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Abstract: The fused deposition modeling (FDM) technique is used today by companies engaged in
the fabrication of traffic signs for the manufacture of light-emitting diode LED spotlights. In this
sector, the surface properties of the elements used (surface finish, hydrophobic features) are decisive
because surfaces that retain little dirt and favor self–cleaning behavior are needed. A design of
experiments (L27) with five factors and three levels has been carried out. The factors studied were:
Layer height (LH), print temperature (T), print speed (PS), print acceleration (PA), and flow rate (F).
Polyethylene terephthalate glycol (PETG) specimens of 25.0 × 25.0 × 2.4 mm have been printed and,
in each of them, the surface roughness (Ra,0, Ra,90), sliding angle (SA0, SA90), and contact angle (CA0,
CA90) in both perpendicular directions have been measured. Taguchi and ANOVA analysis shows
that the most influential variables in this case are printing acceleration for Ra, 0 (p–value = 0.052) and
for SA0 (p–value = 0.051) and flow rate for Ra, 90 (p–value = 0.001) and for SA90 (p–value = 0.012).
Although the ANOVA results for the contact angle are not significant, specimen 8 (PA = 1500 mm/s2

and flow rate F = 110%) and specimen 10 (PA =1500 mm/s2 and F = 100%) have reached contact angle
values above or near the limit value for hydrophobia, respectively.

Keywords: fused deposition modeling (FDM); polyethylene terephthalate glycol (PETG); surface
roughness; sliding angle; contact angle; hydrophobicity; self-cleaning; Taguchi method; ANOVA

1. Introduction

One pillar of industry 4.0 is additive manufacturing [1]. This technology allows [2,3]: The direct
manufacture of prototypes or small batches, the production of functional parts, and the obtaining of
components at a low price. There are several 3D printing techniques [4], although the most extended is
the fused deposition modeling (FDM), also known as fused filament fabrication (FFF) [5].

The FDM technique consists of the orderly deposition of layers by melting a thermoplastic
filament [6,7]. One of the main virtues of FDM is that it allows us to work with a wide variety of
plastic materials. Polylactic acid (PLA) [8] and acrylonitrile butadiene styrene (ABS) [9] were the first
materials used in FDM, but today suppliers have an extensive catalogue that includes new materials
every year [10].

A recent material available on the market is polyethylene terephthalate glycol (PETG). This
polyester copolymer has an increasing importance in 3D printing [11,12], due to its properties [13,14]:
Durability, flexibility; high impact resistance, high chemical resistance, ultraviolet and weather
resistance; low moisture absorption; it acts as a gas barrier; it is odorless, recyclable, and has food
contact; it is easy to print and it does not produce fumes during the building.
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Industries dedicated to the manufacture of traffic signs use PETG to print spotlights for LEDs,
due to its properties (UV and weather resistance, mainly) (Figure 1). The batch size of this type of
order is usually small, and 3D printing allows manufacturing the spotlights in a cheap, immediate,
and customized way. The use of 3D printing in the manufacture of elements for optics is not new [15].

Figure 1. 3D printed LED spotlights for road signals.

In road signaling, it is important to have vertical flat elements that are not very rough (that do not
accumulate dirt) and self–cleaning surfaces (when it rains, they clean themselves) [16]. In this last case,
the mechanism is as follows: On hydrophobic surfaces (with low water sliding angles and high contact
angles) spherical water droplets roll and carry away dust and dirt particles [17,18]. Recent works have
achieved hydrophobic behavior in 3D parts printed by FDM, using a dip coating method [19].

The aim of this work is to determine the most suitable values for different printing parameters
in order to reduce surface roughness and sliding angle in PETG 3D printed parts via FDM. For
this purpose, an orthogonal experiment design has been carried out with five5 factors and three
levels. The factors are (Figure 2): Layer height (LH), extruder temperature (T), print speed (PS), print
acceleration (PA), and flow rate (F).

Figure 2. Fused deposition modeling (FDM) 3D printer parameters studied in the work.

