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Abstract: Starch, as the main grain component, has great importance in wheat quality, with the ratio
between the two formed polymers, amylose and amylopectin, determining the starch properties.
Granule-bound starch synthase I (GBSSI), or waxy protein, encoded by the Wx gene is the sole
enzyme responsible for amylose synthesis. The current study evaluated the variability in Wx genes
in two representative lines of Hordeum chilense Roem. et Schult., a wild barley species that was
used in the development of tritordeum (×Tritordeum Ascherson et Graebner). Two novel alleles,
Wx-Hch1a and Wx-Hch1b, were detected in this material. Molecular characterizations of these alleles
revealed that the gene is more similar to the Wx gene of barley than that of wheat, which was
confirmed by phylogenetic studies. However, the enzymatic function should be similar in all species,
and, consequently, the variation present in H. chilense could be utilized in wheat breeding by using
tritordeum as a bridge species.
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1. Introduction

Starch is the main component of wheat grain, constituting up to 75% of its dry weight.
This polysaccharide contains two different glucose polymers: amylose (22%–35% of the total) and
amylopectin (68%–75% of the total) [1]. Changes in the ratio between these polymers have a clear
influence on starch gelatinization, pasting and gelation properties [2], affecting the end-use quality
levels of different wheat products, such as bread, pasta, and noodles [3–5], as well their shelf-lives [6]
and nutritional values [7].

Starch synthesis involves several starch synthases, starch branching enzymes, and starch
debranching enzymes [8]. The most studied of these proteins has been the granule-bound starch
synthase I (GBSSI) or waxy proteins (ADP glucose starch glycosyl transferase, EC 2.4.1.21), which are
solely responsible for amylose synthesis [9]. In wheat, these proteins are synthesized by genes located
in the short arm of the seven-group homeologous chromosome, with the exception of the Wx-B1 gene
that, owing to a translocation event, is located in the 4AL chromosome [10]. In wheat relatives, this gene
is located in similar positions, and its molecular configuration of 12 exons and 11 introns is highly
conserved in all of these species [11]. In other Poaceae species, such as barley (Hordeum vulgare L.),
this gene has shown the identical structure and location [12].

The variability of waxy proteins has been studied in common and durum wheat, as well as in
some wild and cultivated relatives [13]. However, the variability in modern wheat cultivars is not very
wide, according to data in the Wheat Gene Catalogue [14]. In the search for new waxy variants, species
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from the primary and secondary wheat pools could contain good candidates. These species have been
successfully used to transfer useful traits to wheat. In some cases, these transfer events have generated
amphiploids that have also been used as bridge species [15]. In other cases, these amphiploids have
been derived to produce human-made crops, such as tritordeum (×Tritordeum Ascherson et Graebner),
that have shown promising characteristics [16].

Tritordeum was synthesized using mainly durum wheat and Hordeum chilense Roem. et Schult.
(2n = 2× = 14, HchHch), a wild barley species native to Chile and Argentina, included in the section
Anisolepis Nevski [17]. In this species, variation in genes related to quality has been widely evaluated
over the last decade [18–21] and has been used to expand the genetic base of tritordeum. Furthermore,
this species exhibits advantageous agronomic and quality characteristics [22–24], which, together with
its ability to be crossed with other members of the Triticeae tribe [25], make it useful in cereal breeding.

In its natural distribution area, H. chilense shows some ecotypes, based on morphological and
ecophysiological traits [26,27]. The two main groups are related to the first two H. chilense lines used
to develop tritordeum, H1 and H7. Tritordeum developed using these lines showed differences in
fertility, grain size, and life cycle, depending on the female parent (H1 or H7) used [25]. An analysis
of the genes related to the flour quality from both lines also showed that these ecotypes could have
different effects on the tritordeum quality. These differences have been evaluated for the seed storage
proteins [18,28], hordoindolines [29], and pigment enzymes [30,31].

The main goals of this study were to analyze allelic variation and molecularly characterize of the
Wx genes in the H1 and H7 lines of H. chilense, and to determine the gene’s chromosomal location.

