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Abstract

Depth-averaged modelling of river flows is a widely used technique in hydraulic
engineering, given the reduced computational work as compared to a three dimensional
numerical solution. Typically, depth-averaged models rely on the assumptions of a
hydrostatic pressure distribution, and depth-independent velocity and concentration
distributions. However, even though Saint-Venant type models produce good results for
the solution of a wide range of engineering problems, a significant increase in accuracy
is achieved by using more realistic assumptions for the vertical structure of the flow.
The main objective of this thesis is to study the effect of higher-order closure hypothesis
for the vertical distributions of pressure, velocity and concentration, on the solution of
one-dimensional depth-averaged models for river flow problems. This main objective is
developed in the following specific studies: (i) The effect of the non-hydrostatic
pressure distribution is first investigated in a basic section of river flow, namely the
compound channel. Here, the energy and momentum balances in steady-state are
investigated; (i) Unsteadiness is introduced using the dam break flood wave over a
rigid bed as a test case. Here, the accuracy of the velocity and pressure distributions of
Serre-type, depth-averaged, non-hydrostatic flows is assessed; (iii) The finite-volume
numerical model developed for dam break waves over rigid beds is expanded to dam
break wave flows over movable beds by introducing a non-equilibrium sediment
transport model, and the suspended sediment flux; (iv) An analytical solution for the
equilibrium suspended-load flux is proposed used a power-law for the turbulent velocity
profile, and a wall-wake concentration profile; (v) The effect of highly non-uniform
distributions of velocity and concentration is investigated introducing a similarity

approximation for erosive/depositional flows in turbidity currents.
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Chapter 1

Introduction

Mathematical modelling of open-channel flows for engineering applications is
routinely conducted using vertically-integrated models, given the reduction of the
computational work as compared to a complete three-dimensional analysis (Steffler and
Jin 1993, Chaudhry 2008, Castro-Orgaz et al. 2015). Most of these computational
models numerically solve the Saint-Venant equations (implying a hydrostatic pressure
distribution) in 1D or 2D, using finite-difference, finite element or finite volume
schemes (Toro 2001, Chaudhry 2008). For sediment transport problems, the
generalization of the Saint-Venant equations for a mixture of fluid and sediments over
an erodible bed is available (Wu 2008). However, the assumption of a hydrostatic
pressure distribution is not accurate for flows where the vertical length scale is of the
order of the horizontal length scale, or, if the shallowness parameter is not
asymptotically tending to zero. Typical problems are the flow in open channel structures
like weirs and overfalls, water wave motion, and bed-form development and migration
(Steffler and Jin 1993, Castro-Orgaz et al. 2015). Given the importance of modelling
non-hydrostatic flows, this feature has been a topic of intense research since the 1980's,
starting with the classical work of Hager and Hutter (1984). Most of the research
conducted focussed on steady flows in a vertical plane (see Castro-Orgaz et al. 2015 for
a recent review), but no extensions to cross-sectional shapes relevant for river-flows,
like a compound channel (Blalock and Sturm 1981), are available. Unsteady non-
hydrostatic flow solutions are rare, with the accurate development of Khan and Steffler
(1996) as a notable exception. However, this model is limited to clear-water flows over
rigid beds. Non-hydrostatic computations for sediment-laden flows over movable beds
remain unaddressed (Wu 2008). Even though some erosion-deposition flows can be
tackled using a hydrostatic pressure assumption, the velocity and concentration
distributions in turbulent flow can be relevant (Dey 2014), like those in turbidity

currents.
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Therefore, a sediment transport model for non-uniform flow conditions should allow
for the inclusion of a non-hydrostatic pressure distribution, and non-uniform velocity
and concentration distributions. Typically, a non-equilibrium sediment transport model
is required, and an accurate finite-volume or finite-element solution is desirable. At the
current state-of-the-art, these issues are not addressed in the literature in a single and
structured research work (Wu 2008), and, thus, this is the starting point of the present

work.
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Chapter 2

Objectives

The general objective of this work is to study the use of higher-order physical closure
hypothesis, as compared to Saint-Venant type models, for the vertical distributions
needed mathematically in a depth-averaged model. Specific objectives are as

follows:

i.  Studying the effect of including the non-hydrostatieessure distribution in
compound channel flows. This problem was selected as a basic section in river-

type flows. This work is presented in Appendix I.

ii.  Studying the effect of including the non-hydrostatiessure distribution in
unsteady dam break flows over rigid beds. This is a basic water wave including

rarefaction and shock-waves. This work is presented in Appendix II.

lii.  Studying the effect of including the non-hydrostatieessure distribution in
unsteady dam break flows over movable beds, with suspended and bed-load
sediment transport modes. This is a key problem is fluvial hydrodynamics. This

work is presented in Appendix IlI.

iv. Developing an analytical model for suspended loachpmgdations based on a

power-law turbulent velocity profile. This work is presented in Appendix IV.

v. Including the velocity and suspended-load conceapntratdistributions in

erosion/deposition models. This work is presented in Appendix V.

-12 -



Chapter 3

General Conclusions

The general conclusions drawn from this work are:

Inclusion of the non-hydrostatic pressure distribution in compound open channel
flows produces energy and momentum equations that can simulate flow profiles
not described by the gradually-varied (hydrostatic) flow theory. The momentum
model was found to yield better results, using as a test case the free overfall in a

compound channel.

A high-resolution finite-volume model was developed to solve the weakly
dispersive, fully non-linear Serre equations, for the dam break flood wave. The
model was used to show that velocity and pressure distributions predicted by the
theory are accurate, and that it is not needed to enhance the linear frequency
dispersion relation in shallow flows, given the dominant role of non-linear effects

as the ratio of wave amplitude to depth increases.

A generalized Serre-type model was formulated for unsteady flow over movable
beds, accounting for suspended and bed-load sediment transport modes. The
model was solved using a high-resolution finite-volume scheme, and the results
compared well with experimental observations and 3D numerical results available
in the literature. The model produced a significant improvement in free surface

predictions as compared to Saint-Venant type simulations.

Using a power-law model for the turbulent velocity profile, an analytical solution

to the suspended-load concentration profile was produced using a wall-wake
approximation. The proposed velocity and concentration distributions were used
to find an analytical solution to the suspended-load transport rate, which is an

alternative to the numerical solution to Einstein’s integrals.

An accurate description of the velocity and suspended-load concentration

distributions using self-similarity functions produced a significant increase in
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accuracy for turbidity current modelling (a strong erosion/deposition flow), as
compared to classical models based on depth-independent distributions.
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Appendix |

Free surface profiles in river flows: Can standard energy-
based gradually-varied flow computations be pursued?

Francisco Nicolas Cantero-Chinchttl®scar Castro-Orgé,zAmanda Garcia-MarfnJosé Luis
Ayuso-MufioZ, Subhasish Déy

Journal of Hydrology529(1), 16441656, doi:10.1016/j.jhydrol.2015.07.056. Impact factor
(JCR 2014): 3.053 / Q1 (4/125 Civil Engineering)

Summary

Is the energy equation for gradually-varied flow the best approximation for the free
surface profile computations in river flows? Determination of flood inundation in rivers
and natural waterways is based on the hydraulic computation of flow profiles. This is
usually done using energy-based gradually-varied flow models, like HEC-RAS, that
adopts a vertical division method for discharge prediction in compound channel
sections. However, this discharge prediction method is not so accurate in the context of
advancements over the last three decades. This paper firstly presents a study of the
impact of discharge prediction on the gradually-varied flow computations by comparing
thirteen different methods for compound channels, where both energy and momentum
equations are applied. The discharge, velocity distribution coefficients, specific energy,
momentum and flow profiles are determined. After the study of gradually-varied flow
predictions, a new theory is developed to produce higher-order energy and momentum
equations for rapidly-varied flow in compound channels. These generalized equations
enable to describe the flow profiles with more generality than the gradually-varied flow
computations. As an outcome, results of gradually-varied flow provide realistic

conclusions for computations of flow in compound channels, showing that momentum-
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based models are in general more accurate; whereas the new theory developed for
rapidly-varied flow opens a new research direction, so far not investigated in flows

through compound channels.

1. Introduction

Discharge hydrographs from heavy rainfall events are conveyed as a free surface flow
through natural waterways and rivers, which are normally compound channels. The
cross-sections of these channels are complex and can be divided into a main channel
and the flood plains, with a large variation of hydraulic roughness between them
(Sturm, 2001). The computation of free surface levels in natural channels is an
important procedure and it is required to demarcate the flow inundation areas as a
function of the return period of peak flood (Chow et al., 1988; Brutsaert, 2005). The
accuracy in flow profile predictions relies on hydraulic computations based on one-
dimensional gradually-varied flow models (Chow et al., 1988). Programs like HEC-
RAS (Hydrologic Engineering Center-River Analysis System) are used to compute one-
dimensional gradually-varied flow in natural channels by using the energy equation
(Sturm, 2001; Chaudhry, 2008). A decisive aspect in these computations is the selection
of an appropriate method to calculate the discharge taking into account the variation of
hydraulics roughness within the cross-section. The HEC-RAS program, for example,
subdivides the channel cross-section with vertical planes and turbulent stresses are
neglected along the division lines. This is a traditional approximation in open channel
flows (Chow, 1959; Montes, 1998; Sturm, 2001; Chaudhry, 2008). However, in the past
30 years, a large number of studies analyzed the discharge prediction method for
compound channel sections. Most of them argued that the subdivision method is not
accurate for the discharge prediction. The strong lateral velocity gradients and
turbulence result in a significant linear momentum transfer between the main channel
and the flood plains (Sellin, 1964; Myers, 1978; Rajaratnam and Ahmadi, 1981;
Wormleaton et al., 1982; Knight and Demetriou, 1983; Shiono and Knight, 1991;
Knight and April, 1996; Lambert and Sellin, 1996; Bousmar and Zech, 1999; Kathua et
al., 2011). Prinos (1985) and Chatila and Townsend (1996) compared the methods
based on virtual plane divisions between the main channel and the floodplains. The
interaction between the flood plain and the main channel flows induces secondary flows
and turbulent stresses at the virtual planes, which can be introduced in the governing

equations by a momentum balance (Wormleaton et al., 1982). Wormleaton et al. (1982),
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Prinos and Townsend (1984) and Wormleaton and Merrett (1990) solved the
momentum equation by introducing an apparent shear stress at the interfaces, and
parameterized it in terms of velocity of the main channel and the floodplains. Dracos
and Hardegger (1987) suggested the use of the ratio of hydraulic radius to total depth
for the single-channel method, which involves several empirical parameters related to
the geometry of the cross-sections. Ackers (1993a, b) proposed the coherence method,
that introduces an empirical correction to the vertical (virtual) division method. Khatua
et al. (2011) developed an equation to quantify the momentum transfer in terms of an
appropriate interface length. Thus, despite it is well established that the momentum
transfer between the main channel and the flood plains must be considered for an
accurate determination of the discharge, this knowledge has so far been hardly
transmitted to the basic hydraulic computations involving free surface flows. It is,
however, unclear amongst various available methods, which discharge prediction
method should be included in one-dimensional compound channel models. Further, it is
also unclear, which is the best, whether the use of momentum or energy principle for the

computations of flow in compound channels.

The prediction of the stage-discharge relationship in a compound channel directly
influences other relevant gradually-varied flow computations. The discharge curve is
needed to perform flow profile computations using gradually-varied energy or
momentum models (Sturm and Sadiqg, 1996; Sturm, 2001; Chaudhry, 2008). An aspect
that particularly makes these computations in compound channels complicated relates to
the nonuniform lateral velocity distribution within the cross-section induced by the large
variation of hydraulic roughness. It results in velocity distribution coefficients much
larger than unity that needs be accounted for (Sturm and Sadiq, 1996; Sturm, 2001).
The computations of these coefficients as well as the determination of the energy line
slope are highly dependent on the discharge prediction method. Thus, the flow profile
computations are reliant on the discharge predictor model. Critical depth is used to
compute stage-discharge rating curves by using the energy or momentum principles
(Petryk and Grant, 1978; Blalock and Sturm, 1981; Schoellhamer et al., 1985; Chaudhry
and Ballamudi, 1988; Yuen and Knight, 1990; Lee et al., 2002), and it is as well a
boundary condition to initiate flow profile computations (Sturm and Sadiq, 1996; Field
et al., 1998). The impact of the discharge predictor on the critical depth computations is

also unclear. Field et al. (1998) compared energy and momentum equations of
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gradually-varied flows for the computation of flow profiles in compound channels.
They concluded that more research was needed to evaluate both approximations, that
give large differences. Errors in discharge prediction may result in large inaccuracies in
computing energy and momentum fluxes, thereby provoking problems when solving the
dynamic flow equations (Wormleaton and Hadjipanos, 1985). Further, the flow
discharge measurement in open channels is usually done by weirs and flumes
(Clemmens et al., 2001). If a long throated flume is installed into a compound channel
to measure discharge, then the rating curve of the flume relates flow disGhardke
specific energ)E in the upstream compound channel (Montes, 1998; Clemmens et al.,
2001). Given the large magnitude of the energy correction coefficient of flow in this
type of channel, the measurement of discharge may be highly sensitive to errors in the
computation oE. However, like in the former problems, no assessment of the impact of
discharge prediction methods in the computation of the specific energy and momentum
is so far available in the literature to the best of authors’ knowledge. In short, no
assessment of the impact of the discharge prediction method on the computation of
velocity distribution coefficients, uses of energy and momentum principles, critical
depth and flow profile computations appears to be available in the literature in a single
and structured study.

The compound channel studies summarized above are related to gradually-varied
flow, where the pressure distribution is assumed to preserve a hydrostatic variation.
Within the range of multiple critical depths, the free surface at the cross-sectional plane
in a compound channel is no longer horizontal in the vicinity of free overfalls (Dey and
Lambert, 2006); the velocity field is then three-dimensional and the pressure non-
hydrostatic (Sturm and Sadig, 1996). For a higher discharge outside this range, there is
only one critical depth in the specific energy curve and the free surface is horizontal at
the cross-sectional plane. In this case, the free surface is only a function of the
longitudinal distance (or streamwise coordinate); and thus one-dimensional models
apply. Near overfalls, however, there is a significant vertical velocity component and
hence the velocity field is two-dimensional despite the flow depth is a one-dimensional
magnitude. Given the non-hydrostatic pressure, this type of flow cannot be solved by
standard gradually-varied flow computations so far dominating this field of research.
One-dimensional non-hydrostatic, or rapidly-varied, flows have been successfully

modelled in open channel hydraulics by means of the Boussinesqg-type approximation
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(Serre, 1953; Hager and Hutter, 1984a; Chaudhry, 2008; Castro-Orgaz and Hager,
2011). Experimental flow profiles measured by Sturm and Sadiq (1996) indicated the
presence of non-hydrostatic pressure effects near the drawdown at a free overfall and at
the oscillatory wave train around the normal depth. Both free surface flow
configurations were explained by Serre (1953) in rectangular channels using the higher-
order energy and momentum equations. However, there exists no work in the literature
making such an analysis for flows in compound channels. In particular, the higher-order
Boussinesg-type non-hydrostatic pressure equations for compound channels were so far

not developed to the best of authors' knowledge.
The objective of this research is twofold:

() The first objective relates to gradually-varied flow and the impact of the
discharge prediction method. For this purpose, thirteen relevant discharge prediction
methods available in the literature are analyzed to reveal the impact of momentum
transfer on basic flow profile computations. The methods are first compared in terms of
discharge prediction to highlight their accuracy to predict the stage-discharge rating
curve under uniform flow conditions. The methods are then used to compute the
velocity distribution coefficients, namely, Coriolis (energy) and Boussinesq
(momentum) coefficients. After evaluating the discharge and the velocity correction
coefficients, their interaction is investigated computing the specific energy and
momentum functions of gradually-varied flow in open channels. Critical flow
computations are presented using the energy and the momentum equations; and the
impact of the discharge prediction method is then analyzed. Further, the discharge
prediction methods are used to solve numerically the differential equations of gradually-

varied flow describing the flow profiles, using both energy and momentum principles.

(i) The second objective is the theoretical development of the higher-order energy
and momentum equations for flow in compound channels. The computation of rapidly-
varied flow profiles using the higher-order energy and the dynamic momentum
equations requires simultaneous consideration of the vertical distribution of non-
hydrostatic pressure and the nonuniform lateral velocity of flow in compound channels.
A new theoretical development is introduced and the higher-order specific &angly
momentumS of flow in compound channels are presented for the first time. This
permits to simulate the flow profiles in a wider range of flow conditions as compared to

previous methods. In particular, the new theoretical equations are found to describe the
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drawdown curve near the free overfall in a compound channel and the undulating flow
around the normal depth. These flow profiles are not predicted by the gradually-varied
flow formulations, showing the physical relevance of the new set of equations. The
higher-order flow profiles are the result of a complex interaction between the non-
hydrostatic pressure, the nonuniformity of the velocity profile originating from the

variation of hydraulic roughness and the linear momentum transfer between the main

channel and the flood plains.

Based on the analysis of gradually-varied flow, practical recommendations for the
use in flood inundation hydraulic studies are given, whereas the new theoretical

development of rapidly-varied flow opens a new research direction.

2. Gradually-varied flow

2.1. Discharge prediction methods
The discharge prediction methods evaluated, in this study, are divided into two groups:
single channel and separate channel methods (Table 1). For specific details of each
method, one may consult the corresponding publications. Here, the primary focus is to
the use of the methods. Single channel methods are based on the Manning equation to
predict Qas

Q= AR" g @
wherene = equivalent manning coefficient for the entire cross-sechfon,flow cross-
sectional areaR = hydraulic radius of the cross-section &d channel slope. The
Manning roughness. is given by the equation (Chow, 1959; Prinos and Townsend,
1984)

3273
ne:(iz_pig j 2)

where p;, n = wetted perimeter and Manning coefficient of thth subsection,

respectively. Equation (2) is obtained assuming that the average velocity at each
subsection is constant (Prinos and Townsend, 1984). In this work, two additional single
channel methods by Dracos and Hardegger (1987) and French (1987), who used a

weighted hydraulic radius proposal, are evaluated.
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Nomenclature M ethod Reference

SGCM Single channel method Prinos and Townsend (1984)

SGCME Single channel method empirical hydraulic Dracos and Hardegger (1987)
radius

SGCMW Single channel method weighted hydraulic French (1987)
radius

SCMV Separate channel method Chow (1959)
vertical divisions

SCMH Separate channel method Chatila and Townsend (1996)
horizontal divisions

SCMI Separate channel method Yen and Overton (1973)
inward diagonal divisions

SCME Separate channel method Chow (1959)
extended side slope

SCMO Separate Channel Method Chatila (1992)
Outward diagonal

SCMASSP Separate channel method Prinos and Townsend (1984)
apparent shear stress Prinos

SCMASSW Separate channel method Wormleaton et al. (1982)
apparent shear stress Wormleaton

SCMASSM Separate channel method Wormleaton and Merrett
apparent shear stress Merrett (1990)

SCMA Separate channel method Ackers (1993)
Ackers

SCMK Separate channel method Khatua et al. (2011)
Khatua

Table 1. Discharge prediction methods

The second group of methods divides the channel into main channel and floodplains
by virtual division planes. Depending on the slope of the virtual planes and its location
within the cross-section, a number of methods are available in the literature (SCMV,
SCMH, SCMI, SCME and SCMO in Table 1) (Fig. 1a). In Fig. 1(a), the point-dot lines
represent the virtual division planes (O=outwards, I=inwards, H=horizontal,
V=Vertical, E=Extended) using in each method. Following Chatila and Townsend
(1996), the discharge is predicted by

Q Z A R2/3 1/2 (3)

Equation (3) neglects the turbulent stresses at virtual divisions, that are accounted
for in other methods by using a momentum approach (methods SCMASSP, SCMASSW
and SCMASSM in Table 1). A momentum balance yields an averaged védlbaity
main channel and flood plain as (Wormleaton et al., 1982)

21,y
u,* —p—f(VRCSe ) j 4)
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Pfy] (5)
wherep = density of waterf = Darcy-Weisbach friction factoy;= specific weighty =

flood plain water depth (Fig.1) arngd = apparent shear stress acting at the virtual planes.
Subscriptsc and f refer to the main channel and floodplain, respectively. For the
computation ofP., P;, Ac and A in this method vertical division lines are taken. Note
that these virtual division lines are excluded for the computation offaahdP;. The
apparent stress can be estimated by empirical relationships available in the literature
(Rajaratnam and Ahmadi, 1981). From equations (4) and (5), the discharge for

symmetrical flood plains is given by
Q=AU +2AU;, (6)

Two additional methods which originated from the study of Wormleaton et al.
(1982) are due to Ackers (1993a, b) and Khatua et al. (2011), SCMA and SCMK,
respectively (Table 1). Ackers (1993a, b) improved discharge prediction by introducing
a corrector factor which depends on the relative depth between the main channel and the
flood plain. Khatua et al. (2011) developed two wetted perimeter coefficients derived

from a new momentum transfer approach at the interfaces. These coeffiiamgX;,

are
_ 100 A
Xe = F{(loo—A) Al %
X, =P (@(ﬁ—lj—l (8)
A LA

whereA=4.1045(108¢/A)°***" which is an empirical correlation. The discharge is then

given by

2AB(R-X ) ©)
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Fig. 1. Compound channel flow definition sketch (a) cross-section, (b) longitudinal profile

2.2. Velocity correction coefficients
The roughness variation in a compound channel section provokes a nonuniform lateral
velocity distribution. The kinetic energy correction coefficient (or Coriolis coefficient) a
is given by (Blalock and Sturm, 1981; Field et al., 1998)
Juda 3 (u'a)

a= 10
U A U3A (10)

whereu; = velocity in a subsectiong = area of a subsection atnt=Q/A, that is the

mean flow velocity of the whole section. The momentum correction coefficient (or
Boussinesq coefficientf coefficient is (Chaudhry and Bhallamudi, 1988; Field et al.,
1998)

Isz 2 (u’a)

- A = _
UZA UZA

(11)

For a given discharge prediction method, the discharge in each subsecaonbe
determined and therefore, and 5. The correction coefficients are needed to compute
the specific energyH) and momentumS) functions, and thus, the flow profillesh(x),

wherex = streamwise distance (Fig. 1b).
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2.3. Energy equation
The specific energyH) of gradually-varied flow in open channels is defined as
(Montes, 1998; Sturm, 2001; Chaudhry, 2008; Dey, 2014)

QZ

E=h+a— 12
2gR (12)

whereh = maximum water depth in the main channelyfsy;) [Fig. 1(b)] andg =
gravitational acceleration. In Eq. (12), the channel slope is assumed to be small, as usual
for most of the river flows. For a sloping channel, the gravity teimEq. (12) can be
simply replaced by the pressure hdmbsd, whered = angle of channel bed with the
horizontal (Chow, 1959). Introducing Eq. (12) into the one-dimensional energy balance
(Montes, 1998; Sturm, 2001)

E__
&—Sb S (13)

results in (Blalock and Sturm, 1981; Sturm and Sadiqg, 1996; Jain, 2001)

dh _ S-S _ %" 9
dx (UQZT 03 daj 1-F 2 (14)
1_ -
gA 2g& dh

where § = gradient of dissipated energly,= free surface width and, = compound
channel Froude number based on the specific energy. The latter was approximated by
Blalock and Sturm (1981) as

[(aQT_ @ da)’ [ & (%— j
F”_( gA 29K dhj _{Zglé K (13)

where

e

o-3[X) .
NG

w3 =3) oo
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In the equations above = subsection top widtlp = subsection wetted perimeter, r

= subsection hydraulic radiug = subsection conveyance [= dar??, K = total

conveyance of the flow section and= subsectiom. Compound channels may exhibit
different flow regimes in the plane of the cross-section, that is, subcritical or
supercritical flow may exist in the same flow section (Lee et al., 2002; Kordi et al.,
2009). However, this analysis relates to the local 2D flow conditions in a channel cross-
section; whereas for one-dimensional computations, changes in flow state are
mathematically described by the bulk cross-sectional Froude number given by Eq. (15),
and not by a local Froude number valid for different points in a section (Blalock and
Sturm, 1981, 1983; Costabile and Macchione, 2012).

2.4. Momentum equation
The specific momentun§| of gradually-varied flow in open channels is (Montes, 1998;
Sturm, 2001; Chaudhry, 2008; Dey, 2014)

QZ

S=7A+ ﬁ@ (19)

where Z = distance from the free surface to the centroid of the section. The gradually-
varied flow equation from the momentum approach is obtained inserting Eq. (19) into

the streamwise momentum balance (Field et al., 1998)

ds

5. -A(8-8) (20)

where $= friction slope, resulting in

dh _ S-S _ 88 o _(pT_Qd)” 21)
dx 1 AT Q@ dB) 1-F?° g gA"  gA'dh
gA  gA dh

whereFz = compound channel Froude number based on the momentum principle. It
should be noted that the definition Bf in Eq. (21) arises mathematically from the
momentum balance equation. It can be demonstrated Eﬂ‘dtt——d—F,gz. Chaudhry and
Bhallamudi (1988) defined a compound channel Froude nurRpdrased on the
characteristics lines of the unsteady momentum equation (see Appendix IF. The
defined by them has been widely accepted as the compound channel Froude number
based on the momentum principle. Costabile and Macchione (2012) recently re-derived
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Fc [EQ. (37), Appendix I)] and used it to produce a critical flow boundary condition to
solve the unsteady, gradually-varied compound channel equations. It is found that the F
as defined by Chaudhry and Bhallamudi (1988) is relevant to obtain an expression for
critical depth computationsF{=1), but it cannot be used to perform flow profile
computations using Eq. (21) as de(&-S)/(1-FA). Instead,Fs in Eq. (21) is the
general Froude number for compound channels relevant to flow profile computations
(see Appendix I). Following a similar development to Blalock and Sturm (18319,

estimated by the equation

Fo[AXT_Q dB - ﬁ(ﬂ_rj N (22)
#7 gA gRdh) |3gAR| K °

The coefficientsr;, 7> and 73 and the corresponding theoretical development are

presented in the Appendix .

2.5. Critical flow
SettingF, =1 in Eq. (15), one finds the critical flow condition from the energy equation

as

_st(%"s —aljzl (23)
20K

that is the critical flow condition originating from the minimum specific energy
(dE/dh=0) (Blalock and Sturm, 1981). Setting ¥1 in Eq. (22) yields

2
2 2 (%_le =1 (24)
3gAK K

Equation (24) is the critical flow condition originating from the minimum
momentum function @&dh=0). In general, Egs. (23) and (24) are different; so the
computed critical depths differ. Both methods produce different results for each

discharge predictor.

3. Rapidly-varied flow

3.1. Introduction

Gradually-varied flow computations using Egs. (12) and (19EfandS, respectively,

are limited to portions of the flow domain, where the vertical acceleration can be
neglected (Sturm, 2001; Chaudhry, 2008). This is not fulfilled at the drawdown curve of
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free overfalls or at undulating wave trains, like those measured by Sturm and Sadiq
(1996). To our knowledge, these flow profiles have so far not been modelled with a
higher-order one-dimensional model. Higher-order free surface computations require
resort to Boussinesqg-type equations (Serre, 1953; Hager and Hutter, 1984a; Chaudhry,
2008; Castro-Orgaz and Hager, 2011). This mathematical technique leads Serre (1953),
Hager and Hutter (1984a, b), Hosada and Tada (1994), Khan and Steffler (1996) and
Bose and Dey (2007) to explain a number of flow profiles exhibiting non-hydrostatic
effects in rectangular channels, in addition to standard free surface profiles. However,
the Serre (1953) equations for channels of arbitrary cross-sections are not available; so a
higher-order theory has so far not been presented in the literature for compound open
channels. Boussinesg-type equations are relevant for river flow processes, like the
development of form resistance due to sand-waves, for both subcritical and supercritical
flows associated with dunes and antidunes, respectively (Bose and Dey, 2009; Dey,
2014).

3.2. Pressure

Consider a channel of arbitrary cross-section, where the origirsadken at the lowest

point. Integrating the corresponding Euler equation along the depth, yields the pressure
distribution as (Serre, 1953; Chaudhry, 2008) (Appendix Il)

h
p(z)=pg( h- jcos@—p%+p%j vd (25)

Using the depth-averaged velocity, the continuity equatiengields the vertical

velocity profile as ¥—(0U/0x)z. Inserting it into Eq. (25), yields (Appendix II)

=(h-2)coso+(U? - uuxx)( hzz_gzj (26)

P

4
where U,=0U/dx and U,=6°U/dx?. This pressure distribution is the basis to produce
higher-order energy and momentum equations for flow in compound channels. Non-
hydrostatic contributions are given by the tetdgsandU,; so for significant variations

of velocity, the hydrostatic pressure approach becomes invalid.

3.3. Momentum equation
The specific momentur8 in flow at a cross-sectional akkas given by (Montes, 1998;
Sturm, 2001)
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s=| (u—+—pjdA (27)

Inserting Eq. (26) into Eq. (27) results in

2 2
S=ﬂg+7ﬁcosﬁ+m{h2A—j deAj 28)
gA 29 A

where the integral term is the moment of ineftiaf the cross-sectional aréa The

derivatives of FQ/A are given by

- R pp_Q
Ux_ A2 Alhw Uxx A3 Aﬁtf Az('%bx-'- ’%‘h&) (29)

where he=dh/dx, he=d?h/dx?, An=0Aloh and An=6*Aloh?. Inserting Eg. (29) into Eq.

(28) results in higher-order momentum funct®for flow in compound channels as

(hA-1)

2K

Q2

S="7Ac0sf+—=—
gA

B+ (AAh,+( A4, - &) B) (30)

In Eq. (30) for the developed new Boussinesqg-type theory, the significant lateral
velocity variation of compound channel flow is accounted for by the coeffigient
whereas non-hydrostatic pressures are approximately accounted for on the basis of Eq.
(26). To the best of the authors' knowledge, this theory is the one that first accounts for
both effects in flows through compound channels. Thus, this development may be
regarded as a first step to model the one-dimensional rapidly-varied flow profiles in
compound channels. More rigorous theories can be constructed by studying the
interaction of the lateral velocity profile with the vertical non-hydrostatic pressure.
Limitations of Eqg. (26) are stated in Appendix I, thereby opening a new research
direction on the problems of free surface flow computation in compound channels. If
Eq. (30) is particularized to a flow with no-lateral velocity variatighl( that is, a
simple channel flow), the resulting equation applies for a channel cross-sectional of
general geometry. Also, this development seems to have been not given an attention,
thereby indicating that the Boussinesg-type equations available in other works are only

applicable to rectangular cross-sections.
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3.4. Energy equation
The specific energf in open channel flow is given by the general equation (Montes,
1998; Sturm, 2001)

Ezij(u s +zcos€+£j udA (31)
Qal 29 y

Following a similar development to that used with the momentum equé&tioan

be written as function of the derivativeslgfusing the functions for p andas

Q" ,ui-uy, (A1) U

20A

E=hcosf+a I (32)

29 A 20A

Also, after using Egs. (29), the higher-order specific energy for flow in compound

channels is

2 2N 2
E:hcos,9+2(§A2 a+(h ; l)(AAﬂlﬁ(Aﬁh— ﬁi) *‘1)+% I (33)
Equations (30) and (33) are the higher-order expressiofisdndS in flow through
compound channels, thereby generalizing Serre (1953) theory. Inserting Eqgs. (33) and
(30) into Egs. (13) and (20), respectively, results in higher-order energy and momentum
models for flow in compound channels. Compared to the first-order equations of
gradually-varied flow [Egs. (14) or (21)], the higher-order model reguldsthird-order
differential equation. Comparatively, additional boundary conditions are thus required.
Non-hydrostatic pressure is modelled by the terrfigdef and (dh/dy inside the
brackets of Eqgs. (30) and (33). Thus, in Egs. (30) and (33), the lateral variation of
velocity in the compound channel is accounted fordynd S, whereas the non-
hydrostatic pressure is modelled by the higher-order derivative terms. These equations
apply to one-dimensional flow with non-hydrostatic pressure in compound channels,
that is, without lateral variation of the free surface. If the free surface in the main
channel falls beyond certain limit, a lateral free surface gradient appears, and the flow in
main channel and flood plain must be analyzed separately (Dey and Lambert, 2006). In
this case, the flow cannot be tackled with a one-dimensional approach as presented

herein.
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3.5. Simplifications
For a rectangular channelzBh and Egs. (30) and (33) reduce to

E=h+ Qi 2(1+2hrkx_hfj (34)
207 3

S= qh_2+ Q (1+ hnx_hfj (35)
2 ghh 3

which are the higher-orddf and S equations currently available (Hager and Hutter,

1984a; Montes 1998; Castro-Orgaz and Hager, 2011). However, these are not valid for
other channel cross-sections, including compound channels. It highlights that a
generalized result is missing so far for the flow in compound channels and in general,

for open channel flow of arbitrary cross-sectional shapes.

4. Results

4.1. General

Prinos (1985) laboratory data is used to evaluate thirteen discharge prediction methods
by computing errors in the prediction of discharge, velocity distribution coefficients,
specific energy and momentum. Yuen (1989) data is used to evaluate the critical depth
computations, and the performance of the discharge predictors in free surface
computations using energy and momentum equations is evaluated using the

experimental data of Sturm and Sadiq (1996).

4.2. Discharge
Prinos (1985) made experiments in a 12.2 m long flume of trapezoidal section, 0.102 m

deep, with 2V:1H side slopes and base widths of 0.203, 0.305 and 0.406 m. The channel
slope in the experiments was 0.0003;0.011 andh, varied from 0.011 to 0.022. This

data is used to evaluate the discharge prediction error as

AQY% = 100(QGQ;Q°) (36)

0o

wheree refers to estimation aralto observed value. The results are plotted in Fig. 2 for
the experiments of Prinos’ (1985) dataset correspondimg/mig=2, where the relative
flood plain depth isy,=y/h. Results indicate that the error is considerable and even

higher than 40% for the SCMO method. Single-channel schemes are demonstrated to
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perform poorly and so is the SCMV method. The analysis of Fig. 2, and that of the
remaining part of Prinos dataset (1985) fgnix1, 1.27 and 1.64, that are not presented
herein for brevity, essentially indicate that the SCMASSM performs the best among all

the methods.

