1959] formulation, Parker et al. [1986] pointed out the importance of accurately 

predicting the bed sediment entrainment. Stacey and Bowen [1988] developed a simple 

numerical model (three-equation) that matched well with the experimental data of 

velocity and concentration, although they initially failed to obtain the adequate solutions 

for the analytical model. Further, Pratson et al. [2000] solved the four-equation model 

developed by Parker et al. [1986] using numerical techniques. However, Hu et al. 

[2015] found that the three-equation model does not fail to simulate self-accelerating 

turbidity currents, rendering unclear the need of using the four-equation model. Felix 

[2001] proposed a two-dimensional turbulence model to address the development of 

turbidity current. In the same line, the large eddy simulation along with direct numerical 

simulation was also applied to simulate the turbidity currents [Mahdinia et al., 2010; 

Dutta et al., 2012]. On the other hand, as a new trend in simulation of gravity currents, 

the application of the thermal lattice Boltzmann method was also reported [Lizhong et 

al., 2011; Prestininzi et al., 2013].  However, in derivation of the full depth-averaged 

models, similarity solutions were sought for the convenience [Parker et al., 1986], 

assuming the velocity, concentration, and TKE distributions to preserve similarity. 

Similarity approximation for the vertical distributions of the main flow 

characteristics are likely well justified in turbidity currents. Besides Parker et al. [1986] 

and Stacey and Bowen [1988], Altinakar et al. [1996] highlighted the self-similarity in 

velocity and concentration distributions. In this regard, Stacey and Bowen [1988] 

previously argued that the decoupling of the concentration from the temporal evolution 

of velocity is an inappropriate concept. Interestingly, their results suggested the self-

preserving characteristic distributions for the flow characteristics. A turbidity current, as 

stated by Altinakar et al. [1996], can be viewed, as far as the flow structure is 
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concerned, analogous to a wall-jet flow. Accordingly, Altinakar et al. [1996] assumed a 

power-law for the velocity distribution and a linear-law for the concentration 

distribution for the inner-layer of flow (wall shear layer). For the outer-layer of flow, 

they assumed the near-Gaussian relationships for the velocity and concentration 

distributions. These scaling laws gave a satisfactory agreement with their experimental 

data. It means that they considered different scaling laws for the inner- and outer-layer 

of flow. However, little attention has so far been paid to obtain the generalized scaling 

laws (represented by single functions) for the velocity and concentration distributions 

over the entire turbidity current layer. These generalized scaling laws, which should 

comply with the wide range of experimental data, are therefore a long due. 

 

Fig. 1. Definition sketch of a turbidity current on a sloping bed. 

The objective of this study is to initially revisit the vertical distributions of velocity 

and concentration in turbidity currents to obtain single similarity functions (continuous 

over the entire layer) for them. Appropriate scaling for the similarity functions could 

bring the available experimental data of velocity and suspended sediment concentration 

for turbidity and salinity currents to single bands. This analysis thus provides us the 

self-preserving type relationships for the velocity and concentration distributions in 

turbidity currents. Using the developed similarity functions for the velocity and 

concentration, the Reynolds shear stress and turbulent diffusivity distributions are 

derived. Further, to enhance the mathematical model of the turbidity current according 

to the velocity and concentration distributions, three-equation model (depth-averaged 
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fluid continuity, sediment continuity, and fluid momentum equations) is analyzed for 

gradually-varied flow formulations using appropriate closure relationships. 

2. Introduction 
The problem of turbidity current is usually treated as a problem of incompressible 

turbulent flow [Graf and Altinakar, 1998]. When the fluid mass is sufficiently wide, the 

width has a minimal influence on the flow, and thus the motion of the turbidity current 

can be approximated as a two-dimensional problem (x- and z-direction) (Figure 1) 

[Parker et al., 1986; Akiyama and Stefan, 1985]. Subsequently, the general depth-

averaged equations of the fluid mass, sediment mass, and turbidity current momentum 

are as follows [Parker et al., 1986]: 
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where zm is the vertical distance where velocity vanishes (u = 0) into the turbidity 

current, considered to be the turbidity current depth, u(z) is the streamwise velocity at a 

vertical distance z, wh is the vertical velocity component at the top edge of the current, 

ws is the terminal fall velocity of suspended sediment particles, c(z) is the suspended 

sediment concentration velocity at z, c w′ ′  is the Reynolds flux of suspended particles, 

∆s is the submerged relative density [= (ρs – ρa)/ρa], ρs is the mass density of sediment 

particles, ρa is the mass density of ambient fluid, g is the gravitational acceleration, θ is 

the streamwise bed slope, u*b is the shear velocity, and subscript b refers to bed. In 

Figure 1, the depth-averaged sediment concentration in turbidity current is given by 

C(x). It may be noted that in four-equation model [Parker et al., 1986], the TKE budget 

is included as the fourth equation, which is briefly discussed in Appendix A. 

In equations (1)–(3), the boundary-layer approximations for a two-dimensional 

turbidity current are considered. Henceforth the turbidity current is considered as a fully 

turbulent flow. Thereby, only the viscous dissipation due to turbulence remains, 

neglecting other viscous terms. Also, the vertical-flux terms appearing in the right hand 



 - 174 - 

side of the equation (2) are evaluated somewhat above the lower boundary to avoid 

singular solutions related to the vanishing molecular diffusivity. Equation (3) accounts 

for the non-hydrostatic treatment of turbidity currents, decomposing the actual pressure 

into a component due to the ambient fluid and an additional component due to the 

presence of sediment particles. Thus, the terms in the right hand side of equation (3) are 

regarded as the pressure force of the turbidity current. 

The integrals in equations (1)–(3), which define the depth-averaged quantities of the 

flow, are known as the moments of the integral scales [Ellison and Turner, 1959; 

Turner, 1973]. They are 
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Equations (1)–(3) can be expressed by means of interaction processes that occur at 

the interface of the layers (turbidity current and ambient fluid layers). The static 

pressure in the ambient still fluid is greater than the actual pressure in the turbidity 

current. According to the Bernoulli equation, a negative pressure gradient in the upper-

layer (ambient fluid layer) results in an inward movement of ambient fluid into the 

turbidity current through the interface. Therefore, the entrainment velocity is assumed to 

be proportional to the velocity of the turbidity current [Turner, 1973], –wh = EwU, where 

Ew is the entrainment coefficient of ambient fluid, and U(x) is the depth-averaged 

velocity of the turbidity current. Besides, according to Parker et al. [1987], the first and 

second terms in the right hand side of equation (2) can be identified as the erosion rate 

Eb and deposition Db rate of sediment at the bed (Figure 1). Therefore, 

 s bb
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 b
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Thus, the three-equation model is finally written as follows: 
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The streamwise bed slope sinθ cannot be ignored, since a turbidity current is, by 

nature, a sloping flow inside a greater mass of fluid [Graf and Altinakar, 1998], as 

shown in Figure 1. Accordingly, cosθ cannot be simplified as unity. 

Note that following Graf [1976] and Parker et al. [1986] the erosion and deposition 

rates Eb and Db appear in the mass conservation for the suspended sediment phase, 

equation (9), whereas the mass conservation equation for the water phase is free from 

exchange terms. These terms appear as well in the mixture mass conservation equation 

of a turbidity current [Hu et al., 2012]. 