2. Materials and Methods

2.1. Plant Materials

Seeds of two H. chilense lines (H1 and H7) that were self-pollinated for two generations were used
in this study. The ditelosomic addition lines (CS + 7HchS and CS + 7HchL), together with both parental
lines (common wheat cv. “Chinese Spring” and line H1) were used to locate the Wx gene in H. chilense.
These materials were grown in greenhouse conditions.

2.2. DNA Extraction and PCR Amplification

For DNA extractions, ~100 mg of young leaf tissue was excised and immediately frozen in liquid
nitrogen. DNA was isolated using the cetyltrimethyl ammonium bromide (CTAB) method as described
by Stacey and Isaac [32].

The primers BDFL (5′-CTGGCCTGCTACCTCAAGAGCAACT-3′) and BRD
(5′-CTGACGTCCATGCCGTTGACGA-3′) designed by Nakamura et al. [33] were used to
detect the presence of the Wx-Hch1 gene in the ditelosomic addition lines. The amplification was
performed in a 20 µL final reaction volume, containing 50 ng of genomic DNA, 1.25 mM MgCl2,
0.2 mM dNTPs, 4 µL 10× PCR buffer, 0.2 µM of each primer and 0.75 U GoTaq® G2 Flexi DNA
polymerase (Promega). The PCR conditions included an initial denaturation step of 3 min at 94 ◦C
followed by 35 cycles as follows: 30 s at 94 ◦C, 30 s at 65 ◦C then 2 min at 72 ◦C. After the 35 cycles,
a final extension of 5 min at 72 ◦C was included.

Amplification products were fractionated in vertical PAGE gels with 8% polyacrylamide
concentration (w/v, C: 1.28%) and the bands were stained with GelRed™ nucleic acid staining
(Biotium) and visualized under UV light.

2.3. Cloning of PCR Products and Sequencing Analysis

Owing to the length and structure of the Wx gene, ~2800 bp with 11 introns and 12 exons,
three fragments were amplified using primers designed by Guzmán and Alvarez [34]. The first
fragment includes the first to third exons (Wx1Fw: 5′-TTGCTGCAGGTAGCCACACC-3′ and
Wx1Rv: 5′-CCGCGCTTGTAGCAGTGGAA-3′), the second extends from the third to the sixth exon
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(Wx2Fw: 5′-ATGGTCATCTCCCCGCGCTA-3′ and Wx2Rv: 5′-GTTGACGGCGAGGAACTTGT-3′),
and the last fragment covers the region spanning the 6th to the 11th exon (Wx3Fw:
5′-GGCATCGTCAACGGCATGGA-3′ and Wx3Rv: 5′-TTCTCTCTTCAGGGAGCGGC-3′).

All amplifications were performed in 50 µL final volumes, containing 100 ng of DNA genomic,
1.25 mM MgCl2, 0.2 mM dNTPs, 10 µL 10× PCR buffer and 0.75 U GoTaq®G2 Flexi DNA polymerase
(Promega). The primer concentrations were 0.4, 0.3 and 0.2 µM per primer for the first, second and
third fragments, respectively. The PCR conditions included an initial denaturation step of 3 min at
94 ◦C and then 35 cycles as follows: for Wx1Fw/Wx1Rv, 40 s at 94 ◦C, 30 s at 64 ◦C and 1 min at 72 ◦C,
for Wx2Fw/Wx2Rv, 30 s at 94 ◦C, 30 s at 66 ◦C and 90 s at 72 ◦C, and for Wx3Fw/Wx3Rv, 40 s at 94 ◦C,
30 s at 62 ◦C and 90s at 72 ◦C. After the 35 cycles, all reactions included a final extension of 5 min at
72 ◦C.

The PCR products were purified by separation in 1% agarose gel, excised and then independently
ligated into the pSpark®-TA Done vector (Canvax). They were then transformed into Escherichia coli
‘CVX5α’ competent cells (Canvax). Inserts were sequenced by Sanger method from at least three
different clones. The novel sequences are available from the GenBank database [Wx-Hch1a: MK045501
for the H1 line, and Wx-Hch1b: MK045502 for the H7 line].

