Multi-view gait recognition on curved trajectories

D. Lépez-Fernandez, F.J. Madrid-Cuevas, A. Carmona-Poyato, R. Mufioz-Salinas and R. Medina-Carnicer

Abstract—Appearance changes due to viewing angle changes
cause difficulties for most of the gait recognition methods. In this
paper, we propose a new approach for multi-view recognition,
which allows to recognize people walking on curved paths. The
recognition is based on 3D angular analysis of the movement of
the walking human. A coarse-to-fine gait signature represents
local variations on the angular measurements along time. A
Support Vector Machine is used for classifying, and a sliding
temporal window for majority vote policy is used to smooth and
reinforce the classification results. The proposed approach has
been experimentally validated on the publicly available “Kyushu
University 4D Gait Database”. The results show that this new
approach achieves promising results in the problem of gait
recognition on curved paths.

Keywords—Gait recognition, 3D descriptor, independent-view,
curved paths.

I. INTRODUCTION

Researches on human gait as a biometric feature for
identification have received a lot of attention due to the
advantage that it can operate from a distance and can be
applied discreetly without needing the active participation of
the observed individual [1]. However, gait recognition perfor-
mance is significantly affected by changes in various covariate
conditions such as clothing [2], camera viewpoint [3|], [4], load
carrying [5]], and walking speed [6].

According to camera viewpoint, the previous work can be
categorized into two approaches: view-dependent and view-
independent approaches. View-dependent approaches assume
that the viewpoint will not change while walking [7]-[12].
In such methods, a change in the appearance, caused by a
viewpoint change, adversely affects to the recognition [13].
For example, when a subject walks along a curved trajectory,
the observation angle between the walking direction of the
subject and the camera optical axis is gradually changed at all
frames during a gait cycle. Fig. [T] shows this problem and the
influence of a curved path on the silhouette appearance.

This paper presents a new approach for multi-view gait
recognition which allows to identify people walking along
both curved and straight paths. Some potential applications
of this work is smart video surveillance (e.g. bank offices,
government facilities, or underground stations) and access
control or monitoring in special or restricted areas (e.g. military
bases or medical isolation zones where subjects wear special
clothing that does not allow to show the face or use the
fingerprint).

The rest of the paper is structured as follows. After present-
ing in Section || the related work, we describe our proposed
framework for gait recognition in Section Section is
devoted to the experimental results. And, finally, we conclude
this paper in Section
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Figure 1. In a curved path, the observation angle between the walking
direction of the subject and optical axis of the camera is gradually changed,
which affects the silhouette appearance.

II. RELATED WORK

Appearance changes due to viewing angle changes cause
difficulties for most of the gait recognition methods. This
situation cannot be easily avoided in practical applications.
There are three major approach categories to sort out this
problem, namely: (1) approaches that construct 3D gait in-
formation through multiple calibrated cameras; (2) approaches
that extract gait features which are invariant to viewing angle
changes; (3) approaches whose performance relies on learning
mapping/projection relationship of gaits under various viewing
angles [3].

Approaches of the first category are represented by [4]],
[14], [15]. In [14]], a 3D approximation of a Visual Hull (VH)
[16] is used to design a multi-modal recognition approach.
Although a VH model is computed, a gait recognition scheme
based on silhouette analysis is applied, which restricts a large
amount of discriminant information because the recognition is
based on single view silhouette analysis, instead of analyse 3D
information.

Another approach that applies image-based rendering on a
3D VH model to reconstruct gait features under a required
viewing angle is presented in [15]. This approach tries to
classify the motion of a human in a view-independent way,
but it also has two drawbacks. On the one hand it considers
only straight paths to estimate the position and orientation
of a virtual camera. Tests were performed only on straight
path motions. On the other hand, not all the 3D information
available in the VH is used, because feature images are
extracted from 2D images rendered only from a single view.

In [4], an observation angle at each frame of a gait
sequence is estimated from the walking direction, by fitting
a 2D polynomial curve to the foot points. Virtual images
are synthesized from a 3D model, so that the observation



angle of a synthesized image is the same that the observation
angle for the real image of the subject, which is identified
by using affine moment invariants extracted from images as
gait features. The advantage of this method is that the setup
assumes multiple cameras for training, but only one camera
for testing. However, as in the above two works, despite 3D
models are used, descriptors are computed from silhouettes
and they based on 2D information, so that 3D information is
discarded. On the other hand, shadows on the floor complicate
the estimation of the foot points in silhouette images. This
approach requires to split the sequence into gait cycles and
assumes that the gait phase of the first frame of a gait cycle
of a subject is the same for each person in the database.

