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Abstract: Lipotoxicity is characterized by the ectopic accumulation of lipids in organs different
from adipose tissue. Lipotoxicity is mainly associated with dysfunctional signaling and insulin
resistance response in non-adipose tissue such as myocardium, pancreas, skeletal muscle, liver, and
kidney. Serum lipid abnormalities and renal ectopic lipid accumulation have been associated with the
development of kidney diseases, in particular diabetic nephropathy. Chronic hyperinsulinemia, often
seen in type 2 diabetes, plays a crucial role in blood and liver lipid metabolism abnormalities, thus
resulting in increased non-esterified fatty acids (NEFA). Excessive lipid accumulation alters cellular
homeostasis and activates lipogenic and glycogenic cell-signaling pathways. Recent evidences indicate
that both quantity and quality of lipids are involved in renal damage associated to lipotoxicity by
activating inflammation, oxidative stress, mitochondrial dysfunction, and cell-death. The pathological
effects of lipotoxicity have been observed in renal cells, thus promoting podocyte injury, tubular
damage, mesangial proliferation, endothelial activation, and formation of macrophage-derived foam
cells. Therefore, this review examines the recent preclinical and clinical research about the potentially
harmful effects of lipids in the kidney, metabolic markers associated with these mechanisms, major
signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids
involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.

Keywords: lipotoxicity; obesity; type 2 diabetes; fatty kidney; diabetic nephropathy; chronic
kidney disease

1. Introduction

Lipids are essential biomolecules for cell survival. Their role in multiple cellular functions,
such as intracellular signaling, transport, immunity, maintenance of cell structure, and metabolism,
highlight the importance of lipids in the regulation of cellular homeostasis [1–3]. Adipocytes act as fuel
tanks for the storage of lipids and triglycerides. However, in non-adipocytes, which have a limited
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capacity to metabolize excessive lipids, their accumulation (steatosis) alter homeostasis and promote
cell dysfunction [4].

Lipids accumulate in the form of lipid droplets, acting as an energy deposit for further metabolic
demands [5]. The dysregulation of intracellular homeostasis as a consequence of lipids accumulation
is defined as lipotoxicity, a phenomenon characterized by activation of metabolic, inflammatory, and
oxidative pathways that can eventually trigger cell death [6]. Growing evidence suggests that not only
the quantity of lipids but also the type of lipids accumulated may be responsible for cellular damage [7].
Throughout this review, we cover different aspects of lipotoxicity: from the causative agents and
the roles and types of lipids involved in harmful effects to their potential therapeutic options, with
emphasis on diabetic nephropathy (DN) and other chronic kidney diseases (CKD).

2. Lipotoxicity Origins

Increased deposits of subcutaneous abdominal fat, high plasma concentrations of non-esterified
fatty acids (NEFA), dysfunctional signaling in adipose tissue, and ectopic accumulation of lipids are
closely linked to the genesis and progression of lipotoxicity (Figure 1). These causes are described in
detail in this section.
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Figure 1. Lipotoxicity origin. The positive energy balance (high fat and/or carbohydrates diet) is one 
of the main promoters associated with obesity development. Hypertrophy and hyperplasia of white 
adipose tissue is a process commonly observed in the progression of obesity. The abdominal 
subcutaneous deposit has been associated with a greater increase in plasma non-esterified fatty acids 
(NEFA), a characteristic finding of insulin-resistant patients. Although the onset of lipotoxicity is 
unknown, altered lipid signaling by white adipose tissue and dysregulation in adipokines 
production is a key factor in restricting the lipid storage capacity observed in adipocytes. This 
limitation in the lipid deposit activates a vicious circle that leads to specific adaptations in energy 
metabolism in certain tissues such as the skeletal muscle, heart, liver, pancreas, and kidney, thus 
activating signaling pathways associated with gluco(neo)genesis in the presence of active 
lipogenesis. Created with BioRender.com. 
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cause of morbimortality in CKD and T2D patients [49]. Abnormalities in lipid and lipoprotein 
metabolism play a key role in the progression of renal damage and liver-mediated lipid changes are 
proportional to the magnitude of proteinuria, producing both quantitative and qualitative changes 
[50]. 

Obesity and metabolic syndrome are closely related to DN, the main cause of CKD worldwide 
[51]. In the metabolic syndrome, dysregulated lipid metabolism leads to hyperlipidemia and 
subsequent lipid accumulation in peripheral tissues and organs, increasing the risk for 
cardiovascular disease-associated death [52]. DN patients are characterized by increased plasma 
concentration of cholesterol, triglycerides, and apolipoprotein B (ApoB)-associated lipoproteins 
(very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density 
lipoprotein (LDL), and lipoprotein(a) (Lpa)), along with decreased levels of high-density 
lipoproteins (HDL) (ApoA-I) [53,54]. Additionally, these changes are accompanied by incrementing 
other apolipoprotein subtypes, such asApoB100 (involved in lipoprotein uptake), ApoB48 (the main 
component of chylomicrons), and ApoC-III (lipoprotein lipase inhibitor) [50,54]. In the 
hyperglycemic, inflammatory, and oxidizing context of DN, these irregularities in lipid metabolism 
promote atherogenicity and progression of kidney damage [55]. 

Several mechanisms are implicated in the abnormal biosynthesis, transport, and clearance of 
lipids and lipoproteins in DN. Thus, DN patients show reduced expression of lipoprotein lipase, 

Figure 1. Lipotoxicity origin. The positive energy balance (high fat and/or carbohydrates diet) is
one of the main promoters associated with obesity development. Hypertrophy and hyperplasia of
white adipose tissue is a process commonly observed in the progression of obesity. The abdominal
subcutaneous deposit has been associated with a greater increase in plasma non-esterified fatty acids
(NEFA), a characteristic finding of insulin-resistant patients. Although the onset of lipotoxicity is
unknown, altered lipid signaling by white adipose tissue and dysregulation in adipokines production
is a key factor in restricting the lipid storage capacity observed in adipocytes. This limitation in the
lipid deposit activates a vicious circle that leads to specific adaptations in energy metabolism in certain
tissues such as the skeletal muscle, heart, liver, pancreas, and kidney, thus activating signaling pathways
associated with gluco(neo)genesis in the presence of active lipogenesis. Created with BioRender.com.

2.1. Subcutaneous Abdominal Fatty Deposits and High Plasma NEFA Levels

Physiological lipolysis of triglycerides is a process that occurs almost exclusively in adipose tissue
and its regulation depends on energy requirement [8]. NEFA are triacylglycerols stored in adipose
tissue, mainly as subcutaneous abdominal fat, and transported into the plasma bound to albumin to
their site of use [9]. NEFA, also called free fatty acids (FFA), are the preferential energy source of highly
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metabolic organs, such as the myocardium and liver. Plasma NEFA concentrations are affected by
fasting state, psychological stress, and gender, among others [10,11].

An increased plasma NEFA concentration on a fasting state is related to the amount of visceral
adipose tissue [12,13]. In obesity, the increase in adipose tissue seemed to correlate with plasma NEFA
levels; however, a systematic review did not show an apparent correlation between the parameters [14].
Therefore, further studies will require homogenous measurements considering circadian rhythms,
fasting time, and gender.