2.4. Data Analysis

The sequences were analyzed and compared with sequences of CS (Wx-A1: AB019622, Wx-B1:
AB019623, and Wx-D1: AB019624), two-rowed barley cv. Vogelsanger Gold (Wx-H1: X07931) and
six-rowed barley cv. Morex (Wx-H1: AF474373) available in the databases using Geneious Pro version
5.0.4 software (Biomatters Ltd., Auckland, New Zealand). The synonymous substitution rate (Ks) and
non-synonymous substitution rate (Ka), as well as the Ka/Ks ratios, were computed using DNAsp
ver. 5.0 [35]. Divergence times were calculated by the mean divergence time, 2.7 million years ago
(MYA) between the A and D genomes estimated by Dvorak and Akhunov [36]. Predicted proteins, as
well as secondary structure predictions, were also obtained with this software, using the EMBOSS
tool Garnier [37]. Amino acid substitutions between the predicted proteins obtained from the new
alleles and reference proteins were analyzed using the PROVEAN (Protein Variation Effect Analyzer)
software tool to predict whether these amino acid substitutions or InDels have an impact on their
biological function [38,39].

A phylogenetic tree was constructed with the software MEGA6 [40] using the complete coding
regions of the two sequences obtained, together with the following sequences of the Wx genes:
common wheat CS (Wx-A1: AB019622, Wx-B1: AB019623, and Wx-D1: AB019624), two-rowed
barley “Vogelsanger Gold” (Wx-H1: X07931) and six-rowed barley ‘Morex’ (Wx-H1: AF474373).
A neighbor-joining cluster of all of the analyzed sequences was generated using the Poisson correction
method for amino acid sequences [41] with one bootstrap consensus from 1,000 replicates [42].

3. Results

To determine the location of the Wx gene, different combinations of primers were used. However,
for some of them, owing to similar fragment sizes, establishing the unambiguous presence of the
Wx gene from H. chilense was difficult. The BDFL/BRD primers, designed by Nakamura et al. [33],
provided the most reliable results (Figure 1).
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Figure 1. (a) Diagrammatic representation of Wx gene showing the three fragments used for sequencing,
and (b) PCR analysis for the chromosomal location of H. chilense Wx gene using primers BDFL/BRD
from Nakamura et al. [33] in common wheat, ditelosomic addition lines, and H. chilense. Lanes are as
follows: 1, cv. Chinese Spring (CS), 2, CS + 7HchS line, 3, CS + 7HchL line, and 4, H1 line.

Because data obtained from other Triticeae species indicated that the Wx genes were mainly
located on the short arm of the chromosome 7 [10], the CS + 7HchS and CS + 7HchL lines were used to
determine the arm location of this gene in H. chilense. Figure 1 shows the presence of one additional
band in the CS + 7HchL line (Lane 3) that is a similar size to a band in the H. chilense (H1) line (Lane
4), which is absent in both the common wheat CS (Lane 1) and the CS + 7HchS line (Lane 2). Thus,
the Wx-Hch1 gene is located on 7HchL (H1), suggesting an inversion in this H. chilense chromosome.

The Wx-Hch1 gene was analyzed in two lines of H. chilense that represent two different biotypes of
this species present in Chile. Due to the length of this gene (~2700 bp), the genomic sequence was
obtained amplifying three fragments, which covered the complete coding sequence. The first fragment
of ~620 bp, covered part of the second exon (the first one in the coding sequence, see Figure 1) until the
end of the fourth exon, while the second fragment (~960 bp) spanned the fourth to the seventh exons.
Finally, the third fragment (~1160 bp) was the region between the end of fragment 2 and the 12th exon,
including the TGA codon. The alignment and comparison are shown in Figure S1. The initiation codon,
ATG, and the termination codon, TGA, for translation, as well as the splice junctions of each intron of
Wx-Hch1, were in homologous positions to those in other Wx genes. Both alleles detected in H. chilense
(Wx-Hch1a and Wx-Hch1b) were smaller in size than the Wx genes used for comparison (Table 1).

The comparison between the seven nucleotide sequences showed that the greatest homology
level was detected between the Wx-Hch1 genes and the Wx-H1 variants from barley (90.8%). However,
the comparison of the Wx genes from common wheat cv. Chinese Spring showed lower values of 83.6%
for Wx-D1, 84.7% for Wx-B1 and 87.7% for Wx-A1. Nevertheless, the predicted proteins of these same
sequences showed homology greater than 94% for all comparisons, and greater than 97.7% among
barley species. This is in concordance with most of the sequence differences being found in introns.
In all cases, the exons were the same size, with the exception of exon 2, which contained one or two
additional codons in wheat but was similar in both H. chilense and H. vulgare (Table 1).
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Table 1. Size of the different exons and introns of the coding sequence in the Wx sequences evaluated.