In FDM 3D printing, the layer height is the distance on a vertical axis between one layer and the
next; the extruder temperature is defined as the temperature of the printing nozzle; the printing speed
is the space traveled by the nozzle per unit of time during printing; the printing acceleration is the
speed gain during printing; the flow rate is the multiplier of the filament output stream according to
the part geometry [20].
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2. Materials and Methods

2.1. Design of Experiments and the CAD–CAM Process

The methodology used in this work is summarized in Figure 3. An orthogonal design of
experiments (DOE) was carried out [21]. The parameters studied in this DOE are shown in Table 1.
One specimen of each type has been printed using the values presented in Table 2. Specimen design
was performed using SolidWorks software. CURA slicing software was used to define the printing
parameters planned in the DOE and to generate the numerical control (NC) code [22]. The CURA
numerical control (NC) files are available online as Supplementary Materials.

Figure 3. Graphical description of the methodology followed in the work: (a) Design of experiments
and computer-aided design and computer-aided manufacturing CAD-CAM stage, (b) D printing
of specimens, (c) surface roughness measurements, (d) sliding and contact angle measurements,
(e) statistical data processing.

Table 1. Factors and levels used in design of experiments (DOE).

Printing Parameter Level 1 Level 2 Level 3

Layer height (LH), mm 0.16 0.20 0.24
Temperature (T), ◦C 240 245 250

Printing speed (PS), mm/s 40 50 60
Printing acceleration (PA), mm/s2 500 1000 1500

Flow rate (F), % 90 100 110

Table 2. Design of experiment (L27), according to the Taguchi method: Layer height (LH), printing
temperature (T), printing speed (PS), printing acceleration (PA), and flow rate (F).

No. LH
(mm)

T
(◦C)

PS
(mm/s)

PA
(mm/s2)

F
(%) No. LH

(mm)
T

(◦C)
PS

(mm/s)
PA

(mm/s2)
F

(%)

1 0.16 240 40 500 90 14 0.20 245 60 500 100
2 0.16 240 40 500 100 15 0.20 245 60 500 110
3 0.16 240 40 500 110 16 0.20 250 40 1000 110
4 0.16 245 50 1000 110 17 0.20 250 40 1000 90
5 0.16 245 50 1000 90 18 0.20 250 40 1000 100
6 0.16 245 50 1000 100 19 0.24 240 60 1000 110
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Table 2. Cont.

No. LH
(mm)

T
(◦C)

PS
(mm/s)

PA
(mm/s2)

F
(%) No. LH

(mm)
T

(◦C)
PS

(mm/s)
PA

(mm/s2)
F

(%)

7 0.16 250 60 1500 100 20 0.24 240 60 1000 90
8 0.16 250 60 1500 110 21 0.24 240 60 1000 100
9 0.16 250 60 1500 90 22 0.24 245 40 1500 100

10 0.20 240 50 1500 100 23 0.24 245 40 1500 110
11 0.20 240 50 1500 110 24 0.24 245 40 1500 90
12 0.20 240 50 1500 90 25 0.24 250 50 500 90
13 0.20 245 60 500 90 26 0.24 250 50 500 100

27 0.24 250 50 500 110

2.2. 3D Printing

The material used in the manufacture of the specimens was PETG filament, provided by the
supplier SmartMaterials 3D® (SmartMaterials 3D, Alcalá la Real, Spain) [10]. The diameter of the
filament used was 1.75 mm, and it was presented in spools of 750 g.

The printing system used was Tevo Black Widow Tevo Technologies® (Tevo 3D printers, Zhanjiang,
China) (Figure 3b). The machine had an extruder head with 0.4 mm diameter nozzle and a positioning
accuracy of 0.012 mm in the XY plane (printing surface) and 0.004 mm in its vertical axis (Z axis) [23].
It was controlled by the Arduino Mega 2560 rev3 open source system [24]. A total of 27 specimens,
with dimensions 25.0 × 25.0 × 2.4 mm, were printed.