Plasma NEFA levels are also associated with type 2 diabetes (T2D). Hence, high fasting plasma
NEFA concentrations are associated with glucose intolerance, regardless of the existence of previous
insulin resistance or defects in insulin secretion [15,16]. Therefore, high plasma NEFA concentration is
a characteristic associated with T2D and is considered an independent risk factor for insulin resistance
in obese patients [17]. Indeed, in the Prospective Metabolism and Islet Cell Evaluation (PROMISE)
study, total plasma NEFA concentration was a strong predictor of decreased beta-cells activity in
T2D patients with one or more risk factors including obesity, hypertension, diabetes family history,
gestational diabetes or neonatal high birth weight [18].

The detrimental effect of high plasma NEFA concentrations has not only been described in T2D
but also in some patients with type 1 diabetes (T1D). Under physiological conditions, beta-cells can use
NEFA as fuel; however, prolonged exposure to elevated levels of NEFA reduces insulin secretion by
two different mechanisms, direct insulin transcriptional downregulation and beta-cell death [19–21].
This mechanism is not exclusive to beta-cells; it has also been observed diabetic cardiomyopathy and
DN [22,23].

2.2. Dysfunctional Signaling in Adipose Tissue

The adipose tissue has a maximum capacity to store lipids. When this capacity is overwhelmed,
adipose tissue releases lipid mediators, resulting in insulin resistance and accumulation of fatty acids
in or around different organs and compartments, such as heart, pancreas, liver, blood vessels, and
kidney [24].

Dyslipidemia and insulin resistance lead to a dysfunction of adipose tissue, with an
increase in plasma NEFA concentrations and an imbalance between pro- and anti-inflammatory
adipokines [25]. This process determines the activation of intracellular signaling pathways associated
with lipid metabolism and subsequent deposition of NEFA in non-fat cells [26]. Concurrently, the
microinflammatory state and the production of reactive oxygen species (ROS), through pro-oxidant
enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system, lead to
the oxidative modification of lipoproteins that participate in intracellular signaling, thus promoting
inflammation, oxidative stress, lipid peroxidation and vesicular transport dysfunction [27]. In this
way, these events cause both endoplasmic reticulum- and lysosomal-stress altering adaptive
protective mechanisms such as mitophagy, autophagy, and apoptosis, further contributing to cellular
damage [28,29].

2.3. Insulin Resistance and Lipid Accumulation

In healthy people, insulin allows the uptake of glucose by the peripheral tissues, suppressing the
production of glucose by the liver and kidney [30]. In contrast, individuals with insulin resistance have
an alteration of this feedback, characterized by chronic hyperinsulinemia and slight hyperglycemia,
both major factors involved in the development of diabetes [31].

Insulin resistance (IR) is a pathophysiological state caused by a gradual decline in the insulin
responsiveness in peripheral tissues, including skeletal muscle, adipose tissue, and liver. The IR
response and effects differ according to the affected tissue. Skeletal muscle IR is characterized by the
inability to reduce blood glucose levels due to difficulty in translocating the glucose transporter type 4
(GLUT4) to the muscle cell surface membrane [32]. The defective glucose uptake results in chronic
hyperinsulinemia, which activates complex lipogenic metabolic pathways, called de novo lipogenesis,
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resulting in the accumulation of intracellular lipids in skeletal muscle [33]. De novo lipogenesis is a
highly regulated metabolic pathway whose function is to promote the synthesis of fatty acids from
carbohydrates [5]. Adipose tissue IR is characterized by the inadequate lipolysis in adipocytes, whereas
hepatic insulin resistance consists of decreased ability to inhibit the production of hepatic glucose in
the presence of active lipogenesis [34–36]. Therefore, the main mechanism involved in the progression
of insulin resistance is the dysfunctional signaling in adipose tissue.

3. Glycogen versus Lipid Storage

Studies conducted utilizing the hyperinsulinemic-euglycemic clamp technique in muscle biopsies
have shown that subjects exposed to high fatty acid infusions reduce glucose oxidation, intramuscular
concentration of glucose 6-phosphate, glycogen synthesis, and translocation of GLUT4 [37]. Chronic
positive diet energy balance (mainly carbohydrates and saturated NEFA), increased de novo lipogenesis,
and peripheral lipolysis are among the main causes favoring the ectopic accumulation of fatty
acids [38–40].

The liver and kidney are the only organs of our body capable of producing glucose from other
energy substrates such as lactate, glutamine, alanine, and glycerol, thanks to the participation of
glucose 6-phosphatase, an essential enzyme to provide significant amounts of glucose into the
bloodstream [41,42].

Unlike the liver, the renal glycogen deposits are essentially low. Under normoglycemic states,
glucose production is provided from gluconeogenesis, specifically in the renal cortex, with an
approximate contribution of 20% of the total plasma [43,44]. Under hyperglycemic conditions, a
functional rearrangement of renal glucose production occurs, increasing up to three times, matching
the liver supply [44]. Experimental in vitro and in vivo studies suggest the possibility to differentiate
the “glucocentric and lipocentric” mechanisms involved in the progression of energy imbalance
diseases [45,46]. In clinical practice, it is very difficult to differentiate the glycotoxic from lipotoxic
effects, mainly due to the long exposure and synergistic interrelation of the mechanisms of action [47,48].

4. Dyslipidemia in Diabetic Nephropathy

Dyslipidemia is a common risk factor for cardiovascular disease, which in turn is the main cause
of morbimortality in CKD and T2D patients [49]. Abnormalities in lipid and lipoprotein metabolism
play a key role in the progression of renal damage and liver-mediated lipid changes are proportional
to the magnitude of proteinuria, producing both quantitative and qualitative changes [50].

Obesity and metabolic syndrome are closely related to DN, the main cause of CKD worldwide [51].
In the metabolic syndrome, dysregulated lipid metabolism leads to hyperlipidemia and subsequent lipid
accumulation in peripheral tissues and organs, increasing the risk for cardiovascular disease-associated
death [52]. DN patients are characterized by increased plasma concentration of cholesterol,
triglycerides, and apolipoprotein B (ApoB)-associated lipoproteins (very-low-density lipoprotein
(VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and lipoprotein(a)
(Lpa)), along with decreased levels of high-density lipoproteins (HDL) (ApoA-I) [53,54]. Additionally,
these changes are accompanied by incrementing other apolipoprotein subtypes, such asApoB100
(involved in lipoprotein uptake), ApoB48 (the main component of chylomicrons), and ApoC-III
(lipoprotein lipase inhibitor) [50,54]. In the hyperglycemic, inflammatory, and oxidizing context of DN,
these irregularities in lipid metabolism promote atherogenicity and progression of kidney damage [55].

Several mechanisms are implicated in the abnormal biosynthesis, transport, and clearance of lipids
and lipoproteins in DN. Thus, DN patients show reduced expression of lipoprotein lipase, disrupted
reverse cholesterol transport, and decreased the number of receptors mediating lipids uptake [56].

Along with the quantitative changes, DN patients show important qualitative changes in
lipoprotein composition. Indeed, HDL particles show enrichment in triglycerides and loss of
anti-oxidants, such as paraoxonase [56,57]. In T2D patients, urinary albumin creatinine ratio directly
associates with small LDL particle concentrations, whereas estimated glomerular filtration rates are
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inversely associated with small VLDL and medium HDL particles [58]. Moreover, increased levels
of oxidized HDL and LDL have been detected in the plasma and renal parenchyma of patients with
CKD, and are more abundant in kidneys from hyperlipidemic animals [59–61]. These atherogenic
lipoproteins are cytotoxic and may affect the behavior or renal cells, contributing to the progression of
renal damage [62,63].