3. Velocity Distribution 
In a fully developed state, the velocity distribution in turbidity current is almost similar 

to that in submerged plane wall-jet. A submerged plane wall-jet is described as a jet of 

fluid that impinges tangentially (or at an angle) on a solid wall surrounded by the same 

fluid (stationary or moving) progressing along the wall [Dey et al., 2010]. For a 

turbidity current, on one side (in the inner-layer), the current is confined to the bed, 

while on the other side (in the outer-layer), it is bounded by the stationary ambient fluid 

(Figure 1). The boundary conditions for the velocity distribution in turbidity current are 

such that the velocity vanishes at the bed and at the interface between the turbidity 

current and the ambient fluid. Thus, the velocity distribution attains a maximum (peak 

velocity) at the extremity of the inner-layer, that is, the junction of the inner- and outer-

layer of the current. Below the maximum velocity level (in the inner-layer), the flow is 

featured by a boundary layer flow, while above the maximum velocity level (in the 

outer-layer), the flow is structurally similar to a free jet. Therefore, the turbidity currents 

are characterized by an inner shear layer influenced by the bed and an outer-layer of the 

self-similar type of a shear flow [Parker et al., 1987; Stacey and Bowen, 1988; 

Altinakar et al., 1996; Shringarpure et al., 2012]. For the similarity in velocity 

distributions, the nondimensional variables introduced are û  = u/Um and η = z/zm, 

where Um is the maximum velocity. Previous studies primarily assumed two separate 

velocity distributions for the inner- and outer-layer of turbidity currents. However, in 
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this study, a single velocity distribution over the entire range of the inner- and outer-

layer is assumed in the following form: 

 ˆ( ) (1 )u ξ χη ση η= − , (107) 

where σ is a coefficient and ξ and χ are the exponents. They are the unknown 

parameters to be determined from the experimental data. It is pertinent to mention that 

the nondimensional velocity distribution in equation (11) is considered as a combination 

of a power function ηξ and a wake function (1 – η)χ in order to preserve the boundary 

conditions, namely, ̂u (η = 0) = 0 and ̂u (η = 1) = 0. Besides, the product of those 

functions in equation (11) corresponds to the study of Islam and Imran [2010]. Equation 

(11) shows that the velocity distribution in the inner-layer is analogous to a boundary 

layer flow, while that in the outer-layer is similar to a free jet. The maximum velocity 

Um occurs at a location z = zw. Introducing ηw = zw/zm at the occurrence of the maximum 

velocity, another boundary condition ˆu
(η = ηw) = 1 is satisfied at the extremity of the 

inner-layer. Therefore, from equation (11), one obtains 

 (1 )w w
ξ χσ η η− −= − . (108) 

The velocity gradient at z = zw vanishes due to the occurrence of maximum velocity 

at that level, that is d̂u /dη (η = ηw) = 0. Applying this boundary condition, equation 

(11) produces  

 w

ξη
ξ χ

=
+

. (109) 

Substituting equation (13) into equation (12) yields  

 
( )ξ χ

ξ χ
ξ χσ

ξ χ

++= . (110) 

Equation (14) shows the dependency of the coefficient σ on the exponents ξ and χ. 

The exponents ξ and χ are to be determined using the experimental data. 

Figure 2 displays the computed velocity distributions obtained from equation (11) 

and using two equations given by Altinakar et al. [1996]. The experimental data plots of 

turbidity and salinity currents obtained from Parker et al. [1987], García [1993], 

Altinakar et al. [1996], Sequeiros et al. [2010], Islam and Imran [2010], and 

Nourmohammadi et al. [2011] are overlapped on the computed curves in Figure 2 for 



 - 177 - 

comparison. It is found that the values ξ = 0.6 and χ = 2.2 ensure a satisfactory 

agreement of equation (11) with the experimental data. Therefore, from equations (14), 

one obtains σ = 4.28. The standard deviation, standard error, and correlation coefficient 

for Figure 2 are 0.333, 0.011, and 0.930, respectively, which provide a quantitative 

understanding on the data scatter from equation (11). The occurrence of the maximum 

velocity determined from equation (13) is ηw = 0.214. In Figure 2, the experimental data 

of runs 6–10, 12, 13, 17, 20, 23, and 24 from Parker et al. [1987] are shown. From 

García [1993], run DAPER6 is also selected for the peak velocity data in subcritical and 

supercritical flow conditions. Three sets of experimental data are taken from Altinakar 

et al. [1996]. Among them, two sets belong to the turbidity currents with sediment sizes 

d = 0.047 and 0.026 mm, where d is the median size of sediment particles, and the third 

set belongs to the salinity current. From Sequeiros et al. [2010], the experimental data 

for runs 2, 10, 16, 23, 31, 36–38, 40, and 41, in which no bedforms occurred, are 

considered. The experimental velocity data of sections 1-12 for salinity and turbidity 

currents reported by Islam and Imran [2010] are extracted. Besides, from 

Nourmohammadi et al. [2011], the experimental data for run 3 at streamwise distances 

of 2.5 and 3.5 m, run 10 at 4.5 m and runs 7 and 8 at 3.5 and 4.5 m, respectively, from 

the flume inlet are used. Finally, the computed velocity distribution of Altinakar et al. 

[1996] over predicts most of the experimental data (Figure 2).  

 

Fig. 2. Computed velocity distribution ̂u (η) obtained from equation (11) showing the comparison with 
the velocity distribution obtained using two equations given by Altinakar et al. [1996] and the 

experimental data of different investigations. 
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From Figure 2, it is observed that the following empirical relationship between ξ 

and χ shows a good agreement between the fitted velocity distribution and the 

experimental data:  

 1 2χ ξ≈ + . (111) 

Therefore, using equations (14) and (15), equation (11) takes the following form: 
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Equation (16) thus provides the velocity distribution in turbidity currents with a 

single free parameter ξ, which was empirically determined as 0.6. This relationship for 

the velocity distribution is in fact of self-preserving type for turbidity currents.  

The depth-averaged velocity U in nondimensional form is  
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ˆ ˆdU u η= ∫ , (113) 

where Û = U/Um. Inserting equation (16) into equation (17) yields 
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where Γ(s) is the Euler gamma function defined as  

 1

0

( ) exp( )dss y y y
∞

−Γ = −∫ . (115) 

Since the velocity distribution is obtained from equation (16), typically the flow 

parameters of interest, such as momentum (Boussinesq) coefficient, energy (Coriolis) 

coefficient, and the moments of the integral scales defined in equation (4), are 

determined. 

The momentum (Boussinesq) coefficient β is defined as 
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Inserting equations (16) and (18) into Eq. (20) yields 
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The energy (Coriolis) coefficient α is defined as 
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Inserting equations (16) and (18) into equation (22) yields 
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With ξ = 0.6, the following parameters are obtained from equations (18), (21), and 

(23): 

 ˆ 0.52U = , 1.465β = , 2.366α = .  (120) 

The moments of the integral scales in equation (4) are determined as  
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For details of integral equations (25) and (26), see Appendix B. 

4. Concentration Distribution 
In accordance with the mechanism of suspended sediment motion, the turbidity current 

can be considered as a self-generated current in which sediment particles are suspended 

by the turbulence. The transport of suspended sediment particles in turbulent flow takes 

place due to the advection and diffusion processes in the ambient fluid. The governing 

equation of the diffusion of suspended sediment concentration shows a remarkable 

dependency of the concentration distribution on the velocity distribution [Dey, 2014]. 