The following printing parameters were set as fixed: The bed temperature was equal to room
temperature; the first layer height was equal to 0.25 mm; the selected infill was grid type (rectangular);
the infill percentage was equal to 50%. It should be noted that the number of shells depended on the
fixed layer height: 15 layers for the layer height was equal to 0.16 mm; 12 layers for layer height was
equal to 0.20 mm; 10 layers for layer height was equal to 0.24 mm.

2.3. Surface Roughness Measurements

The surface roughness (Ra) [25] was measured on every printed specimen, using a perthometer
MITUTOYO model SJ–210® (Mitutoyo, Kawasaki, Japan) (Figure 3c) and following the standard ISO
4288: 1996 [26]. This parameter was measured 5 times along the 0◦ direction (Ra,0) and another 5 times
along the 90◦ direction (Ra,90) in each specimen (Figure 4).

Figure 4. Graphical explanation of the orientations in which the measurements have been carried out.

2.4. Sliding and Contact Angle Measurements

The sliding angle (SA) was measured by means of a low cost measurement device (Figure 3d),
consisting of Arduino Uno® electronics (Arduino, Torino, Italy) [24], a shield computer numerical
control CNC circuit, a Nema 17 5 Kgf motor, and a DRV8825 driver. This measurement was made by
depositing a drop of 50 microliters of GRIFOLS pure water (Grifols, Barcelona, Spain) on the surface
of each specimen. Once deposited, the system rotates with an angular velocity of 10 microradians
per second, measuring the minimum angle at which the drop moves with the help of an inclinometer
HOLEX® electronic protractor [27]. This inclinometer incorporates a calibration procedure that was
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performed before taking the measurements. The sliding angle was measured 5 times along the 0◦

direction (SA0) and another 5 times along the 90◦ directions (SA90) in each specimen (Figure 4).
The contact angle (CA) has been measured using the Attension Theta Lite device (Biolin Scientific,

Gothenburg, Sweden). Drops of 2 microliters of pure GRIFOLS water were used. Each measurement
was performed for a time of 100 s. Once the angle was stabilized, an instant was selected and the
mean between the contact angles measured by the left and right was calculated. The contact angle was
measured 5 times along the 0◦ direction (CA0) and another 5 times along the 90◦ directions (CA90) in
each specimen (Figure 4).

2.5. Statistical Data Processing

The values of roughness and the sliding angle were analyzed using the Minitab software (Figure 3e).
The analysis of the influence of each parameter on Ra,0, Ra,90, SA0, SA90, CA0, and CA90 was carried
out according to Taguchi’s method and analysis of variance (ANOVA) [28–31].

3. Results

The measured values Ra,0, Ra,90, SA0, SA90, CA0, and CA90 are presented in Tables 3 and 4. These
values have been calculated as the arithmetic mean of the different measurements made for each
parameter. From this data, Figures 5–10 have been elaborated following the Taguchi method [32].
To support these results, an analysis of the variance (ANOVA) has been carried out [32].

Table 3. Results for surface roughness (Ra,0, Ra,90).

Test Ra,0 (µm) Ra,90 (µm)

Mean Std. Dev. Mean Std. Dev.

1 10.64 2.22 12.24 1.24
2 0.91 0.16 6.46 0.69
3 1.12 0.21 9.16 1.55
4 2.42 0.96 32.99 0.28
5 1.80 0.77 5.50 1.12
6 8.81 1.91 10.92 1.08
7 4.55 1.96 23.65 3.27
8 1.37 0.56 14.45 1.84
9 0.95 0.17 5.41 0.32
10 1.46 0.32 23.47 1.96
11 1.66 0.54 9.05 0.78
12 1.55 0.48 10.07 0.75
13 6.25 1.54 20.08 2.65
14 7.78 1.83 15.36 4.79
15 10.17 0.75 12.56 2.00
16 9.74 0.85 10.18 1.11
17 4.69 0.95 5.46 1.39
18 5.11 0.30 5.33 1.57
19 4.27 1.07 10.66 1.99
20 6.99 2.31 8.21 0.53
21 5.86 0.59 6.05 1.28
22 3.79 0.66 8.68 0.48
23 3.05 0.49 5.72 0.57
24 3.70 1.28 6.80 0.39
25 4.12 0.73 19.65 2.16
26 4.68 1.07 8.96 0.59
27 2.25 0.14 7.12 0.47
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Table 4. Results for sliding angle (SA0, SA90) and contact angle (CA0, CA90).