Approaches of the second category extract gait features
which are invariant to viewing angle change. In [17]], it is
described a method to generate a canonical view of gait
from any arbitrary view. This method can work with a single
calibrated camera but the synthesis of a canonical view is
only feasible from a limited number of initial views. The
performance is significantly dropped when the angle between
image plane and sagittal plane is large.

In [18]], a method based on homography to compute view-
normalized trajectories of body parts obtained from monocular
video sequences was proposed. But this method efficiently
works only for a limited range of views. Planar homography
has also been used to reduce the dependency between the
motion direction and the camera optical axis [19], however
this method seems not to be applicable when the person
is walking nearly parallel to the optical axis. In [20]] view-
invariant features are extracted from GEI Only parts of gait
sequences that overlap between views are selected for gait
matching, but this approach cannot cope with large view angle
changes under which gait sequences of different views can
have little overlap.

A self-calibrating view-independent gait recognition based
on model-based gait features is proposed in [21]]. The poses
of the lower limbs are estimated based on markerless motion
estimation. Then, they are reconstructed in the sagittal plane
using viewpoint rectification. This method has two main draw-
backs that are worth mentioning: 1) the estimation of the poses
of the limbs is not robust from markerless motion; 2) it is
not applicable for frontal view because the poses of the limbs
become untraceable; and 3) this method assume that subjects
walk along a straight line segment.

The approaches of the third category rely on learning
mapping/projection relationship of gaits under various viewing
angles. The trained relationship may normalize gait features
from different viewing angles into shared feature spaces. An
example from this category can be read in [22], where LDA-
subspaces are learned to extract discriminative information
from gait features under each viewing angle.

A View Transformation Model (VTM) was introduced by
[23] to transform gait features from different views into the
same view. The method of Makihara et al. [23] creates a VITM
based on frequency-domain gait features, obtained through
Fourier Transformation. To improve the performance of this
method, Kusakunniran ef al. A sparse-regression-based VIM
for gait recognition under various views is also proposed in
[3]. However, this method cannot deal with changes in the

direction of motion.

Although methods of the third category have better ability
to cope with large view angle changes compared to other
works, some common challenges are the following [3[: (1)
performance of gait recognition decreases as the viewing angle
increases; (2) since the methods rely on supervised learning, it
will be difficult for recognizing gait under untrained/unknown
viewing angles, (3) these methods implicitly assume that peo-
ple walk along straight paths and that their walking direction
does not change during a single gait cycle (i.e., that people do
not walk along curved trajectories).

III. PROPOSED FRAMEWORK

This work presents a method to recognize walking hu-
mans independently of the viewpoint and regardless direc-
tion changes. Our approach aims to extract 3D dynamical
information of gait. The body human region is vertically
divided into 3D stacked areas of the same size called slices
and then we compute the centroid of each slice. The gait
feature is composed by a set of acute angles between the line
joining each pair of consecutive centroids and the z-axis (z-
axis extends up) in R3.

The proposed algorithm consist of four steps that predict
the identity of a walking human a time ¢. Following are
described these steps in detail.

e  Tracking of the walking human.
e  Descriptor generation.
e  Signature update.

e  C(lassification.

A. Tracking

We assume a set of [NV calibrated cameras. Since cameras
have been calibrated, the internal and external camera param-
eters are known. We also assume the floor to be flat and its
position in 3D space to be known.

The first step of our algorithm is to determine the location
of the individual in the scene. For that, we start by obtaining
the principal axis of the silhouette for each camera view
i by Principal Component Analysis. Next, for each view,
we back-project this line in order to get the plane m; €
{70, 1, ..., TN —1}, as Figure [2| shows.

It is assumed a function f:R3 +— R3 to map from camera
local coordinates to scene world coordinates. Then we map
each plane 7; from local camera coordinates to scene world
coordinates. Let us denote r; ; as the intersection line between
the planes 7; and 7;, where 0 <¢ < N and 0 < j < N.