—— SGCM  —¥— SCMH —A— SCME —£+— SCMASSM
60 — —7— SGCME —&— SGCMW 60 — —X— SCMASSP  —— SCMA
(a) —@— SCMV  —p— SCMO (®) | S scmassw —&— SCMK
40 - 40 -
N> B AQ%
20 - o 20 —
0 — 0 —
| | |
0.1 0.2 0.3
yr

Fig. 2. Discharge errorddQ% as function ofy,

4.3. Velocity correction coefficients

Equations (10) and (11) are used to compmtand £ using the predicted values of
discharge in the main channel and the flood plains. Both discharges are also available
from the experimental measurements of Prinos (1985), permitting to estimate the values
of a and S experimentally. Error indexeAa% and A% analogue to Eq. (36) are
computed and the results are depicted in Figs. 3 and 4. Errors in discharge prediction are
transmitted to the computation of velocity correction coefficients. The magnitude of
errors is so large that it confirms that the discharge prediction method has a significant
effect on the estimation of velocity correction coefficients. The SCMASSM method

performs well in this test.
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Fig. 3. Coriolis coefficient errordAa@% as function ofy,
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Fig. 4. Boussinesq coefficient erro83% as function ofy,

4.4. Specific energy and momentum

With the computed values &, a and 5 used to plot Figs. 2—4, the specific eneEy

and momentun® are evaluated using Egs. (12) and (19), respectively. Experimental
values of the same three variables permit the corresponding computattoanafS,

from which error indexeaAE% andAS% are computed and plotted in Figs. 5 and 6.
Errors in discharge prediction and velocity correction coefficients computation are
transmitted to the computation of energy and momentum fluxes. Figure 5 reveals that

the error inE is generally small and that i@ is higher, although both are of small
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magnitude. It indicates that the flow phenomena in compound channels based on
E=constant (i.e. channel transitions in subcritical flow) may not be very sensitive to the
discharge prediction method. Other problems based-oorSt, like the hydraulic jump,
could be more sensitive. These errors are potentially transmitted to the flow profile
computations, when the dynamical equations stating conservation of energy and
momentum fluxes are used. Although errorsEirand S are small, the free surface
profile computations depend on the estimation&(0) and S(Q). The interaction of
these terms [see Egs. (13) and (20)] vi&(R) andS(@Q) could not produce accurate free
surface profile predictions. This is examined in the next section. The SCMASSM

method gives errors close to zero for botard S

—— SGCM  —¥— SCMH —A— SCME —£— SCMASSM
—+— SGCME —&— SGCMW —X— SCMASSP —— SCMA
3 —@— SCMV  —p— SCMO > 3 —#%— SCMASSW —&— SCMK

(a) 1®

| | | | | |

0.1 0.2 0.3 0.1 0.2 0.3
yr yr

Fig. 5. Specific energy errorAE% as function ofy,
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(b)

—A— SCME —£:— SCMASSM
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Fig. 6. Specific momentum errorAS% as function ofy,

4.5. Critical depth computation
Critical depth is computed using Egs. (23) and (24) for each discharge prediction

method. Results from the energy and the momentum principles are found to differ, but

the divergence is in general small. Some of the simulations performed are plotted in Fig.

6, and compared with the experimental data of Yuen (1989). Critical depttdQ are

scaled usingy; and Q,, respectively. The latter is defined as the upper discharge at

which two critical depths exit (Sturm and Sadiq, 1996). The results are, in general, in

agreement with the experimental data and suggest that both the energy and the

momentum equations yield similar accuracy, regardless the discharge prediction

methods.
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Fig. 7. Dimensionless critical depth/y, as function of)/Q, calculated using the specific energy and
momentum

4.6. Gradually-varied free surface profiles

An experimental time-averaged free surface profile @0.113ni/s measured by
Sturm and Sadiq (1996) is considered in Fig. 8. The measurements were taken ina 17.1
m long flume with h=0.267m, b=0.934m, y=0.152m and &0.005. The measured free
surface profile in Fig. 8 corresponds to a tailwater level position of 0.243 m. Free
surface profiles are simulated using the energy principle with the thirteen discharge
prediction methods for the model closure of the gradient of dissipated ea@Dywnd

the velocity correction coefficiert(Q). Solution of Eq. (14) is done using th&-drder

Runge Kutta method (Press et al., 2007). The boundary condition to solve the first-order
differential equation is taken at the experimental point in the tailwater section. The
Manning coefficientn is computed for each subsection using Keulegan's equation
(Sturm and Sadiq, 1996). Initial computations considering dn/dh revealed a negligible
impact of this term and it is not further considered for the final analysis presented
herein. Representative results for some of the methods are shown in Figs. 8(a—d). It can
be observed that the interaction of main channel and flood plain is extremely important
to model the flow profiles adequately. The method of Khatua et al. (2011) performs
quite well. The role of the interaction of the main channel and the flood plains is clearly
depicted in Fig. 8(e), where the flow profiles are computed using the standard vertical

division method and then compared with same simulations using; a8 2he Manning
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n in the main channel. This empirical factornnmwas introduced by Sturm and Sadiq
(1996) to account empirically for the linear momentum transfer effects between the
main channel and the flood plains in their experiments. Thus, Fig. 8(e) reveals that
accounting for the momentum transfer results in very accurate simulations, or that if this
interaction is not accounted for flow profile computation, predictions may be highly

unrealistic.

The same computations are repeated using the momentum approach. Equation (21)
is numerically integrated and the results are plotted in Figs. 8(a—d) for the different
discharge prediction methods. Predicted free surface levels using the momentum
equation are found to be overall in better agreement with the measured data than those
using the energy equation for the same method. Energy and momentum simulations for
other free surface profiles measured by Sturm and Sadiq (1996) are in conformity with
this observation. The method SCMASSM gives good predictions for the free surface
profile [Fig. 8(e)], but the method SCMK performs better [Fig. 8(d)]. Given the small
deviations between both methods using the momentum principle and the better
performance of SCMASSM in the former evaluations, it can be proposed for the flow

profile computations.
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. Experimental data (Sturm and Sadiq, 1996)
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Fig. 8. Gradually-varied water surface profiles using the energy and momentum equations

4.7. Rapidly-varied free surface profiles

An experimental free surface profile for a free overfall @0.113n/s measured by
Sturm and Sadiq (1996) is presented in Fig. 9. The discharge is outside the range of
multiple critical depths, and the flow profile is therefore one-dimensional. It is well
known that the gradually-varied flow computations cannot tackle this kind of flow
profile (Hager and Hutter, 1984a, b), where streamlines at the fall are highly curvilinear.
In addition, upstream of the free overfall, a wave train around the normal depth is
revealed from the experiments. This wavy free surface cannot be explained by using the
gradually-varied flow theory (Hager and Hutter, 1984b). Simulations are performed
using the new higher-order specific energy equation given by Eq. (33). Variatibn of
along thex-direction is generally given by the dynamic equation, Eq. (13). Both

equations can be written as a system of three first-order ordinary differential equations
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for the unknownsh(x), hy(x) and E(x), that can be solved using th8-drder Runge-

Kutta method (Press et al., 2007). Three boundary conditions are needed to solve the
resulting system of differential equations. The flow depth at the first experimental point
(x=2.47 m) is used as a boundary condition. The flow depth at the brink of the free
overfall x=17.1 m) is used as a second boundary condition. The specific energy at the
boundary section upstream from the free overfall is estimated from Eq. (33), neglecting
the flow curvature. At this section, howevhy,is unknown. The system of equations is
then solved using a shooting approach. A valub,a$ assumed at the upstream flow
section and the system of equations is then integrated up to the brink section. The flow
depth computed there is, therefore, compared with the measured value; and if the results
do not match, then the process is repeated with a new vafyeldfe process continues

until a convergence within a prescribed tolerance is reached. Computations are done
using the vertical division method without an interaction of main channel and flood
plains, and also modelling the interaction effects with the main channel Manning
adjusted as 1.19nComputational results are presented in Fig. 9. The first notable
aspect is that the higher-order energy model with interaction effects is capable to
produce a realistic flow profile taking the upstream and brink depths as boundary
conditions. Upstream of the brink, a wave train appears with oscillations around the
normal depth with wave-amplitude that is dissipated as the flow approaches to the brink
section. Experimental measurements indicate also an upstream wave train that is
attenuated as the flow approaches to the brink. The agreement between the measured
and the simulated profiles can only be regarded as fair, but the main flow features of the
flow, namely, the wave train and the drawdown curve at the overfall are correctly
accounted for by the new higher-order theory. Predicted wave-amplitude is also quite
close to the experimental measurements. The flow profile without interaction effects is
unrealistic, indicating the important interaction of the lateral momentum transfer and the

streamwise energy balance when the vertical velocity is accounted for.

Following the same technique, the higher-order specific momentum, Eq. (30), is
solved coupled with Eq. (20) for the variation $fin thex-direction. Results for the
same test case are presented in Fig. 9 with and without interaction effects. Likewise the
energy computations, the momentum approach with interaction effects provides a
realistic flow profile; whereas the results without interaction effects are not in

agreement with the experimental results. Given the reduced wave-amplitude, some
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improvements of the momentum approach over energy formulations appear to be

evident.
e Experimental data (Sturm and Sadiq, 1996)
—— SCMYV with main channel - floodplain interaction (energy equation)
0.24 —|—— SCMYV with main channel - floodplain interaction (momentum equation)
------ SCMYV without main channel - floodplain interaction (energy equation)
------ SCMYV without main channel - floodplain interaction (momentum equation)
0.22
h (m)
0.2 —
0.18 T | T T |
0 4 8 12 16 20
x (m)

Fig. 9. Rapidly-varied water surface profiles using the energy and momentum equations for flow profile
with free overfall

Another test case for the same discharge and a different tailwater level is considered
in Fig. 10, where the corresponding simulations using the energy and the momentum
higher-order models are plotted, respectively. In this experimental configuration, the
tailgate was regulated to raise the tailwater level. No free overfall exits in this case, and
the downstream boundary condition is taken as the free surface level at the tailwater
section. This flow problem is presented in Fig. 8 using the gradually-varied flow theory.
In the current test, the upstream wave train is attenuated in the downstream direction
due to friction, but close to the tailwater section, a wavy flow profile is still evident.
Wave-amplitude of the simulations is in fair agreement with experimental observations.
Like the former test case (Fig. 9), the results without interaction effects between the
main channel and the flood plain are unrealistic, and simulations using the momentum

principle appear to be more accurate.
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e Experimental data (Sturm and Sadiq, 1996)
SCMV with main channel - floodplain interaction (energy equation)
0.26 | —— SCMYV with main channel - floodplain interaction (momentum equation)

------ SCMV without main channel - floodplain interaction (energy equation)
------ SCMV without main channel - floodplain interaction (momentum equation)
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Fig. 10. Rapidly-varied water surface profiles using the energy and momentum equations for flow profile
with high tailwater level

To show the improvement of higher-order energy and momentum models over
gradually-varied flow theory, both models are compared in Fig. 11 for the flow profile
of a free overfall. The simulated rapidly-varied flow profile using the energy equation
with interaction effects is presented along with the experimental results. The gradually-
varied flow equation, Eq. (14), is solved with interaction effects (1)1@king the
critical depth as a boundary condition. Computations started in the upstream direction at
a distance 4hfrom the free overfall (Chow, 1959). Comparison of both theories in Fig.
15 indicates that the gradually-varied flow theory simulates a monotonic increase in
flow profiles in the upstream direction, being asymptotic to the uniform flow condition.
Experimental observations, however, show clear oscillations around the normal depth,
that in turn, is predicted theoretically by the rapidly-varied flow theory. Gradually-
varied flow computations start away from the free overfall, given that this model cannot
simulate the flow profiles there. In contrast, the new rapidly-varied flow theory
simulates the drawdown curve near the free overfall. Overall, the gradually-varied flow
theory can only be used to simulate the flow in a limited portion of the computational
domain with the results that are not physically in agreement with the observations. In
contrast, the rapidly-varied flow model simulates the flow in the whole computational
domain and provides results that are physically in agreement with the observations. The
relevant simulations using the momentum principle are presented in Fig. 11, supporting

the previous discussion.

- 40 -



e Experimental data (Sturm and Sadiq, 1996)
SCMV rapidly varied profile (energy equation)
0.24 — | —— SCMV rapidly varied profile (momentum equation)

------ SCMYV gradually varied profile (energy equation)
------ SCMV gradually varied profile (momentum equation)
0.22
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0.18 T T T T |
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Fig. 11. Comparison of gradually-varied and rapidly-varied flow theories using the energy and
momentum equations for flow profile with free overfall

In this study a spatial step size of 1mm was selected for application of the Runge-
Kutta integration. A reduction of the spatial step below this value produced identical
results, thereby indicating that all computations presented using gradually varied and
rapidly-varied flow models are grid size independent.

5. Conclusions

In this study, thirteen discharge prediction methods are used to evaluate its impact on
the computations of gradually-varied flow in compound channels. It is found that the
interaction of main channel and flood plains is not only essential for discharge
prediction, but also for the computation of velocity correction coefficients and free
surface profiles. A method of interaction is therefore required, and the method of
Wormleaton and Merrett (1990) is found to perform well. However, the impact on
energy and momentum fluxes is small. In general, the dynamic computations based on
momentum provide better results than the relevant simulations using the energy
principle. It is suggested that the gradually-varied flow computations in natural channels
should be a momentum-based computation accounting for the interaction effects. The
results presented herein could assist to revise the codes used in hydrological
computations, like HEC-RAS. A generalized definition of the compound channel

Froude number based on the momentum equation is given for that purpose.
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Gradually-varied flow computations can only be regarded as approximate
mathematical solutions, not necessarily in agreement with the real physical behavior of
the flow. A new higher-order theory for dynamical computations by using energy and
momentum equations in flows through compound channels is presented. The new
theory was found to describe the free surface profile in compound channels at the
drawdown of free overfalls and at the wave train around the normal depth. These
physical aspects cannot be modeled by using the gradually-varied flow computations as
detailed herein. Results using a momentum approach are found to be better than using
the energy equation. The new higher-order theory opens a new research direction in
flows through compound channels, so far limited to the gradually-varied flow
conditions only. More experimental research is needed with detailed observation of the
flow profiles. The new theory then could be further expanded to more complex flow
conditions, including depth-averaged two-dimensional simulations in the horizontal

plane, and mobile-bed conditions with sediment transport.
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Appendix A. Momentum based compound channel Froude number
Chaudhry and Bhallamudi (1988) defined the compound channel Froude number based

on the characteristic directions of the unsteady momentum equation as

-12
_ gA | 2( p2 A dﬂ)
F=p/J|=+U —fr=— 37
. =B { T (/J’ B Tdh (37)
Using U=Q/A, Eq. (37) can be rewritten after some manipulations as
2
F3+(F§—1)52Q I—Ff QT_Q 4, (38)
gA gh gAdh
The definition of F for flow profile computations is
2 2 y2
F = AT & (39)
gA gA dh
which is inserted into Eqg. (38) to produce
2
T
R+ (R -1 47 QAs -FF; =0 (40)

For critical flow conditions given by vertical characteristic lines, that x&jt<0,
Fe=1 (Chaudhry and Bhallamudi, 1988). Equation (40) then yielgd. It means that
both the momentum based compound channel Froude numbers results in an identical
critical flow condition, demonstrating the equivalence xtitk0 and &dh=0 to define
the critical flow. However, both Froude numbers are not equivalent for flow conditions
different from critical. Therefore, the correct momentum based Froude number in
compound channels for the flow profile computations is given by Eqg. (39). Following
the developments of Blalock and Sturm (1981, 1983) for the specific efigrgsn be
written as

2
Fﬂ2 = BSSKZ (2—2_'23 - le (41)

where

I
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7,= z("—zj (43)

N

I;= ﬁj(Sti -2 %H (44)
~la dh
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Appendix B. Pressuredistribution in rapidly-varied flow
The Euler equation iz-direction, that is normal to the channel bed, is (Serre, 1953,
Montes, 1998) (Fig. 1b)

——+——+——=-cosf (45)
gox gdz pQgoz

which can be integrated to obtain the pressure distribution. Using the differential

identity
i(uv) M (46)
0X ox  0X

EqQ. (45) is then rewritten as

0
10(w) _vou, vov__o( p o (47)
g ox gox goz 0

Further, using the continuity equation

LAY, (48)
ox 0z

Eq. (47) is transformed to

0
10(uw), vov__0f P, e (49)
g ox gdz 02 p49

which is integrated to yield
a h
p(z)=pg(h- jcos@—p%ﬂo&j vd (50)

Here, the Leibnitz rule and the bed kinematic boundary conditi@s0)=0 are
used. To integrate Eg. (50), an approximation for the velocity component} i6
required. In this research, the simplest basic approach for flow in compound channels is
elaborated. In flow through a single channel having significant curvature in a vertical
plane, it is permissible to assume that the vertical variation of flow velocity is neglected,
thereby the approximation afby its depth-averaged valukis given by

U :—ju(z)dz (51)
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However, the significant departure of the vertical distribution of pressure from the
hydrostatic law must be accounted for. This is the usual approximation when deriving
Boussinesg-type equations in open channel flows (Serre, 1953; Montes, 1998;
Chaudhry, 2008). The approximatiorU is in agreement with the gradually-varied
flow computations, where the depth-averaged velocity is used in the main channel and
the flood plains. Using this approach, the continuity equations yields the vertical

velocity profile from Eq. (48) as

ouU
= 2
o (52)
Inserting it into Eq. (50), yields
a h
p(z2)=pg( h- Jcosd-p( Y jz—p&j uy a (53)

Integrating Eq. (53), results in

h? -2

p(2)=pal - Jooso-p1f 2-p( 4+ L) "5 E |-, 59

where U,=0U/6x and U,=d°U/&x%. In flow through compound channels, there is a
significant variation of the depth-averaged velotityalong the cross-section (from the

main channel to the flood plain). In the new Boussinesg-type equations, this effect is
accounted for, like in former gradually-varied flow computations, using enejygan(l
momentum g) coefficients. For the inclusion of non-hydrostagiffects in the one-
dimensional model equations, the simplest approach is adopted, thereby using the cross-
sectional averaged velocity as an approximation to find a mathematically closed form of

the pressure distribution. Then, the depth-averaged continuity yields

0

&(Uh): hU,+Uh =0 (55)

Inserting Eq. (55) into Eqg. (54), finally yileds

:(h—z)cosé?+(UX2—UUXX)(hZ_sz (56)

P
y 29
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6. Notation
A = total flow area (f)

A, = oAGh(m)
Ann = O°AIOR (=)

a = subsection flow area @

by = main channel bottom width (m)

b, = floodplain bottom width (m)

E = specific energy (m)

F = friction factor (-)

Fa = compound channel Froude number based on specific energy (-)

Fs = compound channel Froude number based on specific momentum (-)
Fe = compound channel Froude number (-)

g = gravitational acceleration (n)s

= maximum flow depth in compound section (m)
he = critical depth (m)

I = moment of inertia of cross-section{m

K = total conveyance (i¥s)

ki = subsection conveyance {fs)

Q = total discharge (f¥s)

Qu = upper discharge for multiple critical depths’sh
n = Manning coefficient (M'%s)

n; = subsection Manning coefficient {Hs)
Ny = main channel Manning coefficient (H?s)
n, = floodplain Manning coefficient (i"s)

Ne = equivalent Manning coefficient (’s)

P = total wetted perimeter (m)

pi = subsection wetted perimeter (m)

p =pressure (Pa)

R = hydraulic radius (m)

ri = subsection hydraulic radius (m)

S =specific momentum (f)

S = channel slope (-)

S = gradient of dissipated energy (-)
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S = friction slope (-)

t = time (S)

T = total top width (m)

ti = subsection top width (m/s)

U = mean flow velocity (m/s)

Uc = mean flow velocity in main channel (m/s)

Us = mean flow velocity in flood plain (m/s)

Ui = subsection flow velocity (m/s)

u = point velocity (m/s)

v = vertical velocity (m/s)

X = wetted perimeter corrector parameter (m)

X = longitudinal coordinate along the channel bed (m)
y = floodplain depth (m)

Vi = main channel bank-full depth (m)

Vr = relative compound channel depth (-)

z = coordinate normal to the channel bed, positive upwards (m)
a = Coriolis coefficient (-)

4 = Boussinesq coefficient (-)

A = shear force percentage for floodplain perimeter (=)
y = specific weight of water (N/f

0 = density of water (kg/m)

o1, 02, 03 = compound channel Froude number terms in energy equation (-)

n, I, 3 = compound channel Froude number terms in momentum equation (-)

Ty = apparent shear stress (Pa)
z = distance from the free surface to the total-section centroid (m)
7] = angle of channel bed with the horizontal (-)

-48 -



7. References
Ackers, P. 1993a. Stage-Discharge functions for two-stage channel: the impact of new
research. Water and Environment Journal. 7(1), 52—61.

Ackers, P. 1993b. Flow formulae for straight two-stage channels. Journal of Hydraulic
Research. 31(4), 509-531.

Blalock, M.E., Sturm, T.W., 1981. Minimum specific energy in compound open
channel. Journal of the Hydraulics Division. 107(6), 699-717.

Blalock, M.E., Sturm, T.W., 1983. Closure to Minimum specific energy in compound

open channel. Journal of Hydraulic Engineering. 109(3), 483-487.

Bose, S.K., Dey, S., 2007. Curvilinear flow profiles based on Reynolds averaging.
Journal of Hydraulic Engineering. 133(9), 1074-1079.

Bose, S.K, Dey, S., 2009. Reynolds averaged theory of turbulent shear flows over
undulating beds and formation of sand waves. Physical Revie8@(8), 036304—
1/036304-9.

Bousmar, D., Zech, Y., 1999. Momentum transfer for practical flow computation in

compound channels. Journal of Hydraulic Engineering. 125(7), 696—706.

Brutsaert, W., 2005. Hydrology: An Introduction. Cambridge University Press,
Cambridge, UK.

Castro-Orgaz, O., Hager, W.H., 2011. Turbulent near-critical open channel flow: Serre's

similarity theory. Journal of Hydraulic Engineering. 137(5), 497-503.

Chatila, J.G., 1992. Application and comparison of dynamic routing models for
unsteady flow in simple and compound channels. M. A. Sc. Thesis. University of
Ottawa.

Chatila, J.G. and Townsend, R.D., 1996. Discharge estimation methods for steady

compound channel flows. Canadian Water Resources Journal. 21(2), 131-137.
Chaudhry, M.H., 2008. Open-channel flow, 2nd ed. Springer, New York.

Chaudhry, M. and Bhallamudi, S., 1988. Computation of critical depth in symmetrical
compound channels. J. Hydraulic Research. 26(4), 377-396.

Chow, V.T., 1959. Open channel hydraulics. McGraw-Hill, New York.

- 49 -



Chow, V.T., Maidment, D.R., Mays, L.W., 1988. Applied Hydrology. Tata McGraw-
Hill, New York.

Clemmens, A. J.,, Wahl, T. L., Bos, M. G., and Replogle, J. A., 2001. Water
measurement with flumes and weirs. Publication #58, International Institute for Land

Reclamation and Improvement, Wageningen, The Netherlands. 382 p.

Costabile, P., Macchione, F., 2012. Analysis of one-dimensional modeling for flood

routing in compound channels. Water Resources Management. 26, 1065-1087.

Dey, S., 2014. Fluvial hydrodynamics: Hydrodynamic and sediment transport
phenomena. Springer, Berlin.

Dey, S., Lambert, M.F., 2006. Discharge prediction in compound channels by end depth
method. Journal of Hydraulic Research. 44(6), 767—776.

Dracos, T., Hardegger, P., 1987. Steady uniform flow in prismatic channels with flood
plains. Journal of Hydraulic Research. 25(2), 169-185.

Field, W.G., Lambert, M.F., Williams, B.J., 1998. Energy and momentum in one

dimensional open channel flow. Journal of Hydraulic Research. 36(1), 29-42.
French, R.H., 1987. Open channel hydraulics. McGraw-Hill, New York.

Hager, W.H., Hutter, K., 1984a. Approximate treatment of plane channel flow. Acta
Mechanica. 51(1-2), 31-48.

Hager, W.H., Hutter, K., 1984b. On pseudo-uniform flow in open channel hydraulics.
Acta Mech. 53(3-4), 183-200.

Hosoda, T., Tada, A., 1994. Free surface profile analysis on open channel flow by
means of 1-D basic equations with effect of vertical acceleration. Annual Journal of
Hydraulic Engineering. JSCE, 38, 457-462.

Jain, S.C., 2001. Open channel flow. John Wiley & Sons, New York.

Khan, A.A., Steffler, P.M., 1996. Vertically averaged and moment equations model for

flow over curved beds. Journal of Hydraulic Engineering. 122(1), 3-9.

Khatua, K.K., Patra, K.C., Mohanty, P.K., 2011. Stage-Discharge prediction for straight
and smooth compound channels with wide floodplains. Journal of Hydraulic
Engineering. 138(1), 93-99.

-850 -



Knight, D. W., Abril, J.B., 1996. Refined calibration of a depth-averaged model for
turbulent flow in a compound channel. Proceedings of the Institution of Civil
Engineers, Water, Maritime and Energy, 118(3), 151-159.

Knight, D.W., Demetriou, J.D., 1983. Floodplain and main channel flow interaction.
Journal of Hydraulic Engineering. 109(8), 1073-1092.

Kordi, E., Ayyoubzadeh, S.A., Ahmadi, M.Z., Zahiri, A., 2009. Prediction of the lateral
flow regime and critical depth in compound channels. Canadian Journal of Civil

Engineering. 36, 1-13.

Lambert, M. F., Sellin, R.H., 1996. Discharge prediction in straight compound channels
using the mixing length concept. Journal of Hydraulic Research. 34(3), 381-393.

Lee, P.J., Lambert, M.F., Simpson, A.R., 2002. Critical depth prediction in straight
compound channels. Proceedings of the Institution of Civil Engineers, Water,
Maritime and Energy. 154(4), 317-332.

Montes, J.S., 1998. Hydraulics of open channel flow. ASCE, Reston Va.

Myers, W.R.C., 1978. Momentum transfer in a compound channel. Journal of Hydraulic
Research. 16(2), 139-150.

Petryk, S., Grant, E. U., 1978. Critical flow in rivers with flood plains. Journal of the
Hydraulics Division. 104(5), 583-594.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2007. Numerical

recipes: The art of scientific computing® 8d. Cambridge Univ. Press, Cambridge.

Prinos, P., 1985. A study of momentum transfer phenomena in compound channel
flows. M. A. Sc. Thesis. University of Ottawa.

Prinos, P., Townsend, R.D., 1984. Comparison of methods for predicting discharge in

compound open channels. Advances in Water Resources. 7(4), 180-187.

Rajaratnam, N., Ahmadi, R.M., 1981. Hydraulics of channels with flood-plains. Journal
of Hydraulic Research. 19(1), 43-59.

Schoellhamer, D. H., Peters, P.C., Larok, B.E., 1985. Subdivision Froude Number.
Journal of Hydraulic Engineering. 111(7), 1099-1104.

Sellin, R. H. J., 1964. A laboratory investigation into the interaction between the flows

in the channel of a river that is over its floodplain. La Houille Blanche. 7, 793—-801.

-51 -



Serre, F., 1953. Contribution a I'étude des écoulements permanents et variables dans les
canaux (Contribution to the study of steady and unsteady channel flows). La Houille
Blanche. 8(6-7), 374-388; 8(12), 830-887.

Shiono, K., Knight, D. W., 1991. Turbulent open channel flows with variable depth
across the channel. Journal of Fluid Mechanics. 222, 617-646.

Sturm, T.W., Sadiq, A., 1996. Water surface profiles in compound channel with

multiple critical depths. Journal of Hydraulic Engineering. 122(12), 703—-709.
Sturm, T.W., 2001. Open channel hydraulics. McGraw-Hill, New York.

Wormleaton, P.R., Allen, J., Hadjipanos, P., 1982. Discharge assessment in compound
channel flow. Journal of the Hydraulics Division. 108(9), 975-994.

Wormleaton, P.R., Hadjipanos, P., 1985. Flow distribution in compound channels.
Journal Hydraulic Engineering. 111(2), 357-361.

Wormleaton, P.R., Merrett, D.J., 1990. An improved method of calculation for steady
uniform flow in prismatic main channel/flood plain sections. Journal of Hydraulic
Research. 28(2), 157-174.

Yen, C.L., Overton, D.E., 1973. Shape effects on resistance in floodplain channels.
Journal of the Hydraulics Division. 99(HY1), 219-238.

Yuen, K., 1989. A study of boundary shear stress, flow resistance and momentum
transfer in open channels with simple and compound trapezoidal cross section. PhD

Thesis. University of Birmingham, U.K.

Yuen, K., Knight, D.W., 1990. Critical flow in a two stage channel. In Proceedings of
the International Conference on River Flood Hydraulics, Wallingford, U.K., 17-20
September, John Wiley and Sons Ltd, pp. 267-276, paper G4.

-52 -



Appendix 11

Non-hydrostatic dam break flows |: physical equations and
numerical schemes

Francisco Nicolas Cantero-Chinchili®scar Castro-Org&zSubhasish Déyand Jose Luis
Ayusd'

Accepted for publication by Journal of Hydraulic Engineering. Impact factor (JCR 2014): 1.621
/ Q1 (28/125 Civil Engineering)

Abstract

Modeling of dam break flows is frequently required in civil and environmental
engineering, given the risk associated with this catastrophic flow. Typically, model
predictions are conducted using the Saint-Venant hydrostatic theory, which, however,
can lead to unrealistic predictions. The prediction of the amplitude of non-hydrostatic
waves generated during dam break flows is an important engineering problem, given the
risk of overtopping of flow in manmade canals, or the increasing of flooding areas in
natural watercourses. The weakly non-dispersive and fully non-linear Serre equations
are suitable choice for modelling these flows, but there is a lack of a systematic
assessment of this system of equations for dam break flow modelling reported in the
literature. In this paper, the Serre equations are applied to dam break flows over
horizontal rigid bottoms, whereas in the second part of this research, the non-hydrostatic
dam break waves over erodible beds are considered. Here, a high resolution finite
volume model is developed, where a suitable time stepping scheme is systematically
investigated. The impact of the vertical pressure distribution shape, non-linear terms in
the equations, and the enhancement of the linear frequency dispersion are examined in

detail. The model is successfully tested against the experimental data, a solitary wave
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propagation test, and the 3D simulations. The results obtained from finite volume
method are further compared with those obtained from finite element and finite

difference methods available in the literature.

1. Introduction

Dam break waves originate from overtopping or foundation failure among others,
thereby leading to a natural hazard that may cause huge damage. Investigation of non-
hydrostatic pressure distribution effects on dam break flows is not only relevant to the
real failure of dams, but also to the instantaneous gate operations in canals (Mignot and
Cienfuegos 2009). Dam break flood waves are typically modelled using the Saint-
Venant equations (De Almeida and Franco 1994; Chaudhry 2008). These flow
equations imply a hydrostatic pressure distribution and a uniform streamwise velocity
distribution. For engineering practice, this approach is routinely adopted, typically using
finite difference (Chaudhry 2008) or finite volume schemes (Toro 2001) to find a
numerical solution. The discontinous Galerkin method is becoming a useful tool,
combining in a hybrid technique the advantages of the finite element and finite volume
methods (Khan and Lai 2014). However, the hydrostatic pressure approach can lead to
physically unrealistic results (Kim and Lynett 2011). Dam break waves propagate both
in the upstream and the downstream directions forming a rarefaction wave and a bore
front (Fig. 1) (Stoker 1958). The Saint-Venant equations predict a parabolic rarefaction
fan and a sharp shock front. However, the non-hydrostatic pressure provokes
undulations on the flow profile, not predicted by the Saint-Venant equations (Soares-
Frazdo and Zech 2002; Kim and Lynett 2011). Some of the Boussinesg-type models
available in the literature suffer from two limitations, namely, the modelling of weak
curvature effects (small amplitude waves) and non-breaking wave conditions.
Therefore, it is necessary to consider full non-linearity (arbitrary amplitude waves) and
wave breaking model in the Boussinesq-type equations. Mohapatra and Chaudhry
(2004) ellaborated a higher order prediction of dam break flood waves by applying a
finite-difference predictor-corrector scheme to the Serre equations. The Serre equations
are a Boussinesg-type system of equations for modelling weakly dispersive and fully
non-linear non-hydrostatic waves (Serre 1953; Su and Gardner 1969; Batherlemy 2004).
These equations were originally derived by Serre (1953) assuming that the velocity field
is represented by the depth-averaged horizontal velocity, and a linear vertical velocity

profile. Later, Su and Gardner (1969) re-derived the systems based on the potential flow
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assumption, and demonstrated that the horizontal velocity profile of the Serre equations
is non-uniform. Using a Picard iteration method, Castro-Orgaz and Hager (2014) found
that this profile is parabolic. Solving the Serre equations, Mohapatra and Chaudhry
(2004) found that the position of the shock front was very close to that predicted by the
Saint-Venant equations. Mignot and Cienfuegos (2009) applied a finite volume model
to the Serre equations and simulated dam break flows accounting for the wave breaking
based on diffusivity-like terms. They obtained good results. The frequency dispersion
for a shallow flow implies that the celerity of propagation of small amplitude Serre-type
waves is different from that of the shallow water (hydrostatic) waves, and close to the
exact relation obtained from the Euler equations (Nwogu 1993; Batherlemy 2004).
However, in shallow flow, the non-linearity implicit in the Serre equations is by far
more important than the frequency dispersion. It means that finite amplitude waves are
generated at the shock front, provoking higher flow depths at the wave front than those
predicted by the Saint-Venant theory. Problems like overtopping of flow in canals due
to sudden gate operation (Mignot and Cienfuegos 2009) or the spreading of the flood
inundation area in rivers are therefore to be expected. Further, structures implanted in a
natural watercourse, such as bridge piers, experiences dynamic forces as the flood wave
propagates, where non-hydrostatic pressure can play a leading role. Therefore, it is
preferable to compute dam break flood waves using non-hydrostatic models. If under a
given flow condition the flood wave is essentially hydrostatic, then this should be an
automatic result of the non-hydrostatic model rather than an external patching of the
modeller between the hydrostatic and the non-hydrostatic computations. The non-
hydrostatic model should therefore account for a smooth transition from non-hydrostatic
to hydrostatic flow conditions. This issue was extensively investigated in coastal
engineering applications for the propagation of breaking waves (Tonelli and Petti 2009;
Bonneton et al. 2011; Tissier et al. 2012; Shi et al. 2012). The computational approach
iIs based on the assumption that when the dispersive terms become less important, the
results from the Boussinesq equations should collapse to those from the Saint Venant

equations.
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—— 1D non-hydrostatic
=== 1D hydrostatic

Fig. 1. Definition sketch of non-hydrostatic dam break flow

Three-dimensional (3D) numerical computations are used to account for non-
hydrostatic flow simulations (Marsooli and Wu 2014). However, the depth-averaged
models are also used to simulate non-hydrostatic open channel flows (Khan and Steffler
1996a,b), which are computationally less expensive. Despite the potentiality of the
Serre-type models to simulate the dam break flood waves, only the isolated work of
Mignot and Cienfuegos (2009) is available. However, issues such as the selection of the
time-stepping scheme, enhancement of the dispersion relation, and the shape of the
vertical pressure distribution are not systematically assessed in a single and structured
work. Further, for the case of dam break waves over erodible beds, to the best of the
authors’ knowledge, there is not a single study considering the non-hydrostatic
simulations with depth-averaged models. This research is organized in two companion
papers. In this paper, the non-hydrostatic dam break waves over rigid bottoms are
systematically investigated as described below. In Cantero-Chinchilla et al. (2016,
companion paper) the physical equations and numerical schemes are extended to

simulate the non-hydrostatic dam break flow waves over erodible beds.