Wx-A1a 1 Wx-B1a 1 Wx-D1a 1 Wx-H1a 2/Wx-H1b 3 Wx-Hch1a/Wx-Hch1b

Exon 2 321 324 321 318 318
Exon 3 81 81 81 81 81
Exon 4 99 99 99 99 99
Exon 5 154 154 154 154 154
Exon 6 101 101 101 101 101
Exon 7 354 354 354 354 354
Exon 8 180 180 180 180 180
Exon 9 192 192 192 192 192

Exon 10 87 87 87 87 87
Exon 11 129 129 129 129 129
Exon 12 117 117 117 117 117
Intron 2 82 99 90 89 85
Intron 3 84 88 95 84 80
Intron 4 109 113 104 126 109
Intron 5 125 133 152 136 113
Intron 6 99 69 141 106 89
Intron 7 91 92 85 92 89
Intron 8 95 86 82 94 94
Intron 9 90 84 84 82 82

Intron 10 98 97 98 97 97
Intron 11 93 115 116 76 85/86

Total 2781 2794 2862 2794 2735/2736
1 cv. Chinese Spring (NCBI ID: Wx-A1, AB019622, Wx-B1, AB019623, Wx-D1, AB019624) [43]. 2 cv. Vogelsanger
Gold (NCBI ID: X07931) [12]. 3 cv. Morex (NCBI ID: AF474373).

3.1. Amino acid Predicted Sequence Analysis

While coding sequences of the Wx genes varied, most variation resulted in silent mutations
that did not impact protein sequence or structure. Additionally, these proteins were synthesized as
precursors or pre-proteins, including one transit-peptide of 70 amino acids and one mature domain.
Nevertheless, potentially impactful sequence variation was detected in a conserved region of the
mature domain related to waxy protein activity. These changes can lead to marked differences in the
predicted sequences of the respective proteins (Figure S2).

The Hordeum sequences, including both H. chilense biotypes, showed the insertion of one amino
acid residue within the signal peptide between positions 53 and 54. Furthermore, these sequences had
deletions of Gly73 or Ala73 residues detected in the wheat proteins. Both InDels were the consequences
of the aforementioned elimination of one or two codons in exon 2. Three non-conservative amino
acid changes were detected in both H. chilense variants. For two of these changes, Pro24→ Arg and
Ser416→ Pro, the H7 line showed the same amino acids as the other evaluated sequences. The Ser416
→ Pro change could have deleterious effects according to the PROVEAN analysis, with a score of
−2.869. The 419 position was different in both H. chilense sequences and was also different than the
other sequences, with the exception of Wx-A1, which was similar to that of Wx-Hch1a (Table 2).

The amino acid sequences from H. chilense were more similar to the waxy proteins from barley
than those derived from any wheat genome. Only 15 changes were detected between H. chilense and
barley variants, while up to 54 changes were observed when this comparison was carried out with
wheat waxy proteins, and ten changes were common to both barley and wheat species (Figure S2).

Up to 15 amino acids variants were detected within the transit peptide. The sequence changes
generated some variations in the secondary structure of the transit peptide. The most dramatic was
the Val5→ Ala change (detected in barley waxy proteins but not in H. chilense ones) that resulted
in an elongated first helix and the disappearance of a β strand in the secondary structure (Figure 2).
With the exception of the aforementioned change in position 24 (Pro in Wx-Hch1a and Arg in the
others), all changes were common to both H. chilense variants. The barley variants showed three of
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these conservative changes (Val5→ Ala, Ile18→ Val and Met68→ Val), although the waxy protein of
cv. Vogelsanger Gold (Wx-H1a variant) included one additional non-conservative change at position
70 (Arg70→ Ser). Four of these differences, all classified as conservative, were common to Wx-B1 and
Wx-D1 (Pro25→ Ala, Leu30→ Val, Asn34→ Ser, and Ser62→ Thr), although each variant showed
two additional changes (Ala39→ Pro and Ile45→ Thr for Wx-B1, and Ile45→ Val and Lys52→ Thr
for Wx-D1). Nevertheless, Wx-A1 was the most varied, with five unique changes (three conservative:
Ile18→ Val, Ala58→ Pro and Gly61→ Phe, and two non-conservative: Gly17→ Ser and Ser62→
Asp) and one change in common with Wx-D1 (Ile45→ Val) (Figure 2).