We denote F' as a set of candidate foot points, obtained
by intersecting the lines r;; with the floor plane, without
repetition, so that the cardinality of the set is |F| = (}).
Finally, the location of the individual is denoted by:

|2

1
P=— F;. 1
m; (1)



Figure 2. The principal axis of the silhouettes is back-projected to get a
plane. Then, the location of the individual in the scene is determined by the
intersection between the line of intersection of the two planes and the floor
plane.
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Figure 3. The centroid C, is obtained by finding the point closest to the set
of rays {L; , | 0 <4 < N}. See main text for further details.

B. Descriptor generation

Given a foot point P : (P, P,,0), the 3D scene is
vertically divided into H € NT parts, called slices. Let us
denote p»" and p»"*! as the projections on the image view
i of the 3D points (P, P,,h%) and (P, Py, (h + 1)%)
respectively, where Z is the total height of the 3D scene. We
compute the 2D centroid ¢; , = {Z,y} on the bounding box
enclosing the pixels (0,p5" 1) and (w,pi"), where w is the
width of the image.

Then, using the 2D centroid c¢;; and the calibration data
for the view ¢, we can backproject the ray L; ;, passing through
the image view point ¢; ;. In order to obtain an approximation
of the 3D centroid C}, of the slice h in the scene, we find the

point closest to the set of rays {L; , | 0 < i < N}. We propose
to solve it by minimizing the sum of squared distances.

Next we define the angle between the normal vector to the
floor plane (Z = (0,0, 1)) and the vector joining each pair of
consecutive centroids as:

- N
Z-C,C
ah:arccos(%ﬂ),ogh<k’—2, 2)
hCht1
Bh = Hlin{Oéh, 180 — O‘h}7 (3)

e .
where C,C},11 is the vector connecting the C}, and Ch41
centroids. Thus, for each instant ¢, our descriptor is a tuple of
angular measurements that we can define as:

Drs = (Bo,t), Bty - Br—2,4))- 4)

If the slice h is empty (e.g. slices above the head) or
H{Lin} < 2, Cp cannot be estimated. In such cases, to
preserve the height of the subject as feature, we set (3, ; = 0.

C. Signature update

The first step of our classification system is the generation
of the gait descriptor D ;) at time ¢. Then, the gait signature
can be built as a time series of gait descriptors obtained from
the 3D reconstructed gait sequence.

In order to combine different description levels, we propose
a coarse-to-fine refinement. We define the number of levels as:

0<1< |log, H, (5)

so that the first level descriptor contains features extracted
from the scene divided into 2 slices, the second level descriptor
contains features extracted from the scene divided into H = 22
slices, and so on until we have divided the scene into H = 2!
slices. We can now concatenate the level descriptors to repre-
sent our coarse-to-fine descriptor as:

Dy = (Di2,p), D22,y -, D2t ) (6)

The gait signature is a temporal pattern of gait, a sample
that feeds a classifier producing a class label corresponding to
the identity of a particular person. Our signature is updated
at every moment of the walking, and it allows to take place
a synchronous classifying process. Thus, we define the gait
signature ¢ on a sliding temporal window of size L. Let us
denote ¥ as:

Yuty = (Zas-1+1) - Dai—1), Zas))s @)

which consists of a concatenation of L consecutive de-
scriptors. In other words, our gait signature is updated at each
instant of the gait by concatenating successive gait descriptors
into a sliding temporal window of size L.

Our gait signature has several advantages that are worth
mentioning. First, the gait phase of the first frame of a gait
sequence of a subject does not have to be the same for each
person in the database. Second, it does not require the sequence
to be split into gait cycles, and therefore it is not necessary to



estimate the gait period. This makes our method less restrictive
compared to other techniques from the literature such as [J3]],
[4] [24] among others.

D. Classification

The gait signature %; 4) is in fact the feature vector used
for classification. Each feature vector is assigned to a class
label that corresponds to one of the person in the database.

We adopt the subspace Component and Discriminant Anal-
ysis, based on Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), which seeks to project
the original features to a subspace of lower dimensionality so
that the best data representation and class separability can be
achieved simultaneously [25]]. Then we use a Support Vector
Machine (SVM) [26] for training and classification.