Here, we consider the propagation of dam break flood waves over rigid and
horizontal bottoms. First, the physical equations need to be assessed, given that a
number of “Boussinesq-type” models can be used a priori. The following issues are

therefore in need of assessment:

1. The classical Serre equations are obtained assuming that the streamwise velocity
distribution is uniform with depth (Serre 1953; Castro-Orgaz et al. 2015), thereby
leading to a parabolic pressure distribution along the vertical direclioa. Serre
equations are formulated in terms of the depth-averaged horizontal velocity, but not

necessarily assuming a uniform horizontal velocity distribution (Su and Gardner 1969;
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Cienfuegos et al. 2006). If second order dispersive terms are disregarded, then the
vertical distribution for horizontal velocity is uniform and the vertical distribution for
vertical velocity is linear (Cienfuegos et al. 2006jowever, other modelling
approximations are considered in the literature, as the linear, non-hydrostatic, vertical
pressure distribution (Khan and Steffler 1996a,b). Castro-Orgaz et al. (2015) found that
the shape of the vertical pressure distribution can lead to a significant difference in
results when the depth-averaged non-hydrostatic models are used. Therefore, the impact
of the vertical pressure distribution in 1D computations needs to be investigated for

modelling the dam break waves.

2. For shallow water flows, the frequency disperg®onather weak, given that the
waves are long, with a wavelength typically greater than 6 times the flow depth (Steffler
and Jin 1993). Thus, the wave amplitude prediction is the main engineering concern.
The accurate prediction of the wave amplitude relies on the consideration of non-
hydrostatic terms in the Serre equations originating from the convective acceleration
term in the Euler equations, lik&U/ox? and fU/Ox)?, whereU is the depth-averaged
velocity. However, various models available in the literature neglect some terms
(Peregrine 1966; Nwogu 1993; Soares-Frazdo and Zech 2002).

3. The dam break waves lead to undulations near the bore front and rarefaction wave
for a ratio of the downstreanhs) to upstreamt() flow depth greater, approximately,
than 0.45 (Fig. 1) (De Almeida and Franco 1994). For smaller values, wave breaking at
the shock front progressively suppresses the undulations. Inviscid simulations of non-
hydrostatic waves using the Serre-type equations yield wave amplitudes that increase
without bounds, given that the physical equations are unable to produce wave breaking.
Therefore, a wave breaking model is needed to correctly propagate the dam break waves
accounting for the change from a non-breaking to a breaking wave condition. This issue
Is extensively investigated in coastal engineering applications, where different wave
breaking models are used (Schéffer et al. 1993; Kennedy et al. 2000; Cienfuegos et al.
2010). However, this issue appears to be not specifically addressed in the dam break

literature to the best of the authors’ knowledge.

Secondly, a robust numerical scheme is needed, but there is no methodical

recommendation to select it:
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4. The isolated works of Mohapatra and Chaudhry (2004) and Kim and Lynett
(2011) suggested very different numerical schemes, but no critical comparison is
available. Mohapatra and Chaudhry (2004) proposed to use a high-order finite
difference scheme where the mixed space-time derivatives are included in the scheme
with a fractional step approach. The scheme used artificial viscosity to suppress
spurious oscillations originating from the Gibbs phenomenon. It had the disadvantage
that the determination of the artificial viscosity is case dependent, and, therefore,
universal results cannot be generated. Kim and Lynett (2011) used Boussinesq-type
equations with enhanced frequency dispersion following Nwogu (1993). Detailed
discussions on the enhancing of frequency dispersion were given by Barthélemy (2004)
and Cienfuegos et al. (2006). Kim and Lynett (2011) used the finite volume method,
computing the numerical fluxes with an approximate Riemann solver. The solution was
reconstructed at each time level using a high-order MUSCL. The cost of enhancing the
linear dispersion relation is to solve a more complex system of physical equations as
compared to the standard Serre equations. However, given that both systems are fully
non-linear, it is unclear if the solution of this enhanced system under shallow flow
conditions is really necessary. The use of frequency dispersion enhanced models using
the Nwogu-type approach should therefore be examined.

5. The performance of a Serre-type depth-averaged non-hydrostatic model heavily
depends on the numerical scheme considered (Mohapatra and Chaudhry 2004; Kim et
al. 2009; Kim and Lynett 2011; Mitsotakis et al. 2014). Mohapatra and Chaudhry
(2004) applied the two-four finite difference scheme. In this scheme, numerical
oscillations are suppressed by applying the artificial viscosity (Jameson et al. 1981).
Mitsotakis et al. (2014) used the standard Galerkin finite element scheme and solved the
Serre equations in dam break flows, obtaining accurate results. Higher-order finite
volume schemes are reported in the literature. Kim et al. (2009) applied the fourth-order
TVD monotone upstream centred scheme for conservation laws (MUSCL-*f‘)/D-4
(Yamamoto and Daiguji 1993) to get a high resolution scheme for the spatial
reconstructing of the flow variables at the control volume interfaces. Following Erduran
et al. (2005), a high-resolution scheme is required to ensure that the dispersive terms are
not of the same order of magnitude than the truncation errors originating from the
leading Saint-Venant type terms (Abbott 1979). However, these higher-order spatial

reconstruction schemes are used in ocean research, but not so typically for non-
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hydrostatic free surface flow problems in civil and environmental engineering. An
exception is the work of Mignot and Cienfuegos (2009), who applied the finite volume
model SERR-1D (Cienfuegos et al. 2006; 2010) to river flows with shocks.

6. The time stepping method is a crucial component of a numerical scheme. Gottlieb
and Shu (1998) developed high-order TVD Runge-Kutta (TVD-RK) schemes for
hyperbolic problems. The third-order TVD-RK scheme (TVD-F?)(B\/as applied to
dam break flows with satisfactory results (Li et al. 2013). The fourth-order TVD-RK
scheme (TVD-RK¥) can also be used for the time stepping scheme coupled with the
MUSCL-TVD-4" spatial reconstruction. Nevertheless, the TVD-RK methods usually
require low values of the Courant-Friedrichs-Lewy numk#tL() for stability, which is
a disadvantage in terms of computational work. The higher-order Adams-
Bashforth/Adams-Moulton (AB-AM) time stepping scheme (Wei and Kirby 1995; Wei
et al. 1995; Kim et al. 2009; Kim and Lynett 2011) shows stability with mod€ate
values (typically greater than 0.5). It has accuracy to fourth-order. This time stepping
scheme is also used in ocean research, but it is not commonly used in civil engineering.
An exception is the work of Maleki and Khan (2015), where the efficiency and accuracy
of several time-stepping schemes, including the Adams-Bashforth scheme, are

evaluated for dam break flows using the Saint Venant equations.

In this paper, the Serre-type equations for weakly dispersive and fully non-linear
non-hydrostatic waves are presented as a function of a pressure distribution coefficient.
A high resolution finite volume scheme is therefore presented, which is used to evaluate
several time stepping methods. Once a suitable time stepping scheme is selected, the
impacts of the pressure distribution coefficient and the non-linear terms are investigated.
The simulations are used further to select a suitable wave breaking model. A
generalized Serre model with enhanced linear frequency dispersion is then presented
based on the potential velocity distribution obtained from the Picard iteration method,
and used to test, if this improvement of the governing equations is relevant in shallow
open channel flows. Potential velocity and pressure fields of the Serre equations are
evaluated using the 2D distributions of a solitary wave test. The 1D simulations using
the finite volume scheme presented here are compared with experimental data (Stansby
et al. 1998), the analytical solution of a solitary wave propagation test, 3D simulations

of the Reynolds averaged Navier-Stokes (RANS) equations (Marsooli and Wu 2014),

-59 -



finite element simulations (Mitsotakis et al. 2014) and finite difference simulations
(Mohapatra and Chaudhry 2004).

2. Governing Equations

2.1. Depth-Averaged Conservation Laws
The depth-averaged conservation of mass and momentum equations for non-hydrostatic
frictionless flow over a horizontal rigid bottom are (Castro-Orgaz et al. 2015)

a_U+a_F:S, (1)
ot ox
u=| " | F= iy s=|” 2)
lhu| hU2+%gh2+zp "Tlof
_R|(auY U U
v EH&) Vax m] ©

whereU, F andS = vector of unknowns, fluxes and source terms, respectivefigw
depth; U=depth-averaged velocityg=gravitational accelerationyy=non-hydrostatic
term; m=pressure coefficient (4 for a linear pressure distribution and 3 for a parabolic
pressure distributionk=longitudinal coordinate; anetime.

The non-hydrostatic terms in Eq. @re usually treated as a source t&Erduran
et al. 2005; Soares-Frazdo and Guinot 2008). Therefore, the vectors in Eq. (1) are

rewritten for numerical modelling as

) hu 0
u=| " | F= S= . 4
{hu} hU2+%gh2 9w )

0x
2.2. Non-Hydrostatic Source Term
The pressure coefficiemh depends on the mathematical law for the vertical pressure
distribution (Castro-Orgaz et al. 2015). A parabolic pressure distribution giw8s
whereas a linear vertical pressure distribution results=#h. The casen=3 corresponds
to the Serre equations (Serre 1953; De Almeida and Franco 1994; Mitsotakis et al.
2014; Castro-Orgaz et al. 2015). The Boussinesg-type equations by Khan and Steffler
(1996a,b) are a particular case for4 (Castro-Orgaz et al. 2015). Soares-Frazdo and

Zech (2002) and Soares-Frazdo and Guinot (2008) developed a Boussinesq-type model
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that is regained from Eq. (4) by expandifig/ox, neglecting the derivative products,

and using m3. The resulting source term vector is then

0
—_ 3 3 3
S=|n au+Uau : 5)
3l axPot  ox

This is not a fully non-nonlinear model, and its ability in predicting the wave amplitudes

need to be evaluated.

2.3. Wave Breaking

The main computational tool used to account for the wave breaking is based on the
assumption that if the non-hydrostatic terms are not important, then the results from the
Boussinesq equations should collapse to those from the Saint Venant equations.
Basically, it means that if a wave breaks, then the non-hydrostatic terms are switched-
off, and the Saint Venant equations are solved. Thus, the wave breaking energy
dissipation is accounted for by the Rankine-Hugoniot conditions across the moving

shocks modelled using the Saint Venant equations (Toro 2001).

A first approximation for wave breaking is based on the results for undular
hydraulic jumps. Wave breaking initiates based on the extended energy equation if
(Hager and Hutter 1984),

;/1=1+Mso, (6)

wherey;= wave-breaking factoh, =oh/ox; andh,,=6°h/ox?. Eq. (6) states that the free

surface velocity becomes zero or negative.

Serre (1953) proposed the wave breaking condition
¥, =1+F’hh, <0, (7)

wherey,=wave breaking factor; arfée= Froude number [8/(gh)*3. Eq. (7) states that

the wave breaking initiates if a particle on the free surface separates due to the
centripetal acceleration. If wave breaking conditions are fulfilled, based on either Eq.
(6) or (7), in any node of the computational domain, the non-hydrostatic source terms
are deactivated in the model. Therefore, at some nodes of the computational mesh, the

full non-hydrostatic equations are solved, whereas at the breaking nodes, the Saint-
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Venant equations are applied. The wave breaking condition is checked at the end of
each computational step. A disadvantage of the two conditions presented above is that

the transition from non-breaking to breaking flow conditions is sharp.

Hosoda and Tada (1994) proposed a continuous wave breaking factor that gradually

attenuates the non-hydrostatic termassfollows:

a(hu)+3(huz+gghzj:_a(y3¢) o
o ox 2 ox
1 , if h<h

) ’ 9

& {eXp[‘("(hx -h,)] ., if h=h 9

whereys=wave breaking factor; in Eq. (9p=empirical factor (=2); antl.;=free surface

slope threshold to initiate the damping of non-hydrostatic terms. Hosoda and Tada
(1994) determined this limiting slope based on the solitary wave profile. The Favre
waves are considered to break, approximatelff,atl.5625 based on the experimental
observations (Favre 1935), whdfg=Froude number of the first wave crest. This gave
the maximum amplitude of the leading wave of a train of Favre waves. It is accepted
that this leading wave is approximately a portion of a solitary wave profile. Hosoda and
Tada (1994) pursued this idea and determined based on a solitary wave profile, the
maximum free surface slope (at the inflection point) faf~1.5625, resulting
h.=0.225. This is the maximum free surface slope under breaking conditions to be used
in Eg. (9). Other wave breaking models used in coastal engineering applications are
available (Schéffer et al. 1993; Kennedy et al. 2000; Cienfuegos et al. 2010).

3. Governing Equations

3.1. Finite Volume M ethod
The integral solution of Eq.(1) over a rectangular control volume ix-thglane is as
follows (Toro 2001, 2009):

ouU At
(Ej At = _E(FHUZ - Fi—1/2) +SAt, (10)

where S, F andoU/ot are cell averaged values; and andAt = dimensions of the
control volume in thex- andt-directions, respectively. The index1/2 refers to the
control volume interfaces between nodendi+1l. A MUSCL-TVD-4" reconstruction

of U gives (Yamamoto and Daiguji 1993; Kiet al. 2009; Kim and Lynett 2011)
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1, .- .~
UiL+1/2 = Ui +E(A Ui—1/2 +2A Ui—1/2)' (11)

UR,, = Ui+1—%(2A*Ui+m +0'0,,,,), (12)

where
A'U,_,,=minmodA'U,_,, bA'U,,,, ], (13)
A0, =minmodA'U,,,,, bA'U, . ], (14)
A'U,,,,,=minmodA'U,,,, bA'U,,,, ], (15)
A'U,.,,=minmodA'U,,., bA'U,,,,], (16)
NUMHZAUMH—éATLM, (17)
AU, =AU, ,,-2AU,,,, +AU,,,,, (18)
AU, =minmodAU, _,,, bAU.,,, bAU., .1, (19)
AU, =minmodAU. ., bAU. .., bAU, ], (20)
AU,,,, =minmodpU,,,, bAU, ,, bAU., .., (21)
min modj ,j ]=sign (i) max{0, min[{ )sign ()] ]}, (22)
minmodj ,j k ]=sign(i) max{0, min[()sign ¢ )j sign ( k I}, (23)

where the coefficientls; = 2 and 1¥<4 (Yamamoto and Daiguji 1993).

3.2. Numerical Flux
The HLL approximate Riemann solver is used to compute the intercell numerical flux
as follows (Toro 2001, 2009):

F. . if §20
Foyy = LT SfF;: _%;U U)o gs0ss. ()
F. . if S.<0

whereL and R=left and right subscripts for the cell interface, respectively. The signal

speedsS and%; are defined as

-63 -



s_:UL_qq’SR:UR"'aRqR' (25)

where a_ and ag=shallow water wave celerity at the corresponding side of the
interface[=gh_r)*4.

The correction factor gk is given by

12
1| h(h+hg) .
Gr= H he }} e (26)

1 , If h<hg

where h is defined as
171 1 ?
=== —(U -U ) 27
h g[z(q+%)+4( L R)} (27)

3.3. Time Stepping
After mathematical manipulation 6fy/0x using the depth-averaged continuity equation

ohlot= -0(hU)/0x, the system given by Eq. (10) is rewritten in integral form as

ow At
(FJ At = _&(Fiﬂlz - Fi—llz) +ZAt (28)
where
h h huU 1
W = = 3 32 2  F= , 29
Dl e _avanou | B Ll e
moxX maxoX 27 ]
_ 0 _
atnfjau)t ] Rauaty o),
Z=| m ax|/\ ax 9 X 9 x0 X ax) | (30)
6ha(hU)9haU 3t 0°(hU)a U_ 3K 3 (hU)o* U
Im 90X 0x0X m 90X 90X m 0 x 0 X

Similarly, thex-momentum equation in the Boussinesg-type model of Soares-Frazéo
and Zech (2002) can be rewritten for numerical modelling as

3 32 2 3 13
9 (hu _ho Uj+i(huz+1gh2j: U)o’V +U h U (31)

ot 3 0x° ) ox 2 ox o0  30%
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Several time stepping schemes for Eq. (28) are investigated. The classical Euler
scheme reads

Wik+l 'k ( i+1/2 li1/2) + Z:(At ' (32)

where At=time step, defined using th€FL condition; andk=time level index.
Alternatively, the TVD-RK schemes are higher-order time stepping methods (Glottieb
and Shu 1998). Usual high-order TVD-RK schemes are TVD'RK3

Wiq = Vvik ( i+1/2 Filillz) ) (33)

w® =W +AtZ(W?9), (34)

w = 3w 2wo s Tazw®), (35)
4 4 4

1 2.2, 2

wkt==wa+ Ew® + Zatz(w)y (36)
3 3 3
and TVD-RK4"
WO =W Z ez (W), (37)

W@ = 849 o 10890423 ) (o)
1600 ' 25193600 (38)
4951,y , 5000

® + 2= Atz (wWY)
1600 7873

9 __53989 4 _ 102261 , 4806213,y

[ i tZ (Wiq)
2500000 5000000 20000000

B 5121AtZ(Wi(1)) 23619Wi()+ 7873AtZ(W )
20000 32000 10000

, (39)

wet = wa 2 azowey + B120 w1 az )
5 ' 10 30000 6 (40)

+ 883\ @ 4 Inz w9y
"30000 3 6

where g, (1), (2) and (3)=auxiliary time step indeksactual time step index; and

k+1=next time step index.
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The third-order Adams-Bashforth predictor and the fourth-order Adams-Moulton
corrector equations can be coupled to produce a high resolution predictor-corrector
scheme (Wei and Kirby 1995; Wei et al. 1995; Kim et al. 2009; Kim and Lynett 2011).

The cell averaged derivative in Eq. (28) is denoted by

ow
—=E(U), 41
m (V) (41)
whereE is
1
E___AX(Fi+]J2_Fi—112)+Z' (42)

The Adams-Bashforth predictor step for Eq. (41) is given by

W = WK +f_; (23K - 1€ "+ EF?), (43)
The Adams-Moulton corrector step for Eq. (41) then reads
Wik+l = Wik +%(9Elk+l + l%lk _ Eik_l + Eik_z ) (44)

The predictor step results from Eq. (43) are used to calculate an initial value for
EX! in Eq. (44) and in turn, to initiate the Adams-Moulton iterative process. Then,
W¥** from Eq. (44) is used to recompg™ iteratively. The Adams-Moulton iterative

corrector step is repeated until converges with a prescribed tolefance

z‘ fik+1 _ fi(k+l)*
Af = Z‘fikﬂ

, (45)

wheref is any of the variables a/; and* denotes the previous iteration. Here, the
convergence criterionf<10“ is adopted, such that the iterations are continued if any of
the f exceeds this value. The AB-AM scheme requires initial values for the first two
time steps E** and E/? in Egs. (43) and (44)]. The TVD-RK3and TVD-RKA"
schemes are considered in this study to produce the first two time steps in the AB-AM
scheme. Both numerical schemes for the time stepping are denoted as TVRBK3

AM and TVD-RK4"AB-AM, respectively.
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3.4. Computation of Depth-Averaged Ve ocity Field
After applying the corresponding time stepping scheme, the valuesodly at time
level k+1 are available. To calculatéfor each node at this time level, it is necessary to

solve the following equation for each computational node:

=hu-—2- -2 277 46
y moxX maoxoXx (46)

Eq. (46) is discretized using second order central finite differences resulting in a

tridiagonal system of linear equations

k+1Uk+1 (hk+l) Ullj:Ll 2U k+1+Uk+1_3(hk+l) hﬁzl H<+1 Lflk+l l:ll

=h m AX m 2Axl_ 2\ X (47)
EqQ. (47) is rewritten as follows
Y= AU+ BYT  GULY, (48)
where
— _(hk+1)3 3(h|<+1)2 k+1 k+1
- 2(nk+1)3

B = { +o } (50)

—| _ (hk+1)3 _ B(hk+l)2 k+1 k+1
G { me  amny } D

1 A, Bi, andC;, the corresponding tridiagonal matrix is

With known values ofy,
solved using the Thomas algorithm to figd** (Wei et al 1995). For the weakly non-

linear Boussinesq model of Soares-Frazédo and Zech (30@2)efined as

h® 9%U
=hU- : 52
y 3 o (52)
Using second order central finite differences, Eq. (52) is discretized as
y,k+1 - hk+1uI k+1 _ (hk+1) U|lzl 2Uik+1+ Uik—zl , (53)

3 AX?

Then, Eq. (53) can be written in the form of Eq. (48), where
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A{_(h*)] (54)

3AX?

B { k+1+w}, (55)
3AX
B _(hk+l)3

G { v } (56)

3.5. Computational Sequence
The model solution encompasses the following steps:

(1) The solution Uat time level Ks reconstructed using MUSCL-TVD"4
(2) The numerical fluxF+1, is computed at cell interfaces with the HLL Riemann

solver using the reconstructed values of h and U

(3) Source vectorZ [Eq. (30)] is calculated at time levé&l The derivatives are

discretized using second order central finite differences.

(4) A time stepping scheme to Eq. (28) is applied to comtat time levelk+1.
Values of k! and y** are therefore determined.

(5) The tridiagonal matrix is solved by the Thomas algorithm to fif§F.U

(6) For anew time level, steps 1 to 5 are repeated.

4. Serre Equations with Enhanced Frequency Dispersion

Su and Gardner (1969) derived the Serre equations based on potential flow without
assuming that the velocity distribution in thedirection is uniform with depth
ux,zt)=U(x,t) as originally done by Serre (1953). In fact, the second-order irrotational
velocity distribution is parabolic. Castro-Orgaz and Hager (2014) determined the
irrotational velocity field of unsteady water waves by systematic Picard iteration and
found for the particle kinematics

0U (h> 7
u(x,z,)= U+ ™ (E—E), (57)

Z, (58)

W(X,Z,l):—a—u
X

where u and w = velocity components in thg and zdirections respectively; and
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z=vertical coordinate. Using Eqgs. (57) and (58), the Serre equations are obtained using
the depth-averaged conservation of mass and momentum equations (Castro-Orgaz and
Hager 2014). Therefore, the Serre equations are regained if the non-uniform irrotational
velocity distribution is accounted for to this order of expansion. Cienfuegos et al. (2006)
determined the irrotational velocity field,() of unsteady water waves based on series
expansions. They found that the Serre equations, formulated in terths ave not
necessarily based on a unifoufg) profile. A limitation of the Serre equations is that

the system is weakly dispersive. Nwogu (1993) presented a challenging approach where
the linear dispersion relation of Boussinesg-type equations is enhanced expressing the
conservation laws as a function of the veloaityat an undetermined elevatiay

instead ofU. Castro-Orgaz and Hager (2014) indicated that Eq. (57) can be used
following the Nwogu approach to produce the Serre-type equations with enhanced
frequency dispersion. The resulting system is identical to that presented by Dias and
Milewski (2010)

oh d(hu,) h® 0%u,
bR Sl - S | = 59
ot 0X (t-a®) (6 6)(2 9)
3 2 2 2
o(hu,) . (hu W1 gﬁj——i h® (auaj _uaa u, 0°u,
ot ax ox ax X 00t
: (60)
Hi-a?) — a oy, ), o[, o,
6 ax ax\ 3 7 ax
wherea=(3)"%z,/h. Egs. (59) and (60) can be rewritten as Eq. (28), where
h hu,
= 3 = , 61
hu, - (3-a )h_a_u ,0hdu, hu§+lgrf (61)
6 0x° 0Xx 0X 2

h® 8°u,
- )_(E axzj
S R Y8 N
B ) ax2 X 0 “axX '
3] ,0u,(_a(hy) 3 (h? o,
_ax{h ax[ ax H-a’) (6 X )H

Therefore, the coefficients to solve the tridiagonal matrix associat&/daie
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A - |:_(3_a,2) (h ) (h ) (hk+l hk;l :| (63)

6AX’
I O N (L
B_[h +(3 a)BAXZ] (64)
PPN (s (hk*l) 1 _ oy
—{ (3-a7) A (M — W5 } (65)

For a?=1, Egs. (59) and (60) reduce to Egs. (1)—(3) witt8, which is the standard
Serre model. The optimized valug=0.66 permits to apply Egs. (59) and (60) from

shallow to intermediate flow depths (Dias and Milweski 2010).

5. Test Cases

In this section, experimental data and computational results are selected to assess the
governing equations and the numerical schemes. Firstly, the Serre equations are
evaluated using the experimental data of Stansby et al. (1998), focusing on the stability
of the time stepping scheme and carrying out a grid dependence analysis of the models.
Then, the ability of the model to reproduce a solitary wave propagation is tested.
Secondly, 3D Reynolds-Averaged Navier-Stokes (RANS) simulations presented by
Marsooli and Wu (2014) and the experimental data of Stansby et al. (1998) are
compared with the Serre equations by using different wave breaking criteria. Thirdly,
the impact of the pressure coefficient, the use of a frequency dispersion enhanced
model, and consideration of all non-linear terms are highlighted. The velocity and
pressure distributions of the Serre equations are tested using a highly non-linear solitary
wave. Finally, the finite volume solution of the Serre equations is compared with those
originating from other numerical schemes. In particular, the finite element scheme used
by Mitsotakis et al. (2014) and the finite difference method proposed by Mohapatra and
Chaudhry (2004) are considered. A large scale test, long term simulation, and dry bed

propagation are finally conducted.
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Fig. 2. Definition sketch of experimental setup used by Stansby et al. (1998)

5.1. Evaluation of Time Stepping Schemes

A sketch of the experimental setup used by Stansby et al. is shown in Fig. 2. The
assessment of the different time steeping schemes is presented in Fig. 3 using the
experimental data of Stansby et al. (1998). The experiment selected herein was
conducted in a 15.24 m long, 0.4 m wide, and 0.4 m high laboratory flume. The initial
conditions are the upstream dept-0.1 m and the depth ratie=hy/h,=0.45, where
hq=initial downstream depth. The measured flow profile (free surface) is plotted in Fig.

3 after 0.76 s of the dam break. The computations presented in Fig. 3 correspond to the
solution of the Serre equations<3). Fig. 3(a) depicts the time stepping analysis using
CFL=0.1. The results obtained by using the TVD-EK®B-AM and TVD-RK4" AB-

AM schemes are as close to the data than those using the Euler, TVD-&¥3TVD-

RK4™ schemes. Fig. 3(b) presents the same computations QBixg0.5. The Euler,

TVD- RK3" and TVD- RK&" schemes produce results that are dependent on the time
resolution, especially in the vicinity of the shock front, where the wave amplitudes are
increased. Finally, Fig. 3(c) presents the computation€far=0.9. The Euler scheme
breaks down given the instabilities generated and therefore, the results cannot be
plotted. The TVD- RK® and TVD- RK4" schemes increase the amplitude at the bore
front due to accumulated numerical errors. Nevertheless, the TVI'RR3AM and
TVD-RK4™ AB-AM schemes show good results that are in agreement with their
previous computations [Figs. 3(a and b)]. Thus, the only time stepping scheme that was
found to produce stable results for practical values of Skhe AB-AM scheme.
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Fig. 3. Time stepping assessment for the Serre equation3)(using the experimental data of Stansby et
al. (1998): (a)CFL=0.1; (b)CFL=0.5; (c)CFL=0.9 forAx=0.75 cm

The grid size dependence is analyzed in Fig. 4. The TVD'R¥BAM scheme is
one of the best time stepping schemes; so henceforth it is selected for the computations.
In Fig. 4, simulations using the Serre equations are compared with the experimental data
of Stansby et al. (1998) measured at 0.2, 0.3, 0.52 and 0.76 s [Fig. 4(a—d)] after the dam
break. Both the boundary and the initial conditions are the same as those considered in
Fig. 3. Following Marsooli and Wu (2014), three different grid sixgs2, 0.75, and
0.5 cm are tested. It is evident that the resultsAier2 cm are grid size dependent.
However, the results are unaltered fbx values lower than 0.75 cm. The model
produces convergent results reducing baghand CFL, thereby showing mesh size

independency of results.
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Fig. 4. Grid size dependence analysis for the Serre equaties®®) (sing the experimental data of
Stansby et al. (1998): (&0.2 s; (b)t=0.3 s; (c)t=0.52 s; (d}=0.76 s forCFL =0.9

5.2. Solitary Wave Propagation Test
The TVD-RK3" AB-AM scheme is evaluated in Figs. 5 and 6, using the solitary wave

solution of the Serre equations (Carter and Cienfuegos 2011), which is given by

2 o\¥2
h(x,ty=h + h)(F(f —1) sech (SFOF 3) X2_th , (66)
P
U(x,t)—c{l h(x,t)] (67)

whereF,=solitary wave Froude numberz(EHﬁho)l’Z; H=wave amplitudeh,=still water

depth; andc=solitary wave celerity=fh,)"* Fo. A solitary wave test foh,=1 m and

H=0.5 m was used. The numerical computations are accomplishedQHix.1 and
Ax=0.05 m. Fig. 5 shows a time-dependence analysis of the Serre equations by
comparing the analytical and numerical solutions at tim&Ss [Fig. 5(a) and (c)] and
t=50s [Fig. 5(b) and (d)], showing that the numerical model correctly propagates the
solitary wave with a satisfactory accuracy. The Root-Mean-Square Deviation (RMSD)
and the square of the Pearson product-moment correlation coefficient (R) are calculated
on the basis of Fig. 5 for the free surface level in the computational domair({Jjt is
10,200] m, thereby providing a quantitative model accuracy test (Table 1). As it can be

inferred from Fig. 5 and Table 1, the numerical solutions of the Serre equations at both
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t=15s and+50s are in good agreement with the analytical solutions. Furthermore, Fig. 6
illustrates a grid size dependence analysis=80s, for testing grid sizeAx=0.2 m,
Ax=0.15 m,Ax=0.1 m, andAx=0.05 m, withCFL=0.1. The qualitative (visual) and
guantitative (RMSD and R in Table 1) assessment of the solutions the Serre equations
suggest the grid independency of the numerical solutions.

1.5
(a) (b) { — 1D model, m=3
1 1 = Analytical solution
< 1.25 1
N
1t=15s 1t=50s
1 . e ¥
() d]— 1D model, m=3

1 ¢ Analytical solution

uu,,.

30 40 50 60 70 80 150 160 170 180 190 200
x/h x/h

o o

Fig. 5. Solitary wave propagation test for the Serre equatior8); (a) Free surface profile &t15 s; (b)
free surface profile at50 s; (c) depth-averaged velocitytal5s s; (d) depth-averaged velocitytab0 s

1.5
{— Ax=0.05m
1— Ax=0.Im
|— Ax=0.15m
< 254" Ax=02m
=

1 = Analytical solution

11=50s

170 180 190 200
x/h,

Fig. 6. Grid size independence test for the Serre equatitr3)(during solitary wave propagationtab0
s for grid sizesAx=0.05 m,Ax=0.1 m,Ax=0.15 m and\x=0.2 m
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1D model, m=3 RMSD R

t=15s, /x=0.05 m 3.46x10" 0.999
t=50 s, &=0.05 m 4.44x10° 0.994
t=50's, x=0.1 m 1.73x10° 0.903
t=50 s, /x=0.15 m 3.43x10° 0.631
t=50 s, =0.2 m 4.98x10° 0.287

Table 1. RMSD and R Tests to the Serre equations3) Model Using the Analytical Solution for the
Free surface profile of a Solitary wave

5.3. Solitary Wave Propagation Test

Figs. 79 presents the 1D computations using the Serre equations with the three
different wave breaking models studied here. The results are compared with the 3D
simulations by Marsooli and Wu (2014) fax=0.75 cm and the experimental data of
Stansby et al. (1998). The computational results of the present model are generated
usingAx=0.75 cm andCFL=0.9. Fig. 7 shows the results generated using the first wave
breaking criterion [EqQ. (6)]. Fig. 8 displays the results obtained from the second wave
breaking criterion [EqQ. (7)]. Both factors induce wave breaking at early stages of the
dam break flow, thereby damping the undulations of the flow profile. These breaking-
type model computations rely on the assumption that once breaking is generated at a
node, the Saint-Venant equations apply. The disadvantage is that the transition from
Serre to Saint-Venant equations is sharp at every node of the computational domain,
and the undulations are unrealistically suppressed. Egs. (6) and (7) are obtained under
steady, irrotational flow conditions, implying that the applications in unsteady
irrotational flow models may not be guaranteed. Fig. 9 presents the result of the third
wave breaking criterion [Eg. (9)]. The 1D simulation provides a good agreement with
both 3D simulations by Marsooli and Wu’s (2014) and the experimental data of Stansby
et al. (1998), providing a smooth transition from non-breaking to breaking wave

conditions.
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Fig. 7. Assessment of first wave breaking criterion [Eq. (6)] using the 3D simulation by Marsooli and Wu
(2014) and the experimental data of Stansby et al. (1998022 s; (b}=0.32 s; (cX=0.52 s; (d)

t=0.76 s
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Fig. 8. Assessment of second wave breaking criterion [Eq. (7)] using the 3D simulation by Marsooli and
Wu (2014) and the experimental data of Stansby et al. (1998F0@p s; (b}=0.32 s; (c}=0.52 s; (d)
t=0.76 s
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Fig. 9. Assessment of third wave breaking criterion [Eq. (9)] using the 3D simulation by Marsooli and
Wu (2014) and the experimental data of Stansby et al. (1998F0@p s; (b}=0.32 s; (c}=0.52 s; (d)
t=0.76 s

5.4. Evaluation of Pressure Coefficient, Frequency Dispersion and Non-

Linear Terms

The impact of the pressure coefficienis considered in Fig. 10(a), where Eq. (10) was
solved without wave breaking for the typical values3 (Serre 1953) ana=4 (Khan

and Steffler 1996a,b). It can be observed that the computed flow profiles are not greatly
affected by the pressure coefficient value. In turn, the variation of the linear dispersion
relation as a function ah induces a phase lag, but it is not of great importance in dam
break waves. The simulation far=4 is however closer to the experimental data. The
solution of Eq. (10) using the weakly-nonlinear source term Eq. (5) is presented in the
same figure. This is a simulation fox=3, where the full non-linearity is not preserved.