The concentration distribution in turbidity current is therefore affected by the velocity 

distribution, allowing two distinctive zones. Above the maximum velocity level (z > zw), 

the concentration distribution asymptotically vanishes (c → 0) just above zm, and 

beneath the maximum velocity level (z ≤ zw), the concentration distribution follows a 
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classical boundary layer approximation. For the similarity in concentration distributions, 

the nondimensional variable is introduced as ĉ = c/Cm, where Cm is the concentration at 

η = ηw. Unlike the previous studies which considered two separate expressions for 

concentration distributions in the inner- and outer-layer of turbidity currents [Altinakar 

et al., 1996], a single concentration distribution over the entire range of the inner- and 

outer-layer is assumed here in the following form: 

 ˆ( ) exp( )c ζη λ φη= − , (123) 

where λ,  φ, and ζ are the unknown parameters. Equation (27) shows that the 

concentration has a decreasing trend with the vertical distance. It also provides a finite 

value of concentration c0 at the bed (η = 0). Importantly, equation (27) does not 

consider any reference level for the concentration distribution in particular. Applying 

the boundary condition, ĉ(η = ηw) = 1 to equation (27) yields  

 exp( )w
ζλ φη= . (124) 

Substituting equation (28) into equation (27) yields 

 ˆ( ) exp ( )wc ζ ζη φ η η = − −  . (125) 

Figure 3 presents the computed concentration distributions obtained from equation 

(29) and using two equations proposed by Altinakar et al. [1996]. The experimental data 

of Parker et al. [1987], García [1993], Altinakar et al. [1996], and Nourmohammadi et 

al. [2011] for gravity currents are shown in Figure 3 for comparison. In addition, the 

values φ = 4 and ζ = 1.5 provide a best fitting of the computed curve with the 

experimental data. Therefore, with ηw = 0.214 in equation (28), the λ is obtained as 

1.486. The standard deviation, standard error, and coefficient of correlation for Figure 3 

are 0.526, 0.029, and 0.949, respectively, which provide an insight of the data scatter 

from equation (29). In Figure 3, the experimental data for runs 6–10, 12, 13, 17, 20, 23, 

and 24 from Parker et al. [1987], and runs DAPER6 in subcritical and supercritical 

conditions from García [1993] are shown. From Altinakar et al. [1996], three sets of 

experimental data used in the velocity distributions as mentioned before are considered 

for the concentration distribution, whereas from Nourmohammadi et al. [2011], the 

experimental data for runs 5 and 6 at 2.5 and 5.5 m, respectively, and run 3 at 2.5 and 

3.5 m from the flume inlet are considered. Finally, the computed concentration 
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distribution of Altinakar et al. [1996] corresponds to the curve obtained from the 

present study (Figure 3). 

 

Fig. 3. Computed concentration distribution ĉ (η) obtained from equation (29) showing the comparison 
with the concentration distribution obtained using two equations given by Altinakar et al. [1996] and the 

experimental data of different investigations. 

From the data plots in Figure 3, an empirical relationship between the parameters φ 

and ζ are obtained as 

 5 3.5φ ζ= − . (126) 

Substituting equation (30) into equation (29), the concentration distribution is  

 ˆ( ) exp[ (5 3.5)( )]wc ζ ζη ζ η η= − − − . (127) 

This relationship for the concentration distribution is indeed self-preserving type for 

turbidity currents.  

From equation (31), the sediment concentration c0 at the bed (η = 0) in 

nondimensional form is  

 0ˆ exp[(5 3.5) ]wc ζζ η= − , (128) 

where 0̂c  = c0/Cm. The depth-averaged concentration C in nondimensional form is  

 
1

0

ˆ ˆdC c η= ∫ , (129) 
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where Ĉ  = C/Cm. Inserting equation (31) into equation (33) yields 

 1/1 1 1
(5 3.5) 5( 0.7) ] ,ˆ exp[ 5 3.5wC ζ ζζ ζ η ζ

ζ ζ ζ
−     − − Γ − Γ −    

    
= , (130) 

where Γ(a, s) is the incomplete gamma function defined as  

 1( , ) exp( )da

s

a s y y y
∞

−Γ = −∫ . (131) 

For ζ = 1.5 and ηw = 0.214, equation (34) yields Ĉ  = 0.528.  

Equation (31) suggests that the concentration distribution has a finite value at z = zm 

(η = 1), although it is feeble. For η > 1, the asymptotic trend of ĉ(η) toward the 

ordinate is evident (Figure 3). The area under the curve ĉ(η) bounded by η = 0 and ̂c = 

0 for the two cases when the limits of integration are η = 0 to 1 and η = 0 to 2.5 shows 

an approximate relative error of 0.7%. Thus, the upper limit of the moments of the 

integral scales defined in equation (5) is considered at z = zm (η = 1). Hence, the integral 

scales in equation (5) are given by 

 3

0 0

d d 0.528
mz

m mI c z c z C z
∞

= = =∫ ∫ , (132) 

 4

0 0

d d 0.396
mz

m m mI uc z uc z U C z
∞

= = =∫ ∫ , (133) 

 2
5

0 0

d d d d 0.743
m mz z

m m

z z

I c z z c z z C z
∞ ∞

= = =∫ ∫ ∫ ∫ . (134) 

For details of the moments of the integral equations (36)–(38), see Appendix B. 

5. Reynolds Shear Stress and Turbulent Diffusivity Distributions 
In a fully developed turbulent flow, the Reynolds shear stress is much greater than the 

viscous shear stress except in the vicinity of the bed, where the flow is laminar within a 

thin viscous sublayer. It may be noted that the Reynolds shear stress nearly composes 

the total shear stress (Reynolds shear stress and viscous shear stress) in absence of 

viscous shear stress. Since the turbidity current is characterized by the turbulent flow, 

the molecular diffusivity is negligible as compared to the turbulent diffusivity. 

Moreover, the solid diffusivity is considered approximately equalling the turbulent 
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diffusivity [Rouse, 1937; Dey, 2014]. Hence, the Reynolds shear stress and the turbulent 

diffusivity distributions are determined from the proposed velocity and concentration 

distributions [equations (16) and (31)]. 

The suspended sediment stratification due to turbidity affects the structure of the 

turbulent diffusivity in turbidity currents [Stacey and Bowen, 1988]. From the diffusion 

equation of suspended sediment concentration, the turbulent diffusivity εt is defined as 

 
1

d

dt s

c
w c

z
ε

−
 = −  
 

. (135) 

The nondimensional turbulent diffusivity t̂ε  is then expressed as 

 
1

ˆd
ˆ ˆ

dt

c
Zcε

η

−
 = −  
 

, (136) 

where t̂ε  = εt/(κu*bzm), κ is the von Kármán constant, and Z is the Rouse number [= 

ws/(κu*b)]. Using equation (31), equation (40) reduces to 

 
1

(5
ˆ

3.5)t Z
ζη

ζ ζ
ε

−

−
= . (137) 

According to the Boussinesq hypothesis, the Reynolds shear stress τ in turbulent 

flow is expressed as 

 
d

dt

u

z
τ ρε= , (138) 

where ρ is the mass density of the fluid-sediment mixture. In nondimensional form, the 

Reynolds shear stress is 

 
*

ˆd
ˆˆ

d
m

t
b

U u

u
τ ε

η
= ⋅ , (139) 

where ̂τ  =τ/ρ 2
*bu . Substituting equations (16) and (41) into equation (43) yields 

 
1

2 1 1 2 1 3(1 ) (1 2 ) (1 3 ) [ (1 3 )]
(5 3.5)

Z
ζ

ξ ξ ξ ξ ξητ η η ξ ξ ξ ξ η ξ
ζ ζ

−
− + − − − +− + + − +=

−
ɶ , (140) 

where τɶ  = τ̂ (u*b/Um). 