Test SA0 (◦) SA90 (◦) CA0 (◦) CA90 (◦)

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 16.76 2.05 33.08 2.97 68.75 5.52 83.43 11.18
2 9.40 0.93 26.31 2.75 50.84 7.64 81.03 9.32
3 14.18 1.60 18.12 3.39 57.91 4.78 85.71 3.57
4 11.24 1.69 41.93 4.52 80.33 3.49 100.42 2.81
5 15.56 2.50 18.20 2.19 30.66 0.80 52.03 7.72
6 16.28 4.13 29.91 4.55 78.65 1.40 85.95 7.98
7 12.68 0.75 39.90 2.88 77.24 3.22 107.68 6.54
8 14.64 0.83 35.88 2.09 68.24 5.60 107.91 2.10
9 14.68 3.28 30.32 4.07 70.56 2.53 96.01 6.52

10 13.00 1.29 44.32 2.63 86.42 4.28 101.50 10.38
11 11.74 2.21 27.38 3.34 66.25 1.73 71.16 6.11
12 13.08 0.94 37.94 1.41 85.33 4.43 91.29 2.97
13 15.92 2.02 46.80 3.94 70.29 1.34 98.02 6.00
14 8.33 0.92 31.40 4.41 66.70 4.91 91.29 2.96
15 16.57 1.09 26.96 0.86 38.25 11.73 37.59 7.12
16 20.29 3.87 27.10 4.82 67.39 10.23 85.15 5.38
17 20.08 3.03 24.72 5.76 72.52 3.94 87.04 1.78
18 20.24 2.55 22.38 2.49 64.44 1.92 73.09 1.81
19 10.66 0.82 34.28 1.37 42.29 3.44 62.53 4.93
20 12.36 4.27 39.60 3.69 65.92 6.09 79.86 4.67
21 11.64 3.05 27.56 2.23 66.67 13.20 74.61 2.90
22 14.46 2.10 36.52 6.41 73.42 3.53 105.36 9.58
23 12.72 3.45 19.32 1.74 53.39 7.77 64.83 4.55
24 9.02 1.21 33.25 4.65 56.03 5.47 79.60 3.20
25 7.46 1.02 36.96 3.05 75.71 8.47 95.77 3.50
26 14.72 3.84 32.08 2.14 56.46 3.99 89.78 1.87
27 12.15 2.27 25.76 3.75 62.43 4.63 88.89 3.76

Figure 5. Results obtained via the Taguchi method for Ra,0: Layer height (LH), printing temperature
(T), printing speed (PS), printing acceleration (PA), and flow rate (F).
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Figure 6. Results obtained via the Taguchi method for Ra 90: Layer height (LH), printing temperature
(T), printing speed (PS), printing acceleration (PA), and flow rate (F).

Figure 7. Results obtained via the Taguchi method for SA0 (◦): Layer height (LH), printing temperature
(T), printing speed (PS), printing acceleration (PA), and flow rate (F).

Figure 5 shows that the most influential variables in the Ra,0 variation are the printing acceleration
(PA). According to the ANOVA (Table 5), the parameter PA has a p–value equal to 0.052 (∼0.05) and
a contribution equal to 23%. In relation to the Ra,90 (Figure 6), the most influential parameters are
the flow rate (F) and the printing speed (PS). According to ANOVA (Table 6), the parameter F has a
p–value equal to 0.001 (less than 0.05) and a contribution equal to 43.74%, and the parameter PS has a
p–value equal to 0.023 (less than 0.05) and a contribution equal to 16.81%.
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Figure 8. Results obtained via the Taguchi method for SA90 (◦): Layer height (LH), printing temperature
(T), printing speed (PS), printing acceleration (PA), and flow rate (F).