On inspection of the simulation using the fully non-linear Serre model, it is observed
that the wave amplitude predicted by the weakly non-linear Boussinesq model is
significantly high and not in agreement with the experimental data. There is no
significant phase lag as compared to the Serre model, given that the pressure coefficient
is identical and therefore the linear dispersion relation remains unaffected. The same set
of simulations is repeated using Eg. (9) to account for the wave breaking, and the results
are plotted in Fig. 10(b). The agreement with the experimental data improves, especially
for the weakly non-linear Boussinesq model, which significantly modifies its prediction
for the wave amplitude. In general, the simulations with4 accounting for wave

breaking produce the best results. The effects of improving the linear frequency
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dispersion relation are considered in Fig. 10(c). Eqgs. (59) and (60) are solved and
compared with the standard Serre equations. From Fig. 10, it can be observed that the
enhanced Serre equations produce a certain phase lag, but also some variation in the
prediction of wave amplitude as compared to the standard Serre equations. However,
the enhanced equations are not giving more accurate predictions as compared to the
standard Serre equations. The use of Nwogu-type enhanced models is mandatory in
ocean research, where the solution of water wave problems from deep to shallow depths
is common. However, in shallow flows, the frequency dispersion that is implicit in the
standard Serre equations expressed as a functibhi®freasonably good. Use of the
enhanced equations produces further variations in the non-linear effects, which are not
desirable. Therefore, the solution of the more complex system of Nwogu-type equations
is not recommended for common civil engineering applications, where the full non-
linearity of the standard Serre equations gives good results. A quantitative model
accuracy test was performed by calculating the RMSD and the R statistics (Table 2).
The application of the wave breaking criterion, Eq. (9), allows to control the amplitude
of the advancing wave train. Its application leads to less accuracy in the prediction of
the rarefaction wave, thereby giving greater RMSD and lower R values (Table 2).
However, despite a slight lose of accuracy in the rarefaction wave, it is physically

necessary to control wave amplitude with a wave breaking model.
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Fig. 10. Assessment of (a) pressure coefficient and non-linear terms without wave breaking; (b) idem to
(a) with Eq. (9) for wave breaking; (c) standard Serre equation® &ndo®=1) versus enhanced Serre
equationsrf=3 andz*=0.66), and non-linear effects, without wave breaking
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M odel RMSD R

1D model, =3 0.079 0.663
1D model, r=4 0.072 0.725
1D model, Boussinesq 0.099 0.549
1D model, Eq. (9), i3 0.092 0.575
1D model, Eq. (9), md 0.085 0.638
1D model, Eqg. (9), Boussinesq 0.107 0.474
1D Nowgu-type model [Egs. (59) and (60)] 0.091 0.566

Table 2. RMSD and R Tests for Non-Hydrostatic Models Using the Experimental Data of Stansby et al.
(1998) forr=0.45 att=0.76 s

5.5. Evaluation of Non-Hydr ostatic Velocity and Pressure Distributions

In this section, the accuracy of the irrotational velocity fielgh) obtained using the
Picard iteration method, Egs. (57) and (58), is examined. To do this, an idealized test
case is used. The shock front of a non-hydrostatic dam break wave is essentially a train
of waves, usually called Favre waves. These waves can be considered, approximately,
to be composed of a leading solitary wave-like front, followed by a train of secondary
cnoidal waves (Favre 1935; Mitsotakis et al. 2014). Therefore, characteristic features of
the non-hydrostatic dam break wave front can be inferred by an analogy to a solitary
wave propagating over the same undisturbed water level. It may be noted that some of
the wave breaking models for water wave propagation in coastal engineering are based
on such an analogy. To test the accuracy of Egs. (57) and (58), the 2D irrotational
velocity field of a solitary wave is generated. In a system of reference moving with the
solitary wave, it reduces to a steady flow. Therefore, the 2D irrotational, steady velocity
field of a solitary wave is investigated using tkd’ method developed by Montes
(1994). In this method, the Laplacian for the vertical coordinats a function of the

pair of variables'?,x) is solved, wher&’=stream function. The Laplacian of this semi-
inverse transformatiorrz(x, ) is as follows (Montes 1994):

2 2 2 2 2
Dzz:a—f(ﬂj N 1{0_2] _,0°20d z 4 (68)
R\ aw) oW ox 0P Ix 0P
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Montes (1994) developed a finite-difference numerical scheme to solve Eq. (68),
that was applied in this test case. Details of the numerical scheme are not repeated here,
given that these are extensively described by Montes (1994). The steady irrotational

velocity field from Eqgs. (57)—(58) is witlg=U(x)h(x)=constant (Castro-Orgaz and

Hager 2014),
_q h, R)\(3Z-K
.z
w= qF h.. (70)

The accuracy of Egs. (69)—(70) is tested in Fig. 11. The full 2D solution of the
irrotational velocity field ¢,w) of a steady solitary wave f6%,’=1.6 is determined using
the x-¥ method (Montes 1994). The free surface streamlifs) is prescribed using
Eq. (66); and the flow field was numerically determined solving Eq. (68). The flow was
modelled using ten streamlines. The computed streamline flow pattern is plotted in Fig.
11(b). The pressure residuals at the free surface are small, so that the position of the free
surface is not iterated. Experimental observations indicate the breaking of Favre waves,
approximately, afF,?~1.5625 (Favre 1935). Therefore, the simulated solitary wave in
Fig. 11 is close to breaking conditions of Favre waves, and thus, it is a limiting test case.
It may be further noted that the ratio of wave amplitude to depth is 0.6, which
corresponds to a highly non-linear wave. The computed 2D velocity fieh] &t
selected locations is plotted in Fig. 11(b and c), and compared with Eqgs. (69)—(70),
resulting in a good agreement. At the solitary wave crést=Q), the free surface is
convex, implying au-velocity profile decreasing with the elevation. The pressure
distributions for both the 2D and analytical solutions at these selected locations were
determined based on the energy conservation in a potential flow. Again, the agreement
is good. Naheer (1978) made the experimental observations of solitary wave
propagation, from which experimental results faf=1.6 are plotted in Fig. 11(e).

These experimental results are compared with Eg. (66), showing a good agreement.
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Fig. 11. Solitary wave foF,>=1.6: (a) Definition sketch; (b) computed streamline flow pattern, (c)
velocity and pressure distributions at an approach flow section, (d) velocity and pressure distributions at
crest, (d) comparison of the wave profile with experiments. NpndU, are the critical depth and
velocity, respectively

5.6. Evaluation of Non-Hydr ostatic Velocity and Pressure Distributions

Mitsotakis et al. (2014) presented a solution of the Serre equations using the standard
Galerkin finite-element method with smooth periodic splines and the fourth-order
Runge Kutta method. A simulation presented by Mitsotakis et al. (2014) for
h/hs=1.4182 is plotted in Fig. 12. The results are presented in dimensionless form with
u=U/(ghy)"? and=(h—hg)/he. The same simulation is conducted with the present finite
volume scheme without wave breaking, and the results are plotted in Fig. 12. The

results of both numerical models are similar.
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Fig. 12. Comparison of present finite volume solution and Galerkin finite element solution (Mitsotakis et
al. 2014) for (a) normalized free surface elevatiopqT); (b) normalized depth-averaged veloaif,T),
for dimensionless tim&=150

5.7. Comparison with Finite Difference Scheme

Mohapatra and Chaudhry (2004) developed the two-four finite difference predictor-
corrector scheme to solve the Serre equations. This numerical scheme requires the use
of artificial viscosity to suppress spurious oscillations. Otherwise, the solution becomes
unstable and ultimately breaks down. The proposed finite volume numerical scheme is
compared with the solution using the two-four finite difference scheme for the solution
of the Serre equations3) in Fig. 13, where computational results are compared with
the experimental data of Stansby et al. (1998). Valu€&~a&0.1 andAx=0.05 m were

used for the two-four simulations. For the finite volume mo@&l|.=0.1, Ax=0.05 m
andAx=0.0075 m were taken. THeFL value was reduced as much as possible in the
two-four scheme to reduce truncation errors, given that it was found not possible to
produce stable simulations reducifig below 0.05 m, during the computational work.
Calibration of artificial viscosity by trial-and-error was necessary until getting a stable
output. In contrast, it was possible to reduce WOHL and Ax in the finite volume
scheme and then produce grid size independent results. The two-four scheme produce
results that are in fair agreement with the experimental data. However, the finite volume

simulation shows an overall improved performance by reduskag-urther, it may be
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noted that the finite volume scheme lacks case-dependent parameters to be tuned for

each simulation.

@ ! (b)]

+==+  Finite volume scheme. Eq. (9). m=3. Ax=5cm
11— Finite volume scheme. Eq. (9). m=3. Ax=0.75cm

1— Finite difference scheme (Mohapatra and Chaudhry 2004). Av=5cm
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Fig. 13. Comparison of present finite volume solution and finite difference solution (Mohapatra and
Chaudhry 2004) with the experimental data of Stansby et al. (1998) at tinte8.22) s; (bX=0.32 s; ()
t=0.52 s; (dX=0.76 s.

5.8. Long-Term Simulation

To test the temporal stability of the present numerical model, Fig. 14 presents a long-
term simulation. The test case by Stansby et al. (1998345 previously analyzed is
selected. The results of the present 1D model mith and using Eq. (9) are presented

for t=1s [Fig. 14(a)]t=2s [Fig. 14(b)],t=5s [Fig. 14(c)],t=10s [Fig. 14(d)] and=20s

[Fig. 14(e)]. These computational results are generated usk¥®.0075 m and
CFL=0.9. It is shown that the present model results are stable. The wave breaking factor
efficiently controls the wave amplitude of the shock front, which would grow without

limits if wave breaking is not accounted for.
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Fig. 14. Long-term simulation for the present model accounting for Eq. (Qjreddat: (a)t=1 s; (b) t=2
s; (€)t=5s; (d)t=10 s; (dt=20 s

5.9. Large Scale Test

A large scale test case is conducted in Fig. 15 to check the stability of the numerical
scheme in a real life configuration. The upstream condition used in the numerical model
is hy=20m with depth ratio as=0.45. The computational results are generated using
CFL=0.9 andAx=1 m. The results are presentedtfl0s. Fig. 15 shows that the model

results are stable.
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Fig. 15. Assessment of the present model accounting for Eq. (9) for a large scale test-case

5.10. Dry Downstream Bed

Dam break wave propagation over a dry downstream bed is a challenging test for a
numerical model. Non-hydrostatic effects are significant Hghs>0.45, which is a
threshold value and above which physical undulations appear both in the shock front
and the rarefaction wave. However, the model was applied to a dry bed condition to test
its stability. Fig. 16 depicts the comparison of the present model using Eq. (9) as
damping factor, anan=4 (linear, non-hydrostatic, vertical pressure distribution) with
the experimental data of Ozmen-Cagatay and Kocaman (2010). Computational results
are compared with the experimental measurementsOa44 s [Fig. 16(a)]t=0.62 s

[Fig. 16(b)],t=0.8 s [Fig. 16(c)] ant=1.06 s [Fig. 16(d)]. The computational results are
generated usingx=0.05 m, andCFL=0.4. The downstream reach is artificially wetted

to produce a stable wet-dry front computation (Wu and Wang 2007, 2008). The
downstream flow depth used in the modehds0.00001 m, whilst the initial upstream

flow depth ish,=0.25m. In this test case, the high free surface slopes and curvatures
numerically computed during the initial stages of the dam break generated small
numerical ripples in the vicinity of the dam axis. The accuracy and the stability of the
solution are however not affected. To remove these ripples, rather than introducing any
numerical manipulation, the dam break flow is initiated using the Saint Venant
equations up t&=0.1 s. The correct solution corresponding to the Serre equations was
quickly set only after a few time steps, and it was verified that the initial run of the
model had no impact on the solution but to reduce the numerical ripples near the dam

axis. It can be observed that the non-hydrostatic simulations are in good agreement with
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the experimental data. The analytical solution of the Saint Venant equations for the
instantaneous free surface profile given by Ritter (Toro 2001)

2

h, X

Q h="2l2-—— |, (71)
ol t(gn)”

is plotted for the same test case in Fig. 16. The rarefaction wave was accurately

predicted by the Serre equations, showing an improved result as compared to Ritter’s

solution. For the positive wave, both models gave almost identical results.
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Fig. 16. Dry bed propagation test using Eq. (9) amc# at: (a)t=0.44 s; (b}X=0.62 s; (c}=0.8 s; (d)
t=1.06 s

6. Conclusions

The following conclusions are drawn from this study:

» Evaluation of several time stepping schemes, including the Euler and the Runge-Kutta
TVD methods, shows that the third-order Adams-Bashforth predictor and the fourth-
order Adams-Moulton corrector scheme produce stable results solving the Serre
equations with a value @FL close to 1, for instance, 0.9. The other schemes produce
unstable results and require a significant reduction GFL, increasing the

computational cost.

 Wave breaking models based on steady irrotational flow considerations produce
computational results that are in disagreement with the experimental data. In contrast,

the damping factor proposed by Hosoda and Tada (1994) produces a smooth transition
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from non-breaking to breaking wave condition, providing results in good agreement
with the experimental data. This is in agreement with former results in the coastal
engineering field since the pioneering work of Schaffer et al. (1993) (Tonelli and Petti
2009; Bonneton et al. 2011; Tissier et al. 2012; Shi et al. 2012).

» The impact of the vertical pressure distribution coefficient is not significant, and the

results of the Serre equations (Serre 1953) and Khan and Steffler's (1996a,b) depth-
averaged equations are similar. The latter model produces results slightly in better
agreement with the experimental data; so the use of a linear pressure distribution for

dam break wave modelling is recommended.

» The consideration of the full non-linearity in the Serre-type equations is found to be
important for predicting the wave amplitudes of dam break waves. The weakly non-
linear Boussinesqg-type model produces exaggerated wave amplitudes, although this
effect diminished when wave breaking is included. In general, the consideration of the
full non-linearity is preferable.

» The use of the Serre equations with enhanced linear frequency dispersion is found to
not giving an improvement of computational predictions as compared to the
experimental data. Therefore, use of this more complex system of equations is not
needed in shallow open channel flows.

* The proposed finite volume scheme for solving the Serre equations with wave
breaking produces results in agreement with the experimental data (Stansby et al. 1998)
and the 3D solution of the RANS equations (Marsooli and Wu 2014). The accuracy of
the solution without wave breaking is found to be similar to that developed by
Mitsotakis et al. (2014) with the standard Galerkin finite element solution. The present
finite volume results are better than those generated by using the finite difference
methods (Mohapatra and Chaudhry 2004).
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8. Notation
The following symbols are used in this paper:

a = shallow water wave celerity (m/s);
b = MUSCL-TVD-4" coefficient;
by = MUSCL-TVD-4" coefficient;
C = solitary wave celerity (m/s);

CFL = Courant-Friedrichs-Lewy number;

E = auxiliary vector (m/s, fts?);

F = Froude number;

Fo = Froude number of solitary wave;

F = vector of fluxes in sdirection (nf/s, nt/s?);
g = gravitational acceleration (nf)s

= solitary wave amplitude (m);

h = flow depth (m);

he = critical flow depth (m);

h« = flow depth in star region of Riemann problem (m);
her = critical free surface slope;

hy = initial downstream flow depth (m);

ho = still water depth (m);

hy = initial upstream flow depth (m);

hy = free surface slope hiox;

h« = free surface curvaturé®h/ox® (1/m);

i = cell index in xdirection;

k = time step index;
m = pressure distribution coefficient;
q = non-dimensional correction factor to shallow water wave celerity in HLL
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solver;

q = discharge (1s);
r = depth ratio;
S = signal speed (m/s);

S,Z = source terms vectors (m/s¥/g);

T = normalized time;

t = time (S);

U = depth-averaged velocity (m/s);
Uc = critical velocity (m/s);

U, W = vectors of unknowns (m, #s);

u = velocity in xdirection (m/s);

u = non-dimensional depth-averaged velocity;
us = velocity at a reference level (m/s);

w = velocity in zdirection (m/s);

X = normalized horizontal coordinate (m);
X = horizontal coordinate (m);

y = auxiliary variable (rfis);

z = vertical coordinate (m);

z, = reference elevation (m);

a = normalized reference elevation;

At = time step (s);

AX = grid size (m);

7 = wave-breaking empirical factor;

1, 71, y3= wave breaking factors;
n = normalized free surface elevation;

W = non-hydrostatic term (&’); and
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¥ = stream function ().

Subscripts

* = previous iteration;

L, R =left and right control volume interface; and

g, (1), (2), (3)=time stepping intermediate levels.
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Abstract

The dam break flow over a movable bed is an important problem in fluvial flow
processes. These flows are usually predicted by a one-dimensional (1D) approach based
on a hydrostatic pressure distribution. Recent 3D non-hydrostatic simulations of dam
break waves over movable beds based on the Reynolds-averaged Navier-Stokes
(RANS) equations revealed that Saint Venant theory is not accurate predicting the flow
dynamics within the scour hole developed. In this work, a generalized 1D non-
hydrostatic model for flow over movable beds is proposed assuming a linear, non-
hydrostatic, pressure distribution. The new set of 1D equations account for the vertical
acceleration, which is important in dam break waves over movable beds, given the
instantaneous curved beds generated over the erodible terrain. These equations account
for both the bed- and suspended-load transport modes. A high-resolution finite volume
numerical scheme with a semi-implicit treatment of non-hydrostatic terms is developed
to solve the governing equations, producing solutions that are in good agreement with
3D computational results and experimental data. The free surface profiles predicted by
the new model show a significant improvement as compared to those obtained from the
existing hydrostatic simulations. The unsteady non-hydrostatic simulations are shown to

be convergent to steady flow solutions with non-hydrostatic pressure.
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1. Introduction

Dam break flow is a topic of continued research interest given its tremendous
detrimental effects. The usual engineering approach to predict these flows relies on the
use of depth-averaged shallow water wave models based on a hydrostatic pressure
distribution (Wu 2008). In recent years, hydrostatic shallow-water flow models were
extensively investigated. Wu and Wang (1999, 2007, 2008) developed Saint Venant-
type mixture flow equations for dam break flows over erodible beds. Fraccarollo and
Capart (2002) proposed a two-layer movable bed dam break flow model with separate
simulations of clear water and mixture sediment-water layers. Li et al. (2013) developed
a double-layer averaged model. Capart and Young (1998, 2002), Cao et al. (2004) and
Zhang et al. (2013) developed models for dam break waves over erodible bed
considering non-equilibrium sediment transport conditions. Wu et al. (2000, 2004)
studied non-uniform sediment transport using 3D and depth-averaged models. Wu et al.
(2012) treated the non-cohesive embankment breaching. Geomorphic shallow water
flows, as the dam break waves over an erodible bed, requires consideration of fluid
motion and erosion/deposition of particles. It is widely accepted that the shallow water
flow approximation with hydrostatic pressure produces a reasonable balance between
computational efforts and accuracy of results (Greco et al. 2012). An alternative to the
two-layer formulation follows the two-phase flow approach pursued by Greco et al.
(2012). Therefore, the development of a model for fast geomorphic flows require the
study of a number of components, including the type of formulation to simulate
sediment transport processes (mixture model, two-layer model or two-phase flow
model), and the hypothesis to close the momentum equations for the fluid flow above
the erodible beds. While huge efforts were made to produce physically accurate
sediment transport components, the fluid flow above the erodible bed is routinely
assumed to be governed by a hydrostatic pressure distribution. This limitation is
important, given that the models based on the hydrostatic pressure distribution ignore
the vertical flow acceleration. Marsooli and Wu (2015) conducted a detailed and
accurate assessment of the importance of non-hydrostatic simulations over movable
beds using three-dimensional (3D) computations. Non-hydrostatic pressures are
generated by local and convective accelerations in a variety of flow problems. Examples
are the initial stages of the dam break flow over rigid beds, the flow above the scour
hole formed in the dam break wave over an erodible bed, or the flow at obstacles

embedded in the natural streambed downstream of the dam, such as a bridge pier
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(Marsooli and Wu 2015). However, to the best of the authors’ knowledge, no attempt
has so far been made to develop a depth-averaged model considering the non-
hydrostatic pressure distribution and the sediment transport for dam break waves over
movable beds. Thus, it remains untested to what extent the non-hydrostatic pressure
distribution closure law to the 1D momentum equations of the fluid flow above an
erodible bed produces results in conformity with nature.

The literature on depth-averaged non-hydrostatic open channel flow is extensive. It
is well known that Boussinesg-type equations can simulate undular bores and the
formation of dunes and anti-dunes in erodible beds (Wu 1987; Onda and Hosoda 2004,
Onda et al. 2010; Bashiri et al. 2015). Castro-Orgaz et al. (2015) presented a recent
review of the topic of Boussinesq equations, and detailed applications in geophysical
contexts, including avalanche dynamics. The process to produce vertically integrated
systems for unsteady non-hydrostatic flows is described in detail therein. One of the
most accurate models developed for unsteady non-hydrostatic flow over rigid beds was
presented by Khan and Steffler (1996a,b). It is a finite element numerical model based
on the momentum and moment of momentum equations developed by Steffler and Jin
(1993). In this method, each degree of freedown assigned to velocity and pressure fields
in the form of a perturbation-type function was handled by a closure transport equation
derived by using a weighted residual method. Khan and Steffler (1996a,b) showed that
this system may be simplified to a Boussinesqg-type model, and physically good results
were still feasible. Both the original momentum and moment equations model, and its
simplified Boussinesg-type version, were developed, however, for clear water flow over
rigid beds. Khan and Steffler (1996a,b) demonstrated that the consideration of non-
hydrostatic pressures in flows over curved beds was of great importance. Given the
scour hole generated in dam break flows over erodible beds, where the bed is curved
(Wu 2008), some influence on the computation of flow profiles in dam break waves
over erodible beds is expected. The free surface profile in the vicinity of this scour hole
shows, experimentally, an undulating free surface, which suggests the influence of a
non-hydrostatic pressure on the flow dynamics (Onda et al. 2004, 2010). Based on these
observations, the main motivation of this study is to investigate the impact of non-
hydrostatic pressures on dam break flows over erodible beds. For this task, a new 1D-
depth-averaged, unsteady, non-hydrostatic model for flow over curved, erodible beds, is

developed. Formulation of such a model requires the integration of the RANS equations
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in a vertical plane considering that the bed is deforming in space and time due to
erosion/deposition processes, whilst the fluid flow is composed of a mixture of water
and sediment with an average density, which is also a function of time and space
variables. The developed equations are shown to be a generalization of the Boussinesg-
type equations by Khan and Steffler (1996a,b). A non-equilibrium sediment transport
model is used based on Wu and Wang (2007) with some modifications (Wu 2015). A
robust and accurate high-resolution finite volume scheme was developed for the new set
of physical equations, and the solutions are tested against the experimental data of
Fraccarollo and Capart (2002) and the results of the 3D numerical solution by Marsooli
and Wu (2015).

2. Governing Equations

We consider 1D unsteady non-hydrostatic free surface flow over an erodible bed in a
vertical plane (Fig. 1). The elevation of the static erodible bed of sedinmz(i,is and

the fluid flow above is composed of a mixture of water and sediments. The dynamic
flow above the bed is composed of a bed-load layer, where the flux per unit wagth is
and a suspended-load layer. The flow depth(ist), the discharge ig(xt) and the
depth-averaged velocity in thedirection is U(X,t)=g/h. The depth-averaged mass
conservation equation for the mixture flow layer integrating the RANS mass
conservation equation in a vertical plane is

a(eh) , A(phV) , 3p,2) _

1 1
ot 0Xx ot @

where p(x,)=mass density of water-sediment mixture, given &, (1-C)+oC;
pw=Clear water mass densitgi=sediment mass densitZ:(x,t)=depth-averaged total
sediment concentration in the fluid layer of thicknésgsuspended plus bed-load
layers); p,=mass density of static bed layer, defineghao,pmt+os(1—Ppm); pr=Sediment
porosity; t=time; and x=streamwise coordinate. Integrating the RANS and z

momentum equations for a mixture flow in a vertical plane yields, respectively,

6(phU)+6( o1 J_ 0z, 97, a(hplj
O ohuz+l g |=—pghd% g - p2%_0 (MR},
a ax\ P TPl PO 0T Ry Taxl 2 @
d(phW) N d(phUw) _ 0z,
=p-7.%, 3
at x Tk @)
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suspended
load layer

bed
load layer

x
Fig. 1. Definition sketch of 1D non-hydrostatic flow over an erodible bed

To obtain Egs. (2)—(3), it was assumed that the velocity ir-thieection is uniform
and equal to its depth-averaged valliethat the vertical velocity and non-hydrostatic
pressure distributions are linear, and the stress state at the bed is of pure shear.
Mathematical details of the vertically-integration process are given in Steffler and Jin
(1993) and Castro-Orgaz et al. (2015). In the abawgravitational acceleration;
n(x,t)=bed shear stressp;(x,t)= pressure at bed in excess of hydrostatic; and
W(x,t)=depth-averaged vertical velocity component. The depth-averaged vertical
velocity W can be expressed in terms of the depth-averaged streamwise velasitygU
the kinematic boundary conditions at the bed and the free surface levels. The resulting
equation is (Castro-Orgaz et al. 2015)
wherews and wy,=vertical velocity at the free surface and the bed sediment surfaces,
respectively; ands=free surface level (#z,). Eqgs. (1)—(4) are generalized equations
for unsteady non-hydrostatic flow with bed- and suspended-load transport over erodible
beds. Note the presenceaz/ct allowing for a movable bed, and tle concentration
of the sediment mixture. These terms are absent in Khan and Steffler (1996a,b) model.
Further, in the original model solved by Khan and Steffler (1996a,b), the horizontal
velocity profile was set using a linear function as a perturbation from uniformity, whilst
the vertical velocity and pressure varied quadratically. Letting the streamwise velocity
profile be uniform and equal to its depth-averaged vadlyeand assuming linear
variations for the vertical velocity and pressure, they obtained a Boussinesg-type model.
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For clear water flow over rigid beds, Eqgs.(2)—(4) simplify to the Boussinesq model by
Khan and Steffler (1996a,b), that was verified to be a significant improvement over
Saint Venant equations for flow over curved beds. Therefore, in Egs. (2) and (3), the
non-hydrostatic pressure distribution is prescribed using a linear function (Fig. 1)
(Castro-Orgaz et al. 2015), following Khan and Steffler (1996a,b) Boussinesqg-type
version of their momentum and moment of momentum model. The rigorous
mathematical formulation for Boussinesq-type equations, however, relies on a
hydrostatic pressure component corrected by a quadratic variation due to non-
hydrostatic terms (lwasa 1956; Onda et al. 2010; Castro-Orgaz et al. 2015). Castro-
Orgaz et al. (2015) compared "exact" Boussinesg-type equations based on the quadratic
pressure distribution with Khan and Steffler (1996a,b) Boussinesqg-type equations based
on the linear pressure distribution. They found that the non-hydrostatic terms accounted
for in both formulations were similar, with an identical bottom pressure head function.
However, a different correction factor emerged in the dispersion part of the differential
equation describing cnoidal and solitary wave solutions. For steady flow solutions (or
travelling waves), the momentum is conserved, leading to the differential momentum

equation describing cnoidal and solitary waves

h—22 +g-;(1+%j = const, (5)
whereh,=dh/dx andh.=d*h/d¥. Eq. (5) is derived from Egs. (2)—(4) assuming steady,
clear water, frictionless flow over a rigid and horizontal bed. For the "exact" Boussinesq
equations, the non-hydrostatic term in Eg. (5) is divided by a factor equal to 3, rather
than by 4, as it is based on the linear pressure distribution. Therefore, Eqgs. (2)—(4) are a
Boussinesqg-type model where cnoidal and solitary wave solutions are embedded, with a
particular averaging factor affecting the dispersion part of the model. The linear, non-
hydrostatic pressure law gave good results for dam break flow over rigid beds (Cantero-

Chinchilla et al. 2016), and it is therefore adopted here.

The bed shear stress is computed from

2U|u
r, = pg “”RVL § 6)

where n,=roughness coefficient including sidewalls effects; &wdhydraulic radius.

The value oh,, is estimated from the following expression (Wu 2015):
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ohf 32 + pn?2)7°
= (W—j ' (7)

2h+b

wheref,, andn=Manning roughness coefficients for sidewalls and bed, respectively; and

b=channel width.

The sediment transport phenomenon is included in the vertically-integrated flow
equations with non-hydrostatic pressure [Egs. (1)—(3)] as highlighted by the presence of
the functionsp(x,t) and z,(x,t). These flow variables are related to the bed- and
suspended-load fluxes, thereby implying that additional transport equations are needed.
Here, the sediment transport model of Wu and Wang (2007) is used to complete the
system of governing equations. The 1D depth-averaged mass conservation equation for
the suspended sediment, neglecting the thickness of bed-load layer, is (Wu and Wang
2007; Wu 2008):

a(hC) N d(huq)
ot 16)4

=E-D, (8)

where CqXx,t)=depth-averaged suspended sediment concentration; E¢xt and
D(x,t)=entrainment and depositional rates of sediment, respectively. The mass balance
in the bed-load layer is (Wu and Wang 2007; Wu 2008)

MG) 9%, q_p 9% -p_g, ©)

ot 0Xx ot

where hy(x,f)=thickness of the bed-load layeGy(x,t)= depth-averaged bed-load
sediment concentration; agg(x,t)=bed-load flux. Following Wu (2004), the evolution
of the static bed of sediment can be determined from

%:;(D_Buj, (10)

o 1-p, L
where L=non-equilibrium adaptation length of total-load transport; apdx,t) =
equilibrium bed-load flux. Nakagawa and Tsujimoto (1980) developed an alternative
1D non-equilibrium sediment transport model, extended to 2D flows by Nagata et al.
(2000, 2005). Inserting Eq. (10) into EqQ. (9), and usjpd,U,Cy, the bed-load mass

balance equation is rewritten as

9% ],9%_% "5 (11)
ot\u, ) ox L
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whereUp=bed-load velocity, approximated herelgWu and Wang 2007). Inserting
the definitions o=0,(1-C))+0L; and C=Cs+qy/(hU) into Eqgs. (1}(3), the complete
system of conservation laws is rewritten as

oh, oY) _ 1 (E—D+—qb*_q)j, (12)
ot ox 1-p, L

002 (1, L] ta 32512 )
P pox\ 2

ot 0x 0x ; X oXx
e c , (13)
_ghz p IOS pWU 1- E_D+qb* obj
2 0x P - P L
o(hw) L o(hUW) _ py _ 7, 92, _ P~ Puyy[,_ G (E D+ "% j (14)
ot 0X L P oX P 1-p, L

Inserting Eqgs. (10) and (12) into Eq. (4) permits to rehitas

Wzi{— 1 (E—D+qb*_q°j—a(hu)+ua_23+ua—zb] (15)
1-p, L ox (o) X

which is the form used in the numerical model.

3. Governing Equations

To close the depth-averaged non-hydrostatic erosion model presented in the preceding
section, it is required to determine the sediment transport fun@idaso,+, andL. The

bed sediment fluxes are definedRswC, andE=wC,+, wherew=settling velocity of

a sediment particle; an€, and Cy=actual and equilibrium near-bed suspended
sediment concentrations, respectively. These are computed following the work of Wu
and Wang (2007). To compute the equilibrium bed-load g several empirical
formulations are considered for comparative purposes, including the classical equations
by Meyer-Peter and Miller, Yalin and van Rijn’s (Dey 2014), and also the recent one
by Wu et al. (2000). In unsteady flows, a certain distance is required to reach the
equilibrium condition of the sediment transport. This lengtls defined as the non-
equilibrium adaptation length, and it is computed here following Wu (2008). Non-
equilibrium adaptation lengths can be defined for the total sedimentUpasli§pended

load (s) and bed-loadL(,).
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4. Numerical Scheme

4.1. Finite volume M ethod
The governing equations for non-hydrostatic unsteady open channel flow over an

erodible bed can be written in conservative form as follows:

ou  oF
+ O _

—+— =5, 16
ot ox (16)
T h T hu
hU hU2+%gh2
hw
U= he | F= huw , (17)
/L hUC,
Oy 4
L 4 I 0 |

1 (E— D+~ % _q’j
1-p, L

—gha—zb—i_&a_zb_li(mj_l i ap

oX p p 0x ;ax 2 _29;&

_los_lowu{l_ CI j(E_D_'_ qbfqubj

p 1-p,
S= , 18
BT 0% P Puyy(1- C (E_m qb—ogj (18)
p pox p 1-p, L
E-D
O — %
L
1 (D—E+—qb_qb*j
1-p, L

whereU, F, and S= vector of unknowns, fluxes, and source termgaetively.