The turbulent diffusivity and the Reynolds shear stress are computed from equations 

(41) and (44), respectively, using ξ = 0.6 and ζ = 1.5. Figures 4a and 4b show the 
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variations of computed nondimensional turbulent diffusivity t̂ε  and Reynolds shear 

stress τɶ  with nondimensional vertical distance η for Rouse numbers Z = 0.3, 0.5, and 1. 

The nondimensional reference level considered at η = 0.05, according to Graf and 

Altinakar [1998], is also shown.  

 

Fig. 4. Distributions of computed turbulent diffusivity t̂ε (η) and Reynolds shear stress τɶ (η) for 

different Rouse numbers Z (= 0.3, 0.5, and 1) obtained from the present model. 

At the reference level (η = 0.05), the ̂ tε  is maximum. Then, the ̂tε  decreases with 

an increase in η approaching a constant value for η > 1. It implies that ̂ tε  has a finite 

value at the upper boundary of the turbidity current (η = 1). This feature can be 

explained from the viewpoint of the applicability of the governing equation of 

suspended sediment concentration [equation (39)]. Strictly, equation (39) is only 

applicable to steady-uniform flows. However, as an approximation, the present study 

assumes that equation (39) is applicable to nonuniform flows. On the other hand, the 

entrainment of ambient fluid into the turbidity current induces a significant mixing at 

the interface between the turbidity current and the ambient fluid. Hence, a finite value of 

t̂ε  at the upper boundary of the turbidity current is meaningful. Another important 

feature is that for a given η, t̂ε  increases with an increase in Z.  

In case of Reynolds shear stress, in the immediate vicinity above the reference level 

(η = 0.05), the τɶ  is positive. It diminishes with an increase in η within the inner-layer 
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following a similar trend of τɶ -distribution in a boundary layer flow due to the reduction 

in velocity gradient with η and becomes zero at the point of occurrence of maximum 

velocity. With a further increase in η (within the outer-layer), the τɶ  becomes negative 

forming a protuberance (maximum negative value of τɶ  in τɶ -distribution) at the point 

of inflection of the û -distribution, and then it gradually approaches to zero. It is 

relevant to mention that a similar trend of τɶ -distribution was observed by Dey et al. 

[2010] in a submerged wall-jet. For a given η, τɶ  decreases with an increase in Z in the 

outer layer, while in the inner layer, τɶ  increases with Z. 

6. Turbidity Current Model and Gradually-Varied Flow Formulations 
Since velocity and the concentration distributions are known, the three-equation model 

for the turbidity currents is obtained by inserting Û  = 0.52, β = 1.465, α = 2.366, and 

the moments of the integral scales of equations (25), (26), (36)–(38) into equations (8)–

(10). Therefore, the three-equation model is 

 
( )

0.52 0.52m m m
w m

z U z
E U

t x

∂ ∂+ =
∂ ∂

, (141) 

 
( ) ( )

0.528 0.396m m m m m
b b

C z U C z
E D

t x

∂ ∂+ = −
∂ ∂

, (142) 

 
2 2

2
*

( ) ( ) ( )
0.52 0.396 0.372 cos 0.528 sinm m m m m m

s s m m b

U z U z C z
g gC z u

t x x
θ θ∂ ∂ ∂+ = − ∆ + ∆ −

∂ ∂ ∂
.(143) 

For a steady flow, time derivatives in equations (45)–(47) disappear. Therefore, 

using equations (45)–(47) under the steady flow condition yields the gradually-varied 

flow formulations for zm and Cm as  

 
2

*d 1 1
1.213 (4 0.961 ) 0.683 tan 2.525

d 1 0.961 2
m b b b

w
m m m

z E D u
E

x U C U
θ

  −
 = + − − +  −    

Ri Ri Ri
Ri

,(144) 

 
d 1

d 0.396
m b b

w m m
m m

C E D
E U C

x U z

− = − 
 

, (145) 

where Ri is the Richardson number given by 

 
2 2

cos cos
1.952s m s m m

m

gCz gC z

U U

θ θ∆ ∆= =Ri . (146) 

The streamwise variation of Ri is obtained as 
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2

*

1 1
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b b
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m b
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E D
E
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Ri
Ri Ri

Ri
Ri

. (147) 

Further, Ri is expressed in terms of the reduced sediment flux B as 

 
3 3

cos cos
1.952 7.098s m m m

m m

gC z U B

U U

θ θ∆= =Ri , (148) 

where B = ∆sgCUzm = 0.275∆sgCmUmzm. The B can be interpreted as the sediment 

transport rate CUzm affected by the gravitational acceleration reduced by the buoyancy 

effect ∆sg [Graf and Altinakar, 1998; Wang et al., 2010]. Differentiating equation (52), 

the streamwise gradient of B is expressed as 

 
3 dd d

3
d 7.098cos d d

m m
w

m

U zB B
E

x x z xθ
 = ⋅ + − 
 

Ri
. (149) 

Substituting equations (48) and (51) into equation (53) yields 

 
d

d 0.396
b b

m m m

E DB B

x z U C

−= ⋅ . (150) 

7. Closure Relationships 
Closure relations are required to evaluate the boundary interaction functions and the bed 

shear stress involved in the formulations in the preceding sections. The parameters 

involved with them are often specified by empirical relationships reported in literature.  

The empirical relationship for the entrainment coefficient of ambient fluid Ew was 

proposed by Parker et al. [1987] and was extended to gravity currents by Altinakar et 

al. [1993] using the experimental data of turbidity currents and density currents [Graf 

and Altinakar, 1998]. It is  

 2.4 0.50.075(1 718 )wE −= + Ri . (151) 

The net sediment rate (Eb – Db) is then expressed as 

  ( )b b s s bE D w E c− = − , (152) 

where Es is the entrainment coefficient of sediment particles from the bed, and cb is the 

reference suspended sediment concentration. The empirical relationship for Es given by 
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Parker et al. [1987], which was used by Altinakar et al. [1996] and Graf and Altinakar 

[1998], is considered here. It is 

 

17 7

11 0.75 10 0.75* *3 10 1 10b b
s p p

s s

u u
E

w w

−

− −
    
 = × +   
     

Re Re , (153) 

where Rep is the particle Reynolds number [= (∆sgd3/υ2 )0.5], and υ is the kinematic 

viscosity of fluid. 