Table 2. Amino acid comparison of predicted mature protein among waxy protein variants evaluated.

Position 1 Wx-Hch1a/b Wx-H1a 2 Wx-A1a 2 Wx-B1a 2 Wx-D1a 2

103 Pro Ala
115 Val Ile Ile Ile
123 Asn Lys Lys Lys Lys
131 Val Ile Ile
137 Ala Val Val
139 Glu Arg Lys
142 Thr Arg Arg Arg Arg
145 Phe Tyr Tyr Tyr
158 Ile Val Val Val
162 Trp Cys Cys Cys
189 Gln Leu
201 Ala Val Val
206 Asp Asn Asn
208 Asn Asp
212 Tyr His
232 Pro Leu Leu Leu Leu
244 Asn Ser
249 Thr Ala
356 Thr Ile Ala
362 Ala Thr
363 Val Ala
367 Ile Val Val
373 Ala Gly Gly Gly
416 Ser/Pro Pro Pro Pro Pro
419 Val/Met Leu Leu Leu
427 Ile Val Val Val
438 Arg Lys
443 Val Met Ile
449 Gly Thr Ser Ser
452 Arg Trp
471 Leu Val Val Val
496 Ala Val
508 Val Met
535 Ala Val Val Val
551 Gln His His His
587 Ile Val Val
588 Val Ile Ile
590 Asp Glu Glu Glu Glu
597 Met Leu

1 This position should be increased for Wx-A1 and -D1 (+1), and for Wx-B1 (+2). 2 NCBI ID: barley [X07931] and
common wheat cv. “Chinese Spring” [Wx-A1: AB019622, Wx-B1: AB019623, Wx-D1: AB019624].
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region among all sequences evaluated.

Numerous changes were also observed in the mature proteins both in barley and wheat (Table 2).
Five of these changes were common to both species (Asn123→ Lys, Thr142→ Arg, Pro 232→ Leu,
Ser416→ Pro and Asp590→ Glu), whereas two changes were exclusively detected in barley (Arg438
→ Lys and Ala496→ Val) and nine were exclusively detected in wheat (Val115→ Ile, Phe145→ Tyr,
Ile158→ Val, Trp162→ Cys, Ala373→ Gly, Ile427→ Val, Leu471→ Val, Ala535→ Val and Gln551
→ His). The other changes were detected in one or two wheat sequences (Table 2). Two of these
changes could have effects on enzyme function (Figure 3). In addition to the abovementioned change,
Ser416→ Pro, which was unique to Wx-Hch1a, another change with deleterious effects predicted by
the PROVEAN analysis was Pro232→ Leu, with a score of −4.061. The other changes observed were
considered neutral.Agronomy 2019, 9, x FOR PEER REVIEW 8 of 12 
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Figure 3. Consensus sequence of the predicted proteins from H. chilense showing the motifs described
by Leterrier et al. [44] conserved in waxy proteins. Squares indicate substitution sites (blue for wheat,
red for barley and black for both ones), and arrows point relevant changes found in the novel alleles.

Up to five of the eight motifs described by Leterrier et al. [44] are involved in the ADP
glucose-binding and catalytic sites within the mature protein. Three changes were observed inside these
conserved motifs (Figure 3). However, only the change Ile427→ Val was considered relevant because,
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although this change was also detected in barley waxy protein, the wheat waxy proteins all showed Val
as the residue in this position. The change Thr356 appeared in barley and the Wx-D1 protein, while Val
496 was exclusively found in the barley protein. The PROVEAN analysis suggested that these changes
be considered neutral because their influence on the enzyme function was very limited.