According to Toro (2001, 2009), the integral solution of Eqg. (16) over a rectangular

control volume in thex plane is

ou 1
(E) = _E(Fiﬂlz -F_2)*S, (19)

whereF, S, andoU/ct=cell-averaged vectors within the control volume-{t) in thex-

t plane, of fluxes, source terms and time-derivatives of unknown variables, respectively.
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Here, Ax and At=dimensions of the control volume ¥ andt-directions, respectively.

The index i+1/2 refers to the control volume interfaces between noded 1.

A finite volume numerical scheme is developed based on Eq. (19). To solve
Boussinesqg-type equations, a high-resolution scheme in both time and space is required
(Abbott 1979; Wei et al. 1995; Kim et al. 2009). If second-order accuracy is used for the
discretization of both Saint-Venant and dispersive terms, then the truncation errors
originating from the Saint-Venant terms have, mathematically, the same form as the
physical dispersive terms introduced into the governing equations by the Boussinesq
approximation. Form a practical side, if such a system is numerically solved, the
dispersion features are a combination of the true frequency dispersion originating from
the Boussinesq terms, plus a "numerical" frequency dispersion introduced by the
truncation errors. To avoid such an undesirable phenomenon, discretization of the Saint-
Venant terms on Boussinesg-type equations is conducted using a high-resolution
scheme, while the discretization itself of the non-hydrostatic (dispersive) source terms is
conducted using second-order accuracy formulae (Abbott 1979; Wei et al. 1995; Kim et
al. 2009). Therefore, the fourth-order monotone upstream centred scheme for
conservation laws (MUSCL-TVDY) is used to reconstruct the conservative variables
at the interfaces of the finite volumes. The Surface Gradient Method (SGM) (Zhou et al.
2001) is applied to reconstrugf to avoid unphysical flow over variable topography
under static conditions. Then, the flow depth is computeti=as-z,. The intercell
numerical fluxes are determined by applying the HLLC approximate Riemann solver
(Toro 2001, 2009) to the reconstructed variables.

4.2. Time Stepping

To reduce truncation errors and produce non-hydrostatic simulations free of any
numerical influence, a high-resolution time-stepping method is advisable for
Boussinesqg-type equations (Wei et al. 1995; Kim et al. 2009). Thus, the high-order
Adams-Bashforth/ Adams-Moulton (AB-AM) time stepping scheme is selected to
compute non-hydrostatic dam break flows over erodible beds. Simulation of these flows
is, however, complex. The presence of source terms originating from the non-
hydrostatic pressure distribution provokes instabilities if these terms are explicitly
evaluated at time levek. Therefore, an implicit treatment of the source terms is
necessary to produce a stable numerical solution of the system of equations. The AB-

AM scheme requires the solution fdrat 3 previous time level&,(k—1 andk-2), given
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that it is not a self-starting scheme. Thus, the first two time steps must be computed by
an alternative time-stepping scheme.

For the first time step, the Euler time stepping formula is used to explicitly Bplve
U, w, Cs, gp, andz, at time levelk+1, because, is zero at the initial static condition

before the dam break. From Eg. (19), one gets
k+1 k At k k k
U =y, _&(Fi+l/2 - Fi—1/2) +S/At. (20)

For the second time step, the Euler time stepping formula is used again. However,
the momentum equations, Egs. (13) and (14), require an accurate treatment. Inserting
Eq. (15) into Eq. (14), the dependence \&hin the vertical momentum balance is
eliminated. Given that at time levek+1 appears also in Eq. (14) after using Eq. (15),

p; cannot be solved explicitly from tremomentum equation. Therefore, the system
defined by Egs. (13)14) is implicit. Attempts to solve the system by explicit
approximations failed, given that strong numerical instabilities were generated, even
using very small time steps to initiate the computations. ValupsaidW determined

by explicit computations using a fractional step approach generated unstable results that
ultimately crashed the numerical computations. Therefore, an implicit numerical
scheme is developed as follows. Eqgs. (13) and (14) produce an implicit system of two
equationsX- and zmomentum equations) and two unknown variablearid p). Using

the Euler time stepping, the integral form of Egs. (13) and (14) reads

hk+lU~k+l - Clk - At —p—]jk Zbikﬂ _ %ik‘l _i b1 M+1™ ﬁ Ié( 1| — ' (21)
| ok 2ax pf 21X
T O e .t Vi
2 1 Prn I—, 2AX 29
k+1 k+1 k+1 kt+1 Elj ( )
+U k+1 Zsinn ~ i +U k+1 Gis1 — Gia -0
20X 20X

where
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Clk = hkUik —E{(hUZ)ﬁuﬁ% g( i+1/2)2 —( hU2)| v2~ d hl/Z) }

) r.K 1 (K) p* -p"
+At|: ghk Zb| 12AX4J| 1 #_Eg([l)k) 10| 12AX| 1 , (23)
- k k _ ~k
_Ps kpwuik{l_ fti j{ak_D'k-'- Oy 8 Qi j
P 1-pn, L

CE = W - [ (UMW, ( UV,

k Kk . (24)
+At| - Tb|i< Zb|+l %I -1 ps prk (1 C j{E Dk qb i Gol j
P 2Dx P 1-p, L

Second order central finite differences are used for the spatial derivatives in Egs.
(21)-(24), simplifying the implicit scheme. Therefore, the unknown flow variables in
Egs. (21) and (22) afg.;**, U, Ui/, andpyia, pu¥, pu+. The implicit system is
solved iteratively using the Newton-Rapshon method with an analytical Jacobian
matrix. At the end of each iteration stage, the valudg ahdp, are used to initiate the
next cycle. TheCX and C)* are invariants during the iteration process. After

convergence of the numerical solution, Weatk+1 is given by

Vvik+l - — 1 ( E D 4+ ot Tbi qb i Cl)| J
Prm L
hk+1U k+1 hk+1U k+1 k+1 k+1 é«rl _ (25)
_ i+1 +U k+1 %|+1 %| -1 +U k+1 i+1
2Ax 2Ax 2Ax

Once the first two time steps are computed by using the Euler scheme, the AB-AM

time stepping scheme is initiated and used onwards.
The cell averaged derivative in Eq. (19) is written as

u_

o (26)
where Eis
E=-(Fuy,-Fy)*S. (27)
AX
The Adams-Bashforth predictor step for Eq. (26) is given by
UP =Uf +%(23Eik —1E"+ P, (28)
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where p=predictor step index. In this step, the implicit integral form of Egs. (13) and
(14) is discretized as follows

k k _ Sk _
hPUip_qk_i_:At(_% Zbi+;AX%i—1_% Iﬁrl Eﬁ;AXhl Ef—lj:O, (29)

1 1 Ol —QF ) hPUP-hPUP,
hp_|:_ {Ek_ Dk+ o* i - i 1+1 1
2| 1-p, I

20X
(30)
U k+1 Z3|+1 ZSI 1 +U|k+1%'+1—g'p1 —Czk é)’At—Q< 0,
2AX 20X 12 i
where
= hFu + ( —16E/" + FE?)
23 At 2 1 2
EA_{ T+1/2+_9(H11/2) _(huz)ik—llz_E g( |iJi;1/2) }
1
+§At ghk Zb|+l ZDI]. Tbl _1g(ﬁ) [)'ﬂ p -1 (3 )
20 pf 27 g 2Ax

_ k
_IOS kaUik 1 f EI Dk qb i q)l '
[)i pm I‘i

23 At
Do o QUW iy, = (HUWE, |

k . (32)
23A Tbl Zb|+1 %I -1 105 prk 1- C E| Dk qb i qt)l
12 pof 20X or 1-p, L

hW+ (16Ek1 HEkZ

The implicit system for the Adams-Bashforth predictor scheme is solved iteratively
using the Newton-Rapshon method with an analytical Jacobian matrix to cobhpute

and p. After the iterations, th@/ at p is given by

V\/ip= 1 (E D+qb|Lq:)|j
p ‘
m 1 (33)
hE1U|F+)1 hp = 1+U k+1 Zs.+1 % 14kt g1+l I;pl
20X ' 20X ! 20X

From Eq. (28), once the iterative numerical solution converge$, tieW, Cs, qp,
and z at p and pat kare determined and used to initiate the corrector step.

The iterative Adams-Moulton corrector step for Eq. (26) reads
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Ukt =yt + (9Ep+1§E" FE+E). (34)

The implicit system formed by th& and zmomentum equations is solved
iteratively using the Newton-Raphson method with analytical Jacobian matrix for each
time step during the iterative Adams-Moulton time stepping scheme. The integral,

discrete version of Egs. (13) and (14) for the Adams-Moulton corrector step, gives

+ + 9 p].ip %2 B %H 1 ri 92 B ﬂ PE
klU.k 1_ p_—At _ M i+l i-1_ = il 1 1 1 =O, 35
UG 24 ( PP 2Ax o° 20X (35)

hk+11 E,p Dp + qb*ip — qup _ hkﬂullgl hkll =
2| 1-p, Ly X 36
ZSk+1 ng+1 %k+1 ékﬂ 9 E? ( )
Uk+1 i+1 -1 +Uk+1M -CJ ——At—p: )
2AX 2AX 24 P
where
hU+ (16Ekl E?)
23 At 1 ?

_EE[ ﬁuz"' g( +1/2) - (hu?)? i-1/2 E g( iifl/Z) }

(37)

+§At hp Zb|+1 4”1 Tb:(_lg(H))z 1+1 'Olfl ,
12 20X o< 27 pf 2AX

—Muip(l Cp j(Elp Dp+qb| QM Jj|
P’ 1-p, LP

23 At
oA —[ OUWY),,, — (hUWY,,, |

. (39)
+2—3At{ Tbl Zb|+1 %Il IOS Iowwp(l Ctlp J(El Dp+qbl Qi J}

hW+ (16Ekl Ekz

12 | p* 2Ax P 1-p, L?

After the iteration, one geW} atk+1 as given by

NV RS S (RPN VT CAN Uil
| 1= Pn L 20X

k k | k k (39)
+1 +1 +1 +1
+U ke ZLsisn ~ L1 +U kil b1~ i

2AX 2AX

4.3. Computational Sequence
The numerical solution at each time step is obtained by the following sequence:
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(1) The solution Uat time level Ks reconstructed using MUSCL-TVD"4

(2) The numerical fluxF+12 is computed at cell interfaces with the HLLC Riemann

solver using the reconstructed valuehpU, w, C,, andq,. The surface gradient
method is applied.

(3) The solutionU at time levelk+1 is computed applying the hybrid time stepping

(4)

()

(6)
(7)

sequence:

(a) The first time level is computed applying the Euler time stepping scheme

with explicit evaluation of the source terms.

(b) The second time level is computed applying the Euler time stepping scheme
with implicit evaluation of the source terms originating from the momentum
balance inx- andz-directions. ThdJ atk+1 and thep; atk are calculated by
solving thex- andzmomentum implicit system using the Newton-Rapshon
method with analytical Jacobian matrix until a convergence is obtained. The

variables h, § g,, and g are explicitly determined atti.

(c) The third time level onwards is accomplished by computing the AB-AM
scheme. Firstly, the Adams-Bashforth predictor scheme is applied, solving
an implicit system of equations to obtdih at p andp; at time levelk.
Hence, usingh, U, C, ¢, andz, at p andp; at k, the iterative Adams-
Moulton corrector scheme is initiated to calculaté®), C,, gy, andz, atk+1
and p; at p. BesidesU at k+1 andp; at p are also solved by using the
implicit Newton-Rapshon method. The loop is repeated until a convergence
is obtained. Two Jacobian matrixes are computed at each iteration in the AB-
AM scheme for using in the implicit Newton-Raphson method until a

convergence is obtained.

The cell-averaged variabldés U, C;, gp, andz, at time levelk+1 andp; at time

level kare accepted.

The p andC; are computed at time leviet1 using the functiong=g,(1-C)+aCt
and G=Cst+qy/(hV).

TheW and the sediment transport functionsB)qy+, and L, are computed at.

For a new time level, steps 1 to 6 are repeated.
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The numerical scheme developed here encompasses an accurate predictor-corrector
time stepping scheme where an implicit solution ofith@ndz-momentum equations at
each time step is required to get a stable contribution of the non-hydrostatic terms in the
numerical solution. Use of other time stepping schemes like the Euler scheme or
consideration of an explicit evaluation of the source terms, resulted in highly unstable
schemes. The application of the Euler time scheme for the first two steps requires use of
a low CFLnumber. To reduce errors and instabilities, a value of the Courant-Friedrichs-
Lewy numberCFL<0.1 is used in the first 10 time steps and a valu€mBit<0.5
thereafter. The need of using these value€iet is a disadvantage as compared to
Godunov-type finite-volume numerical models to solve Saint Venant equations, where a
value of CFL=0.9 is typical (Toro 2001). Even for the solution of Saint Venant
equations, it is advisable to use a smaller time step size at the initial stages of the
motion, to compensate the approximate estimation of the maximum signal speed to
computeCFL (Toro 2000, code "HW_MUSH.F"). In "HW_MUSH.F", the time step
size is reduced to 0.2A4luring the first 5 steps. Other methods to solve Saint Venant
equations require values QfFL below unity. The discontinuous method of Galerkin
(Khan and Lai 2014) is usually implemented based on TVD Runge-Kutta schemes for
the time-stepping, with a typical value for stabil@L<1/3 using a linear polynomial
for space discretization. Solution of Saint Venant equations using the discontinuous
method of Galerkin based ddFL=0.1 are not unusual. Solution of Boussinesg-type
equations in coastal engineering problems are typically done bag&ele®.5 (Kim et
al. 2009).

Given the complex system of equations to be modelled, a rigorous analysis of the
stability was not found possible. By numerical experimentation, we determined that the
scheme is stable faCFL<0.5. It is pertinent to mention that to initiate the implicit
system calculations, the informationWfatk is used. Howeve, does not need to be
initiated; so that a zero vector is assumed. The numerical scheme was found to be robust
as fast converging to the solution. It is more complex than the classical finite volume
solutions of the hydrostatic Saint-Venant equations. However, by extensive numerical
experimentation, it was not found possible to implement a fully explicit scheme. Bashiri
et al. (2015) developed a Bousisnesqg-type model for free surface flow in conduits,
where the dispersion terms were treated implicitly. A possible alternative to the hybrid

scheme developed in this work is to produce a fully implicit scheme. The convergence
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criterion ¢e<10* was adopted for both the implicit Newton-Raphson method and the
AB-AM scheme.

5. Test Cases

Non-hydrostatic movable bed computations are compared with experimental data for
Taipei (Capart and Young 1998) and Louvain (Spinewine 2005) tests cases, following
the former analysis by Fraccarollo and Capart (2002) using hydrostatic computations.
The mesh independency of the model is then examined, and several equilibrium bed-
load formulas are assessed. The experimentally-adjustable parameters are determined
based on experimental observations (Fraccarollo and Capart 2002). Simulations
conducted with the 1D non-hydrostatic model are compared to the results from the 3D
simulations by Marsooli and Wu (2015). The convergence of the present model results

to steady non-hydrostatic flow solutions is finally investigated.

5.1. Dam Break waves over Movable Beds

Figs. 2 and 3 present the computational results for dam break waves over erodible beds
based on the present 1D non-hydrostatic model, and those when non-hydrostatic terms
are suppressed. The 1D hydrostatic model is obtained neglggtimyEq. (2), and
removing thezzmomentum equation [Eq. (3)] from the system. The resulting physical
model is then coincident with the 1D hydrostatic model presented by Wu and Wang
(2007), with differences in the model closure relationships and the numerical scheme.
The experimental data of Figs. 2 and 3 are selected from the Taipei and Louvain test
cases (Capart and Young 1998; Fraccarollo and Capart 2002). Both sets of experiments
correspond to laboratory observations, where the flow depth upstream of the dam was
h,=0.1 m and the tailwater portion of the flume was dry. Gadformula proposed by

Wu et al. (2000) was selected; valuesAgfE0.75 cm,CFL=0.01 for the 10 first time

steps andCFL=0.4 for the rest of the computational steps are set in the numerical
model. According to Wu and Wang (20010,=0.6, L,=0.25 m, ap=2, f,=0.01, and
n=0.025 are used as simulation data for both test cases. The bed sediment layer
porositiespy, are 0.28 and 0.3 for the Taipei and Louvain tests, respectively. The dry
downstream bed is simulated by adopting a very small flow deph 0005 m. This
technique is accepted for dam break flow simulations (Wu 2008), although this is not
conceptually correct (Toro 2001). Alternatively, a zero tailwater depth can be prescribed

if an algorithm to preserve positivity in the computed water depths near the wet-dry
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front is implemented (Wu 2008).

In Fig. 2, the Taipei test experiment (Capart and Young 1998) is simulated by using
both non-hydrostatic and hydrostatic models at tite@%, 4% and 5% after the dam
failure, where the time scaling fs=(h,/g)“’=0.1 s. The sediment particles used in the
Taipei test were artificial pearls covered with a shiny white coating, haséd mm,
0=1048 kg/ni, andw=7.6 cm/s. The flume was sufficiently long and deep With.2
m to satisfactorily carry the experiment. The results obtained from the hydrostatic
simulation are in agreement with those obtained by Wu and Wang (2007) model. The
model accurately reproduces the bed profile eroded by the dam break tte8t @nd
4ty [Figs. 2(a and b)], whilst the bed profile data=dit, is somewhat overestimated in
the lowest zone [Fig. 2(c)]. The free surface profile is composed of a negative smooth
wave (monotone wave with propagation in negaxhgirection), followed by a train of
undulations above the scour hole, ending in a positive wave where its edge is a wet-dry
front propagating in the positivedirection. This free surface profile is not accurately
reproduced by means of the hydrostatic pressure-based model. Note that the
experimental data shows free surface undulations at the vicinity of the positive wave
portion, not predicted by hydrostatic computations. Further, the shape of the smooth
negative wave is also not precisely reproduced by the hydrostatic model. However, the
position of the wet-dry front predicted by the hydrostatic model is in agreement with the
experimental data. The non-hydrostatic results for the eroded bed profiand 4
reasonably reproduce the upward bed slope. The backward bed slope and the trough of
the bed profile are shifted to the right in the simulations of Figs. 2(a and b) with respect
to the experimental data. This behaviour is highlighted in the bed profile prediction at
t=51 [Fig. 2(c)]. The present 1D non-hydrostatic model gives improved predictions for
the free surface profile. The overall trend of the free surface oscillations near the
positive wave att=3t;, 4t and t=5ty is reproduced. The smooth negative wave is
predicted with good accuracy by the non-hydrostatic model. Note that the free surface
undulations propagate in the upstream direction. The flow profile is somewhat
underestimated at the early dam break stages [Figs. 2(a and b)]. However, the inclusion
of non-hydrostatic modelling for the free surface profile results in physically improved
results as compared to hydrostatic approximations, due to the inclugmnnothe x-
momentum balance and/ via the zzmomentum balance. Non-hydrostatic modelling

permits to mimic the undulations near the positive wave portion and determine with
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accuracy the shape of the negative smooth wave.

(a)

Fig. 2. Comparison of the present non-hydrostatic and hydrostatic models with the Taipei test

1 -

=31,

] — Non-hydrostatic o Ap
71— Hydrostatic e
-0.5 1 B Measured free surface (Capart and Young 1998)

]l A Measured bed (Capart and Young 1998)
—— T T T T T T

7.5

experimental data of Capart and Young (1998): (araty; (b) att = 4ty; (c) att = St

The study of the Louvain test experiment at tinvésty, 7.5¢ and 104 after the dam
break is presented in Fig. 3. In this experiment, Fraccarollo and Capart (2002) used
cylindrical PVC pellets as sediment particles, hawig.5 mm, ps=1540 kg/mi, and
wp=18 cm/s. The flume had a widtb=0.1 m. The hydrostatic model produces
simulations of the eroded bed profiles with some divergence from the experimental
results, but in overall agreement with the hydrostatic simulations of Wu and Wang
(2008). The depth of bed scour is overestimated by the hydrostatic model at the three
dam break stages. The non-hydrostatic simulations give similar eroded bed profiles. The
free surface profile predicted by the non-hydrostatic model is however better than that

predicted by the hydrostatic model. The improved predictions of the negative wave and
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the undulations near the positive wave portion are evident. It may be noted that the flow
profile undulations observed in the experimental data are fairly well simulated by the

non-hydrostatic model.

() !
= 0.5
=< ]
% i
'Q: O A A A
\[\]z 71— Non-hydrostatic

{=—— Hydrostatic

05 J O Measured free surface (Fraccarollo and Capart 2002)

1 A Measured bed (Fraccarollo and Capart 2002)
——T T

b) '3

0.5

Zs/hm Zb/hu

z/h,z,/h

Fig. 3. Comparison of the present non-hydrostatic and hydrostatic models with the Louvain test
experimental data of Fraccarollo and Capart (2002): (& &t;; (b) att = 7.5y; (c) att = 1Q,

5.2. Grid Size Dependency Test
The grid dependency test is accomplished by the following analysis, presented in Fig. 4.

Accordingly, the Taipei test at4t, [Fig. 4(a)] and the Louvain test afA 5% [Fig. 4(b)]
are simulated by usingx=2, 0.75, and 0.5 cm grid sizes. In the Taipei case, use of
Ax=2 cm gave poor results. Fax=0.75 cm andAx=0.5 cm grid sizes, the results are

identical, thereby giving mesh-independent results.
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Fig. 4. Grid size dependency analysis for the present 1D non-hydrostatic model using experimental data
of Capart and Young (1998) and Fraccarollo and Capart (2002): (a) Taipeitteli;db) Louvain test at
t=7.30

5.4. Sensitivity Analysis

The sensitivity of the 1D non-hydrostatic modelltpandn is investigated by testing
differentL, andn values in Figs. 5 and 6. Since the less accurate bed profile prediction
was obtained for the Louvain case (Fig. 3), it is selected for the current analysis. The
parameteL, can be approximated for sand dunes as 5 to 10 times the maximum initial
flow depthh,, which correspond to 0.5 and 1 m in the Louvain test. Valueg=6f.25,

0.5 and 1 m are considered for the simulations as shown in Fig. 5 for the Louvain case
at timest=5ty, 7.5¢ and 10§. By increasind.p, the results are slightly improved for both

the flow profile and the eroded bed profile predictions. A sensitivity analysi to
provides the same conclusions, and the results are therefore not presented here. A
sensitivity analysis of the model with respechts shown in the new Fig. 6, using the
values ofn = 0.01, 0.025 and 0.05. It can be observed that an increasacreases the

free surface wave heights and the scour hole depths.
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Fig. 5. Thel,, sensitivity analysis for the present 1D non-hydrostatic model using the Louvain test
experimental data of Fraccarollo and Capart (2002): (=b&t (b) att=7.5; (c) att=10,
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Fig. 6. Then sensitivity analysis for the present 1D non-hydrostatic model using the Louvain test

experimental data of Fraccarollo and Capart (2002): (=b&t (b) att=7.5; (c) att=10,

5.5. Assessment of Equilibrium Bed-L oad Formulas
The comparison of differem},« formulas is shown in Fig. 7. The Taipei test=att, is
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considered in the simulations is shown in Figs. 7(a and c) as well as the Louvain test at
t=7.5% in Figs. 7(b and d). The results using tige formulas in the non-hydrostatic
simulations are presented as follows: Results from Meyer-Peter and Mduller (1948) and
Yalin (1963) are presented in Figs. 7(a and b), whereas those from van Rijn (1984) and
Wu et al. (2000) are shown in Figs. 7(c and d). Although the results from Meyer-Peter
and Miller's bed-load formula are in agreement with the experimental free surface
profile, it produces a poor prediction for the eroded bed profile [Fig. 7(b)]. The Yalin’s
formula gives better results, but the prediction of the eroded bed profile is still not good



[Fig. 7(b)]. The Wu et al.(2000) formula is an improvement of van Rijn (1984)
equation, which in fact provides the best computational results.

=44 (b)

A

N
B N
J— Meyer-Peter and Miiller (1948)% A 2
4= Yalin (1963)

18 Measured free surface (Capart and Young 1998)
1 14 Measured bed (Capart and Young 199%)

= — T T T T T T T T T

= van Rijn (1984) B Measured free surface (Fraccarollo and Capart 2002)

Jl= Wu et al. (2000) A Measured bed (Fraccarollo and Capart 2002)
————T 77T T T T T T T T T T

-7.5 -5 2.5 0 2.5 5 75 -10 -75 -5 -2.5 0 2.5 5 7.5 10
x/h, x/h,

Fig. 7. Assessment of different non-equilibrium bed-load flux formulas applied to the present 1D non-
hydrostatic model using the experimental data of Capart and Young (1998) Fraccarollo and Capart
(2002): (a) Yalin (1963) and Meyer-Peter and Muller (1948) formulas (see Dey 2014) for Taipei test at
t=4ty; (b) Yalin (1963) and Meyer-Peter and Miiller (1948) formulas for Louvain tés? &,; (¢) van
Rijn (1984) and Wu et al. (2000) formulas for Taipei test=atlty; (d) van Rijn (1984) and Wu et al.
(2000) formulas Louvain test 7.5,

5.6. Comparison with 3D non-Hydrostatic RANS Model Simulations

The results obtained from the present 1D non-hydrostatic model are compared with
those obtained from a 3D non-hydrostatic RANS model by Marsooli and Wu (2015), as
shown in Fig. 8. The experimental data of the Louvain catebtyt 7.56 and 10§ are
considered for the assessment. It is pertinent to mention that in Fig. 8(b), the simulation
by the present model is skilful &7t to match with the 3D simulation shown in Fig. 3
from Marsooli and Wu (2015). At5t,, the 3D simulation data accurately predicts the
bed profile experimental data, whereas the present model overestimate them [Fig. 8(a)].
The present 1D computation predicts a free surface profile that is in good agreement
with the experimental data (Fraccarollo and Capart 2002) and 3D simulations (Marsooli
and Wu 2015). Note that in Fig. 8, the free surface undulations predicted by the 3D
simulations are successfully reproduced by the 1D non-hydrostatic simulation. The 1D
theoretical simulations are conducted assuming that the dam release is instantaneous,
whilst the real conditions in experiments diverge to some extent. Thus, simulations and
experiments are out of phase in Fig. 8. However, this 1D non-hydrostatic simulations

are reasonably in phase with the 3D simulations in Fig. 8.
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Fig. 8. Comparison between the present 1D non-hydrostatic model and 3D RANS model of Marsooli and
Wu (2015) with the Louvain test experimental data of Fraccarollo and Capart (2002)=6); €b)
experimental data &7.5, and present model computed=alt,; (c) att=10t,

The scour hole profiles are in agreement with the results of the 3D model, showing
wavelike profiles. However, the scour depths predicted by the 1D non-hydrostatic
model are larger than those shown by experiments and 3D simulations, indicating that

this specific aspect needs to be resolved with further research.

5.7. Convergenceto Steady Flow Solutions

Convergence of the present 1D non-hydrostatic model to a non-hydrostatic steady flow
solution is tested in Fig. 9. This test is important to check the accuracy of the numerical
model. The experimental data obtained by Sivakumaran et al. (1983) for the free surface
profile and bed pressure in transcritical flow over a Gaussian hump are plotted in Figs.

9(a and b). The experimental dischaggel119.7 crfys andAx=2 cm were set in the
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numerical model. The computational results are shown after 50 s. The results of the bed
pressurep,=pgh+p, are plotted in Fig. 9(b). The results obtained from the present 1D
non-hydrostatic model show good agreement with the experimental data for both the
free surface profile [Fig. 9(a)] and bed pressure [Fig. 9(b)], demonstrating converge to a
steady flow. The predicted unit discharge is seen to be constant and stable and is in
excellent agreement with the experimental data [Fig. 9(c)]. The present finite volume
results are compared with the simulations presented by Khan and Steffler (1996a) using

the dissipative Galerkin finite element scheme, showing a good agreement.
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Fig. 9. Steady 1D non-hydrostatic flow over a symmetric hump: Comparison of present 1D results with
experimental data (Sivakumaran et al. 1983) and the 1D simulation by Khan and Steffler (1996a) for: (a)
free surface profile; (b) bed pressure; (c) unit discharge

6. Conclusions
The following conclusions are drawn from this study:
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* A new depth-averaged 1D non-hydrostatic model for shallow free surface flow over
movable beds was developed. To the best of the authors’ knowledge, this is the first 1D
modelling approach presented in the literature for non-hydrostatic dam break waves
over erodible beds. The model couples a generalization for sediment transport of the
non-hydrostatic momentum equations of Khan and Steffler (1996a,b) with the sediment
transport model of Wu and Wang (2007).

» The physical equations are solved using a high-resolution finite volume scheme,
needed to accurately solve Boussinesg-type equations. The time stepping scheme that
produces an accurate, robust and stable solution is the Adams-Bashforth/Adam Moulton
predictor-corrector scheme, where the non-hydrostatic contributions ir- thed z-
momentum equations are treated implicitly, and solved by the Newton-Rapshon
method. Schemes used for the solution of hydrostatic dam break waves over movable

beds were tested, and it was found that all crashed within a few time steps.

» The predicted free surface profiles using the new set of physical equations are found to
be in good agreement with results of the 3D non-hydrostatic RANS simulations by
Marsooli and Wu (2015) and the experimental data of Fraccarollo and Capart (2002).
The 1D non-hydrostatic model gives a significant improvement in free surface profile
predictions as compared to the simulations using a hydrostatic model. It produces
undulations at the vicinity of the positive wave portion, also shown experimentally and
in the 3D simulations, and yields a good prediction of the smooth negative wave
portion. The bed scour profiles predicted by the non-hydrostatic model are similar to
those given by the hydrostatic model, indicating that more research is needed to

improve the sediment transport model for the non-hydrostatic simulations.

» The model produces results convergent to steady flow profiles with non-hydrostatic
pressure. The finite volume scheme gave steady flow results in good agreement with the

finite element solution by Khan and Steffler (1996a).
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Appendix: Derivation of Vertically-lIntegrated Equations for Non-
Hydrostatic Mixture Flows

The RANS mass and momentum conservation equations i #relz-directions for a

mixture of water and sediments are (Wu 2008, pages 42-43)

a_,o+a(pu)+6(,ow) =0, (A1)
ot ox 0z
d(ou) o(puw) _oOr
ot +a_(pu MU Al (A2)
o(pw) , o(puw) . 0 To _
ot ox 6 (pv\F+ St ) x F9 (A3)

To obtain a 1D system of equations, the equations are first vertically integrated, then
Leibnitz’s rule is used and finally the kinematic boundary conditions are applied
(Steffler and Jin 1993, Castro-Orgaz et al. 2015). The terms on the mass conservation
Eq. (A1) then produce

% 0p azS 0;,
50973 j pdz=p, ==+ 0, =", (A%)
= 9(pu) oz, 07,
|, =5 2= j pUIZ=p, U=+, Y=, (A5)
[ pwdz=p, w- o, w, (A6)

Coupling Egs. (A4)-(A5) produces the depth-averaged continuity equation as

Kl o7, 0% % ., 9%y )=
jpd jpud p{at 4 vyj pb(at U= w,j 0, (A7)

The free surface kinematic boundary conditions is

a—Zs+u a—ZS—W =0,

A8
ot  “ox (A8)
and, at the bed, the no-slip condition is

=w, =0, (A9)

Inserting Egs. (A8)-(A9) into Eqg.(A7), considering depth-averaged values of density
p and velocityJ, finally yields the depth-averaged mass conservation equation as
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0(ph)+6(pUh)+p 0z, _

A10
ot ox > ot (AL0)
Vertical integration of each term of tikemomentum Eq. (A2) yields
2 9(pu) 0z, 07,

——dz= udz + o All
[ =5 jp SPUZERAY (A11)
z 0(pu’) z azS 0z,

—d — wdz- + : Al2

z0p, _ 0 = _ 62S 4
[, 5 8z=5- ] Wz p=+ p=> (A13)
[ Podz=2 [*r -1, % 41,92, (A14)
% OX 0X’% 0X 0X
I@ o(puw)
=02 AU P, (A15)
z 0T
I —dez T~ Ty (Al16)

Collecting Egs. (A11)-(A16) the depth-averageshomentum equation reads

j ,oudz+&(J' pLFdz+_f pﬂzrj T, d)z

ey %02, 002 07, 07
PUSZE+ Pl P A St Rt R (A7)
Lo, o

XXS 6X xxb 6X +psusWs_pbubWb: r xs r xb

Grouping terms yields

j pudz+&(j ,ouzdz+j ;mlzrj T, d)z

o (9%, 9% _ 0z, . 0z_ J AL8

pSuS(atJruSax V\éjw"q’(atwax e (A18)
9z, _ 9z _, _

+(pb+r><xb) 6X (ps+rxxs) OX sz Txb'

Inserting Eqgs. (A8)-(A9) into Eq.(A18), and considering zero pressure and stresses

at the free surface, yield

—j pudz+ &(j puzdz+j miﬁj I, d% ( Pr7) Z;’——rxb. (A19)

- 126 -



Neglecting the integral of the normal Reynolds streggesnd considering depth-
averaged values of denspiyand velocity UEq. (A19) reduces to

) ) 9 (= 0z, _
5 (PhU)+—(phU?)+—= [ " iz ( R+ 7o) 52 = Ty (A20)

The pressure distribution is at this stage assumed to be non-hydrostatic and linearly
distributed with depth, e.g.