The cb is usually evaluated in the vicinity of the bed at η = 0.05 as indicated in 

Figure 4. According to Graf [1971], cb is expressed as 

  *b b

s

c u
f

C w

 
=  

 
. (154) 

From the experimental observation concerning turbidity currents, it was found that 

cb/C ≈ 2 for 1 < u*b/ws < 50. [Parker et al., 1987; Altinakar et al., 1993], However, this 

relationship can be revised and extended to salinity currents as well using the 

concentration distribution proposed in this study. Evaluating equation (31) at the 

nondimensional reference level (η = 0.05), equation (58) is expressed as 

 1.421b

m

c

C
= , 2.691bc

C
= .  (155) 

Equations (56) and (57) show the dependency of (Eb – Db) and Es on terminal fall 

velocity ws. Hence, the determination of ws for a given sediment size is an essential 

prerequisite. For natural sediment particles, different formulas are available to evaluate 

ws in turbid fluid [Hallermeier, 1981; Chang and Liou, 2001; Guo, 2002] and still fluid 

[Dietrich, 1982; Ahrens, 2000; Wu and Wang, 2006]. A summary of the formulas of ws 

is available in Dey [2014]. Zhang and Xie’s [1993] empirical formula, which agreed 

well with the experimental data over a wide range of sediment sizes from laminar to 

turbulent flow [Wu, 2008], is considered here. It is 

 

0.52
13.95 13.95

1.09s sw gd
d d

υ υ  = ∆ + −  
   

. (156) 

The u*b is determined as follows:  
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D D
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λ λ   = =   
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, (157) 

where λD is the Darcy-Weisbach friction factor.  

8. Numerical Experiment 
A numerical example is selected from Graf and Altinakar’s [1998] book (7.7.1, page 

491), where the initial values of zm0 = 1 m, U0 = 1 m s–1, and C0 = 0.0212 are considered 

for the computation. The initial reduced sediment flux B0 is calculated from B0 = 

0.275∆sgC0U0z0. The streamwise bed slope θ = 5º, mass density of sediment particles ρs 

= 2650 kg m–3, mass density of water ρ = 1000 kg m–3, and friction factor λD = 0.032 

are assumed. The total length of the channel reach is taken as 4000 m. The gradually-

varied flow formulations [equations (48), (49), (51), and (54)] derived in Section 6 are 

solved numerically using the fourth-order Runge-Kutta method along with a first-order 

forward difference scheme. The numerical scheme is proved to be independent of the 

grid size. Here, ∆ x̂  (= ∆x/zm0) is considered as 0.5 to ensure a smooth variation of 

parametric variables. The parametric variables for turbidity currents are specified as 

 
0

m
m

m
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z
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U
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C

C
=ɶ , 

0

=ɶ Ri
Ri

Ri
, 

0

B
B

B
=ɶ ,  (158) 

where zm is the nondimensional turbidity current depth, Uɶ  is the nondimensional depth-

averaged velocity, Cɶ  is the nondimensional depth-averaged concentration, ɶRi  is the 

relative Richardson number, and Bɶ  is the nondimensional reduced sediment flux. In 

Figures (5)–(12), the computational results obtained from the present model are shown 

and compared with those obtained from the formulations (henceforth classical model) of 

Graf and Altinakar [1998].  

Figures 5a–5c exhibit the variations of mzɶ , Uɶ , and Bɶ  with nondimensional 

streamwise distance x̂  for salinity current with d = 10–6 mm and turbidity currents with 

d = 0.05 and 0.1 mm. An increasing trend of mzɶ  with x̂  is evident for all the cases. In 

Figure 5a, the Uɶ  in salinity current increases slowly with x̂ , becoming invariant of ̂x  

for x̂  > 45 with a constant value Uɶ  = 1.064 due to the vanishing acceleration. 

However, Bɶ  is invariant of ̂x  with a constant value Bɶ  = 1, since the net sediment flux 

in salinity current disappears as it is revealed from equation (54). On the contrary, 
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Figures 5b and 5c illustrate the self-accelerating behaviour (an increasing trend of Uɶ  

with x̂ ) for the turbidity currents due to an increasing trend of Bɶ  with x̂ . It is apparent 

from Figures 5b and 5c that the self-acceleration and the net sediment flux increase with 

an increase in sediment size in turbidity currents. The mzɶ ( x̂ )-, Uɶ ( x̂ )-, and Bɶ ( x̂ )-

curves obtained from the classical formulations [Graf and Altinakar, 1998] have similar 

trends with marginally overestimated results from those obtained from the present 

model.  

 

Fig. 5. Variations of mzɶ , Uɶ , and Bɶ  with x̂  in a salinity current with (a) d = 10–6 mm, and turbidity 

currents with (b) d = 0.05 mm and (c) d = 0.1 mm. 

It is already stated that the turbidity current is characterized by an erosional or a 

depositional mode depending on the flow conditions. As the sediment size increases, the 

nature of turbidity current changes from erosional to depositional mode, primarily due 

to the effects of the terminal fall velocity of suspended sediment particles. Therefore, 

for a given bed slope θ, there exists a transition from erosional to depositional mode of 

turbidity currents with an increase in sediment size. To investigate this phenomenon, the 

variations of mzɶ , Uɶ , and Bɶ  with x̂  for turbidity currents with d = 0.2 and 0.3 mm are 

computed and shown in Figures 6a and 6b. The present model shows a transitional 

characteristic (erosional to depositional) with an increase in sediment size from d = 0.1 

to 0.2 mm (see Figures 5c and 6a). However, the classical model of Graf and Altinakar 

[1998] predicts the turbidity current as erosional for d = 0.2 mm. On the other hand, 

Figure 6b shows an agreement between the present and Graf and Altinakar’s [1998] 

models, as the turbidity current is depositional for d = 0.3 mm in both the models. 
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Fig. 6. Variations of mzɶ , Uɶ , and Bɶ  with x̂  in turbidity currents with (a) d = 0.2 mm and (b) d = 0.3 

mm. 

Figures 7a–7c depict the variations of ɶRi  and Cɶ  with x̂  for salinity current with d = 

10–6 mm and turbidity currents with d = 0.05 and 0.1 mm. The ɶRi  gradually decreases 

with x̂  in the initial stage, becoming constant (supercritical flow regime) with an 

increase in x̂  for all the cases. In Figure 7a, the Cɶ  for salinity current follows a 

decreasing trend over the entire range of x̂ , since no sediment is introduced in the 

current and mzɶ  continuously increases with x̂ . In Figure 7b, the Cɶ  for turbidity current 

with d = 0.05 mm slowly decreases with x̂ . On the other hand, in Figure 7c, the Cɶ  for 

turbidity current with d = 0.1 mm increases with x̂  due to a positive net sediment flux, 

attaining a maximum value Cɶ = 1.722 at x̂  = 120 and then decreases with x̂  even 

though Bɶ  has an increasing trend there (see Figure 5c). The decreasing trend of Cɶ  in 

Figure 7c is attributed to the continuous rapid growth of mzɶ . The ɶRi ( x̂ )- and Cɶ ( x̂ )-

curves obtained from the classical model [Graf and Altinakar, 1998] have similar trends 

with a slight variation from those obtained from the present study.  

To demonstrate the transitional characteristic of turbidity currents, the variations of 

ɶRi  and Cɶ  with x̂  for d = 0.2 and 0.3 mm are calculated and plotted in Figures 8a and 

8b. The transitional characteristic (erosive to depositional) of the turbidity currents is 

found with an increase in sediment size from d = 0.1 to 0.2 mm (see Figures 7c and 8a). 
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However, according to the model of Graf and Altinakar, the turbidity current still shows 

an erosional mode for d = 0.2 mm. On the other hand, for d = 0.3 mm, both the models 

predict the turbidity current as depositional (Figure 8b). 

 

Fig. 7. Variations of ɶRi  and Cɶ  with x̂  in a salinity current with (a) d = 10–6 mm, and turbidity currents 
with (b) d = 0.05 mm and (c) d = 0.1 mm. 