Injurious actions of oxidized lipoproteins include tubular apoptosis and oxidative stress by
increasing NADPH-oxidase mediated ROS production, recruitment of circulating monocytes, and
increased production/secretion of pro-inflammatory cytokines by tubular cells, such as IL-6, CCL2,
CCL5, and TNF-alpha [64–66].

The relation between circulating NEFA and hypertriglyceridemia is reciprocal as lipotoxicity leads
to triglyceride secretion and sustained hypertriglyceridemia leads to adipose dysfunction. The latter is
another factor involved in the CKD-mediated lipotoxicity [4]. In DN, white adipose tissue is reduced
and cytotoxic NEFA is not stored in this tissue. Consequently, NEFA remains in plasma for more time,
increasing fat accumulation in other tissues [67].

5. The Fatty Kidney in DN

In the kidney, ectopic lipid deposition contributes to the local inflammation and oxidative
stress [30,68]. In DN patients, dyslipidemia promotes ectopic lipid accumulation and lipid intermediates
(e.g., palmitate, ceramides, and saturated NEFA), not only in kidney but also in extra-renal tissues
such as liver, pancreas, and heart [4,49,69].

The fatty kidney condition has been widely described in the literature [70–74]. This pathological
condition is characterized by lipid accumulation in the renal parenchyma causing damage to various
cells, including podocytes, proximal tubular epithelial cells, and the tubulointerstitial tissue through
various mechanisms, being potentially detrimental to renal function in the long term [70–74]. On the
other hand, DN patients usually have albuminuria, which is a well-known risk factor for the progression
of renal disease [51,61]. In addition to its direct toxic effect, albumin may act as a carrier of fatty
acids in urine. Therefore, albuminuria may favor a massive accumulation of fatty acids in the kidney,
thus promoting tubular damage in DN patients [75]. In this sense, it has been demonstrated that
albumin-bound fatty acid, but not albumin itself, promotes oxidative stress and apoptosis in tubular
cells [76]. Other proteins, such as the protein cluster of differentiation 36/fatty acid translocase
(CD36/FAT) and fatty acid transport protein 2 (FATP2), facilitate the tubular toxicity of fatty acids
by increasing their uptake and metabolism [60,66]. Besides, induction of ATF6α, a transcription
factor of the unfolded protein response, enhanced lipid accumulation and apoptosis in tubular cells
(Figure 2) [77].

Renal steatosis is associated with lipid droplets in different intracellular compartments, as noticed
in transmission electron microscopy or magnetic resonance imaging studies. Lipids droplets may
act as lipid precursors that participate in energy metabolism, intracellular signaling and vesicular
transport [3]. The presence of lipid droplets in renal cells is not exclusive to patients with pathologies
associated with obesity and diabetes [78]. Cytoplasmatic lipid droplets accumulation influences the
progression of inflammation and fibrosis in several genetic and metabolic pathologies [79]. These lipid
mediators have been associated with the activation of the inflammatory response, ROS production,
mitochondrial dysfunction, autophagy deregulation, endoplasmic reticulum stress (ER stress) and
apoptosis [69,80,81]. This fact is mainly due to the accumulation of intermediary toxic metabolites,
such as diacylglycerol, fatty acyl-CoA, ceramides, and sphingolipids, which are involved in protein
kinase C (PKC) activation, triglyceride synthesis, and mitochondrial dysfunction [82,83].
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Figure 2. Effect of lipotoxicity on kidney nephron (left) and main pathways of action and detoxification
of non-esterified fatty acids (NEFA) in podocytes and tubular cells (right). In brackets are shown
selected references on lipotoxicity-mediated mechanisms. Adapted from Wikimedia glomerule image
(CC BY-SA 4.0 Author: M. Komorniczak).

Lipotoxicity in Renal Cells

The lipotoxicity effects in kidney are variable according to the cell type involved. The renal lipid
accumulation in human DN and age-related renal disease is mainly concentrated in the tubule although
glomerular deposits are also noticed associated with glomerular hypertrophy and tubulointerstitial
fibrosis [7,84]. Among the affected glomerular cells, specific damage has been described in podocytes,
mesangial, and endothelial cells and macrophages [85,86].

Podocytes: The relationship between lipids and podocyte damage is well known. Indeed,
apolipoprotein-1 (APOL1), an essential component of HDL3, is highly expressed in podocytes. APOL1
is the highest risk genetic variant of kidney disease and the main cause of glomerulosclerosis in the
African-American population [87]. On the other hand, phospholipase A2 (PLA2), an enzyme that
hydrolyzes lipids to release arachidonic acid and other inflammatory lipid mediators, is closely linked
to the development of nephrotic syndrome and promotes kidney injury via its M-subtype receptor [88].

The loss of podocytes and retraction of the foot processes are involved in the development of
renal injury in DN [89]. Increased podocyte detachment has been observed in patients with obesity
related-glomerulopathy, focal segmental glomerulosclerosis (FSGS), and DN [90]. In this regard,
podocytopenia could be mediated by alterations in the lipid balance [90,91].

The sterol regulatory element-binding proteins (SREBPs) are the main transcription factors
associated with lipid metabolism through their direct role in renal lipid accumulation [84]. Upregulated
SREBP expression is found in lipid droplets loaded podocytes, both in experimental studies and in a
retrospective analysis of renal biopsies of patients with DN or obesity-related glomerulopathy [7,91,92].
Intracellular lipid is imbalanced towards accumulation when lipid efflux is impaired.

Excessive cholesterol accumulation and cholesterol efflux is downregulated in experimental and
human DN [7,93,94]. ATP-binding cassette transporter A1 (ABCA1), G1 (ABCG1), and scavenger
receptor class B type I (SR-BI), present at podocytes, mesangial cells, macrophages, and proximal
tubular cells, are the main cholesterol efflux transporters studied in DN [95–97]. Growing evidence
has validated their renoprotective effects due largely to the modulation of receptors associated with
cholesterol efflux [97–100]. Merscher-Gomez et al. showed that human podocytes exposed to serum
from DN patients, increased the presence of cell plasma membrane blebbing, lipid droplets and
reduced the expression of the ATP-binding cassette A1 (ABCA1), a scavenger receptor associated



Int. J. Mol. Sci. 2020, 21, 2632 7 of 30

with cholesterol efflux, whereas no changes were observed after stimulation with serum from diabetic
patients without DN and healthy controls. Downregulation of ABCA1 expression was noted in kidney
biopsies of DN patients [101,102]. Furthermore, the authors proposed a renoprotective action of
2-hydroxypropyl-β-cyclodextrin by preventing renal cortex cholesterol accumulation mediated by
ABCA1 upregulation [101,103].

In this regard, ABCA1 deficiency has been associated with the selective accumulation of cardiolipin,
mitochondrial dysfunction, and subsequent podocyte lesion in DN [104]. Mitrofanova et al. described
the involvement of the lipid raft enzyme sphingomyelinase-like phosphodiesterase 3b (SMPDL3b)
in podocyte injury by altering active sphingolipid production and reducing ceramide-1-phosphate
(C1P) [104,105]. Furthermore, restoration of C1P levels was sufficient to normalize the proteinuria
levels observed in a murine model of DN [106].

Mesangial cells: Mesangial cell expansion is a histological feature usually seen in patients with T2D
or obesity-associated kidney damage and precedes glomerulosclerosis evolution in DN [90,107]. Initial
stages of the renal damage associated with obesity or pre-diabetes are characterized by the presence of
albuminuria, glomerular hypertrophy, and mesangial expansion [108]. Human mesangial cells express
LDL receptors and CD36/FAT scavenger receptors, being the endothelial glycocalyx dysfunction
especially sensitive for cholesterol, and modified lipoproteins accumulation [70]. Additionally,
mesangial cells can also accumulate triglycerides by the lipoprotein lipase action [109].