Figure 9. Results obtained via the Taguchi method for CA0 (◦): Layer height (LH), printing temperature
(T), printing speed (PS), printing acceleration (PA), and flow rate (F).

In the case of the contact angle, the PA and F parameters are the most influential factors in the
case of CA0 (Figure 9), and the T, PA, and F parameters are the most influential in the case of CA90

(Figure 10). If the ANOVA is consulted, it can be seen how the F parameter has a contribution of 14.47%
in CA0 and the PA parameter has a contribution of 10.24% in CA0 (Table 9). In this case, the significance
is low, since the p–value is 0.177 and 0.282, respectively. On the other hand, the F parameter has a
contribution of 15.10% in CA90, the PA parameter has a contribution of 12.05% in CA90, and the T
parameter has a contribution of 12.17% in CA90 (Table 10). However, the significance is low, since the
p–value is 0.148, 0.210, and 0.207, respectively.
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Figure 10. Results obtained via the Taguchi method for CA90 (◦): Layer height (LH), printing
temperature (T), printing speed (PS), printing acceleration (PA), and flow rate (F).

Table 5. Results of ANOVA for Ra,0.

Source Degree of
Freedom

Sequential Sums
of Squares

Contribution
(%)

Adjusted Mean
Squares F–Value p–Value

LH (mm) 2 14.18 6.14 7.090 0.95 0.406
T (◦C) 2 10.83 4.69 5.415 0.73 0.498

PS (mm/s) 2 22.36 9.68 11.182 1.50 0.252
PA (mm/s2) 2 53.14 23.00 26.569 3.57 0.052

F (%) 2 11.42 4.94 5.708 0.77 0.481
Error 16 119.06 51.54 7.441
Total 26 230.99 100.00

Table 6. Results of ANOVA for Ra,90.

Source Degree of
Freedom

Sequential Sums
of Squares

Contribution
(%)

Adjusted Mean
Squares F–Value p–Value

LH (mm) 2 91.94 7.44 45.972 2.12 0.152
T (◦C) 2 33.42 2.70 16.709 0.77 0.479

PS (mm/s) 2 207.89 16.81 103.947 4.80 0.023
PA (mm/s2) 2 15.82 1.28 7.912 0.37 0.700

F (%) 2 540.90 43.74 270.451 12.48 0.001
Error 16 346.60 28.03 21.662
Total 26 1236.58 100.00

Table 7. Results of ANOVA for SA0.

Source Degree of
Freedom

Sequential Sums
of Squares

Contribution
(%)

Adjusted Mean
Squares F–Value p–Value

LH (mm) 2 37.141 10.90 18.570 2.14 0.150
T (◦C) 2 48.502 14.23 24.251 2.80 0.091

PS (mm/s) 2 52.624 15.44 26.312 3.04 0.076
PA (mm/s2) 2 62.566 18.36 31.283 3.61 0.051

F (%) 2 1.218 0.36 0.609 0.07 0.932
Error 16 138.675 40.70 8.667
Total 26 340.727 100.00
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Table 8. Results of ANOVA for SA90.

Source Degree of
Freedom

Sequential Sums
of Squares

Contribution
(%)

Adjusted Mean
Squares F–Value p–Value

LH (mm) 2 15.83 0.75 7.913 0.13 0.880
T (◦C) 2 33.41 1.58 16.704 0.27 0.765

PS (mm/s) 2 205.87 9.76 102.934 1.68 0.218
PA (mm/s2) 2 142.75 6.77 71.376 1.16 0.337

F (%) 2 731.38 34.67 365.689 5.97 0.012
Error 16 980.49 46.47 61.280
Total 26 2109.72 100.00

Table 9. Results of ANOVA for CA0.