3.2. Phylogenetic Analysis

The complete amino acid sequences of the two novel variants from H. chilense obtained in this
study, together with other waxy protein sequences present in the NCBI database, were used to construct
a phenogram based on the Poisson correction method for amino acid sequences (Figure 4). Three main
clusters were observed, representing the correlations between the H. chilense sequences and the common
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These data were corroborated when the genomic nucleotide sequences of these variants were
analyzed. Furthermore, the Ks and Ka substitution rates among Wx genes were calculated using the
coding sequences of the complete genes. The comparison value between the genes from H. chilense
and H. vulgare was high (Ks = 0.127), which suggested that the divergence time between species was
~2.3 MYA based on the mean divergence rate (0.0533 Ks per MY) obtained for this gene in a previous
study [45].

4. Discussion

Knowledge regarding the influence of the amylose/amylopectin ratio on starch properties has
encouraged the search for allelic variants that could increase/decrease either starch component.
The most studied, in this context, has been the ADP glucose starch glycosyl transferase (GBSSI or the
waxy proteins) solely responsible for amylose synthesis. This starch synthase has been studied in
several cereal species, mainly those in which the starch properties are important for their use in the
agri-food industry or in bio-ethanol production [46].

Recently, biotechnological techniques have allowed the development of new species using
phylogenetically related species. These new species could also be used as a bridge to transfer new
variations to common wheat. Thus, H. chilense, as a species involved in the synthesis of tritordeum,
could be useful [25]. The incorporation of the Hch genome in durum wheat has clear effects on the
quality characteristics of the tritordeum. For example, the presence of the glutenins or hordeins of
this wild species modifies the strength of the gluten in tritordeum flour [22], and their hordoindolines
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change the texture of the grain from the ultra-hard of the parent durum wheat to soft in the derived
tritordeum [29].

Here, we have studied one of the main keys in cereal flour quality, starch, by molecularly
characterising the Wx gene in the two main lines of H. chilense used in the development of the
tritordeums [25]. The H. chilense waxy proteins presented structures very similar to those of waxy
proteins in other species of Triticeae, such as wheat and barley. The sizes of the predicted proteins
were similar, although numerous amino acid changes were detected. However, these changes were
mostly silent and not related to the active site of this enzyme, and probably, without influence on
its function. In fact, some of these changes have been observed in other Wx genes [13]. The highly
conserved structure of this gene makes it a good candidate for phylogenetic analysis [11,45,47–51].
In this study, the use of Ka established the separation between the Hordeum genomes at ~3 MYA.

In barley, Kramer and Blander [52] located the Wx gene on the short arm of chromosome 1 (7H).
In common wheat, the waxy loci are located on chromosome 7AS (Wx-A1), chromosome 4AL, which
was translocated from the original 7BS, (Wx-B1) and chromosome 7DS (Wx-D1) [10]. Here, the Wx-Hch1
gene from H. chilense was located on 7HchL, opposite the arm location found in the other Triticeae
species [13]. Mattera et al. [53] indicated a similar change in the location of the Phytoene syntase (Psy-1)
gene in H. chilense. Psy-1 was mapped in the distal region of 7HchS, while this gene was located
on the opposite arm of chromosome 7 in other Poaceae species [14]. On the basis of these changes,
Mattera et al. [53] suggested that an inversion occurred between the distal parts of 7HchS and 7HchL,
which has been confirmed by Avila et al. [54]. The location of the Wx-Hch1 gene on 7HchL in the
present study supports this hypothesis on a structural change involving the distal regions of H. chilense
chromosome 7Hch.

5. Conclusions

Variability in the Wx gene sequences was detected in two H. chilense lines representative of the
two main ecotypes of species. This gene is located on the long arm of the 7Hch chromosome, opposite
to the other Triticeae species, which suggests the presence of an inversion between the distal parts of
7HchS and 7HchL. Molecular characterization of these alleles showed that this gene is more similar
to the Wx gene of barley than those of wheat. However, the enzymatic function would be similar in
all species and, consequently, the variation present in H. chilense could be utilized in wheat breeding
through the use of tritordeum as a bridge species.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/5/261/s1,
Figure S1. Alignment of nucleotide sequences of the Wx alleles evaluated in this study, Figure S2. Alignment of
predicted protein sequences of the waxy proteins evaluated in this study.
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