De novo lipogenesis mediated by SREBP-1 has been described as a new mediator of TGF-β1
signaling pathway, thus its activation plays a key role in the progression of inflammation and glomerular
fibrosis in this cell type under diabetic conditions [110–112].

Indeed, lipotoxicity, in general, and exposure to NEFA, in particular, directly affect mesangial
cell functions by activating the intrinsic apoptosis pathway, although the mechanisms of toxicity
are not fully elucidated [113–116]. Furthermore, the use of fenofibrate (PPARα agonist) can prevent
lipid-induced toxicity and oxidative stress in glomerular cells by inducing the expression of lipolytic
enzymes [117].

Endothelial cells: Although endothelial cells do not seem to be prone to lipid accumulation, their
role is essential in the transport of lipids to other tissues, particularly in the renal area, thus they should
be the main source of lipid supply to glomerular cells [118]. This process has been described to be
mediated by the co-expression of VEGF-B and mitochondrial proteins, and therefore to be a therapeutic
target against the mechanisms of lipotoxicity at systemic level [119–121].

Macrophages/Foam cells: The role of macrophages and foam cells in kidney lipotoxicity is dual.
First, lipid accumulation in renal cells promotes macrophages recruitment [122]. Second, lipotoxicity
directly activates macrophages, which results in their transdifferentiation [123–125]. Excessive and
chronic uptake of lipids by macrophages is an aggravating factor involved in the progression of
glomerular injury and atherosclerosis in CKD patients [126,127].

Foam cells are specialized scavenger cells, which are mainly derived from monocytes/macrophages,
although renal cells (mesangial, epithelial, smooth muscle, and endothelial cells) may also be
involved in foam cells formation [127–129]. Foam cells remove modified lipoproteins (oxidized
LDL, acetylated-LDL, and β-VLDL) [130,131]. This uptake is mediated by the expression of scavenger
receptors and LDL receptors on their surface [127].

Although foam cells are related to atherosclerosis progression, preclinical studies in kidneys
biopsies from FSGS and DN. FSGS and DN patients showed increased accumulation of foam cells and
the presence of intracellular lipid droplets [132,133].

Several studies have demonstrated the importance of the inflammatory milieu in the foam cell
formation [91,134,135]. Cytokines such as TNFα and IL-1β can modify LDL receptor-mediated
cholesterol uptake, by increasing SREBP translocation and promoting foam cells formation in
macrophages and mesangial cells [134,136].

Scavenger receptor A (SR-A) and class B-2 scavenger receptor (SR-B2), specifically CD36/FAT, are
the main NEFA-uptake mediator in both physiological and pathophysiological situations [137]. These
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scavenger receptors are key elements in the fatty acid uptake, expressed in podocytes, mesangial cells,
endothelial cells, and tubular cells, which is currently proposed as a potential therapeutic target in
preclinical kidney disease [115,138–140]. It has recently been described that the presence of advance
oxidation protein products (AOPP) and hyperglycemia lead to CD36/FAT upregulation, as well as to
increased CD36-dependent signaling through Wnt/β-catenin and PKC pathways, which is associated in
the epithelial tubular cells with oxidative stress, inflammation, and fibrosis development [139,141,142].

Proximal tubular cells: Proximal tubules are also damaged as a consequence of lipotoxicity,
mainly in proteinuric kidney diseases such as nephrotic syndrome [50]. Tubular uptake of NEFA
is directly proportional to the detected proteinuric levels and basolateral NEFA concentration [70].
Intracellular lipid accumulation is associated with the phenomena of tubular flattening, loss of brush
border, and tubulointerstitial fibrosis [6,143].

From a physiological point of view, plasma NEFA are almost entirely bound to albumin and only a
very small percentage (<0.01%) is free [9]. Because the glomerular filtration barrier prevents the passage
of albumin, the low percentage that can be incorporated into the ultrafiltrate is fully reabsorbed due to
receptor-mediated endocytosis [144]. If there is damage in the glomerular filtration barrier, then the
proximal tubule will reabsorb almost all filtered albumin-bound NEFA [145]. After the incorporation
of albumin into the cytosol, this protein is degraded into amino acids by lysosomal activity, while
NEFA freely diffuses until it can be compartmentalized in lipids droplets [145]. This phenomenon has
been described as the “trojan horse effect”, allowing NEFA incorporation by tubular cells [6]. Trojan
horse effect can be exacerbated by an increase in albumin filtration (alterations in glomerular basement
barrier) and/or increase in the molar ratio free fatty acid/albumin (e.g., dyslipidemia) [76,145,146].

Katsoulieris et al. observed lipotoxic effects on tubular cells with physiological levels of saturated
fatty acids such as palmitic acid by downregulation of stearoyl-CoA desaturase-1 (SCD-1), key regulator
of lipotoxicity-induced damage [147,148]. Studies in vitro demonstrated that SCD-1 overexpression
ameliorated fatty acid-mediated cell toxicity, manifesting a possible protective role in experimental
podocytes and tubular damage [149,150]. Another signal potentially involved in lipotoxicity-mediated
tubular damage is the AMPK-PGC-1α pathway. As this pathway activity decreases, an increase in the
intra-cytoplasmic triglyceride synthesis and accumulation is observed [151]. PGC-1α, a key regulator
of mitochondrial biogenesis and energy metabolism, is proposed as one of the main therapeutic targets
in acute kidney damage, CKD, and DN [152–157]. In this sense, preservation of the mitochondrial
cristae structure with Elamipretide (D-Arg-2′,6′-dimethyl-TyrLys-Phe-NH2) restores AMPK activity
and prevents glomerulopathy and intracellular lipid accumulation in the proximal tubule in high-fat
diet model [158]. These findings confirm that reduced lipotoxicity optimizes kidney function and
prevents its progression, both at glomerular and tubulointerstitial level.

6. Mitochondria as the Main Target of Lipotoxicity-Kidney Disease

Alterations in mitochondria function determine the intracellular accumulation of lipids and
further lipotoxic actions, as reported in both glomeruli and tubules [159–161]. The proximal tubule has
highly specialized metabolic machinery, which needs a fine energy balance. In DN, the maintenance of
insulin resistance state affects functionally at the mitochondrial level, and depending on the energy
requirements, the incorporated fatty acids can be metabolized by β-oxidation [156].

The suppression of β-oxidation described in the DN and advanced CKD patients could be one of
the mechanisms that exacerbate the accumulation of lipid drops at the mitochondrial level [161–163].
This event turns out to promote the loss of cristae structure, with degeneration and mitochondrial
swelling, preventing optimal energetic functioning in different renal cell types [159]. Structural
mitochondrial integrity is necessary for the proper functioning of the oxidative phosphorylation and
production of ATP [164]. Continuous oxidation of glucose at the mitochondrial level is a highly
regulated enzymatic process, which allows the formation of energy necessary for cellular viability [156].