The gait signature is based on the L previous volumes, and
a possibly different class label can be produced for each new
gait signature at each time. In order to smooth and reinforce the
results over time, we use a majority vote policy over a sliding
temporal window of size W. Our recognition algorithm pro-
vides the identity of the person as soon as possible. However,
as the gait signature information is computed on L previous
volumes, the use of this window causes a delay of L+ (W —1)
frames in obtaining the identity. The majority voting system
over a sliding temporal window is represented in Fig. ]
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Figure 4.  Majority vote policy over a sliding temporal window. In the
example, the size of the signature is set to L=4, and the size of the voting
window is set to W=3.

IV. OVERVIEW OF THE EXPERIMENTS

In order to validate our approach, we carry out diverse
experiments on the publicly available “Kyushu University 4D
Gait Database” [4]. With these experiments we try to answer,
among others, the following questions:

e Is our descriptor a valid approach to recognize walking
humans independently of the viewpoint, even with
curved trajectories?

e  What level of refinement for our coarse-to-fine gait
descriptor is required to achieve the best recognition
rate?

e  What is the influence of the sliding temporal window
for majority voting policy on the recognition rate?

e How many cameras are needed to achieve good per-
formance?

A. Dataset description

“Kyushu University 4D Gait Database” (KY4D) |I| [4], it
is composed of sequential 3D models and image sequences
of 42 subjects walking along four straight and two curved
trajectories. The sequences were recorded by 16 cameras, at a
resolution of 1032 x 776 pixels. The studio setup is shown in
Figure@ Despite 3D models are available, we do not use them,
because this work relies on camera calibration to obtaining 3D

information.
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Figure 5. Experimental setup of KY4D. This image is part of the public
release of KY4D Gait Database.

As can be seen in Figure [5] KY4D gait sequences are cap-
tured by 16 cameras forming rings at two heights. The lower
level comprises the cameras {7451527, 7172435, 7121059,
7451462, 7451476, 7340706, 7451471, 7230135}, whereas
the upper level comprises the cameras {7451465, 7340709,
7340697, 7451466, 7451477, 7340692, 7451468, 7340700}.

B. Experimental results

Next we need to determine the value of several parameters
of our method. According to the length of the gait signature,
we set to L = 20 the number of frames where our descriptor is
computed, because this value roughly matches with the average

length of a gait cycle. Regarding the number of levels (see
Section [[II-C)), we tested [ from 1 (2 slices) to 6 (2° slices).

We use a leave-one-out cross-validation strategy. Thus,
each fold is composed by 42 sequences (one sequence per
actor) for testing and by the remaining five sequences of each
actor (i.e. 42 x 5 sequences) for training. To make the choice
of SVM parameters independent of the sequence test data, we
cross-validate the SVM parameters on the training set. Note
that curved paths are sometimes longer than straight paths.
Moreover, some subjects walk faster than others and therefore
cause a greater number of votes. To cope with this issue, we
normalize by class the results of each trajectory.

In order to achieve the best data representation and class
separability simultaneously, we apply PCA+LDA to the train-
ing and test data (see Section [[II-D). With regard to PCA,
we only retain 95% of the variance. In the classification step,

'Publicly ~ available  at:
e.php?content=db

http://robotics.ait.kyushu-u.ac.jp/research-



[ [ ] PCA [ PCA+LDA |
1 5.99 N.A
2| 31.54 32.92
3| 56.98 56.38
4 | 74.75 74.68
5 | 80.21 81.40
6 | 79.56 80.69

Table 1. CORRECT CLASSIFICATION RATE [%] ON THE LOWER SET OF
CAMERAS FOR SEVERAL VALUES OF THE PARAMETER [. THE SIZE OF THE
SLIDING TEMPORAL WINDOW FOR MAJORITY VOTING IS SET TO W = 1.
BEST RESULT IS MARKED IN BOLD. (SEE MAIN TEXT FOR FURTHER
DETAILS.)
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Figure 6. Performance of our descriptor on the lower level of cameras of
KY4D database for different lengths of the majority voting window.
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Figure 7. Performance of our descriptor on the upper level of cameras of
KY4D database for different lengths of the majority voting window.

we tested several SVM kernels, and finally we selected a C-
SVC SVM with Radial Basis Function since we obtained better
results than with linear, polynomial, or sigmoid kernels.