- nf1-2
p—p[,(l h], (A21)

where the bottom pressupgcan be rewritten as
P, = Pgh+ p. (A22)

Inserting Eqg. (A21) into Eq. (A20), performing the pressure integral, and using Eq.
(A22) yield

0 0 0(1 hp, 0z,
—(phU)+—(phU?)+—| = pgh* +—= |+(pgh+ p +7,, ) =2 =-T,,. (A23
5 (PhV) aX(,o ) axﬁng 2} (gt p+7,,) =2 =7, (A23)

Assuming that the stress state at the bed is of pure shear, rotation of the stress tensor
an angle equal to the bed slope angle permits to express Cartesian stresses as function of
the shear stressg locally tangential to the bed (Steffler and Jin 1993; Castro-Orgaz et al.

2015). Thex-momentum equation is then written as
0 0 1 azb hp,
—(phU)+—| phU*+= pglt h+ . (A24
5 (PhV) ax(p 5P j ~(pghr p)=2 -1, ax( j (A24)

Vertical integration of each term of teenomentum Eq. (A3) yields

z 0(ow) oz, . Zb

wd z —b A25
|, =5 9273 j pwiZ=p, W=+ 0, W (A25)
j%md ——j puvd z- p w—zsﬂob s (A26)

% OX s X
J-Zb 62 (pWZ + p T )dz psV\z + Q z-zzs p bvab_ pk;'-r 77 (A27)
[Qogz=9 (% dz-r, Py 95 (A28)

% OX 0X’% (004 1)
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I:—pgd z=—g_[:pd 2, (A29)

Therefore, collecting Eqgs. (A25)-(A29) yield

%j: p\/\dz+%(jzspuwi z+jzs r.d %

—pw. 9% 4 _Zb wi% s ¢ A30
psWs at pb\MJ ps S s a pb L!)VK a ( )
0z

0
+psW§+ ps_rzzs_p lyv?b_ pb+T zzb: -T zxax +szb Zb gJ‘ ,OdZ

Neglecting the integral of the tangential Reynolds stresgesapplying Eqgs. (A8)-
(A9), and considering depth-averaged values of depsdand velocityU, Eq. (A30)

reduces to
0z, 0 = 0=
- -r Y — _ A31
P, = PO+ T, =T i 24— [ puddz+ axUzb puvd2] (A31)
Defining the depth-averaged vertical velodityby
w=1 | “wdz (A32)
h'z

Eq. (A31) is rewritten, assuming that the stress state at the bed is of pure shear

3z, , 0(phw)  o(phuw)

hez, A33
By = PO Ty T T ot ax (A33)

or

a(phW) (phUVV) o1, % (A34)
ot ox 6x

Now, the flow density is eliminated from Eqg. (A10). The depth-averaged mass

conservation Eq. (A10) is rewritten as

9(ph) , 9(phV)  0(p,2z,) _, (A35)
ot OX ot '

With the definitions o=0,(1-C)+0oC: and g=ppmto(1-pm), EQq. (A35) is
transformed to
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oh o(hC) a(hq)+p a(hU)_p a(hUQ)+p 0(hUG)

—- +
Pu ot Pu ot Ps ot X oX 0X (A36)
0z, 0z,
+ —2+p(1- —2=0.
PuPr =, o.1-p,) 3t

With the definition G=Cstqp/(hU), Eq. (A36) is further written as

pw[@Jra(hU)}_pw{d(hC) +i(iJ+a(hUC) +a_qJ}

ot (604 ot ot u, ()4 0x

(hc) (A37)

0(hC) a(q, ), a(huC) . aq, 0z, 0z,

+o| —L+—| 2 |+——Z+ B |+ L2 ++p (1- —b =0,
p{ ot Ot(ubj ox ox | PuPngy AT P
The mass balance equation in the bed-load layer is
9% |,9%_%~G (A38)
ot\U, ) ox L
and the suspended sediment mass conservation equation is
o(hC,) N o(huG) _ E-D. (A39)
ot 0X

Summing up Egs. (A38) and (A39) yields the conservation equation for the total

mass of sediments as

d(hC), 9(q|,0(hUC) L 0g, _ ., %G (A40)
ot oatlu, ox  0OX L

and inserting Eq. (A40) into Eq. (A37) yields

pw[%ﬁ(hu)}(ps—pw)(& D+—qb*Eij

ot ox (A41)
+pwpm(D_E+qb_qu"‘ps(D_E'*'qb_qu:O,
1-p, L L
or
oh a(hu) _ 1 qb*—qu
L = E-D+-¥ || A42
ot 0x l—pm( L (A42)

With the definitiono=p0,(1-C\)+0Ci, Eq. (A23) for thex-momentum balance reads
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d(h
pw{ ( U)_a(hum}psa(huq

ot ot ot
‘o i(hu2+lgh2j-i(c;hu2+_1c;gﬁj (A43)
Y| ox 2 ax 2
0 1 _ 9z, dz 0 hplj
—p. 2 chu?+=Ggh |=-p gt -7, - p22- 2[R
'Osax( ‘ +2Qg j pU ax b X ax( 2

The left hand side (LHS) of Eq. (A43) is

o(hu) a(, . ,. 1 ~ o Jo(hug) o, 2n 1
pW{T+&(hU +§ghzﬂ+(,05 Pw){ 5 +&(hu Ct+§thQﬂ,(A44)

Term|

where term | can be expressed as follows

o(hUG) . 0 (. 2n .1 _ Gy ~ qu
ot (hU G+ ghij— (E D+

(A45)
+Ct[6(hU) (hU W1 ghzﬂ qU{ah a(hU)} ghzac’
ot 0X 0X 2 o0X

and applying the continuity Eq. (A42) yields
o(hu) 9 1
——L+— | hU?+=gi?
'OW{ ot ax( 2g ﬂ
+(ps—pw)|:u(1_—ct ](E_D"‘—q)*_q)J
1-p, L
o(hu) o 1 1 ,0C azb'
+C,| ——2+—| hU*= gt ||+= gf — |=-p gh—>
{ ot ax( 29 H 29 6x} P 9x
02-3(%)
CMax ax 2

Finally, after some algebraical
~Pu(1-Co)+oCy yield

(A46)

manipulations and using the definition

EIGON (hu 1 ghzj ha_zb_fb_&a_%_ii(h_ﬁj
ot ax 0x p o0x pox{ 2
C

L (A47)
—Zghe P P Pu 'OWU(l— t jE—D+—qb* O‘)j.
2 0x Yo, 1-p, L

Likewise, with the definitiono=p,(1-C)+0Ci, Eq. (A34) for thezmomentum
balance reads
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a(hw)  a(huw) _Jathwg) ahuwQl_ g,
pw{ S }(ps pw)[ e J—pl 7, = (A48)

Termll

where term Il is expressed as follows,

B(hWG) , A(hUWQ) _\ 3( hQ oW , ,2(UG) , W

+hG hUC

ot 0x ot ot 0x 0x (A49)
[a(hQ) a(hUQ)} (GW awj
w + hC
ot 0X ot 0X
Eq. (A40) is written as
9 hc+® ]+ 2 (huct q)= B D+ B % (A50)
ot u, ) 0x L
or as function of the total load usifgCs+qy/(hU) as
0(hG) , a(hUG) -, % ~G (A51)
ot 0x L

Using this result, Eq. (A49) yields

AWG) , A(hUWQ) _ (E D+ O =% th(aw awj (A52)

Further, the last term in Eq. (A52) can be written as

LW a(hw) _ a(huw] . [d h a( hy
hct(at axj C}[ ot * dx }Wq[atJr ox } (A33)

and inserting Eq.(A42) into Eqg.(A53) results

hq(a—W+UaWJ c;[6( hw) | o( hUV\Y}_ WG (E_D+MJ (A54)
ot X ot ox 1-p, L)

Inserting Eqgs. (A52) and (A54) into Eg. (A48) and using the definition
~Pu(1-Cy)+pC; yield

a(hW)_'_a(hUV\o =&_ia_zb_ps_pww 1_ Ct (E_ D+ qb*_q;)j
ot 0x p P 0X yo, 1-p, L

(A55)
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8. Notation
The following symbols are used in this paper:

b

Ca

Ca*

Co

CFL

Cs

Ci

hXX

hp
hq
hy
L

Lo

= channel width (m);

= actual near-bed suspended-load sediment concentration;
= equilibrium near-bed suspended sediment concentration;
= depth-averaged bed-load sediment concentration;

= Courant-Friedrichs-Lewy number;

= depth-averaged suspended sediment concentration;

= total-load depth-averaged sediment concentration;

= sediment depositional rate (m/s);

= sediment particle diameter (m)

= sediment entrainment rate (m/s);

= auxiliary vector (m/s, fts’);

= vector of fluxes in xdirection (nf/s, n¥/s);

= roughness coefficient for sidewalls {ffs);

= gravitational acceleration (rﬁ)s

= flow depth (m);

= dh/dx

= Ph/dyé (m™);

= thickness of bed-load layer (m);

= initial downstream flow depth (m);

= initial upstream flow depth (m);

= non-equilibrium adaptation length of total-load transport (m);

= non-equilibrium adaptation length for bed-load transport (m);

= non-equilibrium adaptation length for suspended-load transport (m),

= Manning roughness coefficient for bed {fs);
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P1
Po

Pm

Ob

Ob=

to

Up

Wh

Ws

ao
At

AX

= Manning roughness coefficient for wall ¢fs);
= pressure at bed in excess from hydrostatic (Pa);
= pressure at bed (Pa);

= sediment porosity;

= flow discharge per unit width (s);

= bed-load flux (rfYs);

= equilibrium bed-load flux (Fms);

= hydraulic radius (m);

= source terms vectors (m/s?/g);

=time (s);

= (h/g)"? (s);

= depth-averaged streamwise velocity (m/s);
= bed-load velocity (m/s);

= vectors of unknowns (m, is);

= depth-averaged vertical velocity (m/s);

= vertical velocity at bed (m/s);

= vertical velocity at free surface (m/s);

= horizontal coordinate (m);

= erodible bed elevation (m);

= free surface level (m);

= nonequilibrium adaptation coefficient of suspended-load;
= empirical coefficient;

= time step (S);

= grid size (m);

= tolerance;

= settling velocity of a particle (m/s);
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P = mass density of water-sediment mixture (K/m
o = bed layer mass density (kghm

o5 =sediment mass density (kghmn

ox = clear water mass density (kgjm

T, = bed shear stress (kg/fls

Subscripts and Superscripts

i = cell index in xdirection;

k = time step index;

p = predictor index.
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Appendix IV

Distribution of suspended sediment concentration in wide
sediment-laden streams: a novel power-law theory

Francisco Nicolas Cantero-Chinchtll®scar Castro-OrgazSubhasish Déy

Journal of SedimentologyEarly View” doi:10.1111/sed.12276. Impact factor (JCR 2014):
2.948 / Q1 (6/46 Geology)

Abstract

The diffusion equation of suspended sediment concentration in a wide sediment-laden
stream flow is dependent on the vertical gradient of streamwise velocity and the
sediment diffusivity. This study aims at investigating the influence of the streamwise
velocity laws on the suspended sediment concentration distributions, resulting from the
solution of the diffusion equation. Firstly, the sediment concentration distributions are
obtained numerically from the solution of the diffusion equation using different velocity
laws, and compared with the experimental data. It is found that the power-law
approximation produces good computational results for the concentration distributions.
The accuracy of using a power law velocity model is comparable with the results
obtained from other classical velocity laws, namely, log-, log wake-, and stratified log-
law. Secondly, a novel analytical solution is proposed for the determination of sediment
concentration distribution, where a power-law, wall-concentration profile, is coupled
with a concentration wake function. The power-law model (for velocity and
concentration) is calibrated using the experimental data, and then a generalised wake
function is obtained by choosing a suitable law. The developed power-law model
involving the wake function adjusted by an exponent predicts the sediment
concentration distributions quite satisfactorily. Finally, a new explicit formula for the
suspended-load transport rate is derived from the proposed theory, where numerical
computation of integrals, as needed in the Einstein theory, is avoided.
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1. Introduction

Sediment transport as suspended-load is important in most of the fluvial streams,
thereby resulting in a number of significant studies over the last eight decades. Dey
(2014) gave a summary of the important studies on suspended-load. In fluvial streams,
sediment transport is classified as bed-load, suspended-load, and wash-load. The
suspended-load is generally the major contributing fraction to the total-load transport
(van Rijn, 1984; Mateos & Giraldez, 2005; Dey, 2014). It is well known that important
fluvial processes, like bed stability and bed-form development, are consistently
influenced by the suspended-load (Bose & Dey, 2009; Dey, 2014). Urban drainage
flows are good examples containing suspended-load, in which a variation of sediment
concentration with depth is prevalent (Carnacina & Larrarte, 2014; Larrarte, 2015).
Thus, the study of suspended-load is still a topic of continued research interest, due to

its practical importance.

Suspended-load transport is a complex phenomenon, given the interaction between
the turbulent flow and the sediment particle motion, resulting in an alteration of the bed
morphology. Several models were proposed to simulate the sediment suspension in a
fluvial stream and thus, to compute the suspended-load transport rate. These mainly
originate from three major theoretical concepts: (i) The diffusion concept (Rouse,
1937), (ii) the energy concept (Velikanov, 1954, 1958; Bagnold, 1966; Leeder, 1983;
Wu et al., 2000), and (iii) the stochastic concept (Cheng & Chiew, 1999; Bose & Dey,
2013). Besides these, Boogedal (2001) pointed out the significance of applying the
turbulence spectrum, together with an energy approach, as an alternative to the classical
theoretical concepts. Among these, the methods based on the diffusion concept are
widely accepted and used to produce the models in fluvial hydraulics related to
suspended-load. In these methods, the advection-diffusion mechanism constitutes the
basis involving the turbulent diffusivity (and in turn, sediment diffusivity), which is a
function of the velocity distribution (Dey, 2014).

The three-dimensional (3D) continuity equation for suspended sediment motion is
used in 3D numerical models. However, 3D computations of sediment-laden flows at a
hydrological catchment scale are still time-consuming and challenging. For this reason,
most of the practical models for sediment transport in fluvial streams are still based on a
cross-sectional averaged one-dimensional (1D) flow approximation. To this degree of

resolution, the vertical distribution of suspended sediment at a section is given by a
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diffusion equation involving only the gradient of sediment concentration in the vertical
direction (Dey, 2014).

The diffusion equation can be integrated in terms of the reference concentration,
reference elevation, terminal fall velocity of sediment particles, and sediment
diffusivity. It is pertinent to mention that Hunter Rouse (1906-1966) (Rouse, 1937) was
the first to derive the analytical solution for the concentration distribution based on the
velocity log-law. The resulting equation is commonly called the Rouse equation.
However, the equation was simultaneously derived by Arthur Thomas Ippen (1907—
1974). For this reason, the equation should be formally called the Ippen-Rouse equation,
as stated by Montes (1973), the last PhD student of Arthur Ippen (personal
communication of Montes to the second Author). The Ippen-Rouse equation is a
common approach to model the suspended sediment concentration distribution in

sediment transport.

Lane & Kalinske (1941) proposed another concentration distribution equation by
using a depth-averaged value of the diffusivity. Their concentration distribution is of
exponential type. Hunt (1954) considered mass balance for solid (suspended sediment)
and fluid phases, separately. He introduced the concept of vertical velocity of a
suspended sediment particle into the governing equation as a sum of the flow velocity
and the terminal fall velocity of sediment in still water. Hunt's concentration
distribution differs from the Ippen-Rouse equation in terms of free parameters. The
Ippen-Rouse equation involves only the Rouse nurilees a free parameter, while the
Hunt equation possesses two. Further, coupling of the Ippen-Rouse sediment
distribution equation with the log-law of velocity for computing the suspended
sediment-load produces the Einstein’s integrals (Guo & Julien, 2004). A numerical
computation is required to solve these integrals. Following Hunt’s analysis, van Rijn
(1984) also replaced the terminal fall velocity of sediment in still water by that in
sediment-laden water flow, thereby correlating both in terms of sediment concentration
(Richardson & Zaki, 1954). The determination of terminal fall velocity of sediment is
an essential prerequisite and plays a key role in predicting sedimentation of suspended
sediment particles (Lucas-Aigiet al, 1998; Cameneet al, 2011; Chauchatt al,

2013). Despite the progressive developments since the Ippen-Rouse equation, it is
extensively used (Caet al., 2003; Lamb et al., 2008).
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It is pertinent to state that the Ippen-Rouse equation produces vanishing sediment
concentration at the free surface of flow. However, the concentration at the free surface
may not be zero in natural stream flows. Zagustin (1968) investigated this limitation
assuming a velocity defect-law mathematically given by a hyperbolic tangent function.
He derived a concentration distribution equation accounting for a nonzero value at the
free surface. Importantly, the velocity gradient along the vertical affects the turbulent
diffusivity. Typically, in urban drainage and open-channel flows, the secondary currents
induced due to confinement of the flow by the side-walls result in a dip-phenomenon
(Knight & Sterling, 2000; Yooret al, 2012; Lassabatert al, 2013; Gucet al, 2015).
Therefore, the variations in the velocity laws would provoke variations in the computed
sediment diffusivity and thus, in the concentration distributions. Accordingly, a family
of solutions for the concentration distribution is obtained from various velocity laws.
Thus, it suggests to revisit the solutions for the diffusion equation for different velocity
laws to explore the viability of the resulting sediment concentration distributions.

The main objective of this study is therefore to find different solutions for the
diffusion equation by using some classical velocity laws for the wall-bounded turbulent
shear flows. After obtaining the concentration distributions by using these velocity laws,
a new analytical theory for the sediment concentration distribution is developed by
applying the power-law approximation for the turbulent velocity distribution developed
by Castro-Orgaz & Dey (2011). Numerical and analytical results of the study are
compared with the experimental results on the sediment concentration (Coleman, 1986;
Lyn, 1986; Montes, 1973). Finally, an analytical formula to calculate the suspended-
load transport rate is presented, where the numerical computation of integrals is
avoided. Thus, it could be a practical tool for the estimation of suspended-load transport

rate.

2. Diffusion model
In sediment-laden flows, the suspended sediment motion is defined by the generalised

advection-diffusion equation (Dey, 2014)

IC oC oC acC (au v awj
+ + C +—+

ot ox oy 0z o0X 0y 02z
-9 9,9 .9 9
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whereC is the time-averaged sediment concentratiox,at, @), t is the time,&, is the
molecular diffusivity,&; is the solid diffusivity ini-direction { =%, y, 2), andu, v, andw

are the time-averaged velocity components-jty-, andz-direction, respectively. Under

a steady-uniform flow condition, the dynamic equilibrium of suspended sediment
motion is maintained by balancing the sediment diffusion flux in the vertical direction
with the sediment flux due to settling velocity. Thus, the problem reduces to a 1D
ordinary differential equation (ODE) im-direction. The schematic distributions of
concentrationC, streamwise velocityu, and Reynolds shear stregsin uniform

sediment-laden flow are shown in Fig. 1. Equation 1 therefore reduces to (Dey 2014)

dC
SSE'FV\/SC:O (69)
whereegs is the sediment diffusivity, ands is the terminal fall velocity of sediment
particles. The solution for concentratiod(z) is obtained from Eq. 2 once the
appropriate functions for the sediment diffusivity and the terminal fall velocity of

sediment particles are introduced.

1=

Fig. 1. Schematic of concentratidl, streamwise velocity, and Reynolds shear stresgistributions in
uniform sediment-laden flow over a streambed.

According to the Boussinesq hypothesis (Dey, 2014),

du
T=pE— 70
ptdz (70)

whereg; is the eddy viscosity or turbulent diffusivity, apds the mass density of fluid.
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In a two-dimensional (2D) steady-uniform flow, the momentum balance provides

the linear Reynolds shear stress distribution (Fig. 1) (Dey, 2014)
z
rT=r,|1-— 71
(-2 ™

wherer is the bed shear stressgghS) g is the gravitational acceleratidmjs the flow

depth, and S is the friction slope.

Equating Egs 3 and 4 yields

1-n _¢
=u.h = 72

whereu- is the shear velocity [#/,0)*, u" = u/u-, and 7 = zZh. The sediment and

turbulent diffusivities are related as= S, wheregfis a proportionality factor.

Insertinges from Eq. 5 into Eq. 2 and integrating it between a reference igwagid

an arbitrary level yield
n +
c' =exp —KZJ.M o7, (73)
,73 1_,7

where x is the von Karman constant for clear-water flows (= 0.41),isc the
nondimensional sediment concentrationQK,), C, is the reference concentration at
reference levet,, /7, is the nondimensional reference levelz{th), andZ is the Rouse

number (Rouse, 1937). The Rouse number is given by

—_ WS
i (74)

The proportionality factog in the Rouse number may be considered to be unity as

an approximation.

3. Thelaws of streamwise velocity distribution

As previously discussed, different laws for the streamwise velocity distribution produce
varied sediment concentration distributions. An examination of Eq. 6 suggests that it
depends on the Rouse numBeand the velocity gradiemi’/ds. Therefore, in order to
investigate the impact of the velocity distributions on dhelistribution, various well-
established velocity laws are considered.
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Firstly, the logarithmic-law (henceforth called log-law) is considered (Rouse, 1937;
Dey, 2014). It is expressed in the defect form as

U*—u+=—iln/7 (75)
K

where U" is the nondimensional maximum streamwise velocity occurring at the free
surface devoid of any dip Bma{U+), andUnax is the maximum streamwise velocity. It

is pertinent to mention that the dip-phenomenon prevails in the flows through narrow
channels due to the presence of secondary currents. For example, urban drainage flows
exhibit the dip-phenomenon significantly in laboratory experimental and field studies
(Knight & Sterling, 2000; Larrarte, 2015). It may be noted that using Eq. 8 into Eq. 7,

results in the classical Ippen-Rouse equation for the concentration distributions.

The log-law is only applicable in the wall-shear layer of turbulent flow. Roughly, it
limits to about the 20% of the flow depth close to the bed in most practical problems
(ASCE Task Force, 1963). To generalise the log-law to the entire turbulent boundary

layer, Coles (1956) proposed the so-called log wake-law. It is

U*—u*z—iln/7+2—ncosz(7—T/7j (76)
K K 2

wherell is the Cole’s wake parameter. It is clear that Eq. 9 differs from Eq. 8 in terms
of the additional second term in the right hand side of Eqg. 9, which is known as wake

function.

In sediment-laden flows excluding urban drainage flows (Larrarte, 2015), most of
the sediment particles are transported in the inner-layer of flow close to the bed
(Coleman, 1986), whereas the outer-layer is characterised by a lower sediment
concentration, thus creating a stratification. The particle size distributions of sediment
suspension also reveal the concept of stratification (Sengupta, 1975, 1979; Mazumder,
1994). This stratification modifies the turbulent momentum transfer, thereby affecting
the velocity distribution (Wright & Parker, 2004; Garcia, 2008; Dettal, 2014).
Wright & Parker (2004) stated that the sediment concentration gradient along the
vertical affects the momentum flux through the change of turbulent diffusivity. Thus,
they proposed a modified expression for turbulent diffusi¥itynvolving the flux
Richardson number. Assuming a constant Richardson number over the entire flow

depth, the turbulent diffusivity is expressed as
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& =aku.z(1-n) (77)
whereq is the stratification parameter. Generaliyneeds to be determined empirically.

From Egs 5 and 10, the velocity gradient is

du__u (78)
dz akz

Integrating Eq. 11, the streamwise velocity distribution is

U+—u+=—iln/7 (79)
ak

Equation 12 is defined as the stratified log-law in velocity defect form.

Finally, the power-law model for streamwise velocity distribution developed by

Castro-Orgaz & Dey (2011) is considered. It is

- E 1/n
o =U (Jj (80)

wheredis the boundary layer thickness, ang xU*[(11 + 12M)/12]*— 1. For a fully

developed flow in a wide channel (with no-dip), thad#sh, Eq. 13 is rewritten as

ut=utpt" (81)

4. Power -law concentration model

The power-law model, given by Eq. 14, is used to determine the new sediment
concentration distribution. Lyn (1986) was the first to point out thattustribution

can be represented by an inner-layer concentration component plus a wake function to
adjust the concentration distribution in the outer-layer of flow. Later, Lyn (2000)
developed this concept for the Ippen-Rowasalistribution, which was affected by a
wake parameter. This isolated work is the only appearance of a wake function for the
¢'-distribution. This challenging approach is here considered in combination with the

power-law model given by Eq. 14.

Introducing Eq. 14 into Eq. 6 results

n + (2-n)/n
c' = exp(—/(z I v ﬁl—d/]J (82)
n -n

Ta
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A primitive function of Eq. 15 is not known; so a numerical integration is required.

However, assuming << 1, the integral in Eq. 15 can be approximated as

7 + (1-n)/n n +
IU L dp= IU—n‘l‘”>’“(1+f7)df7 (83)
LU/ P

Using Eqg. 16 into Eq. 15 yields

(2+n)/n

_ p@n)/n
C+ — eXp|:—KZU+ (nlln _”;/n +,7 n+,]7-a j:| (84)

Further, neglecting the last term inside the parenthesis of right hand side of Eq. 17
given its small magnitude, Eq. 17 reduces to

c' = exp[—/(ZU+ (/71’“ —nal’“)] (85)

Considering the wall-layep << 1, the equivalence between a log-law and a power-

law is given by7'" = 1 + [(In)/(1+n)]. Therefore, Eq. 18 is solved as

KZU* _
c' =Wexp - Iy |=Wn™" 86
P j 7 (86)

whereW = 7!, andl" = kZU"/(1+n). It may be noted that Eq. 19 is only applicable to

the inner-layer of flow. To generalise Eqg. 19 for the entire flow depth, a wake function

for the concentration distribution is assumed (Lyn, 1986)
¢ =WnW(p,n,) (87)

whereW(7, M) is the wake function that must preserve the asymptotic conditions as
follows:

n-0 W1

n-1 W20 (88)

The second condition is based on the fact that the concentration distribution in Eq.
19 is valid for the inner-layer of flow, but should vanish at the free surface.
Notwithstanding, there is no evidence of the form of the wake function, which has to be
plausibly proposed in the light of the experimental data. As a first approach, the wake

function is assumed in this study as

W(p,n.)=1-5" (89)
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where Tlis an exponent of wake parameter that needs to be determined empirically.
Thus, the power-law model for sediment concentration distribution is finally given
by
¢ =Wy (1-n") (90)
5. Suspended-load transport rate
The suspended-load transport rgteis calculated from the depth integration of the

product of the sediment concentration and the streamwise velocity distribution of the

flow. Itis

(o :qudz (91)

Using nondimensinal forms of the sediment concentration and the streamwise

velocity distributions, Eq. 24 is given by
1
d,=Cuhf ¢ d (92)
’7a

Inserting Eqgs 14 and 23 into Eq. 25, the suspended-load transport rate is modified in

terms of the power-law model as

1 1
0. =Cutw U [(@-n"™W" dn (93)

/Ta

The integral in EqQ. 26 is performed as

1 1
1 1L - T - BT 1oph 1o
a 1+ﬁ_r 1+ﬁ_r+nc ¢

where A= 1 + [(1 — nI)/n].

The nondimensional form of the suspended-load transport rate, called the

suspended-load transport intensity & expressed as

(Ds = qs 0.5 (95)
(Agdgo) .

whereA is the submerged relative density.

- 148 -



Inserting Eqg. 27 into Eg. 26 and then using Eq. 28, the suspended-load transport

intensity & for the power-law model is analytically formulated as

(DS

+ —_ A _ A,
_Cuhvu (1 nt _1-n; j (96)

(gL A AT

It may be noted that this function is analytical, and thus numerical computations are
avoided. In contrast, use of the Ippen-Rouse equation coupled with the log-law of
velocity distribution produces the well-known Einstein’s integrals to compyitehere

a numerical solution is required. Therefore, Eq. 29 is a new and simple analytical tool

for the estimation of suspended-load transport rate.

6. M ethodol ogy

One of the main objectives of this study is to compare the new analytical power-law
model for concentration (Eq. 23) involving the power-law velocity distribution (Eq. 14)
with the computational results for the concentration distribution based on Eq. 6.
Equation 6 needs a mathematical closure in terms of the velocity gradient. Therefore,
the log-, log wake-, power- and stratified log-law are used to produdistributions.
Firstly, a critical comparison between the analytical and the numefichstributions

for all the four velocity laws, discussed in preceding sections, is carried out. Then, Eq.

23 is compared with Eqg. 6 coupled with Eq. 14 for the velocity gradient closure.

The experimental data sets selected for the comparisons are from Coleman (1986),
Lyn (1986), and Montes (1973).

The computational procedure is furnished as follows:

1. For a given experimental data set (including streamwise velocity and sediment
concentration distributions), determibé from the data near the free surface gad
from the data at the lowest lewa|

2. Adjust anda coefficients in Eqs 9, 12, and 14 by evaluating the lowest level of the

velocity from the data set.

3. Calculate the vertical distributions of streamwise velogitynserting computations
from Steps 1 and 2 into Eqs 8, 9, 12, and 14.

4. Substituting nondimensional velocity gradierds’/ds into Eg. 6, numerically

compute the distribution of nondimensional sediment concentratiby using the
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Simpson’s rule. Try with different values of Rouse numbemtil a best fit for the
computedc’(/7) with the experimental data is obtained. Note that fitAngys is not
computed.

5. Use Eq. 20 along with the results obtained from Step 4 to determine the wake

function distributions\ 7).
The suspended-load transport intenditycan be calculated from Eqg. 29.

7. Results

The experimental data set of Coleman (1986) has been extensively used for the
validation purposes of sediment concentration models (Bose & Dey, 2009; Ghoshal &
Kundu, 2013; Kundu & Ghoshal, 2014) and also streamwise velocity laws (Guo &
Julien, 2008; Absi, 2011). In this study, Runs 12, 27, and 34 from the experimental data
set of Coleman are selected, representing each one with different bed roughness values.
In brief, Coleman conducted experiments in a 0.356 m wide and 15 m long rectangular
flume. The flow depth was approximately 0.17 m in all the selected runs having an
aspect ratio (flume width to flow depth ratio) of about 2. The shear velocity was 0.041
m s and the von Karman constant was assumed to be equal to its universal value as
0.41. With these, Fig. 2 shows the velocity and the sediment concentration distributions
obtained from the computations using different velocity laws and the experimental data
used for the calibration of free parameters. The valuZssabwn in Fig. 2 are the ones
which ensured a satisfactory fitting between the computedistribution and the

experimental data for a given experimental run.
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O Run 12 (Coleman, 1986)
......... log-law

—-— log wake-law
Y ——— Stratified log-law
] Power-law
4\ 7=05

<& Run 27 (Coleman, 1986)
Z=0.6

O  Run 34 (Coleman, 1986)

Z=0.8

Fig. 2. Nondimensional velocity®() and concentratioa’(s7) distributions obtained using Coleman’s
(1986) experimental data: (A) Run 12, (B) Run 27 and (C) Run 34.
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Figures 3 and 4 likewise exhibit velocity and concentration distributions using
different velocity laws and experimental data of Lyn (1986) and Montes (1973) used for
the calibration of free parameters. From Lyn’s experimental data, Runs 1957ST2A and
1957ST2B, characterised as a starved-bed flow, are considered. The Rouse numbers are
also shown in Figs 3 and 4. In this case, no equilibrium of sediment transport in the flow
was established. In brief, Lyn’s experiments were conducted in a rectangular flume of
approximately 0.267 m wide and 13 m long. The main difference between Runs
1957ST2A and 1957ST2B was the quantity of sediment load in the experiments, where
Run 1957ST2A corresponded to a larger suspended sediment load than Run 1957ST2B.
The shear velocity, flow depth, and bed slope of the flume remained same for both the
runs, being approximately 0.043 ft,9.058 m, and 0.004, respectively. Regarding the
experimental data of Montes (1973), two experimental data sets (Runs 22 and 44) are
taken into consideration based on the more number of available data points. Briefly,
Montes conducted experiments in a rectangular flume of 0.487 m wide and 19.5 m long.
For Run 22, the shear velocity and flow depth were 0.077 marsd 0.074 m,
respectively. On the other hand, for Run 44, they were 0.06I'ransl 0.077 m.
Further, Run 44 was performed with a lower sediment load than Run 22.
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Fig. 3. Nondimensional velocity®(/7) and concentration’(#) distributions obtained using Lyn’s (1986)
experimental data: (A) Run 1957ST2A and (B) Run 1957ST2B.
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Fig. 4. Nondimensional velocity®() and concentratioo’(7) distributions obtained using Montes’
(1973) experimental data: (A) Run 22 and (B) Run 44.

Using the relationship between the sediment concentratiand the wake function
W given by Eq. 20, the wake function over the entire flow depth are obtained with the
aid of the experimental data sets. Figures 5—7 (left side) depid{(tfjecurves obtained
numerically and analytically for Eqs 20 and 22, respectively. On the other hand, Figs 5—
7 (right side) display the’(7)-curves obtained numerically from Eq. 6, analytically
from Eg. 19, and using the power-law model from Eq. 23. Further, Figs 5-7 (both left
and right sides) show the experimental data plots. The wake function data are the cause
of the resulting computed’-curves from Eg. 19 having a departure from the
experimental data. In this case, the experimental data plots of wake funct\@<far
in the outer-layer of flow are to produce the overestimatedunres from Eq. 19,

whereas c'-curves corresponding t&W > 1 in the inner-layer are to produce
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underestimated’-curves. An appropriate wake function therefore was sought that could
fit most of the experimental data over the entire flow depth. The exponent of wake
functionsl.and Rouse numbe&were adjusted by the trial-and-error method until the
best fitted curves for the computéd;7)- andc’(#)-distributions with the experimental
data were obtained. To conclude the overall variation of the wake fuivg{ipn Fig. 8
presents the wake functiof(s) for different values ofl1.. However, a scatter of

Montes’ experimental data in the inner-layer of flow is apparent.
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Fig. 5. Wake function(77) and concentratioa’(#) distributionsobtained usingColeman’s (1986)
experimental data: (A) Run 12, (B) Run 27 and (C) Run 34.
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Fig. 6. Wake function(/7) and concentratioa’(s;) distributionsobtained usind.yn’s (1986)
experimental data: (A) Run 1957ST2A and (B) Run 1957ST2B.
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Fig. 8. Wake functionW(r) for different values of1. obtained from Eq. 22 using all experimental data.