Recent studies have highlighted the renoprotective role of cardiolipin, a unique phospholipid
present in the mitochondrial inner membrane, necessary for the formation and maintenance of
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mitochondrial cristae structure [158,159,165]. The prevention of cardiolipin peroxidation improves
the efficiency of ATP production through the oxidative phosphorylation (OXPHOS) process,
restoring mitochondrial bioenergetics [160,161]. Indeed, when phosphorylation capacity is exceeded,
mitochondria are disturbed and, as a consequence, non-oxidized lipids are accumulated. This
mitochondrial vicious cycle could be a main process of lipotoxicity in kidney disease [156,161,166,167].
These intermediate molecules promote insulin-resistance, activate mitophagy and promote
mitochondrial fission or fusion as well as dysregulation of the cell cycle [167].

Mitochondrial fission or fusion maintain mitochondrial morphology and adequate energy
activity [164]. While the fusion allows the incorporation of specific enzymes and/or mitochondrial
DNA to improve and repair functions, fission attempts to isolate defective proteins for subsequent
autophagy recycling, generating healthy mitochondria [168]. Although the mechanisms of renal
damage caused by lipotoxicity are different in the glomerular and tubulointerstitial compartment, it
is widely known that its action is multifactorial, since the involvement of one compartment directly
affects the other [169]. In the same way, mitophagy is another specialized mechanism of autophagy
used in the case of dysfunction and/or energy deficit [166]. In DN, an increase in mitochondrial fission
and fragmentation via mitophagy has been observed in proximal tubules [157].

Recent studies have proposed a mitochondrial “hormetic” hypothesis in the progression of DN,
which attempts to reflect that continuous production of ROS would be a “healthy mitochondria”
indicator [170,171]. The persistence of these injury mechanisms would initiate a gradual reduction in
normal mitochondrial oxidative capacity, leading to a depletion of enzyme complexes and subunits
necessary for the free radicals production [156]. This proposal modifies the renal energy paradigm,
observing a significant increase in the production of mitochondrial ROS during the initial phases of
DN, and then decreasing jointly with the reduction of renal function [169–171].

The Warburg effect, a hypothesis widely used to describe the cancer cells metabolism, would
explain the mitochondrial dysfunction observed in the final stage of patients with diabetic kidney
disease [172].

7. Lipid Biomarkers as Predictors of DN

The use of omics, specifically lipidomics and MALDI-TOF mass spectrometry, has allowed the
characterization of lipid abnormalities in the study of complex metabolic disorders, such as diabetes
and its complications [173,174]. Searching for novel associations between serum lipidomics and
DN has been quite fruitful, as shown in Table 1. Thus, Tofte et al. found that sphingomyelin and
phosphatidylcholine species were associated with lower risk progression of renal impairment and
all-cause mortality in T1D individuals [175].

Other authors have identified urine and plasma lipid metabolites as new biomarkers of DN
development in patients with T2D [176–178]. Recently, an integrative transcriptomic-lipidomic analysis
has identified lipid mediators (unsaturated NEFA, phosphatidylethanolamines, short-low double bond
triacylglycerols, and long-chain acylcarnitines) as predictors of the progression of diabetic kidney
disease in American Indians with preserved renal function (GFR ≥ 90 mL/min) [162].

The changes in the lipid profile have also been studied. In general, a decrease in plasma EFAs and
an increase in NEFA have been noted [176]. In other metabolomic studies, molecules related to the
transport of lipids into the mitochondria, such as acylcarnitine (e.g., butenoylcarnitine) or involved in
carnitine synthesis (e.g., γ-butyrobetaine), have consistently been shown elevated, probably indicating
a decreased fatty acid oxidation/mitochondrial dysfunction and maybe early lipotoxicity [177,178].
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Table 1. Selected articles on lipotoxicity-related biomarkers in diabetic nephropathy. Lipid metabolites
are labeled in bold.

Condition Patients Sample Comparison Disease-Associated Metabolites Ref.

T2D
92

(American
Indians)

Serum DN
Progression

↑Polyunsaturated triacylglycerols (TAGs)
↓C16–C20 acylcarnitines (ACs) [163]

T1D 669 Serum

Combined
renal end-point

↓PC(O-34:2), PC(O-34:3), SM(d18:1/24:0),
SM(d40:1), SM(d41:1).

[175]All-cause
mortality ↓PC(O-34:3), SM(d40:1) and SM(d41:1).

Albuminuria
progression ↓SM(d18:1/24:0)

T2D + renal
involvement

150 Plasma

Control-T2D ↓EFAs
↑NEFAs

[176]T2D-DN III ↑EFAs
=NEFAs

DN III-DN IV ↓EFAs
↓↓NEFAs

DN IV-DN V ↑EFAs
↑NEFAs

T2D 90
Plasma ∆ UACR or ∆

eGFR
↓Histidine; ↑butenoylcarnitine [177]

Urine ↓Hexose, Glutamine, Tyrosine

T2D 78 Serum Albuminuria

↑Creatinine, aspartic acid, γ-butyrobetaine,
citrulline, symmetric dimethylarginine

(SDMA), kynurenine, azelaic acid,
galactaric acid

[178]

Abbreviations: TAGs, Triacylglycerols; ACs, Acylcarnitines; PC; Phosphatidylcholine; SM; Sphingomyelin; EFA,
Esterified fatty acids; NEFA, Non-esterified fatty acids; UACR, Urinary albumin, creatinine ratio; eGFR, estimated
glomerular filtration rate. DN III, IV, and V refer to stages in diabetic nephropathy development.

8. Targeting Lipotoxicity in DN. Is This Approach Feasible?

Interventions targeting lipotoxicity are of course better exemplified on fatty liver disease and its
clinical consequences. Lifestyle modifications including healthy eating and regular exercise are the
primary recommendations [179,180]. Pharmacological interventions are now being evaluated in clinical
trials in those patients. Treatments include drugs targeting energy intake, energy disposal, lipotoxic
liver injury, and the resulting inflammation, fibrogenesis, and cirrhosis. In this context, several drugs
are undergoing phase 2/3 trials in nonalcoholic steatohepatitis [181]. Besides, the potential beneficial
effects of drugs with anti-lipotoxic effects in other organs, including the kidney, are still unknown.
Several compounds have been examined in experimental preclinical DN models, demonstrating
renoprotection and reduction of kidney lipid accumulation (Figure 3).

In this regard, there are no proper clinical trials with those drugs in patients with DN. Herein, we
briefly summarize some observational studies suggesting that some anti-lipotoxic drugs could also be
effective in diabetic patients with CKD, as well as preclinical evidence reporting renoprotective effects
and reduced lipid accumulation in several experimental models of DN (Table 2).

8.1. Statins

Statins are currently the main lipid-lowering drugs. Its mechanism of action is based on the
inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, an enzyme involved in
cholesterol synthesis [182]. This inhibition reduces not only plasma LDL-cholesterol levels but also
triglycerides, thus preventing pathological effects of oxidized LDL-induced injury and cell signaling
activation in the glomerular compartment [183]. Beyond the lipid-lowering potential, statins have
anti-inflammatory, anti-oxidant, and anti-proliferative properties, and also protect the endothelium and
increase adiponectin levels [184]. Tonolo et al. demonstrated that simvastatin reduced urinary albumin
excretion rate in hypertensive and normotensive T2D patients [185]. They also support the hypothesis
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that the improvement in renal function is related to a reduction in oxidative stress, thus limiting
glomerular damage [186]. In favor of this hypothesis, mevastatin, pravastatin, and simvastatin are also
able to prevent apoptosis and loss of nephrin induced by oxidized LDL in cultured podocytes [183].