Source Degree of
Freedom

Sequential Sums
of Squares

Contribution
(%)

Adjusted Mean
Squares F–Value p–Value

LH (mm) 2 237.0 5.00 118.5 0.67 0.526
T (◦C) 2 257.6 5.43 128.8 0.73 0.499

PS (mm/s) 2 239.3 5.05 119.6 0.68 0.523
PA (mm/s2) 2 485.5 10.24 242.7 1.37 0.282

F (%) 2 685.6 14.47 342.8 1.94 0.177
Error 16 2834.3 59.81 177.1
Total 26 4739.1 100.00

Table 10. Results of ANOVA for CA90.

Source Degree of
Freedom

Sequential Sums
of Squares

Contribution
(%)

Adjusted Mean
Squares F–Value p–Value

LH (mm) 2 281.43 3.88 140.71 0.55 0.585
T (◦C) 2 881.62 12.17 440.81 1.74 0.207

PS (mm/s) 2 57.59 0.79 28.79 0.11 0.893
PA (mm/s2) 2 873.23 12.05 436.61 1.72 0.210

F (%) 2 1093.49 15.10 546.74 2.16 0.148
Error 16 4056.62 56.00 253.54
Total 26 7243.97 100.00

Specimens 1 and 22 have been examined by a SEM microscope (Figure 11). As can be seen,
the images support the results obtained by the experimental methodology. Specimen 1 (PA = 500 mm/s2;
F = 90%) has high values of surface roughness (Ra,0 = 10.64 µm; Ra,90 = 12.24 µm) and sliding angle
(SA0 = 16.76◦; SA90 = 33.08◦), and intermediate values of contact angle (CA0 = 68.75◦ and CA90 = 83.43◦);
at the other end, specimen 22 (PA = 1500 mm/s2; F = 100%) has low values of roughness (Ra,0 = 3.79 µm;
Ra,90 = 8.68 µm) and sliding angle (SA0 = 14.46◦; SA90 = 36.52◦), and high values of contact angle
(CA0 = 73.42◦ and CA90 = 105.36◦). In the literature on self–cleaning surfaces [17,18], there is a
preference for surfaces with low roughness (they accumulate less dirt), low sliding angles, and high
contact angles (water droplets roll better).

Figure 12 shows the contact angle CA90 for specimen 8 (PA = 1500 mm/s2 and F = 110%) and the
contact angle CA0 for specimen 10 (PA = 1500 mm/s2 and F = 100%). Both specimens have reached the
highest value for the contact angle in every direction (Table 4).

Finally, a headlight was printed using PETG (Figure 13). This spotlight is similar to the one
used by a company from Córdoba (Spain) to manufacture traffic signs with LEDs (Figure 1). In the
manufacture of the diffuser, the printing parameters of test 22 have been used (it provides the most
balanced values). To reduce dust accumulation (Ra,0 < Ra,90) and achieve a better self-cleaning effect
(SA0 < SA90), the diffuser printed in 3D should be mounted with the fused filaments perpendicular to
the ground.
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Figure 11. Micrographs obtained via SEM (× 37): (a) Specimen 22, (b) specimen 1.

Figure 12. (a) Specimen 8: Contact angle measured in direction perpendicular to extrusion direction
(CA90), (b) specimen 10: Contact angle measured in direction parallel to extrusion direction (CA0).

Figure 13. Headlight printed in polyethylene terephthalate glycol (PETG) for traffic sign.
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4. Discussion

The influence of various printing factors on the surface properties of flat specimens made of
PETG by FDM has been studied in this work. For this purpose, the surface roughness, sliding angle,
and contact angle were measured in 27 specimens, manufactured according to a fractionated orthogonal
arrangement. The results have been analyzed using the Taguchi method and ANOVA.

According to this, the parameters with the highest influence on surface roughness, sliding angle,
and contact angle are the printing acceleration (PA) and flow rate (F) (Figures 5–10). The contribution
of PA to Ra,0 is 23.00% (Table 5), to SA0 is 18.36% (Table 7), and to CA0 is 10.24% (Table 9). When
the PA takes the value 1500 mm/s2, the mean values of Ra,0 are lower (Figure 5), the SA0 values are
intermediate (Figure 7), and the CA0 values are higher (Figure 9). On the other hand, the contribution
of F to Ra,90 is 43.74% (Table 6), to SA90 is 34.67% (Table 8), and to CA90 is 15.10% (Table 10). When F
acquires the value of 110%, the mean values of both Ra,90 and SA90 are lower (Figures 6 and 8).