 

Fig. 8. Variations of ɶRi  and Cɶ  with x̂  in turbidity currents with (a) d = 0.2 mm and (b) d = 0.3 mm. 

The Richardson number is a good indicator to identify the flow regime [subcritical 

flow (Ri > 1) or supercritical flow (Ri < 1)], and in turn, the turbidity current 

characteristics (erosional or depositional mode). Figures 9a−9c show the variations of 

ɶRi  with x̂  for different θ in salinity current with d = 10–6 mm and turbidity currents 

with d = 0.05 and 0.1 mm. It is revealed from Figures 9a–9c that for smaller values of θ 

(≤ 0.8º), the ɶRi  abruptly increases with x̂  for all the cases, while for larger values of θ 
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(≥ 2º), it increases for θ = 2º and decreases for θ = 5–45º with ̂x , becoming invariant of 

x̂  for a large x̂ . Therefore, to obtain a supercritical flow (independent of x̂ ), it is 

required to overcome a certain threshold value of bed slope θ that depends on the 

sediment size. It is evident that the ɶRi  in salinity current (Figure 9a) attains a constant 

value earlier than in turbidity currents (Figures 9b and 9c). The ɶRi ( x̂ )-curves obtained 

from the classical model [Graf and Altinakar, 1998] have similar trend with slightly 

underestimated results from those obtained from the present study for larger values of θ 

(≥ 2º), but slightly overestimated results for smaller values of θ (≤ 0.8º). 

 

Fig. 9. Variations of ɶRi  with x̂  for different bed slopesθ in a salinity current with (a) d = 10–6 mm and 
turbidity currents with (b) d = 0.05 mm and (c) d = 0.1 mm. 

Figures 10a and 10b show the variations of ɶRi  with x̂  for different θ in turbidity 

currents with d = 0.2 and 0.3 mm. In Figure 10a (d = 0.2 mm), both the present and 

Graf and Altinakar’s [1998] models agree well in predicting ɶRi  for θ = 2º, but differ for 

θ = 5º. For θ > 5º, the ɶRi  has a supercritical flow tendency (independent of x̂ ), while 

for θ < 5º, it decays asymptotically toward zero. With an increase in sediment size (d = 

0.3 mm), the damping of ɶRi  is noticeable with θ, while the supercritical flow is 

achieved at θ = 45º (Figure 10b). The ɶRi ( x̂ )-curves obtained from the classical model 

[Graf and Altinakar, 1998] have similar trend with slightly underestimated results from 

those obtained from the present study, except for θ = 5º for which an overestimated 

result is obtained. 
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Fig. 10. Variations of ɶRi  with x̂  for different bed slopesθ in turbidity currents with (a) d = 0.2 mm and 
(b) d = 0.3 mm. 

The variations of ɶRi  with θ at x̂  = 4000 (last node of computational domain) for 

salinity current with d = 10–6 mm and turbidity current with d = 0.1 mm are plotted in 

Figure 11. The results obtained from the present model are compared with the 

formulations of Graf and Altinakar, [1998]. For a given initial condition, the turbidity 

currents can only maintain the supercritical flow (Ri < 1) if θ exceeds a threshold value, 

as shown in Figure 11. The ɶRi (θ)-curves obtained from the classical model [Graf and 

Altinakar, 1998] have similar trend with slightly underestimated results from those 

obtained from the present study.  
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Fig. 11. Variations of ɶRi  with θ at x̂  = 4000 in a salinity current with d = 10–6 mm and a turbidity 
current with d = 0.1 mm. 

Figure 12 displays the variations of nondimensional growth rate dmzɶ /d x̂  of 

turbidity currents with θ at x̂= 4000 for salinity current with d = 10–6 mm and turbidity 

current with d = 0.1 mm. In these cases, the present model slightly underestimates the 

growth rate from that obtained from Graf and Altinakar’s [1998] model. The ratio of 

average growth rate of the turbidity current to that of the salinity current is determined 

as 0.66 (approximately), while from the classical model of Graf and Altinakar [1998], 

this ratio is obtained as 0.67. However, Akiyama and Stefan [1985] reported the ratio as 

0.65. 



 - 195 - 

 

Fig. 12. Variations of d mzɶ /d x̂  with θ at x̂  = 4000 in a salinity current with d = 10–6 mm and a turbidity 

current with d = 0.1 mm. 

9. Discussion 
The present model of turbidity current is not merely based on empirical relationships, 

but it provides an insight into the physics of the fluid flow. The velocity and 

concentration distributions reported earlier were typically based on self-similarity 

functions obtained by treating the depth-averaged variables in the moments of the 

integral scales. Following the analysis by Parker et al. [1986], a satisfactory depth-

averaged model was classical model [Graf and Altinakar, 1998]. In particular, the 

knowledge of the velocity and concentration distributions are required to treat the 

equations of fluid mass, sediment mass, and fluid momentum balance.  

The expression for the velocity distribution is derived in Section 3. Using the 

experimental velocity data of turbidity and salinity currents reported by various 

investigators, the unknown parameters involved in the velocity distribution function are 

determined. However, the velocity distributions in a flow over bedforms have a 

departure from this trend, since the maximum velocity shifts upward in this case 

[Sequeiros et al., 2010]. It is relevant to mention that the generalized expression 

(equation 11) for the velocity distribution can also be applicable to the flow over 

bedforms, if the unknown parameters are adjusted according to the experimental data. 
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Moreover, the unknown parameters involved in the velocity distribution are reduced to 

a single unknown parameter by means of the boundary conditions and the empirical 

relations. From the velocity distribution, the flow parameters such as nondimensional 

depth-averaged velocity, momentum (Boussinesq) and energy (Coriolis) coefficients are 

determined as 0.52, 1.465, and 2.366, respectively. In contrast, according to Altinakar et 

al. [1996], the nondimensional depth-averaged velocity was found as 0.769 showing a 

50% overestimation of the present value. As a result of which the momentum and 

energy coefficients affect the moments of the integral scales of the governing equations. 

So, they need to be taken into account for a better performance of the model.  

The concentration distribution is likewise treated and derived in Section 4. 

Following an analogous derivation to the velocity distribution, a single function for the 

concentration distribution involving a single unknown parameter is proposed by 

applying the boundary conditions and the empirical relations. The concentration 

distribution is based on the near-Gaussian distribution proposed by Altinakar et al. 

[1996] for the outer-layer of the turbidity currents. After an appropriate treatment, the 

near-Gaussian distribution is used over the entire range of the turbidity current layer. 

So, two separate concentration distributions in the inner- and outer-layer, which make 

the formulation rather complicated, are no longer required. The experimental data used 

in the analysis is chosen from the same experiments used for the velocity distribution. 