A recent meta-analysis demonstrated that, although statins lowered proteinuria and all-cause
mortality, this effect was not sufficient to slow the clinical progression of non-end-stage CKD [187].
Despite these findings, all available clinical guides suggest that controlling LDL-cholesterol is a part of
the multi-target approach in the treatment of DN [188].
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Figure 3. Targeting lipotoxicity in DN. The intrarenal lipids reduction has been positively correlated with
renoprotective effects observed in the progression of experimental diabetic nephropathy. On the left side,
there are represented different strategies focused on enhancing signaling pathways that are considered
beneficial to reduce lipid accumulation (adiponectin/PPAR signaling and cholesterol efflux) and prevent
other derived damages such as inflammation and oxidative stress. On the right side are shown
different approaches focused on blocking signaling pathways that have a harmful effect in the context
of diabetic nephropathy (glucose excretion, cholesterol synthesis, lipid synthesis, and accumulation
and FA uptake). ABCA1, ATP-Binding Cassette Transporter A1; ACC, acetyl-CoA carboxylase; AMPK,
AMP-activated protein kinase; CBR1, Carbonyl reductase 1; CCR2, C-C chemokine receptor type 2;
C5AR, complement component 5a receptor 1; FA, fatty acid; FATP3/4, fatty acid transport protein
3/4; GLP-1, glucagon-like peptide 1; LXR, live X receptor; PGC1α, peroxisome proliferator-activated
receptor gamma coactivator 1-alpha; PPARα/γ, peroxisome proliferator-activated receptors α/γ; SGLT2,
sodium-glucose co-transporter 2 inhibitors; SREBP, sterol regulatory element-binding proteins; TGFβ,
transforming growth factor-beta; VEGF-B, vascular endothelial growth factor-beta; VEGFR1, vascular
endothelial growth factor receptor. Created with BioRender.com.
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Table 2. Summary of selected preclinical studies reporting renoprotective effects and reduction of kidney lipid accumulation.

Drug Category Pathway Experimental Model Observed Effect Ref.

Cyclosporin
A2/hydroxypropyl-
β-cyclodextrin

Calcineurin inhibitor/lipid
chelator

TNF/NFAT/ABCA1/SOAT1
signaling

Podo-Abca1 KO, double,
triple, and inducible KO

mice

↓ UACR; ↓ Histological changes;
↓ Inflammation/oxidative stress/apoptosis;

↓ Lipid accumulation
[96]

A30/Elamipretide ABCA1inductor/Cardiolipin
peroxidase inhibitor

Mitochondrial dysfunction
pathway

Podo-Abca1 KO SOAT KO,
db/db and BTBR ob/ob mice

↓ UACR; ↓ Histological changes;
↓ Oxidative stress/Mitochondrial dysfunction; ↓ Lipid

accumulation
[104]

Ceramide-1-Phosphate Lipid supplementation SMPDL3b/C1P/IR/Cav-1/Akt
signaling

Podo-Smpdl3 KO, double
KO, and db/db mice

↓ UACR; ↓ Histological changes;
↓ Lipid accumulation [106]

Fenofibrate Fibrate PPARα modulator HFD
↓ Albuminuria; ↓ Histological changes;

↓ Oxidative stress/fibrosis;
↓ Lipid accumulation

[117]

Fenofibrate Fibrate
PPARα

modulator/AMPK-PGC-1α
axis

db/db mice
↓ Albuminuria; ↓ Histological changes;
↓ Inflammation/oxidative stress;

↓ Apoptosis/fibrosis; ↓ Lipid accumulation
[154]

AdipoRon Adiponectin agonist AMPK/PPARα pathway db/db mice ↓UACR; ↓ Oxidative stress/apoptosis/fibrosis; ↓ Lipid
accumulation [189,190]

Ipraglifozin SGLT2i ER stress pathway FTL ob/ob mice ↓ Histological changes; ↓ ER stress/apoptosis/fibrosis;
↓ Lipid accumulation [191]

JNJ-39933673 SGLT2i Glycogenic and lipogenic
pathways db/db mice ↓ UACR; ↓ Histological changes;

↓ Inflammation/fibrosis; ↓ Lipid accumulation [192]

Exendin-4 GLP-1 RA Cholesterol efflux pathway ApoE KO
HFD + STZ ↓UACR; ↓ Lipid accumulation [193]

Liraglutide GLP-1 RA AMPK/SIRT1/PGC-1α axis SD rats + HFD ↓UACR; ↓ Inflammation/fibrosis;
↓ Lipid accumulation [194]

Neutralizing
Monoclonal VEGF-B

antibody
VEGF-B antagonism VEGF-B signaling Podo-VegfBKO; db/db mice;

double KO; + HFD; + STZ
↓ UACR; ↓ Histological changes;

↓ Inflammation; ↓ Lipid accumulation [195]

Isoquercetin Flavonoid NF-κB-AMPK-NRF2 axis Wistar rats + STZ ↓ Inflammation/oxidative stress;
↓ Lipid accumulation [196]

Quercetin Flavonoid SCAP-SREBP-2-LDLR
pathway db/db mice ↓UACR; ↓ Histological changes;

↓ Lipid accumulation [197]

Quercetin + Allopurinol Flavonoid + uric acid
inhibitor

NLRP3 Inflammasome
pathway SD rats + STZ ↓ Albuminuria; ↓ Histological changes;

↓ Inflammation; ↓ Lipid accumulation [198]
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Drug Category Pathway Experimental Model Observed Effect Ref.

Anthocyanin-rich
Seoritae extract Flavonoid AMPK/PGC-1α db/db mice ↓ Albuminuria; ↓ Oxidative stress;

↓ Apoptosis/fibrosis; ↓ Lipid accumulation [199]

Resveratrol Polyphenol AMPK–SIRT1–PGC-1α axis db/db mice
↓ Albuminuria; ↓ Histological changes; ↓

Inflammation/oxidative stress; ↓Apoptosis/fibrosis; ↓
Lipid accumulation

[200]

Curcumin Polyphenol AMPK/NRF2 pathway OLETF rats
↓ Albuminuria; ↓ Histological changes;
↓ Inflammation/oxidative stress;

↓ Lipid accumulation
[201]

Curcumin Polyphenol AMPK/SREBP-1 pathway SD rats + STZ ↓ Albuminuria; ↓ Histological changes; ↓
Inflammation/fibrosis; ↓ Lipid accumulation [202]

Oligonol-derived lychee
fruit Polyphenol Adiponectin pathway db/db mice

↓ Histological changes; ↓ Inflammation
↓ Apoptosis/oxidative stress;
↓ Lipid accumulation

[203]

Oryzanol Concentrate Rice bran oil SREBP-1 pathway Wistar rats + HFD + STZ
↓ Albuminuria; ↓ Histological changes;
↓ Inflammation/oxidative stress/fibrosis;

↓ Lipid accumulation
[204]

Berberine Flavonoid Mitochondrial dysfunction
pathway db/db mice

↓ UACR; ↓ Histological changes; ↓ Oxidative stress; ↓
Mitochondrial dysfunction;
↓ Lipid accumulation

[205]

Tangshen Formula Traditional Chinese
formulation

PGC-1α-LXR-ABCA1
pathway db/db mice ↓ UACR; ↓ Histological changes;

↓ Lipid accumulation [206]

Thymol Monoterpene phenolic
compound SREBP-1 pathway HFD

↓ Albuminuria; ↓ Histological changes;
↓ Oxidative stress/fibrosis;
↓Lipid accumulation

[207]

Omacor n-3 polyunsaturated fatty
acid

NF-κB and lipogenic
pathway db/db mice

↓ Albuminuria; ↓ Histological changes;
↓ Inflammation/fibrosis;
↓ Lipid accumulation

[208]

Ibrolipim (NO-1886) Renal lipoprotein lipase
agonist

Activation renal lipoprotein
lipase CB minipigs + HSFD ↓ UACR; ↓ Histological changes;

↓ Lipid accumulation [209]

Obeticholic acid FXR agonist Glutathione metabolism
pathway HFD + UNX ↓ UACR; ↓ Histological changes; ↓ Oxidative

stress/apoptosis; ↓ Lipid accumulation [210]

GW3965 LXRα agonist LXRαin macrophages LDLR KO and transgenic
mice; WD + STZ

↓ Albuminuria; ↓ Histological changes;
↓ Inflammation/oxidative stress/fibrosis;

↓ Lipid accumulation
[211]
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Drug Category Pathway Experimental Model Observed Effect Ref.