8. Discussion

The velocity laws are considered here to compare with the experimental data. Figures
2—4 (left side) show that the log-law corresponds less to the experimental data, whilst
the log wake-law underestimates the experimental data. This discrepancy is partially
attributed to the lack of adjustable parameters. Thus, the log-law provides a poor
prediction. On the other hand, the power- and the stratified log-law compare quite well
with the experimental data and thus produce satisfactory results. An improved fitting
could also be achieved by considering the dip phenomenon modification terms in the
velocity laws (Yanget al, 2004; Guo & Julien, 2008). However, the differences in
velocity distributions obtained from different velocity laws are somewhat not
significant. Regarding the concentration distributions in Figs 2—4 (right part), a similar
observation is inferred. For the given values Af as shown in Figs 2-4, the
experimental data almost collapse on the computed concentration distributions. The
stratified log-law, which is theoretically sound from the viewpoint of sediment-water
mixture and agrees well with velocity data, tends to underestimate the experimental data
of concentration. In contrast, the log-law overestimates the experimental data. The
power-law produces good results simultaneously for velocity and sediment

concentration distributions.

It is pertinent to mention that the wake function distributtn) depends on the
estimation of the Rouse numhkérAs shown in Figs 5-7 (right side), Eq. 19 produces
concentration distributions that in general overestimate the experimental data, yielding
wake function data from Eq. 20 lower than unity. Nevertheless, the computed
concentration distributions still overestimate some experimental data in the inner-layer
of flow. Experimental data of wake function greater than unity in the inner-layer of flow
are not achievable to be fitted by the proposed wake function in Eqg. 22, whilst the
numerical results of Eq. 20 show that trend in the inner-layer. However, Eq. 23, which
involves Eq. 22, gives concentration distributions that agree well with the experimental
data. These computed distributions are better than the distributions obtained numerically
from EqQ. 6. The proposed concentration model, based on the power-law, performs
satisfactorily with the same value of Rouse numibet was used in the numerical
computation. So, it is not required to perform a double adjustment for the Rouse

number.
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In determining the wake function distributions for different values of expongas '
shown in Fig. 8, the exponent of wake functiopi§iset for all the experimental data for
W-distributions complying with certain values @t. To do this, it was convenient to
adjust the values dil; for different experimental data. However, in view of the average
values and the standard deviations, the valud3.dre typically in between 1 and 2,
with M¢ = 1.5 to give the best overall agreement between the Wf{ep-curve and the

experimental data.

In view of the results, it is evident that the power-law velocity model and the
resulting wall-wake concentration distribution can be used as predictors. Besides the
novelty of proposing a concentration distribution model based on wall-wake
components, the analytical developments based on the power law functions are simple.
Actually, the proposed’(n)-distribution in Eq. 23 needs to be understood as a semi-
empirical approximation of Eq. 15, which is firstly solved as a wall function (Eq. 19)
and later expanded across the whole water depth using the wake function (Eq. 22).
Therefore, it is justified to use Eq. 29 to calculate the suspended-load transport rate,
which is analytically modelled here. In fact, it also facilitates the calculation avoiding

the numerical computation of integrals (Guo & Julien, 2004).

9. Conclusions

A critical analysis involving different velocity laws, namely, log-, log wake-, stratified
log-, and power-law, has been carried out. The log-law tends to overestimate both the
velocity and the sediment concentration data, while log wake-law underestimates. In
contrast, the log-wake law produces somewhat better results. The log- and stratified log-
law make the upper and lower bounds of the concentration data for a given value of
Rouse number. On the other hand, as far as the agreement with the experimental data is
concerned, it is found that the power-law is a good choice for predicting velocity and
suspended sediment concentration. A new power-law model for concentration
distributions is therefore proposed here, based on the power-law for velocity

distribution given by Castro-Orgaz & Dey (2011).

Subsequently, the proposed power-law model for concentration has been tested
using the same experimental data. Following a trial-and-error method, the distributions
of wake function have been calculated. The proposed wake function performs quite well

in the outer-layer of flow, but it is somewhat not highly satisfactory in the inner-layer of
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flow. Nonetheless, it is important to point out that this discrepancy has a little effect on
the computation of sediment concentration distributions. The exponent of wake function
varies in between 1 and 2, with a typical average value of 1.5. Subsequently, an
analytical tool to perform the suspended-load transport rate is presented, which
facilitates the calculation in comparison to the classical approximations involving the
Einstein’s integrals. Therefore, the strength of the new formula lies in the fact that, in

contrast to classical approaches, it leads to analytical form for suspended-load transport.

The wake function can be further improved as a future scope, especially for the
suspended sediment load with low concentrations, in which the wake function for the
proposed model shows some departure from the experimental data. In addition, the
inclusion of the nonuniversal von Karman constant in sediment-laden flows remains
unexplored (Gaudio et al., 2010; Gaudio & Dey, 2012).
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10. Notation

+

C
C
Ca
dso

Uk
ut

U +

U max
\'

w

Ws
W

X\ Y Z

= nondimensional sediment concentration (E{L

= time-averaged sediment concentration;

= sediment concentration at reference level,

= median size of sediment;

= gravitational acceleration;

= flow depth;

= suspended-load transport rate;

= friction slope;

= time;

= time-averaged streamwise velocity alargjrection;
= shear velocity;

= nondimensional streamwise velocity (&-/

= nondimensional maximum streamwise velocity (mlilk);
= maximum time-averaged streamwise velocity;

= time-averaged transverse velocity alorgjrection;
= time-averaged vertical velocity alonglizection;

= terminal fall velocity of sediment patrticles;

= wake function;

= Cartesian coordinates or streamwise, transverse,
respectively;

= reference level;

= Rouse number;

= stratification parameter;

= proportionality factor;

= boundary layer thickness;

= submerged relative density;

= molecular diffusivity;

= solid or sediment diffusivity;

= turbulent diffusivity;

= suspended-load transport intensity;
= exponent;

= nondimensional vertical distance (h)z

= nondimensional reference level (#y;
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K = von Karman constant;

r = Cole’s wake parameter;
Me = exponent of wake function;
Yo = mass density of fluid;

r = Reynolds shear stress;

o = bed shear stress;

v = kinematic viscosity of fluid;
W =,
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Appendix V

Hydrodynamic analysis of fully-developed turbidity currents
over plane beds based on self-preserving velocity and
concentration distributions

Francisco Nicolas Cantero-Chinchtll®ubhasish DéyOscar Castro-OrgazSk Zeeshan Ali

Journal of Geophysical Research — Earth Surfd@9(10), 21762199. doi:
10.1002/2015JF003685. Impact factor (JCR 2014): 3.426 / Q1 (19/175 Geosciences,
Multidisciplinary)

Abstract

This paper presents a hydrodynamic analysis for the fully developed turbidity currents
over a plane bed stemming from the classical three-equation model (depth-averaged
fluid continuity, sediment continuity, and fluid momentum equations). The streamwise
velocity and the concentration distributions preserve self-similarity characteristics and
are expressed as single functions of vertical distance over the turbidity current layer.
Using the experimental data of turbidity and salinity currents, the undetermined
coefficients and exponents are approximated. The proposed relationships for velocity
and concentration distributions exhibit self-preserving characteristic for turbidity
currents. The depth-averaged velocity, momentum, and energy coefficients are thus
obtained using the proposed expression for velocity law. Also, from the expressions for
velocity and concentration, the turbulent diffusivity and the Reynolds shear stress
distributions are deduced with the aid of the diffusion equation of sediment
concentration and the Boussinesq hypothesis. The generalized equation of unsteady-
nonuniform turbidity current is developed by using the velocity and concentration
distributions in the moments of the integral scales over the turbidity current layer. Then,
the equation is applied to analyze the gradually-varied turbidity currents considering
closure relationships for boundary interaction and shear velocity. The streamwise
variations of current depth, velocity, concentration, reduced sediment flux, and

! Dept. of Agronomy, Univ. of Cordoba, Campus Rabanales, Edif. Da Vinci, Cra Madrid Km 396, 14071
Cordoba, Spain
2 Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
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Richardson number are presented. Further, the self-accelerating and depositional
characteristics of turbidity currents including the transitional feature from erosional to
depositional modes are addressed. The effects of the streamwise bed slope are also
accounted for in the mathematical derivations. The results obtained from the present

model are compared with those from the classical model.

1. Introduction

Turbidity currents are gravity currents, which are often referred to as inclined plumes or
underflows, consisting of a water-sediment mixture flowing over a sloping bed. In
nature, high density turbidity currents are able to carry such amount of suspended
sediment that their erosive power usually produces remarkable geological reforms, e.g.,
submarine canyondrniman et al., 1976Fukushima et al., 19839lastbergen and Van

Den Berg, 2003;Sumner and Pauyll 2014]. Inland, man-made mining tailings,
earthquakes or heavy storms, among others, can often originate turbidity currents with
huge sediment mass, such as, rocks or debris as underwater landslide to produce
sediment-laden flows Normark and Dickson, 1976Piper et al., 1999]. It is
conceptually helpful to contemplate turbidity currents as a flow constituted by two
separate parts, current-head (that is the current front) and current-®tadg) and
Bowen, 1988]. High suspended sediment concentration in turbidity currents produces a
pressure gradient downslope arising from the density difference between the current-
head and the ambient water just in front of itand thus providing a driving
force. The water-sediment mixture forming turbidity current, as a layer, is driven by the
downslope gravitational component acting on the denser water-sediment mixture.
Although it is in principle the same hydrodynamics as that driving the head, the
buoyancy contrast between the turbidity current and the ambient water leads to a system
where the downslope gradients of flow and sediment transport parameters may be small.
The sediment laden flow however generates adequate turbulence to hold the sediment
particles in suspension. Uniform or gradually-varied turbidity currents containing very
fine sediments over a rigid bed were investigated by several investigaoonsefille

and Goddet1959; Stefan, 1973; Ashida and Egashira, 1975].

Depending on the flow conditions, turbidity currents are distinguished as erosional
or depositional underwater sediment-laden flow&kiyama and Stefan, 1985]. The
interaction of the turbidity current with the ambient flow can be envisaged as an

entrainment of water from the ambient flow to the turbidity current through the interface
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between them. In addition, in erodible beds, the sediment entrainment and deposition
occur at the same time due to the interaction of the turbidity current with the bed-layer.
Under high erodible conditions, the sediment entrainment rate from the bed toward the
turbidity current becomes sufficiently intense so that an inrushing of ambient water
toward the turbidity current layer takes place to balance the mass and momentum fluxes.
On the other hand, the entrainment of ambient water into the turbidity current gets
reduced if sediment deposition occurs at the bed. In turn, the turbidity current becomes
stagnant when there is no sediment transport. In other words, the thickness of the
turbidity current layer is dependent on the ability of the flow to carry the suspended
sediment particles. However, turbidity currents can be considered as a self-generated

current in which sediment particles are suspended by the turbulence.

Less erosive gravity currents can be simulated in the laboratory environment by
creating a salinity or temperature gradiedtacey and Bowen [1988] stated that the
competence of the flow to transport and suspend the sediment depends on the terminal
fall velocity of sediment particles. In the limit, it is believed that for larger sediment
particles, steady flow is not practically feasible. Salinity currents are good examples of
containing sediments with a low terminal fall velocit$equeiros et al. [2010]
conducted a large number of experiments on the velocity and the excess density
distributions of saline and turbidity underflows. They observed the development of
bedforms with time depending on the flow conditions. They also identified an upward
shift of the reference level (that is, the demarcation level between bed- and suspended-
load [Dey, 2014]) due to the change in bed roughness, as the bedforms grow with time.
As a result, the velocity and concentration distributions are modifiedrmohammadi
et al [2011] reported a study on the vertical distribution of gravity currents over a non-
erodible bed. They observed a similarity in velocity and concentration distributions.
Although the vertical distribution of velocity in turbidity currents seems not to be
significantly affected by the suspended particle sRarfer et al., 1987Altinakar et
al., 1996], it is somehow interesting to analyze the effects of the terminal fall velocity

on suspended sediment concentration.

In fact, the governing equations of turbidity current are similar to those used in
sediment-laden flows. By applying the conservation laws of sediment-laden flows, the
governing equations of turbidity current are obtainA#iyama and Stefan [1985]

introduced an analytical model based on the governing equations of turbidity current
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along with the entrainment and the depositional fluxes. The model, which was depth-
averaged into the one-dimensional form, constituted an extension of the formulation
earlier reported b¥llison and Turnerf1959]. Besides, the turbulent energy equation
was accounted for reducing the formula to Bagnold’'s auto-suspension concept
[Bagnold, 1962]. However, their model was not verified due to non-availability of the
experimental dataParker et al [1986] presented a four-equation model, in which the
mean turbulent kinetic energy (TKE) was considered. By considering the classical
three-equation model (depth-averaged fluid continuity, sediment continuity, and fluid
momentum equationd_@i et al, 2015]), as an extension froEllison and Turn€s

[1959] formulation, Parker et al [1986] pointed out the importance of accurately
predicting the bed sediment entrainment. Stacey and Bowen [1988] developed a simple
numerical model (three-equation) that matched well with the experimental data of
velocity and concentration, although they initially failed to obtain the adequate solutions
for the analytical model. FurthelPratson et al. [2000] solved the four-equation model
developed byParker et al. [1986] using numerical techniques. Howevr, et al

[2015] found that the three-equation model does not fail to simulate self-accelerating
turbidity currents, rendering unclear the need of using the four-equation rietigl.
[2001] proposed a two-dimensional turbulence model to address the development of
turbidity current. In the same line, the large eddy simulation along with direct numerical
simulation was also applied to simulate the turbidity curredishfinia et al, 2010;

Dutta et al, 2012]. On the other hand, as a new trend in simulation of gravity currents,
the application of the thermal lattice Boltzmann method was also reparztubiig et

al., 2011;Prestininzi et al 2013]. However, in derivation of the full depth-averaged
models, similarity solutions were sought for the conveniefaakler et al., 1986],

assuming the velocity, concentration, and TKE distributions to preserve similarity.

Similarity approximation for the vertical distributions of the main flow
characteristics are likely well justified in turbidity currents. BesiEaker et al. [1986]
and Stacey and Bowen [1988)Jtinakar et al. [1996] highlighted the self-similarity in
velocity and concentration distributions. In this regastacey and Bowen [1988]
previously argued that the decoupling of the concentration from the temporal evolution
of velocity is an inappropriate concept. Interestingly, their results suggested the self-
preserving characteristic distributions for the flow characteristics. A turbidity current, as

stated byAltinakar et al. [1996], can be viewed, as far as the flow structure is
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concerned, analogous to a wall-jet flow. Accordindlitinakar et al. [1996] assumed a
power-law for the velocity distribution and a linear-law for the concentration
distribution for the inner-layer of flow (wall shear layer). For the outer-layer of flow,
they assumed the near-Gaussian relationships for the velocity and concentration
distributions. These scaling laws gave a satisfactory agreement with their experimental
data. It means that they considered different scaling laws for the inner- and outer-layer
of flow. However, little attention has so far been paid to obtain the generalized scaling
laws (represented by single functions) for the velocity and concentration distributions
over the entire turbidity current layer. These generalized scaling laws, which should
comply with the wide range of experimental data, are therefore a long due.

AV

Fig. 1. Definition sketch of a turbidity current on a sloping bed.

The objective of this study is to initially revisit the vertical distributions of velocity
and concentration in turbidity currents to obtain single similarity functions (continuous
over the entire layer) for them. Appropriate scaling for the similarity functions could
bring the available experimental data of velocity and suspended sediment concentration
for turbidity and salinity currents to single bands. This analysis thus provides us the
self-preserving type relationships for the velocity and concentration distributions in
turbidity currents. Using the developed similarity functions for the velocity and
concentration, the Reynolds shear stress and turbulent diffusivity distributions are
derived. Further, to enhance the mathematical model of the turbidity current according

to the velocity and concentration distributions, three-equation model (depth-averaged
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fluid continuity, sediment continuity, and fluid momentum equations) is analyzed for

gradually-varied flow formulations using appropriate closure relationships.

2. Introduction

The problem of turbidity current is usually treated as a problem of incompressible
turbulent flow [Graf and Altinakay 1998]. When the fluid mass is sufficiently wide, the
width has a minimal influence on the flow, and thus the motion of the turbidity current
can be approximated as a two-dimensional problemaxd z-direction) (Figure 1)
[Parker et al., 1986:Akiyama and Stefan, 1985]. Subsequently, the general depth-
averaged equations of the fluid mass, sediment mass, and turbidity current momentum

are as followsRarker et al., 1986]:

0 Q%
0—2;“+&J;udz:—w, (97)
[ 07 -
aj.cdz+&jucdz=—vyg+ Cvk), (98)
0 0

0% 0 1 0
— ludz+— | Fdz=-=A
dt;[ 6x~([ 2" %x

O 8
N &—3 8

dd zog+A, jj dsif- 3, (99)
0

where z,, is the vertical distance where velocity vanishes=(0) into the turbidity
current, considered to be the turbidity current dep(),is the streamwise velocity at a
vertical distance, wj is the vertical velocity component at the top edge of the current,

Ws is the terminal fall velocity of suspended sediment partidés,is the suspended

sediment concentration velocity atm is the Reynolds flux of suspended particles,

As is the submerged relative density g€ 2.)/04], s is the mass density of sediment
particles,po, is the mass density of ambient fluglis the gravitational acceleratioflis

the streamwise bed slopey, is the shear velocity, and subscriprefers to bed. In
Figure 1, the depth-averaged sediment concentration in turbidity current is given by
C(x). It may be noted that in four-equation modeduker et al, 1986], the TKE budget

is included as the fourth equation, which is briefly discussed in Appendix A.

In equations (1)—(3), the boundary-layer approximations for a two-dimensional
turbidity current are considered. Henceforth the turbidity current is considered as a fully
turbulent flow. Thereby, only the viscous dissipation due to turbulence remains,

neglecting other viscous terms. Also, the vertical-flux terms appearing in the right hand
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side of the equation (2) are evaluated somewhat above the lower boundary to avoid
singular solutions related to the vanishing molecular diffusivity. Equation (3) accounts
for the non-hydrostatic treatment of turbidity currents, decomposing the actual pressure
into a component due to the ambient fluid and an additional component due to the
presence of sediment particles. Thus, the terms in the right hand side of equation (3) are
regarded as the pressure force of the turbidity current.

The integrals in equations (1)—(3), which define the depth-averaged quantities of the
flow, are known as the moments of the integral scaldispn and Turner 1959;
Turner, 1973]. They are

Ilzjudz, I2:ju2dz, (100)
0 0

cdzdz. (101)

I3

Ot——38

cdz, I4:Iucdz, I, =
0

o3
N &~ 8

Equations (1)—(3) can be expressed by means of interaction processes that occur at
the interface of the layers (turbidity current and ambient fluid layers). The static
pressure in the ambient still fluid is greater than the actual pressure in the turbidity
current. According to the Bernoulli equation, a negative pressure gradient in the upper-
layer (ambient fluid layer) results in an inward movement of ambient fluid into the
turbidity current through the interface. Therefore, the entrainment velocity is assumed to
be proportional to the velocity of the turbidity currehufner, 1973], w, = E,U, where
Ew is the entrainment coefficient of ambient fluid, ad@x) is the depth-averaged
velocity of the turbidity current. Besides, accordindtrker et al.[1987], the first and
second terms in the right hand side of equation (2) can be identified as the erosion rate

E, and depositioy, rate of sediment at the bed (Figure 1). Therefore,

wsc|b =D,, (102)
W\b = E. (103)
Thus, the three-equation model is finally written as follows:

oz, Ol
—+—1=EU, 104
ot ox S (104)
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9%,% g _p. 105
ot ox ° (105)

o, a, 1, ol : )

L+ 2=-"A g—2cos@+A_gl. sild—-u:. . 106

o ox 29 sJla ° (109)

The streamwise bed slope 8ioannot be ignored, since a turbidity current is, by
nature, a sloping flow inside a greater mass of fl@daf and Altinakay 1998], as

shown in Figure 1. Accordingly, c@sannot be simplified as unity.

Note that followingGraf [1976] andParker et al [1986] the erosion and deposition
ratesE, and D, appear in the mass conservation for the suspended sediment phase,
equation (9), whereas the mass conservation equation for the water phase is free from
exchange terms. These terms appear as well in the mixture mass conservation equation
of a turbidity currentifu et al, 2012].

3. Velocity Distribution

In a fully developed state, the velocity distribution in turbidity current is almost similar
to that in submerged plane wall-jet. A submerged plane wall-jet is described as a jet of
fluid that impinges tangentially (or at an angle) on a solid wall surrounded by the same
fluid (stationary or moving) progressing along the wddey et al, 2010]. For a
turbidity current, on one side (in the inner-layer), the current is confined to the bed,
while on the other side (in the outer-layer), it is bounded by the stationary ambient fluid
(Figure 1). The boundary conditions for the velocity distribution in turbidity current are
such that the velocity vanishes at the bed and at the interface between the turbidity
current and the ambient fluid. Thus, the velocity distribution attains a maximum (peak
velocity) at the extremity of the inner-layer, that is, the junction of the inner- and outer-
layer of the current. Below the maximum velocity level (in the inner-layer), the flow is
featured by a boundary layer flow, while above the maximum velocity level (in the
outer-layer), the flow is structurally similar to a free jet. Therefore, the turbidity currents
are characterized by an inner shear layer influenced by the bed and an outer-layer of the
self-similar type of a shear flowPprker et al, 1987; Stacey and Bowenl988;
Altinakar et al, 1996; Shringarpure et aJ. 2012]. For the similarity in velocity
distributions, the nondimensional variables introduced Gre WUy, and 77 = Z/zZy,

where Uy, is the maximum velocity. Previous studies primarily assumed two separate

velocity distributions for the inner- and outer-layer of turbidity currents. However, in
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this study, a single velocity distribution over the entire range of the inner- and outer-

layer is assumed in the following form:
G(7) = on* @-n)y", (107)

where o is a coefficient andé and y are the exponents. They are the unknown
parameters to be determined from the experimental data. It is pertinent to mention that
the nondimensional velocity distribution in equation (11) is considered as a combination
of a power function;® and a wake function (1 A" in order to preserve the boundary
conditions, namelyi(7 = 0) = 0 andl (/7 = 1) = 0. Besides, the product of those
functions in equation (11) corresponds to the study of Islam and Imran [2010]. Equation
(11) shows that the velocity distribution in the inner-layer is analogous to a boundary
layer flow, while that in the outer-layer is similar to a free jet. The maximum velocity
U occurs at a location= z,. Introducingny, = z,/zy, at the occurrence of the maximum
velocity, another boundary condition(n7 = 1) = 1 is satisfied at the extremity of the

inner-layer. Therefore, from equation (11), one obtains
a=n1-n,)". (108)

The velocity gradient a = z, vanishes due to the occurrence of maximum velocity
at that level, that is d/dn (7 = nw) = 0. Applying this boundary condition, equation
(11) produces

3

Ny = : (109)
$tX
Substituting equation (13) into equation (12) yields
F+x
gt (110)

qt{XX
Equation (14) shows the dependency of the coeffiaieom the exponenté and y.

The exponentg andy are to be determined using the experimental data.

Figure 2 displays the computed velocity distributions obtained from equation (11)
and using two equations given Aitinakar et al. [1996]. The experimental data plots of
turbidity and salinity currents obtained frofarker et al [1987], Garcia [1993],
Altinakar et al. [1996], Sequeiros et al. [2010klam and Imran[2010], and
Nourmohammadi et al. [2011] are overlapped on the computed curves in Figure 2 for
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comparison. It is found that the valués= 0.6 andy = 2.2 ensure a satisfactory
agreement of equation (11) with the experimental data. Therefore, from equations (14),
one obtaingr = 4.28. The standard deviation, standard error, and correlation coefficient
for Figure 2 are 0.333, 0.011, and 0.930, respectively, which provide a quantitative
understanding on the data scatter from equation (11). The occurrence of the maximum
velocity determined from equation (13)77§ = 0.214. In Figure 2, the experimental data

of runs 6-10, 12, 13, 17, 20, 23, and 24 frBarker et al [1987] are shown. From
Garcia [1993], run DAPERG is also selected for the peak velocity data in subcritical and
supercritical flow conditions. Three sets of experimental data are takenAftorakar

et al. [1996]. Among them, two sets belong to the turbidity currents with sediment sizes
d = 0.047 and 0.026 mm, whetés the median size of sediment particles, and the third
set belongs to the salinity current. Fr@aqueiros et al. [2010], the experimental data

for runs 2, 10, 16, 23, 31, 36-38, 40, and 41, in which no bedforms occurred, are
considered. The experimental velocity data of sections 1-12 for salinity and turbidity
currents reported bylslam and Imran [2010] are extracted. Besides, from
Nourmohammadi et al. [2011], the experimental data for run 3 at streamwise distances
of 2.5 and 3.5 m, run 10 at 4.5 m and runs 7 and 8 at 3.5 and 4.5 m, respectively, from
the flume inlet are used. Finally, the computed velocity distributioAltoiakar et al.

[1996] over predicts most of the experimental data (Figure 2).

1 [ A Parker et al. [1987]
*  Garcia [1993]
A O  Altinakar et al. [1996]
0.75 O  Sequeiros et al. [2010]
< 0.5
- A
= e ? . A
I Islam and Imran [2010] % N <
0.25 4 © Nourmohammadi et al. [2011] *

== Altinakar et al. [1996]
I Equation (11)

A

u

Fig. 2. Computed velocity distributioti (77) obtained from equation (11) showing the comparison with
the velocity distribution obtained using two equations giveAltpakar et al.[1996] and the
experimental data of different investigations.
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From Figure 2, it is observed that the following empirical relationship betgeen
and y shows a good agreement between the fitted velocity distribution and the

experimental data:
X =1+2¢. (111)
Therefore, using equations (14) and (15), equation (11) takes the following form:

(1+38)

W’T(U—_’?)Mf- (112)

U=

Equation (16) thus provides the velocity distribution in turbidity currents with a
single free parametef, which was empirically determined as 0.6. This relationship for

the velocity distribution is in fact of self-preserving type for turbidity currents.

The depth-averaged velocityibd nondimensional form is

1
U= j Gdn , (113)
0

whereU = U/Un. Inserting equation (16) into equation (17) yields

U‘ — (1+ SE)HS{ d_(l""’t’_ (2+ 24()’ (114)
L+ 28y rE+3)

wherel'(s) is the Euler gamma function defined as
r(s)= [y expt y)dy. (115)
0

Since the velocity distribution is obtained from equation (16), typically the flow
parameters of interest, such as momentum (Boussinesq) coefficient, energy (Coriolis)
coefficient, and the moments of the integral scales defined in equation (4), are
determined.

The momentum (Boussinesq) coeffici¢ghis defined as

z, 1
J.uzdz jtfdn
— 0 — 0

B (116)

_UZZm - sz

Inserting equations (16) and (18) into Eq. (20) yields
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The energy (Coriolis) coefficient is defined as
TUSdZ jtﬁdg
a:(l)ﬁzm :003 . (118)
Inserting equations (16) and (18) into equation (22) yields
go g @Y T+F) 4 &) (119)

U @R T T (5 )

With é = 0.6, the following parameters are obtained from equations (18), (21), and
(23):

U =0.52, g =1.465, a=2.36€. (120)

The moments of the integral scales in equation (4) are determined as

% z
I, = [udz= [ wdz= 0.5, 7, (121)
0 0

w0 zy
1, = [udz= [ Pdz= 0398 7,. (122)
0 0

For details of integral equations (25) and (26), see Appendix B.

4. Concentration Distribution

In accordance with the mechanism of suspended sediment motion, the turbidity current
can be considered as a self-generated current in which sediment particles are suspended
by the turbulence. The transport of suspended sediment particles in turbulent flow takes
place due to the advection and diffusion processes in the ambient fluid. The governing
equation of the diffusion of suspended sediment concentration shows a remarkable
dependency of the concentration distribution on the velocity distribubesy, [2014].

The concentration distribution in turbidity current is therefore affected by the velocity
distribution, allowing two distinctive zones. Above the maximum velocity leaelz),

the concentration distribution asymptotically vanishes— 0) just abovez, and

beneath the maximum velocity leve £ z,), the concentration distribution follows a
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classical boundary layer approximation. For the similarity in concentration distributions,
the nondimensional variable is introducedCas c¢/C,, whereCy, is the concentration at

n = nw. Unlike the previous studies which considered two separate expressions for
concentration distributions in the inner- and outer-layer of turbidity curréitiadkar

et al., 1996], a single concentration distribution over the entire range of the inner- and

outer-layer is assumed here in the following form:
C(7) = Aexpt-a ), (123)

whered, @ and ¢ are the unknown parameters. Equation (27) shows that the
concentration has a decreasing trend with the vertical distance. It also provides a finite
value of concentratiorty at the bed /4 = 0). Importantly, equation (27) does not
consider any reference level for the concentration distribution in particular. Applying

the boundary conditiorG (/7 = /) = 1 to equation (27) yields

A =exp@’). (124)

Substituting equation (28) into equation (27) yields
&) = exp| ~p0° -n)]- (125)

Figure 3 presents the computed concentration distributions obtained from equation
(29) and using two equations proposed by Altinakar et al. [1996]. The experimental data
of Parker et al [1987], Garcia [1993],Altinakar et al. [1996], and Nourmohammadi et
al. [2011] for gravity currents are shown in Figure 3 for comparison. In addition, the
values ¢ = 4 and{ = 1.5 provide a best fitting of the computed curve with the
experimental data. Therefore, with, = 0.214 in equation (28), thé is obtained as
1.486. The standard deviation, standard error, and coefficient of correlation for Figure 3
are 0.526, 0.029, and 0.949, respectively, which provide an insight of the data scatter
from equation (29). In Figure 3, the experimental data for runs 6-10, 12, 13, 17, 20, 23,
and 24 fromParker et al [1987], and runs DAPERG in subcritical and supercritical
conditions fromGarcia [1993] are shown. Frowltinakar et al. [1996], three sets of
experimental data used in the velocity distributions as mentioned before are considered
for the concentration distribution, whereas froddourmohammadi et al[2011], the
experimental data for runs 5 and 6 at 2.5 and 5.5 m, respectively, and run 3 at 2.5 and

3.5 m from the flume inlet are considered. Finally, the computed concentration
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distribution of Altinakar et al. [1996] corresponds to the curve obtained from the
present study (Figure 3).

2.5
] & Parkeretal. [1987]
] *  Garcia [1993]
2 1 O Altinakar et al. [1996]
1o < Nourmohammadi et al. [2011]
¥ -~ Altinakar et al. [1996]
L2 1 — Equation (29)

Fig. 3. Computed concentration distributia®¥s7) obtained from equation (29) showing the comparison
with the concentration distribution obtained using two equations givéitingkar et al.[1996] and the
experimental data of different investigations.

From the data plots in Figure 3, an empirical relationship between the parameters

and{ are obtained as
@=5C - 3.5. (126)
Substituting equation (30) into equation (29), the concentration distribution is
&) =expl-(& - 3.5)6° -1, ). (127)

This relationship for the concentration distribution is indeed self-preserving type for

turbidity currents.

From equation (31), the sediment concentratignat the bed /4 = 0) in

nondimensional form is
& =expl(5 - 3.5) |, (128)
where ¢, = @/Cn. The depth-averaged concentratiom@ondimensional form is

C=[adn, (129)

O ey
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whereC = C/Cn. Inserting equation (31) into equation (33) yields

C==(5 -3.5)% exp[5¢ - 0.7} [r(ij—r(i,sz—s.sﬂ, (130)

1
4 ¢ ¢

where I(a, s) is the incomplete gamma function defined as

M(as) :T Yy exp( y)dy. (131)

For { = 1.5 andp, = 0.214, equation (34) yields = 0.528.

Equation (31) suggests that the concentration distribution has a finite valeeat
(n = 1), although it is feeble. Foy > 1, the asymptotic trend of(;) toward the
ordinate is evident (Figure 3). The area under the céifx bounded by7 = 0 and¢ =
0 for the two cases when the limits of integration/are0 to 1 andy = 0 to 2.5 shows
an approximate relative error of 0.7%. Thus, the upper limit of the moments of the
integral scales defined in equation (5) is considered-a, (17 = 1). Hence, the integral

scales in equation (5) are given by

I, = Tcdz: T cdz= 0.528C, 7,, (132)
0 0
l, :Tucdz:T ua z= 0.396Y, G 7. (133)
0 0
o o 2y 7y
ls = [ [cdzdz= [ [ ddaz 0.743G 7. (134)
0z 0z

For details of the moments of the integral equations (36)—(38), see Appendix B.

5. Reynolds Shear Stressand Turbulent Diffusivity Distributions

In a fully developed turbulent flow, the Reynolds shear stress is much greater than the
viscous shear stress except in the vicinity of the bed, where the flow is laminar within a
thin viscous sublayer. It may be noted that the Reynolds shear stress nearly composes
the total shear stress (Reynolds shear stress and viscous shear stress) in absence of
viscous shear stress. Since the turbidity current is characterized by the turbulent flow,
the molecular diffusivity is negligible as compared to the turbulent diffusivity.
Moreover, the solid diffusivity is considered approximately equalling the turbulent
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diffusivity [Rouse 1937;Dey, 2014]. Hence, the Reynolds shear stress and the turbulent
diffusivity distributions are determined from the proposed velocity and concentration
distributions [equations (16) and (31)].