There are not too many papers in the literature studying hydrophobicity of FDM printed parts.
Lee et al. [19] have achieved sliding angles equal to 12◦ and contact angles equal to 150◦ on specimens
printed in PLA using dip coating with silica nanoparticles. Nanoparticles alter the initial characteristics
of the printed surface, contributing to the generation of a ‘fakir bed’. On this improved surface,
the contact angle is higher (Figure 14a). However, in this work the influence of printing parameters
was not studied.

Figure 14. Drop sliding over different profiles: (a) Profile obtained by Lee et al. [19] by dip-coating
in a solution with nanoparticles, (b) profile obtained through an appropriate selection of PA and F
(specimen 22), (c) profile obtained through an inappropriate selection of PA and F (specimen 1).

In the present work, PETG FDM printed parts have been analyzed. PETG has a slightly higher
contact angle than PLA [33]. In addition, the influence of printing parameters has been studied, without
the need for post–processing. Based on the results obtained, low SA values are linked to the generation
of rounded filament profiles (Figures 11a and 14b). These profiles are obtained by modifying the road
width (which is controlled by the flow rate (F) of material through the nozzle) [34,35]. Other types of
profiles offer greater obstacles to the drop, which slides with difficulty (Figures 11b and 14c).

On the other hand, the influence of printing acceleration (PA) on the geometry acquired by the
deposited filament has already been studied by other authors [36]. Different acceleration values mean
different longitudinal geometry of the deposited material [25]. High acceleration values reduce the
transition zones and allow a more homogeneous deposited filament to be obtained (Figure 15).

Finally, it should be indicated that in this work it has been possible to obtain contact angles equal
to 107.91◦ and 86.42◦ for CA90 and CA0, respectively (Figure 12). These values exceed or are close to the
90◦ value, established as a limit to qualify a surface as hydrophobic. These values have been achieved
for specimen 8 (F = 1500 mm/s2 and F = 110%) and specimen 10 (F = 1500 mm/s2 and F = 100%).
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Figure 15. Road dimensional errors at start, acceleration, deceleration, and stopping of a print head
(elaborated from [25]).

5. Conclusions

FDM 3D printing is increasingly used in the industry. The low cost of FDM printers and the
great diversity of filament materials available on the market justify this fact. However, the printing of
parts with certain surface characteristics (low surface roughness, low sliding angle, high contact angle)
requires a systematic and scientific study.

In the present work, which parameters are more influential to obtain lower values of Ra and SA and
higher values of CA in PETG parts manufactured via FDM has been studied. The parameters studied
were layer height, print temperature, print speed, print acceleration, and flow rate. A fractionated
orthogonal experiment design has been used. The results were analyzed using the Taguchi method
and ANOVA.

From the results obtained, it can be stated that the parameters with the greatest influence are the
flow rate (F) and the print acceleration (PA). The flow rate is responsible for the fact that the section of
the deposited filament is more or less circular. The print acceleration is responsible for the fact that
this section is kept more or less uniform along the printing road. Depending on the programmed
parameters, the profile and the behavior obtained in every specimen is different in each case.

The results obtained in this work may be of interest to companies that manufacture small batches
of products that need to have certain surface characteristics. In this case, the authors have transferred
the results obtained to a nearby company that manufactures traffic signs with LEDs. The diffusers
of the spotlights that have been manufactured using the appropriate parameters present less surface
roughness and sliding angle, and a higher contact angle. These properties make the diffuser more able
to perform its function on the road.

In future works, we intend to study whether the combination of an adequate selection of printing
parameters and the use of post-processing techniques (dip–coating or similar) can further improve the
properties of 3D printed surfaces.
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