1D11 pan-TGFβ-neutralizing
antibody TGFβ-ApoB axis Double KO

STZ + CholD ↓ UACR; ↓ Fibrosis; ↓ Lipid accumulation [212,213]

Celastrol NF-κB inhibitor NF-κB pathway db/db mice
↓ UACR; ↓ Histological changes;

↓ Inflammation/oxidative stress/fibrosis;
↓ Lipid accumulation

[214]

Fibroblast growth
factor-21 Growth factor TGFβ pathway FGF21 KO mice + STZ;

BSA–FFA
↓ UACR; ↓ Inflammation/oxidative stress/apoptosis; ↓

Lipid accumulation [215]

Aspirin COX-2 inhibitor COX-2/LDLR pathway SD rats + STZ ↓UACR; ↓ Histological changes;
↓ Inflammation; ↓ Lipid accumulation [216]

Angiotensin 1–7 ACEi ACE2/Ang 1–7/Mas
receptor axis db/db mice

↓ Albuminuria; ↓ Histological changes;
↓ Inflammation/oxidative stress/fibrosis;

↓ Lipid accumulation
[217]

RS504393 CCR2 antagonist CCL2/CCR2 axis db/db mice
↓ Albuminuria; ↓ Histological changes;

↓ Inflammation/fibrosis;
↓ Lipid accumulation

[218]

NOX-D21 Complement C5a
inhibitor C5a/C5a receptor axis db/db mice + UNX ↓ UACR; ↓ Histological changes;

↓ Inflammation/fibrosis; ↓ Lipid accumulation [219]

SR141716 CB-1 receptor antagonist CB-1 receptor pathway db/db mice
↓ UACR; ↓ Histological changes;

↓ Inflammation/oxidative stress/fibrosis;
↓ Lipid accumulation

[220]

Abbreviations: FXR, Farnesoid X receptor; GLP-1 RA, Glucagon-like peptide-1 receptor agonist; TGFβ, Transforming growth factor beta; LXRα, Liver X receptor alpha; SGLT2i,
Sodium-glucose cotransporter 2 inhibitors; NF-κB, Nuclear factor kappa B; ACEi, Angiotensin-converting-enzyme inhibitor; CCR2, C-C chemokine receptor type 2; CB-1, Cannabinoid 1
receptor; VEGF-B, Vascular endothelial growth factor B; ABCA1, ATP binding cassette A1; COX-2, Cyclooxygenase 2; PPARα, Peroxisome proliferator-activated receptor alpha; AMPK,
AMP-activated protein kinase; SREBP, Sterol regulatory element-binding protein; ApoB, Apolipoprotein B; PGC-1α, Peroxisome proliferator activated receptor-gamma coactivator-1; SCAP,
SREBP cleavage-activating protein; Bgn, Biglycan; LDLR, Low-density lipoprotein receptor; SIRT1, Sirtuin-1; ACE2, Angiotensin I converting enzyme 2; Ang 1–7, Angiotensin 1–7; CCL2,
C-C motif chemokine ligand 2; TNF, Tumor necrosis factor; NFAT, Nuclear factor of activated T-cells; SOAT1, Sterol O-acyltransferase 1; SMPDL3b, Sphingomyelinphosphodiesterase
acid-like 3b; C1P, Ceramide-1-phosphate; IR, Insulin receptor; Cav-1, Caveolin-1; Akt, Protein kinase B; NRF2, Nuclear factor erythroid 2-related factor 2; NLRP3, NOD-, LRR- and pyrin
domain-containing protein 3; HFD, High-fat diet; STZ. Streptozotocin; CholD, Cholesterol diet; WD, Western diet; ApoE, Apolipoprotein E; BSA, Bovine serum albumin; FFA, Free fatty
acid; TG, transgenic; ob/ob, leptin-deficient; db/db, Leptin receptor-deficient; podo, Podocyte; fl/fl, FloxingCre-Lox recombination mice; BTBR, Black tan and brachyury; HSFD, High sugar
fat diet; UACR, Urinary albumin creatinine ratio.
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8.2. PPAR Agonists

Considering that some of the beneficial effects of statins are due to their ability to interact
with PPARs, it is not surprising the development of PPAR therapies in the context of obesity and
diabetes [20]. Thiazolidinediones (TZDs), synthetic ligands to PPARγ, were thought to be potential
favorable candidates to treat DN. However, adverse effects associated with TZD treatment, such as
bone loss, fluid retention, and cardiovascular complications, among others, have limited their clinical
use for the treatment of DN [221].

In studies on mesangial cells and an experimental T2D model of leptin receptor-deficient mice
(db/db), Hong et al. showed that fenofibrate improved albuminuria, inhibited intrarenal NEFA and
triglyceride accumulation, and prevented apoptosis and oxidative stress [154]. In mice fed with
a high-fat diet, fenofibrate also reduced oxidative stress and lipid accumulation in glomeruli and
prevented the development of albuminuria and glomerular fibrosis [117]. Moreover, PPARα/γ dual
agonist Tesaglitazar, not only improved lipid metabolism and increased adiponectin levels, but also
prevented albuminuria and renal glomerular fibrosis in diabetic mice [222]. These results highlight
dual PPARα/γ agonists as a potential therapy to treat renal lipotoxicity and diabetic kidney disease.

8.3. Adiponectin Receptor Agonists

Adiponectin is an adipokine secreted by adipocytes and involved in fatty acid metabolism. It has
been demonstrated that adiponectin is decreased in the context of T2D and metabolic syndrome, thus
leading to fatty acids accumulation [223]. Adiponectin exerts its activity through the binding with
its receptors, AdipoR1 and AdipoR2, and further activation of PGC-1α via the phosphorylation of
AMPK or PPARγ activation, respectively [224,225]. The activation of the AMPK-PPARγ-PGC-1α axis
decreases lipid levels in the bloodstream as well as in ectopic tissues, such as the kidney. Therefore,
adiponectin has emerged as an important target against lipotoxicity-mediated harmful effects [226].
Different therapeutic approaches are under development aiming to increase adiponectin serum levels
or adiponectin receptor expression/activity [227].

Thus, recent studies have shown the beneficial effect of AdipoRon, an orally-active synthetic
adiponectin agonist, which was able to reduce lipotoxicity and to improve insulin resistance,
obesity-related disease, and DN and its complications [227–230]. AdipoRon reduced sphingolipids
levels, which are closely related to lipotoxicity, inflammation and insulin resistance [189]. Moreover,
AdipoRon ameliorated renal alterations in db/db mice by reducing oxidative stress and apoptosis in
the kidney [190].