The recognition rate on the lower set of cameras for several
values of the parameter [ is shown in Table [I} It also shows
the effect of the dimensionality reduction on the recognition
rate. In this experiment, for the sake of simplicity, we disabled
the sliding temporal window for majority voting (W = 1). We
obtained the best results with [ = 5 and PCA+LDA. It must be
note that besides the recognition rate, the number of features
is considerably lower with PCA+LDA than with PCA.

90 1
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80 F B

Correct classification rate [%]

B lower-5;-PCA+LDA-W=120 —m— ||

lower-%35-PCA+LDA-W=1

70 ‘ ‘
2 3 4 5 6 7 8

Number of cameras

Figure 8. Performance of our descriptor for an increasing number of cameras.

We next conducted experiments in which we applied the
sliding temporal window for majority voting policy. As can be
seen in Figure [6] and Figure [7] the use of a majority voting
policy over a sliding temporal window significantly improves
the performance of our method. However, the performance
obtained with the lower set of cameras is greater than with
the upper set (see Section [V-A)). The size of the window is
limited by the number of available gait signatures for each
sequence.

The results of Table [l shows detailed results for the leave-
one-out experiment, with [ = 5. We show the effect of applying
the sliding temporal window for majority voting compared
with W = 1 (disabled window). As can be seen, we have
obtained better results with the lower set of cameras than with
the upper set. This could be due to the tilt of the cameras. This
issue is left for a future study.

In order to determine the number of cameras that should be
employed and its effect on the performance, we have designed
a leave-one-out cross validation experiment. We selected the
signature configuration that achieved the best performance in
the previous experiments and then we tested it with a variable
number of cameras of the lower set in the range 2 to 8. As
can be seen in Figure [§] with just 2 calibrated cameras, our
method is able to correctly classify up to 95% of individuals,
independently of the path, even with curved trajectories.

V. CONCLUSION

This paper has proposed a new approach to recognize
walking humans independently of the viewpoint. Our approach
allow people to walk freely in the scene, in contrast to others
view-independent approaches which restrict the view change
to a few angles.

A new rotation invariant gait descriptor has been proposed
to cope with rotation changes on curved trajectories, while
preserving enough discriminatory information from the gait.
Our descriptor focuses on capturing 3D dynamical information
of gait.

This approach does not require the sequence to be split into
gait cycles, and the results are smoothed and reinforced over
time by using a sliding temporal window for majority voting



Straight paths Curved paths
[ Experiment tT [ 2 [ 3 | t5 [ 6 | AVG
upper-432-PCA-W=1 44.63 | 51.80 | 46.78 | 48.13 | 28.74 | 58.45 | 46.42
upper-9432-PCA-W=120 70.73 | 78.04 | 82.92 | 87.80 | 54.34 | 85.00 | 76.47
upper-432-PCA+LDA-W=1 49.85 | 57.07 | 51.12 | 52.68 | 29.70 | 56.05 | 49,41
upper-432-PCA+LDA-W=120 | 80.48 | 80.48 | 90.24 | 82.92 | 52.17 | 72.50 | 76,46
lower-432-PCA-W=1 84.86 | 87.73 | 88.97 | 89.49 | 52.24 | 78.02 | 80.21
lower-432-PCA-W=120 95.12 100 100 100 97.82 100 98.82
lower-%32-PCA+LDA-W=1 88.24 | 89.82 | 89.10 | 90.30 | 52.42 | 78.52 | 81.40
lower-¥32-PCA+LDA-W=120 | 97.56 100 100 100 91.30 | 97.50 | 97.72

Table II.

CORRECT CLASSIFICATION RATE ON KY4D [%]. EACH COLUMN CORRESPONDS TO A TEST TRAJECTORY, USING THE REMAINING

TRAJECTORIES AS TRAINING SET. EACH ROW CORRESPONDS TO A DIFFERENT CONFIGURATION OF THE GAIT DESCRIPTOR. EACH ENTRY CONTAINS THE
PERCENTAGE OF CORRECT RECOGNITION FOR EACH TUPLE TRAJECTORY-SETUP.

policy. Experimental results show that our method is able to
reach a correct classification rate up to 95%.
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