Therefore, the level of vanishing velocity at the interface between the turbidity current 

and the ambient fluid is known and the ordinate of the concentration distribution is 

rescaled accordingly. From the viewpoint of the suspended sediment motion, little is 

known about the background mechanism of the suspended sediment concentration in 

turbidity currents. Within the inner-layer where the velocity distribution follows a 

classical boundary layer flow, the concentration distribution is expected to adopt a 

traditional concentration distribution, as proposed by Rouse [1937]. However, according 

to the experimental data trend, the concentration at the bed can be approximated with a 

finite value [Altinakar et al., 1996]. Within the outer-layer, the concentration 

distribution has a decreasing trend with the vertical distance leaving a finite value at the 

interface between the turbidity current and the ambient fluid. Accordingly, the moments 

of the integral scales defined in equation (5) are performed neglecting the concentration 

distribution in the ambient fluid layer.  
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Using the velocity and concentration distributions, the characteristics of turbidity 

current are further analyzed. In Section 5, the turbulent diffusivity in turbidity currents 

is estimated using the diffusion equation of the suspended sediment concentration. The 

Reynolds shear stress in turbidity currents is computed applying the Boussinesq 

hypothesis. The Reynolds shear stress distribution is in agreement with the theoretical 

study reported by Stacey and Bowen [1985]. Applying the diffusion equation to the 

suspended sediment motion, the turbulent diffusivity distribution is also obtained. In 

contrast to the present observations, the study of Stacey and Bowen [1985] considered a 

linear bridge to join the bimodal type of turbulent diffusivity distribution following 

Launder and Spalding [1972]. This linear bridge was explained from the viewpoint of 

the Prandtl’s mixing length theory for turbidity currents. In fact, nothing can be firmly 

stated in this aspect, since little is known about the characteristics of the turbulent length 

scales in turbidity currents. However, the present study is free from the consideration of 

a linear bridge. 

The present model provides the gradually-varied flow formulations given in Section 

6. The variations of the nondimensional turbidity current depth, velocity, concentration, 

reduced sediment flux, and Richardson number with nondimensional streamwise 

distance obtained from the present model are compared with those obtained from the 

classical model [Graf and Altinakar, 1998]. The variations of mzɶ , Uɶ , Cɶ , and Bɶ  are, in 

general, underestimated by the present model as compared to those obtained from the 

classical model, leading to milder transitions than in the classical model. The variation 

of ɶRi  is, in contrast, overestimated. Consequently, it can be interpreted that the present 

model is able to describe a greater strength of erosional turbidity currents without the 

implication of greater values of mzɶ , Uɶ , Cɶ , and Bɶ . Additionally, the point of departure 

from the erosional to depositional turbidity current appears earlier in the present model 

than in the classical model with respect to the median size of sediment particles, as 

inferred from Figures 6 and 8. The reason is attributed to account for the self-preserving 

type distributions of velocity and concentration in the present model. It is one of the 

main differences between the present and the classical models. Besides, the difference 

in prediction of ɶRi  for different bed slopes θ is analyzed in Figure 11. In addition, the 

same trend is found for the growth rate dmzɶ /dx of turbidity currents in Figure 12 by 

analyzing the ratio of the growth rates in salinity to turbidity currents. These 
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characteristics are generalized for a wide range of θ and in turn, it can be stated that the 

present model in general performs similarly to the classical model. 

Last but not the least, the results on the gradually-varied flow parametric variables 

in turbidity currents with erosional or depositional mode could not be compared with 

the observed data due to lack of experimental or field data. However, in spite of some 

approximations adopted in the analysis, this model, at least, fulfils the purpose of 

describing clearly the characteristics and the behavior of turbidity currents. This 

corollary is further discussed in Appendix C through an auxiliary calculation following 

the recommendation of Parker et al. [1986]. The present three-equation model does not 

fail in predicting turbidity currents from ignition point and, in turn, does not violate the 

four-equation TKE balance [Hu et al., 2015]. Besides, in view of the self-preserving 

type of velocity and concentration laws that are validated by the experimental data and 

used to develop the gradually-varied flow relationships, perhaps a more than a 

qualitative rationality can be claimed for the computed results.  

10. Conclusions 
A physically based hydrodynamic analysis for the turbidity currents over a plane bed is 

presented using the classical three-equation model (depth-averaged fluid continuity, 

sediment continuity, and fluid momentum equations) and considering the self-similar 

characteristics of the streamwise velocity and concentration distributions. According to 

the classical theory of sediment-laden flow, the governing equations of turbidity 

currents are presented in generalized forms by using the moments of the integral scales. 

To perform the integrals, the velocity and concentration distributions are assumed as 

single functions over the entire turbidity current layer. Using the experimental data of 

salinity and turbidity currents over plane beds, the unknown parameters involved in the 

velocity and concentration distributions are evaluated. Importantly, the velocity and 

concentration distributions are of self-preserving type, as they correspond closely to the 

wide range of experimental data in fully developed flows. The values of the typical flow 

parameters, such as depth-averaged velocity, momentum, and energy coefficients are 

evaluated from the velocity distribution. From the velocity and concentration 

distributions, the turbulent diffusivity and the Reynolds shear stress distributions are 

determined using the diffusion equation of suspended sediment concentration and the 

Boussinesq hypothesis. The turbulent diffusivity distribution is found to follow a 

different trend to that reported in the literature [Stacey and Bowen, 1988], while the 
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Reynolds shear stress distribution agrees well with the previous observations [Dey et 

al., 2010]. 

Using the velocity and concentration distributions in the moments of the integral 

scales, a generalized model for unsteady-nonuniform turbidity currents is developed. 

Then, the gradually-varied flow formulations for steady-nonuniform turbidity currents 

are derived from the generalized model with suitable closure relationships. The different 

parametric variables (current depth, velocity, concentration, reduced sediment flux, and 

Richardson number) of turbidity currents obtained from the present model are compared 

with those obtained from the model of Graf and Altinakar [1998]. The dependency of 

the parametric variables of turbidity currents on the sediment size and the bed slope 

including the transitional feature of turbidity currents from erosional to depositional 

mode is especially focused. The threshold value (erosional to depositional mode) of the 

streamwise bed slope that ensures a supercritical flow is highlighted for different 

sediment sizes. However, for depositional turbidity currents carrying larger sediment 

sizes, no threshold value of the bed slope is obtained. The ratio of growth rate of the 

turbidity current to that of the salinity current predicted by the present model is found 

almost similar to those obtained from previous models. 

The limitations of this study are as follows:  

(1) The expressions for self-preserving distributions of velocity and concentration 

are calibrated using the limited available experimental data reported by some 

investigators. Use of more experimental data could improve the accuracy of 

these expressions. 

(2) The diffusion equation of suspended sediment concentration for uniform flow is 

applied for solving the gradually varied turbidity current equations. Thus, the 

turbidity current is assumed to be a pseudo-uniform flow. 

(3) The suspended sediment concentration is assumed to be sufficiently small to 

apply the Boussinesq approximation, and thus the kinematic viscosity equals its 

value for clear water.  

(4) The present study does not take into account the effects of bedforms on turbidity 

current over sediment beds. 

Nevertheless, the present model is believed to be a powerful tool to analyze the 

characteristics of fully developed turbidity currents. It not only provides more 
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comprehensive insights into the vertical structure of the currents, but also the 

generalized formulation of unsteady-nonuniform turbidity currents and parametric 

variations of gradually-varied turbidity currents. In addition, it provides additional 

evidences to claim in favour of the three-equation model. 

11. Acknowledgements 
This study was supported by the Spanish project CTM2013-45666-R, Ministerio de 

Economía y Competitividad. The first author is thankful to the Ministerio de Educación, 

Cultura y Deporte, Spain, for grant (FPU12/04795) to visit to the Indian Institute of 

Technology (IIT) Kharagpur. Data supporting Figures 2 and 3 are available in Altinakar 

et al. [1996], Sequeiros et al. [2010], and Nourmohammadi et al. [2011], as also 

acknowledged in the corresponding figure legends. 