8.4. SGLT-2 Inhibitors

SGLT2 inhibitors (SGLT2i) are new drugs for the treatment of patients with T2D and its
complications and have contributed to open a new era in cardiorenal protective medicine [231–234].
Recent findings from observational and randomized controlled trials have also revealed that SGLT2i
can decrease the fatty liver content, as assessed by different imaging techniques, and improve biological
markers of NAFLD, especially serum liver enzymes, in patients with T2D [233]. In one of these
studies, Kahl et al. showed that empagliflozin effectively reduces hepatic fat in patients with T2D
with excellent glycemic control and short known disease duration [235]. In another observational
study, including 59 patients with T2D, the oral fixed-dose combination of the SGLT2i dapagliflozin and
dipeptidyl peptidase-4 inhibitor (DPP4i) saxagliptin significantly decreased liver fat and adipose tissue
volume versus glimepiride, and reduced serum liver enzyme levels, indicating a favorable metabolic
profile of this combination in patients with T2D on metformin therapy [236]. In a larger study, in 695
patients with T2D, exenatide and dapagliflozin combination improved markers of liver steatosis and
fibrosis [237].

The potential beneficial effect of SGLT2i on the removal of fatty deposits in other organs such as the
heart or the kidney remains unexplored, at least in patients. However, at the experimental level, some



Int. J. Mol. Sci. 2020, 21, 2632 16 of 30

studies have been reported. Recently, Hosokawa et al. showed that Ipragliflozin decreases ectopic lipid
accumulation in tubular cells in diabetic mice [238]. In db/db mice, JNJ 39933673, a selective SGLT2i,
prevented renal lipid accumulation by inhibition of transcription factor carbohydrate-responsive
element-binding protein (ChREBP) β-isoform, a transcription factor that mediates activation of
several regulatory enzymes of glycolysis and lipogenesis pathway such as SCD-1 and diacylglycerol
O-acyltransferase-1 (DGAT1) [191]. Although further studies are needed overall, it is plausible
that, in addition to the well-known effects of SGLT2i (anti-inflammatory, anti-proliferative, and
anti-fibrotic), the reduction of tubular lipid deposition could be a new renoprotective mechanism of
these molecules [192,239,240]. In this context, Exendin-4 and Liraglutide, two GLP-1 receptor agonists,
ameliorated obesity-induced chronic kidney injury by modulating AMPK-SIRT1-PGC-1α pathway
and enhancing ABCA1-cholesterol efflux [193,194].

8.5. VEGF-B Signaling inhibition

Vascular endothelial growth factor B (VEGF-B) has been described as one of the major responsible
for lipid control in endothelial cells [118,119]. VEGF-B, through its union with receptors located on the
cell surface as VEGFR1 and Neuropilin-1, induces the expression of the fatty acid transport proteins
FATP3 and FATP4, favoring lipid accumulation [121]. Modulation of VEGF-B signaling prevented
insulin resistance and dyslipidemia, reducing lipid accumulation in podocytes [120]. Renoprotective
effects have been observed with the administration of neutralizing VEGF-B antibodies in T1D and T2D
mice, mainly regulating lipid accumulation in podocytes [120,195].

8.6. Polyphenols, Flavonoids, and Nutraceuticals

Polyphenols, flavonoids, and food rich-flavonoids also present lipid-lowering properties that could
ameliorate lipotoxicity in diabetic kidney disease [241]. Recently, a study performed by Jayachandran
et al. demonstrated the capacity of isoquecertin to regulate lipid metabolism via AMPK pathway [196].
Besides, quercetin was also able to reduce lipid accumulation in the kidney, individually or in association
with allopurinol, a uric acid inhibitor [197,198]. Resveratrol and anthocyanin-rich Seoritae extract
prevents lipotoxic and glucotoxic effects through AMPK-PGC-1α axis in db/db mice [199,200]. The
anti-lipotoxic effect of curcumin, berberine, oligonol-derived lychee fruit, and oryzanol-derived rice
bran oil has also been demonstrated due to their capacity to reduce inflammatory, oxidative stress,
and mitochondrial dysfunction markers in diabetic murine models [201–205]. Tangshen formula,
a traditional Chinese formulation, was able to alleviate abnormal renal lipid accumulation and
kidney damage in db/db mice by promoting ABCA1-mediated efflux cholesterol [206]. Thymol, a
monoterpene phenolic compound found mainly in oil of thyme (an herb known as Thymus vulgaris)
and Omacor (n-3 polyunsaturated fatty acids), decreased renal lipid accumulation through the
modulation of SREBP-1-mediated lipogenic pathway [207,208]. Although further studies are needed,
these antioxidant molecules could potentially be an effective therapy against lipotoxicity-mediated
kidney injury.

8.7. Other Drugs Able to Impair Renal Lipid Deposition

To restrict intrarenal lipid deposition, novel therapeutic targets have been evaluated in different
preclinical models, such as ATP-binding cassette transporter A1 (ABCA1) agonists [96,99,104], renal
lipoprotein lipase activators [209], Farnesoid X receptor (FXR) [210] and Liver X receptor alpha (LXRα)
agonists [211], pan-TGFβ neutralizing antibodies [212,213], NF-κB inhibitors [214], fibroblast growth
factor-21 therapy [215], aspirin [216], angiotensin 1–7 [217], CCR2 inhibitors [218], C5a receptor
antagonists [219], cannabinoid receptor-1 blockers [220], and Nrf2 activators such as the bardoxolone
methyl [171].
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8.8. Non-Pharmacological Approaches

The beneficial effect of nutritional restriction and subsequent weight loss is a clear demonstration
of the role that lipotoxicity plays on T2D development and progression [242]. In the DiRECT
study, intensive nutritional intervention ameliorated T2D by resorption of ectopic lipid accumulation,
particularly the pancreatic ones, was considered of paramount importance [243–246].

Regular exercise is one of the fundamental pillars for bodyweight reduction and decrease local and
systemic inflammatory microenvironment [247–249]. Increasing energy demand by skeletal muscle
contraction promotes glucose homeostasis by peripheral lipolysis and liver NEFA oxidation [250–252].
In addition to bodyweight reduction (with its anti-proteinuric effect), the improvement of metabolic
kidney milieu and endothelial function restoration could also account for the renoprotective effects of
regular exercise on diabetic chronic disease [253–255].

Furthermore, in patients with morbid obesity, bariatric surgery may have, similar to other
forms of severe weight loss, additional renoprotective effects besides the well-known metabolic
control [134,254,255]. The effect of reducing lipid accumulation in NAFLD constitutes at present a
subject of paramount importance with several ongoing clinical trials, but, to date, there are no such
studies on kidney diseases.

9. Perspectives and Conclusions

Lipotoxicity is a common finding observed in metabolic diseases. The kidney is a target-organ of
lipotoxicity-mediated harmful effects, principally associated with obesity, insulin resistance, plasma
NEFA increase, and adipose tissue dysfunction. The dramatic increase in the prevalence of obesity
has been accompanied by a series of comorbidities including the development of T2D, cardiovascular
disease, and non-alcoholic fatty liver disease [180].

Overall, in this review, we examine the recent preclinical and clinical research about the potentially
harmful effects and causes of excessive lipid accumulation in the kidney as well as the types of lipids
involved. Targeting kidney lipotoxicity with novel drugs addressed to treat non-alcoholic fatty liver
disease could potentially constitute an additional alternative to combat the complex mechanisms
implicated in diabetic nephropathy and lipotoxicity kidney disease.
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