The suspended sediment stratification due to turbidity affects the structure of the
turbulent diffusivity in turbidity currentsJtacey and Bowen, 1988]. From the diffusion

equation of suspended sediment concentration, the turbulent diffusiigtgefined as

: dc)™
& =-W,C o) (135)

The nondimensional turbulent diffusivitg is then expressed as

de "
,g:-ze(ﬁ , (136)

where, = &/(kuzy), K is the von Karman constant, addis the Rouse number [=

wWo/(KUsp)]. Using equation (31), equation (40) reduces to

>

ne
A A E— (137)
(50 -3.5}

According to the Boussinesq hypothesis, the Reynolds shear stiedsirbulent
flow is expressed as

du (138)

et

wherepis the mass density of the fluid-sediment mixture. In nondimensional form, the

Reynolds shear stress is

=g Yncfl (139)
U, dn

where7 =7/pu’, . Substituting equations (16) and (41) into equation (43) yields

1-¢
2(55'7_—35)5(1-/7)2517‘”5“’ 1+ 26 V5% (1+ FY¥ F-n (+ F), (140)

where? = 7 (Usp/Up).
The turbulent diffusivity and the Reynolds shear stress are computed from equations

(41) and (44), respectively, using= 0.6 and{ = 1.5. Figures 4a and 4b show the
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variations of computed nondimensional turbulent diffusivéity and Reynolds shear

stressi with nondimensional vertical distangefor Rouse numberd = 0.3, 0.5, and 1.
The nondimensional reference level considered at 0.05, according t&raf and

Altinakar [1998], is also shown.

(a) (b)
1
. — Equation (41) . — Equation (44)
—- Reference level| | ‘
0.75 1
=~ 051
0.25 -
103
0 T T T

Fig. 4. Distributions of computed turbulent diffusivit‘?t (n7) and Reynolds shear streBgr) for
different Rouse numbe®(= 0.3, 0.5, and 1) obtained from the present model.

At the reference level( = 0.05), theé, is maximum. Then, th&, decreases with
an increase im approaching a constant value fpr> 1. It implies thaté, has a finite

value at the upper boundary of the turbidity curremt=( 1). This feature can be
explained from the viewpoint of the applicability of the governing equation of
suspended sediment concentration [equation (39)]. Strictly, equation (39) is only
applicable to steady-uniform flows. However, as an approximation, the present study
assumes that equation (39) is applicable to nonuniform flows. On the other hand, the
entrainment of ambient fluid into the turbidity current induces a significant mixing at
the interface between the turbidity current and the ambient fluid. Hence, a finite value of

& at the upper boundary of the turbidity current is meaningful. Another important

feature is that for a given, & increases with an increase in Z

In case of Reynolds shear stress, in the immediate vicinity above the reference level

(n = 0.05), thef is positive. It diminishes with an increaserirwithin the inner-layer
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following a similar trend off -distribution in a boundary layer flow due to the reduction
in velocity gradient with7 and becomes zero at the point of occurrence of maximum
velocity. With a further increase in (within the outer-layer), thé becomes negative
forming a protuberance (maximum negative value oin 7 -distribution) at the point

of inflection of the 4 -distribution, and then it gradually approaches to zero. It is
relevant to mention that a similar trend dtdistribution was observed yey et al.
[2010] in a submerged wall-jet. For a givgn7 decreases with an increaseziin the

outer layer, while in the inner layef, increases with Z

6. Turbidity Current Model and Gradually-Varied Flow Formulations

Since velocity and the concentration distributions are known, the three-equation model
for the turbidity currents is obtained by insertiﬁgz 0.52,4=1.465,a = 2.366, and

the moments of the integral scales of equations (25), (26), (36)—(38) into equations (8)—
(10). Therefore, the three-equation model is

0z, 0(UnZ,)
—m4Q52~—mm - 05F U 141
ot ox B Y
0.528° am Z,) , 039M E,-D,, (142)
2
0.522UnZ0) | g 39 (Lgm Z) _ -o.3msga((;—mzﬁ“)cosﬁ+ 0.528 _gC_z_ sif— \f,.(143)
X X

For a steady flow, time derivatives in equations (45)—(47) disappear. Therefore,
using equations (45)—(47) under the steady flow condition yields the gradually-varied

flow formulations forz,, andC,, as

dx 1-0.96Ri U C

m=m

dz, _ 1 {1.21 5D, 1 (4r 0.96Ri E, - 0.683 tah+ 25(2@—”,(144)

m

dC,_ 1 (E-D
dx _Umzm( 0396 ~m mj’ (145)

whereRi is the Richardson number given by

Ri= ASng,gcosé? _1 957 A.9C, z2 cos@i

(146)

m

The streamwise variation &% is obtained as
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%(2+ 0.96Ri {EN +5gﬂJ

i i 3 0.39&J C
@ - Ri . m>~m (147)
dx z (1- 0.96Ri u )
-0.68Ri tard+ 2.5 Ub
Further,Ri is expressed in terms of the reduced sediment flag B
Ri=1.9525:8CnmUnC00 7.098—8823'9 , (148)

m m

where B = AgCUz, = 0.275A9C\Unzn. The B can be interpreted as the sediment
transport rateCUz, affected by the gravitational acceleration reduced by the buoyancy
effect Ay [Graf and Altinakar 1998;Wang et al., 2010]. Differentiating equation (52),
the streamwise gradient of B is expressed as

3 .
B__Un K +3E(EW —dij. (149)
dx 7.098co¥ H© z, dx

Substituting equations (48) and (51) into equation (53) yields

B_BpE-D (150)

dx z, 0.39aJ,C,
7. Closure Relationships
Closure relations are required to evaluate the boundary interaction functions and the bed
shear stress involved in the formulations in the preceding sections. The parameters

involved with them are often specified by empirical relationships reported in literature.

The empirical relationship for the entrainment coefficient of ambient flyidvas
proposed byParker et al [1987] and was extended to gravity currentsAtttynakar et
al. [1993] using the experimental data of turbidity currents and density curmas |
and Altinakar 1998]. It is

E, =0.075(1+ 71&i** )°°. (151)
The net sediment rat&yf — Dy) is then expressed as
Eb - Db = Ws( Es_ Cb) ! (152)

whereEs is the entrainment coefficient of sediment particles from the beds,dadhe
reference suspended sediment concentration. The empirical relationsBigieen by
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Parker et al. [1987], which was used Bitinakar et al [1996] andGraf and Altinakar
[1998], is considered here. It is

-1

7 7
E. :3><1(T”(ui’Re%75J [1+ 10‘10(‘*—*’Re%75j ] , (153)
W, W,

S S

whereRe, is the particle Reynolds number [&gd*/¢ )°7, and v is the kinematic

viscosity of fluid.

The ¢, is usually evaluated in the vicinity of the bedrat 0.05 as indicated in
Figure 4. According to GrdfL971], ¢ is expressed as

G _ ¢ [ Yo
o=t (W] (154)

S

From the experimental observation concerning turbidity currents, it was found that
c/C = 2 for 1 <usp/Ws< 50. [Parker et al., 1987Altinakar et al., 1993], However, this
relationship can be revised and extended to salinity currents as well using the
concentration distribution proposed in this study. Evaluating equation (31) at the

nondimensional reference level € 0.05), equation (58) is expressed as

%:1.421, %:2.691 (155)
Equations (56) and (57) show the dependency pH(B;,) andEs on terminal fall
velocity ws. Hence, the determination of; for a given sediment size is an essential
prerequisite. For natural sediment particles, different formulas are available to evaluate
ws in turbid fluid [Hallermeier, 1981;Chang and Liou2001;Guo, 2002] and still fluid
[Dietrich, 1982;Ahrens 2000;Wu and Wang2006]. A summary of the formulas ot
is available inDey [2014].Zhang and Xie's [1993] empirical formula, which agreed
well with the experimental data over a wide range of sediment sizes from laminar to

turbulent flow Wu, 2008], is considered here. It is

=290 (156)

2 0.5
" ={1-0%59d+(13'95}j } _ 13(].'95

Theu, is determined as follows:
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whereAp is the Darcy-Weisbach friction factor.

8. Numerical Experiment

A numerical example is selected fra@raf and Altinakais [1998] book (7.7.1, page

491), where the initial values afo = 1 m,Up = 1 m §%, andC, = 0.0212 are considered

for the computation. The initial reduced sediment fBis calculated fromB, =
0.271gCoUpz0. The streamwise bed slogle= 5°, mass density of sediment partigtes

= 2650 kg m°, mass density of watgr = 1000 kg m°, and friction factorlp = 0.032

are assumed. The total length of the channel reach is taken as 4000 m. The gradually-
varied flow formulations [equations (48), (49), (51), and (54)] derived in Section 6 are
solved numerically using the fourth-order Runge-Kutta method along with a first-order
forward difference scheme. The numerical scheme is proved to be independent of the
grid size. HereAX (= Ax/Z.) is considered as 0.5 to ensure a smooth variation of
parametric variables. The parametric variables for turbidity currents are specified as

; =& =Y =L g=R 5-8, (158)
ZmO UO CO RIO BO

wherez, is the nondimensional turbidity current depth,is the nondimensional depth-

averaged velocityC is the nondimensional depth-averaged concentrafinis the

relative Richardson number, ari8l is the nondimensional reduced sediment flux. In
Figures (5)—(12), the computational results obtained from the present model are shown
and compared with those obtained from the formulations (henceforth classical model) of
Graf and Altinakar{1998].

Figures 5a-5c exhibit the variations &, U, and B with nondimensional

streamwise distanci for salinity current withd = 10° mm and turbidity currents with

d = 0.05 and).1 mm. An increasing trend df_ with X is evident for all the cases. In
Figure 5a, theJ in salinity current increases slowly witk, becoming invariant o

for X > 45 with a constant valug = 1.064 due to the vanishing acceleration.

However, B is invariant of X with a constant valu& = 1, since the net sediment flux

in salinity current disappears as it is revealed from equation (54). On the contrary,
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Figures 5b and 5c illustrate the self-accelerating behaviour (an increasing trend of

with X) for the turbidity currents due to an increasing trendofvith X. It is apparent

from Figures 5b and 5c that the self-acceleration and the net sediment flux increase with
an increase in sediment size in turbidity currents. héX)-, U (X)-, and B (X)-

curves obtained from the classical formulatio@sdf and Altinakar 1998] have similar

trends with marginally overestimated results from those obtained from the present

model.
(a) (b)
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Fig. 5. Variations of Z_, U, and B with X ina salinity current with (aJ = 10° mm, and turbidity
currents with (b = 0.05 mm and (o) = 0.1 mm.

It is already stated that the turbidity current is characterized by an erosional or a
depositional mode depending on the flow conditions. As the sediment size increases, the
nature of turbidity current changes from erosional to depositional mode, primarily due
to the effects of the terminal fall velocity of suspended sediment particles. Therefore,
for a given bed slopé, there exists a transition from erosional to depositional mode of
turbidity currents with an increase in sediment size. To investigate this phenomenon, the

variations ofz_, U, and B with X for turbidity currents witld = 0.2 and 0.3 mm are

computed and shown in Figures 6a and 6b. The present model shows a transitional
characteristic (erosional to depositional) with an increase in sediment size frddril

to 0.2 mm (see Figures 5¢c and 6a). However, the classical mo@ehiodnd Altinakar

[1998] predicts the turbidity current as erosional dor 0.2 mm. On the other hand,
Figure 6b shows an agreement between the presenGiaidand Altinakals [1998]

models, as the turbidity current is depositionalder 0.3 mm in both the models.

- 189 -



(a) (b)

d=0.3 mm

Em
U
B
— T T T —
1 10 100 1000 1 10 100 1000
X b

Fig. 6. Variations of Z__, U , and B with X in turbidity currents with (ajl = 0.2 mm and (b)l = 0.3
mm.

Figures 7a—7c depict the variationsrif andC with X for salinity current with d =
10° mm and turbidity currents with = 0.05 and 0.1 mm. ThRi gradually decreases

with X in the initial stage, becoming constant (supercritical flow regime) with an

increase inX for all the cases. In Figure 7a, ti for salinity current follows a

decreasing trend over the entire rangeXofsince no sediment is introduced in the
current andz, continuously increases witk. In Figure 7b, theC for turbidity current
with d = 0.05 mm slowly decreases wikh On the other hand, in Figure 7c, tBefor
turbidity current withd = 0.1 mm increases witk due to a positive net sediment flux,
attaining a maximum valu€= 1.722 atX = 120 and then decreases witheven
though B has an increasing trend there (see Figure 5c). The decreasing tr€nih of
Figure 7c is attributed to the continuous rapid growt#of The Ri(X)- and C~I()A<)-

curves obtained from the classical modgtdf and Altinakay 1998] have similar trends

with a slight variation from those obtained from the present study.

To demonstrate the transitional characteristic of turbidity currents, the variations of

Ri and C with X for d = 0.2 and 0.3 mm are calculated and plotted in Figures 8a and
8b. The transitional characteristic (erosive to depositional) of the turbidity currents is
found with an increase in sediment size frdm 0.1 to 0.2 mm (see Figures 7c and 8a).
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However, according to the model @faf and Altinakay the turbidity current still shows
an erosional mode fat = 0.2 mm. On the other hand, fb= 0.3 mm, both the models

predict the turbidity current as depositional (Figure 8b).

(a) (b) (c)
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Fig. 7. Variations ofRi and é with X in a salinity current with (aJ = 10 mm, and turbidity currents
with (b)d = 0.05 mm and (oj = 0.1 mm.
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Fig. 8. Variations ofRi and é with X in turbidity currents with (agl = 0.2 mm and (bjl = 0.3 mm.
The Richardson number is a good indicator to identify the flow regime [subcritical
flow (Ri > 1) or supercritical flow Ri < 1)], and in turn, the turbidity current

characteristics (erosional or depositional mode). Figure8®ahow the variations of
Ri with X for different 8in salinity current withd = 10° mm and turbidity currents
with d = 0.05 and.1 mm. It is revealed from Figures 9a—9c that for smaller valué@s of

(< 0.8°), theRi abruptly increases witlx for all the cases, while for larger valueséf
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(= 29), it increases fof = 2° and decreases f@i= 5-45° with X, becoming invariant of

X for a large X. Therefore, to obtain a supercritical flow (independentX9f it is
required to overcome a certain threshold value of bed stbffeat depends on the
sediment size. It is evident that tRé in salinity current (Figure 9a) attains a constant
value earlier than in turbidity currents (Figures 9b and 9c). Rii{&)-curves obtained
from the classical modeldraf and Altinakay 1998] have similar trend with slightly
underestimated results from those obtained from the present study for larger va#lues of

(= 29), but slightly overestimated results for smaller value@(gf0.8°).

Graf and Altinakar [1998])
-= Ri 1
Present model

—Ri
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1 10 100 1000 1 10 100 1000 1 10 100 1000
X x x

0

Fig. 9. Variations ofRi with X for different bed slopein a salinity current with (aj = 10° mm and
turbidity currents with (byl = 0.05 mm and (aj = 0.1 mm.

Figures 10a and 10b show the variationsRofwith X for different 8 in turbidity
currents withd = 0.2 and 0.3 mm. In Figure 10& £ 0.2 mm), both the present and
Graf and Altinakats [1998] models agree well in predictimj for 8= 2°, but differ for
6= 5°. For@> 5°, theRi has a supercritical flow tendency (independenkdf while
for < 5°, it decays asymptotically toward zero. With an increase in sedimend size (
0.3 mm), the damping oRi is noticeable withd, while the supercritical flow is
achieved a = 45° (Figure 10b). Th&i(X)-curves obtained from the classical model
[Graf and Altinakay 1998] have similar trend with slightly underestimated results from
those obtained from the present study, exceptdfer 5° for which an overestimated

result is obtained.
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Fig. 10. Variations ofRi with X for different bed slopeédin turbidity currents with (agl = 0.2 mm and
(b)d=0.3 mm.

The variations ofRi with at X = 4000 (last node of computational domain) for

salinity current withd = 10° mm and turbidity current witd = 0.1 mm are plotted in

Figure 11. The results obtained from the present model are compared with the

formulations ofGraf and Altinakay [1998]. For a given initial condition, the turbidity
currents can only maintain the supercritical fldw € 1) if &exceeds a threshold value,

as shown in Figure 11. ThRi (8)-curves obtained from the classical modatdf and

Altinakar, 1998] have similar trend with slightly underestimated results from those

obtained from the present study.
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Fig. 11. Variations ofRi with fat X = 4000 in a salinity current witth= 10°mm and a turbidity

current withd = 0.1 mm.

Figure 12 displays the variations of nondimensional growth rate/dk of

turbidity currents withd at X= 4000 for salinity current witd = 10°mm and turbidity
current withd = 0.1 mm. In these cases, the present model slightly underestimates the
growth rate from that obtained fro@raf and Altinakais [1998] model. The ratio of
average growth rate of the turbidity current to that of the salinity current is determined
as 0.66 (approximately), while from the classical modebwf and Altinakar[1998],

this ratio is obtained as 0.67. Howev&kjyama and Stefan [1985] reported the ratio as
0.65.
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Fig. 12. Variations of d&Z, /d X with @at X = 4000 in a salinity current witth= 10°mm and a turbidity

current withd = 0.1 mm.
9. Discussion
The present model of turbidity current is not merely based on empirical relationships,
but it provides an insight into the physics of the fluid flow. The velocity and
concentration distributions reported earlier were typically based on self-similarity
functions obtained by treating the depth-averaged variables in the moments of the
integral scales. Following the analysis Bwarker et al [1986], a satisfactory depth-
averaged model was classical modérdf and Altinakay 1998]. In particular, the
knowledge of the velocity and concentration distributions are required to treat the

equations of fluid mass, sediment mass, and fluid momentum balance.

The expression for the velocity distribution is derived in Section 3. Using the
experimental velocity data of turbidity and salinity currents reported by various
investigators, the unknown parameters involved in the velocity distribution function are
determined. However, the velocity distributions in a flow over bedforms have a
departure from this trend, since the maximum velocity shifts upward in this case
[Sequeiros et al., 2010]. It is relevant to mention that the generalized expression
(equation 11) for the velocity distribution can also be applicable to the flow over

bedforms, if the unknown parameters are adjusted according to the experimental data.

-195 -



Moreover, the unknown parameters involved in the velocity distribution are reduced to

a single unknown parameter by means of the boundary conditions and the empirical
relations. From the velocity distribution, the flow parameters such as nondimensional

depth-averaged velocity, momentum (Boussinesq) and energy (Coriolis) coefficients are
determined as 0.52, 1.465, and 2.366, respectively. In contrast, accorditigakar et

al. [1996], the nondimensional depth-averaged velocity was found as 0.769 showing a
50% overestimation of the present value. As a result of which the momentum and
energy coefficients affect the moments of the integral scales of the governing equations.

So, they need to be taken into account for a better performance of the model.

The concentration distribution is likewise treated and derived in Section 4.
Following an analogous derivation to the velocity distribution, a single function for the
concentration distribution involving a single unknown parameter is proposed by
applying the boundary conditions and the empirical relations. The concentration
distribution is based on the near-Gaussian distribution proposeiltiogkar et al
[1996] for the outer-layer of the turbidity currents. After an appropriate treatment, the
near-Gaussian distribution is used over the entire range of the turbidity current layer.
So, two separate concentration distributions in the inner- and outer-layer, which make
the formulation rather complicated, are no longer required. The experimental data used
in the analysis is chosen from the same experiments used for the velocity distribution.
Therefore, the level of vanishing velocity at the interface between the turbidity current
and the ambient fluid is known and the ordinate of the concentration distribution is
rescaled accordingly. From the viewpoint of the suspended sediment motion, little is
known about the background mechanism of the suspended sediment concentration in
turbidity currents. Within the inner-layer where the velocity distribution follows a
classical boundary layer flow, the concentration distribution is expected to adopt a
traditional concentration distribution, as proposedbysg1937]. However, according
to the experimental data trend, the concentration at the bed can be approximated with a
finite value PAltinakar et al.,, 1996]. Within the outer-layer, the concentration
distribution has a decreasing trend with the vertical distance leaving a finite value at the
interface between the turbidity current and the ambient fluid. Accordingly, the moments
of the integral scales defined in equation (5) are performed neglecting the concentration

distribution in the ambient fluid layer.
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Using the velocity and concentration distributions, the characteristics of turbidity
current are further analyzed. In Section 5, the turbulent diffusivity in turbidity currents
is estimated using the diffusion equation of the suspended sediment concentration. The
Reynolds shear stress in turbidity currents is computed applying the Boussinesq
hypothesis. The Reynolds shear stress distribution is in agreement with the theoretical
study reported bystacey and Bowen [1985]. Applying the diffusion equation to the
suspended sediment motion, the turbulent diffusivity distribution is also obtained. In
contrast to the present observations, the stu@tadey and Bowen [1985] considered a
linear bridge to join the bimodal type of turbulent diffusivity distribution following
Launder and Spaldin§l972]. This linear bridge was explained from the viewpoint of
the Prandtl’s mixing length theory for turbidity currents. In fact, nothing can be firmly
stated in this aspect, since little is known about the characteristics of the turbulent length
scales in turbidity currents. However, the present study is free from the consideration of
a linear bridge.

The present model provides the gradually-varied flow formulations given in Section

6. The variations of the nondimensional turbidity current depth, velocity, concentration,
reduced sediment flux, and Richardson number with nondimensional streamwise
distance obtained from the present model are compared with those obtained from the
classical modelGraf and Altinakar 1998]. The variations o, , U , C,andB are, in
general, underestimated by the present model as compared to those obtained from the
classical model, leading to milder transitions than in the classical model. The variation
of Ri is, in contrast, overestimated. Consequently, it can be interpreted that the present
model is able to describe a greater strength of erosional turbidity currents without the

implication of greater values & _, U, C,andB. Additionally, the point of departure

from the erosional to depositional turbidity current appears earlier in the present model
than in the classical model with respect to the median size of sediment particles, as
inferred from Figures 6 and 8. The reason is attributed to account for the self-preserving
type distributions of velocity and concentration in the present model. It is one of the

main differences between the present and the classical models. Besides, the difference
in prediction ofRi for different bed slope€is analyzed in Figure 11. In addition, the
same trend is found for the growth rat@ ddx of turbidity currents in Figure 12 by

analyzing the ratio of the growth rates in salinity to turbidity currents. These
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characteristics are generalized for a wide rang@anid in turn, it can be stated that the

present model in general performs similarly to the classical model.

Last but not the least, the results on the gradually-varied flow parametric variables
in turbidity currents with erosional or depositional mode could not be compared with
the observed data due to lack of experimental or field data. However, in spite of some
approximations adopted in the analysis, this model, at least, fulfils the purpose of
describing clearly the characteristics and the behavior of turbidity currents. This
corollary is further discussed in Appendix C through an auxiliary calculation following
the recommendation &farker et al [1986]. The present three-equation model does not
fail in predicting turbidity currents from ignition point and, in turn, does not violate the
four-equation TKE balanceHu et al, 2015]. Besides, in view of the self-preserving
type of velocity and concentration laws that are validated by the experimental data and
used to develop the gradually-varied flow relationships, perhaps a more than a

qualitative rationality can be claimed for the computed results.

10. Conclusions

A physically based hydrodynamic analysis for the turbidity currents over a plane bed is
presented using the classical three-equation model (depth-averaged fluid continuity,
sediment continuity, and fluid momentum equations) and considering the self-similar
characteristics of the streamwise velocity and concentration distributions. According to
the classical theory of sediment-laden flow, the governing equations of turbidity
currents are presented in generalized forms by using the moments of the integral scales.
To perform the integrals, the velocity and concentration distributions are assumed as
single functions over the entire turbidity current layer. Using the experimental data of
salinity and turbidity currents over plane beds, the unknown parameters involved in the
velocity and concentration distributions are evaluated. Importantly, the velocity and
concentration distributions are of self-preserving type, as they correspond closely to the
wide range of experimental data in fully developed flows. The values of the typical flow
parameters, such as depth-averaged velocity, momentum, and energy coefficients are
evaluated from the velocity distribution. From the velocity and concentration
distributions, the turbulent diffusivity and the Reynolds shear stress distributions are
determined using the diffusion equation of suspended sediment concentration and the
Boussinesq hypothesis. The turbulent diffusivity distribution is found to follow a
different trend to that reported in the literatu&édcey and Bowen, 1988], while the
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Reynolds shear stress distribution agrees well with the previous observai®net|
al., 2010].

Using the velocity and concentration distributions in the moments of the integral
scales, a generalized model for unsteady-nonuniform turbidity currents is developed.
Then, the gradually-varied flow formulations for steady-nonuniform turbidity currents
are derived from the generalized model with suitable closure relationships. The different
parametric variables (current depth, velocity, concentration, reduced sediment flux, and
Richardson number) of turbidity currents obtained from the present model are compared
with those obtained from the model @Gfaf and Altinakar[1998]. The dependency of
the parametric variables of turbidity currents on the sediment size and the bed slope
including the transitional feature of turbidity currents from erosional to depositional
mode is especially focused. The threshold value (erosional to depositional mode) of the
streamwise bed slope that ensures a supercritical flow is highlighted for different
sediment sizes. However, for depositional turbidity currents carrying larger sediment
sizes, no threshold value of the bed slope is obtained. The ratio of growth rate of the
turbidity current to that of the salinity current predicted by the present model is found

almost similar to those obtained from previous models.
The limitations of this study are as follows:

(1) The expressions for self-preserving distributions of velocity and concentration
are calibrated using the limited available experimental data reported by some
investigators. Use of more experimental data could improve the accuracy of
these expressions.

(2) The diffusion equation of suspended sediment concentration for uniform flow is
applied for solving the gradually varied turbidity current equations. Thus, the

turbidity current is assumed to be a pseudo-uniform flow.

(3) The suspended sediment concentration is assumed to be sufficiently small to
apply the Boussinesq approximation, and thus the kinematic viscosity equals its

value for clear water.

(4) The present study does not take into account the effects of bedforms on turbidity

current over sediment beds.

Nevertheless, the present model is believed to be a powerful tool to analyze the

characteristics of fully developed turbidity currents. It not only provides more

-199 -



comprehensive insights into the vertical structure of the currents, but also the
generalized formulation of unsteady-nonuniform turbidity currents and parametric
variations of gradually-varied turbidity currents. In addition, it provides additional

evidences to claim in favour of the three-equation model.
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Appendix A: Turbulent Kinetic Energy (TKE) Budget
The depth-averaged equation of TKE budget of turbidity currents is as folRawisef
et al., 1986]:

%Ikdﬁ%z ukd z= P—Igd Z-%AS gg&j a

0

I Y ° 9(F
-Ag aj!odzm&j[ utdzit! g([j m)m}z:osﬁ, (1)

0 0 0

wherek is the TKE Py is the average TKE production rate, and the TKE dissipation

rate.

The link of equation (A1) with the three-equation model was expressedrkgr et
al. [1986] through the bed shear stress. The entrainment coeffi€gnt,Ex/ws, is
related to the state of the turbulence, as it can be inferred from equation (7) and is given
as a function of the level of turbulenke which is the depth-averaged TKE. Thereby,
Parker et al.[1986] assumed

ul =a,K, (2)

where a, is the proportionality parameter, which is assumed to be constant for a given

flow. In addition, followingParker et al [1986], one can write
I i | o oK K
5oZm—'c[5dZ—U {EEW 1-Ri ZF +a1? , (3)

R =Pz, . (4)

The integrals of equation (Al) are defined as

00 00 0 a z o ©
I, :J;J;ucdzdz, l, :J;c&uudszz, I =£kdz, Iy =£ukdz. (5)
Then, the generalized form of equation (A1) is given by

al,  al, 1 o, al, j
—2+2=(P-¢g)z,—=Agwl,—-A g| —=+—L+1_ |cosd. 6
ot ox ( O)Zm 2 sg s'3 sg( ot X 7 ( )

Including equation (Al) in the turbidity current model, the large valués damp
the turbulence state and hence stabilizes the valu€saaflEs, which is unpredictable
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by a three-equation moddPdrker et al., 1986]. However, in order to obtain a solution
for equation (A6), additional information is required. The T#iEtribution belongs to
integralslg andloe. Unfortunately, little is known about the legitimate TKE distribution

in turbidity currents. Although there exist some approximations of the TKE distribution
in turbidity currentslglam and Imran, 2010], they are not generalized. Besides not only
the expression for TKE distribution is required in a complete four-equation model, but
also an initial value of TKE is a prerequisite to initiate the computation. In fact, it was
clearly pointed out byParker et al. [1986] that the initial value of TKE for the
computation requires a number of assumptions. Therefore, it is rather uncertain to
provide a reliable initial value of TKE. In addition, the type of distributions assumed for
the velocity and the concentration makes it difficult to perform the other integral scales.
In fact, integrall; is not possible to be integrated in terms of a functiom, @s the
hypergeometric series functions appear, e.g., Kummer confluent hypergeometric
functions. Also, in order to perform the integrationgfal similar continuous function is
assumed for the product of the nondimensional velocity and concentratiob=as
10.57°"X1 —)°. Thereby, 4 is

11
ud d z 1054 G A [7°®(@~n Fdndy = 008U,C, 2, (7)

07

@ o0 Zy
I6:jjucdzdzzj
0z 0

N N

Thus, equation (A1) is finally modified as

al,  al,

S 4+ _° = P_

% ax (P-&)z, 5
i .

—Asg{0.264wscmzm{ 0.13 (Cé;zfﬂ) + o.%‘mg—inzﬂh u}cose}

The consideration of equation (A8) may enhance the performance of the turbidity
current model Parker et al, 1986]. Notwithstanding, realizing the drawbacks, the
inclusion of this equation can be avoided by adopting proper closure relationships in

three-equation model.
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Appendix B: The Moments of the Integral Scales
With the unknown parameters, the velocity and concentration distributions obtained

from equations (16) and (31) are given as
G=4.284" (I-n ¥?, (A1)
¢=1.486expft 4° . (A2)

Therefore, the moments of the integral scales are

wdz= [ wiz= U, 7wy = 4288, 7[n*° @0 ¥ 4= 082, (A3)

O'—.S

:Tuzdzz T Pdz= B ;ﬂj "Gy = 18.354 ;jn“ (&n }' g = 0.398z,, (A4)

0

00

j cdz= jodz_ G an o7 =1.486 C g_[ ep(-47"° Y= 0528 _z., (A5)

0

Z 1
z=[udz |, G 7/ "ty

II
o'—.8

1
=6.368)_C.z [e™ 'n°%(1-n)*%dn = 0.398) C, 7., (A6)

0

o'—;S

I dzdz:;j:]: ddz ¢ %ﬁ‘dﬂd/]

:1.4%cmzfnﬁ expt 4° Yndy = 0.748_2. (A7)
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Appendix C: A Comparison between Three-Equation and Classical
Four-Equation Models

According toParker et al [1986], the self-accelerating currents are wrongly predicted

by means of the former classical three-equation moédlisqn and Turner1959]. On

the contrary, they are satisfactorily simulated by introducing the TKE budget equation
in the model. In this regard, Figures 7b and 15 are takenRamker et al [1986] (see
Figures C1 and C2, respectively) to assess the performance of the three-equation model
of this study. Figure C1 shows the development of the turbidity current characteristics
from ignition. The term ignition in turbidity current is defined by Parker ef2086] as

the self-acceleration through an entrainment of bed sediment. The curve illustrates how
the three-equation model Bfarker et al [1986] fails to represent the behaviour of the
current. However, the three-equation model of this study does not describe such a rapid
increase in the sediment transport as obtainedPdmker et al [1986]. In addition,

Figure C2 depicts how the present model corresponds to the estimations by four-
equation model oParker et al [1986] rather than to follow the hydraulic jump trend

obtained from the classical three-equation model of Parker £1986].

3

EParker etal. [1986] T ., . \
05:. %m .o..........
1« U
:. _é
0 ] T 7 f &2 T &% *f 70
0 25 50 75 100
X

Fig. C1. Variations of Z_, U , and B with X ina turbidity current showing the comparison between
the present model arigbrker et al [1986].
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|
4 . — Present model
Three-cquation model [Parker et al., 1986]

¥ .
Four-equation model [Parker et al., 1986]
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Fig. C2. Variation of Ri with X in a turbidity current showing the comparison between the present
model andParker et al [1986].
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12. Notation

B = reduced sediment flux

B = nondimensional reduced sediment f(exB/By)

Bo = initial condition of B

C - depth-averaged concentration

C =dcC,

C = nondimensional depth-averaged concentration/Gs)C
Co = initial condition of C

Cn = suspended sediment concentration ats,

c = suspended sediment concentration in turbidity current at z
(o] = fluctuations of ¢

¢ =dCn

Co = sediment concentratiaat bed

& =aCn

Co = reference sediment concentration

cw = Reynolds flux of suspended sediment particles
Dy = deposition rate of sediment

d = median size of sediment particles

Ep = erosion rate of sediment

Es = entrainment coefficient of sediment particles from bed
Ew = entrainment coefficient of ambient fluid

g = gravitational acceleration

;g = moments of integral scales

K = level of turbulence

k = turbulent kinetic energy (TKE)

Pr = average TKE production rate

Re, = particle Reynolds number [agd*/#)°7

Ri = Richardson number

Ri = relative Richardson number (=/Rip)

Rio = initial condition of Ri

t =time

U = depth-averaged velocity

U  =UUn
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V] = nondimensional depth-averaged velo¢ityJ/Ug)

Uo = initial condition of U

Un = maximum velocity

u = streamwise velocity of turbidity current at z
a = uMn

Usp = shear velocity

w = vertical velocity component

w = fluctuations of w

Wh = vertical velocity component at top of turbidity current
Ws = terminal fall velocity of suspended sediment particles
X,z = Cartesian coordinates

X = XZnmo

Z = Rouse number [=#{xus)]

Zn = turbidity current depth

Z, = nondimensional turbidity current depth ()
Zyo = initial condition of

Zy = position of maximum velocity

a = energy (Coriolis) coefficient

B = momentum (Boussinesq) coefficient

X, ¢ =exponents in velocity distribution

As = submerged relative density

£ = TKE dissipation rate

& = turbulent diffusivity

& = &l(Kupzy)

I'(s) = Euler gamma function

I'(a, s) = incomplete gamma function

n =27y
M = ZlZm
K = von Karman constant

A, @ { = unknown parameters in concentration distribution

D = Darcy-Weisbach friction factor

7] = streamwise bed slope

P = mass density of fluid-sediment mixture =+ (0s — 02)C]
Pa = mass density of ambient fluid
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= mass density of sediment particles
= coefficient

= Reynolds shear stress
=(pus,)
=7 (U/Upm)

= kinematic viscosity of fluid
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