 



 - 201 - 

Appendix A: Turbulent Kinetic Energy (TKE) Budget 
The depth-averaged equation of TKE budget of turbidity currents is as follows [Parker 

et al., 1986]: 

0 0 0 0
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where k is the TKE, PT is the average TKE production rate, and ε is the TKE dissipation 

rate. 

The link of equation (A1) with the three-equation model was expressed by Parker et 

al. [1986] through the bed shear stress. The entrainment coefficient, Es = Eb/ws, is 

related to the state of the turbulence, as it can be inferred from equation (7) and is given 

as a function of the level of turbulence K, which is the depth-averaged TKE. Thereby, 

Parker et al. [1986] assumed 

 2
* 1bu Kα= , ( 2) 

where α1 is the proportionality parameter, which is assumed to be constant for a given 

flow. In addition, following Parker et al. [1986], one can write 
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The integrals of equation (A1) are defined as 
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Then, the generalized form of equation (A1) is given by 
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Including equation (A1) in the turbidity current model, the large values of Es damp 

the turbulence state and hence stabilizes the values of K and Es, which is unpredictable 
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by a three-equation model [Parker et al., 1986]. However, in order to obtain a solution 

for equation (A6), additional information is required. The TKE distribution belongs to 

integrals I8 and I9. Unfortunately, little is known about the legitimate TKE distribution 

in turbidity currents. Although there exist some approximations of the TKE distribution 

in turbidity currents [Islam and Imran, 2010], they are not generalized. Besides not only 

the expression for TKE distribution is required in a complete four-equation model, but 

also an initial value of TKE is a prerequisite to initiate the computation. In fact, it was 

clearly pointed out by Parker et al. [1986] that the initial value of TKE for the 

computation requires a number of assumptions. Therefore, it is rather uncertain to 

provide a reliable initial value of TKE. In addition, the type of distributions assumed for 

the velocity and the concentration makes it difficult to perform the other integral scales. 

In fact, integral I7 is not possible to be integrated in terms of a function of z, as the 

hypergeometric series functions appear, e.g., Kummer confluent hypergeometric 

functions. Also, in order to perform the integration of I6, a similar continuous function is 

assumed for the product of the nondimensional velocity and concentration as ˆ ˆuc = 

10.5η0.75(1 – η)5. Thereby, I6 is 
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Thus, equation (A1) is finally modified as 
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The consideration of equation (A8) may enhance the performance of the turbidity 

current model [Parker et al., 1986]. Notwithstanding, realizing the drawbacks, the 

inclusion of this equation can be avoided by adopting proper closure relationships in 

three-equation model. 
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Appendix B: The Moments of the Integral Scales 
With the unknown parameters, the velocity and concentration distributions obtained 

from equations (16) and (31) are given as 

 0.6 2.2ˆ 4.284 (1 )u η η= − ,  (A1) 

 1.5ˆ 1.486exp( 4 )c η= − . (A2) 

Therefore, the moments of the integral scales are 
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Appendix C: A Comparison between Three-Equation and Classical 
Four-Equation Models 
According to Parker et al. [1986], the self-accelerating currents are wrongly predicted 

by means of the former classical three-equation models [Ellison and Turner, 1959]. On 

the contrary, they are satisfactorily simulated by introducing the TKE budget equation 

in the model. In this regard, Figures 7b and 15 are taken from Parker et al. [1986] (see 

Figures C1 and C2, respectively) to assess the performance of the three-equation model 

of this study. Figure C1 shows the development of the turbidity current characteristics 

from ignition. The term ignition in turbidity current is defined by Parker et al. [1986] as 

the self-acceleration through an entrainment of bed sediment. The curve illustrates how 

the three-equation model of Parker et al. [1986] fails to represent the behaviour of the 

current. However, the three-equation model of this study does not describe such a rapid 

increase in the sediment transport as obtained by Parker et al. [1986]. In addition, 

Figure C2 depicts how the present model corresponds to the estimations by four-

equation model of Parker et al. [1986] rather than to follow the hydraulic jump trend 

obtained from the classical three-equation model of Parker et al. [1986]. 

 

Fig. C1. Variations of mzɶ , Uɶ , and Bɶ  with x̂  in a turbidity current showing the comparison between 

the present model and Parker et al. [1986]. 
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Fig. C2. Variation of Ri  with x̂  in a turbidity current showing the comparison between the present 
model and Parker et al. [1986]. 
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12. Notation 
B = reduced sediment flux 

Bɶ  = nondimensional reduced sediment flux (= B/B0) 

B0 = initial condition of B 

C = depth-averaged concentration 

Ĉ  = C/Cm 

Cɶ  = nondimensional depth-averaged concentration (= C/C0) 

C0 = initial condition of C 

Cm = suspended sediment concentration at η = ηw 

c = suspended sediment concentration in turbidity current at z 

c′ = fluctuations of c 

ĉ  = c/Cm 

c0 = sediment concentration at bed 

0ĉ  = c0/Cm 

cb = reference sediment concentration 

c w′ ′  = Reynolds flux of suspended sediment particles 

Db = deposition rate of sediment 

d = median size of sediment particles 

Eb = erosion rate of sediment 

Es = entrainment coefficient of sediment particles from bed 

Ew = entrainment coefficient of ambient fluid 

g = gravitational acceleration 

I1–8 = moments of integral scales  

K = level of turbulence 

k = turbulent kinetic energy (TKE) 

PT = average TKE production rate 

Rep = particle Reynolds number [= (∆sgd3/υ2)0.5] 

Ri = Richardson number 

ɶRi  = relative Richardson number (= Ri/Ri0) 

Ri0 = initial condition of Ri 

t = time 

U = depth-averaged velocity 

Û  = U/Um 
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Uɶ  = nondimensional depth-averaged velocity (= U/U0) 

U0 = initial condition of U 

Um = maximum velocity 

u = streamwise velocity of turbidity current at z 

û  = u/Um 

u*b = shear velocity 

w = vertical velocity component 

w′ = fluctuations of w 

wh = vertical velocity component at top of turbidity current 

ws = terminal fall velocity of suspended sediment particles 

x, z = Cartesian coordinates 

x̂  = x/zm0 

Z = Rouse number [= ws/(κu*b)] 

zm = turbidity current depth  

mzɶ  = nondimensional turbidity current depth (= z/zm0) 

zm0 = initial condition of zm  

zw = position of maximum velocity  

α = energy (Coriolis) coefficient 

β = momentum (Boussinesq) coefficient 

χ, ξ = exponents in velocity distribution 

∆s = submerged relative density 

ε  = TKE dissipation rate 

εt = turbulent diffusivity 

t̂ε  = εt/(ku*bzm) 

Γ(s) = Euler gamma function 

Γ(a, s) = incomplete gamma function 

η = z/zm 

ηw = zw/zm 

κ = von Kármán constant 

λ, φ, ζ = unknown parameters in concentration distribution 

λD = Darcy-Weisbach friction factor 

θ = streamwise bed slope 

ρ = mass density of fluid-sediment mixture [= ρa + (ρs – ρa)c] 

ρa = mass density of ambient fluid  
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ρs = mass density of sediment particles 

σ = coefficient 

τ = Reynolds shear stress 

τ̂  = τ/(ρ 2
*bu ) 

τɶ  =τ̂ (u*b/Um) 

υ = kinematic viscosity of fluid 
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