
agronomy

Article

Glyphosate Resistance Confirmation and Field Management of
Red Brome (Bromus rubens L.) in Perennial Crops Grown in
Southern Spain

José G. Vázquez-García 1,* , Patricia Castro 2 , Hugo E. Cruz-Hipólito 3, Teresa Millan 2,
Candelario Palma-Bautista 1 and Rafael De Prado 1,*

����������
�������

Citation: Vázquez-García, J.G.;

Castro, P.; Cruz-Hipólito, H.E.;

Millan, T.; Palma-Bautista, C.; De

Prado, R. Glyphosate Resistance

Confirmation and Field Management

of Red Brome (Bromus rubens L.) in

Perennial Crops Grown in Southern

Spain. Agronomy 2021, 11, 535.

https://doi.org/10.3390/

agronomy11030535

Academic Editor: Donato Loddo

Received: 24 January 2021

Accepted: 10 March 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071 Cordoba, Spain;
z82pabac@uco.es

2 Department of Genetics, University of Cordoba, 14071 Cordoba, Spain; patricia.castro@uco.es (P.C.);
teresa.millan@uco.es (T.M.)

3 President of Sociedad Mexicana de la Ciencia de la Maleza (SOMECIMA), Av. Vallarta 6503, Ciudad Granja,
Zapopan 45010, Mexico; cruzhipolito@yahoo.com.mx

* Correspondence: z82vagaj@uco.es (J.G.V.-G.); qe1pramr@uco.es (R.D.P.)

Abstract: The excessive use of the herbicide glyphosate on annual and perennial crops grown in
Southern Spain has caused an increase in resistant weed populations. Bromus rubens has begun to
spread through olive and almond cultivars due to low glyphosate control over these species, whereas
previously it had been well controlled with field dose (1080 g ae ha−1). Characterization using Simple
Sequence Repeat (SSR) markers confirmed the presence of B. rubens collected in Andalusia. A rapid
shikimic acid accumulation screening showed 17 resistant (R) populations with values between 300
and 700 µg shikimate g−1 fresh weight and three susceptible (S) populations with values between
1200 and 1700 µg shikimate g−1 fresh weight. In dose–response experiments the GR50 values agreed
with previous results and the resistance factors (RFs: GR50 R/GR50 S (Br1)) were between 4.35 (Br9)
and 7.61 (Br19). Foliar retention assays shown no differences in glyphosate retention in both R and S
populations. The tests carried out in a resistant field (Br10) demonstrated the control efficacy of pre-
emergence herbicides since flazasulfuron in the tank mix with glyphosate had up to 80% control 15 to
120 days after application (DAA) and grass weed postemergence herbicides, such as propaquizafop +
glyphosate and quizalofop + glyphosate, had up to 90% control 15 to 90 DAA. Results confirm the
first scientific report of glyphosate-resistant B. rubens worldwide; however, the use of herbicides with
another mode of action (MOA) is the best tool for integrated weed management.

Keywords: Bromus spp.; glyphosate resistance; integrated weed management; crop protection

1. Introduction

Weed control has been performed by the application of multiples herbicides with
different modes of action (MOAs) since the 1940s [1]. Specifically, the herbicide glyphosate
(N-(hosphonomethyl)glycine) has been commercialized worldwide since the 1970s and
is used as a broad-spectrum and postemergence treatment for weed control due to its
translocation ability in plants [2]. The MOA of glyphosate is by aromatic amino acids
biosynthesis inhibition [3]. The broad-spectrum activity of this herbicide is due to the
inhibition of 5-enolpyruvyl-3-shikimate phosphate synthase (EPSPS), which is present in
all plants [4]. The EPSPS enzyme acts in the shikimic acid pathway in the biosynthesis of
aromatic amino acids, such as phenylalanine, tyrosine, and tryptophan [5]. These amino
acids are essential for plants and when they are inhibited by the action of glyphosate all
susceptible plants die.

Nowadays, it is know that the weed resistance is the consequence of selection pressure
by farmers coupled with the high evolution capacity of weed populations [6]. The resistant
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populations shown a selective-evolutive advantage over other weed species treated with
herbicides, which increase the potential of the establishment of resistant weeds [7,8]. Thus,
one consequence of the widespread usage of glyphosate for weed control (as a unique
control tool) has been the evolution of glyphosate-resistant (G-R as from now) weeds [9,10].
This represents a dramatic scenario because growers should be increasing the rate doses
or changing to other herbicides to obtain satisfactory control over weed populations [11].
There have been reports of G-R in grass weeds since the 1990s [12]. Recently, 52 species
were classified as G-R, 26 of which were monocotyledons of various genera, including
Bromus spp. Although this list includes B. catharticus (2017), B. diandrus (2011), and Bromus
rubens (2014) [13], there are only two publications with established resistance parameters
B. diandrus [14] in Southern Australia (AU) and B. sterilis [15] in the United Kingdom (UK).

Bromus L. is a large genus of the Poaceae family which comprises around 160 annual
and perennial species [16]. This genus is distributed worldwide and is well known for being
taxonomically complex [16,17] because of important morphological variations, plasticity,
and hybridization [18]. In the Mediterranean region, B. rubens L. ((syn.: Anisantha rubens
(L.) Nevski, B. madritensis L. subsp. rubens (L.) Husnot) (Medit.)), also known as red
brome, is an important winter-annual grass weed [19]. This species has typical brush-like
condensed panicles that are markedly different from Bromus madritensis L. [20]. B. rubens
and B. madritensis are successful colonizers in North America and other countries [21]. In
Spain, farmers sometimes use it as a cover crop with perennial crops, such as olive and
almond. Soil erosion is one of the most important problems in Mediterranean agriculture.
In the 1990s, it was concluded that cultivation with cover crops is of great interest in olive
and almond groves with soils at a special risk of erosion. The soil losses in perennial crops
on slopes are around 10 to 50 t ha−1 year−1 [22].

Regarding integrated weed management, cover crops are an important tool for control
of weed species and erosion soil. However, another type of control is also necessary.
With the aim of establishing the use of herbicides as rapid and effective tools in control
of weed populations, farmers should incorporate pre- and postemergence herbicides to
manage them in olive and almond crops. In the last four decades, the most frequently
used herbicides have been Photosystem II and I (PS II and I), Acetolactate synthase (ALS),
Acetyl CoA Carboxylase (ACCase), Glutamine synthase (GS), and EPSPS inhibitors [22,23].

B. rubens has been maintained principally by mechanical mowing and herbicides
such as arloxyphenoxypropionate (FOP) and glyphosate (ACCase and EPSPS inhibitors,
respectively). In 2018, farmers in Southern Spain reported failures in the field B. rubens
control. Because glyphosate was used for weed control in olive and almond crops for many
years, we hypothesized that B. rubens may have been selected as resistant. The concern
of this scenario is serious because there are not many herbicides capable of such effective
control and low cost as glyphosate.

Due to the complexity and adaptative attributes of the Bromus genus, the aims of
this work were: (a) discriminate different species of the Bromus genus using molecular
markers; (b) confirm B. rubens G-R in Spain using rapid shikimic acid accumulation and
dose–response bioassays; (c) search directly in an almond field for alternative herbicide
control with different MOAs.

2. Materials and Methods
2.1. Plant Material

In 2018, glyphosate application had poor control of B. rubens present in different
perennial crops in Andalusia, Spain, mainly in the provinces of Cordoba, Malaga, and
Granada. Twenty populations were harvested from different fields with/without history of
glyphosate treatments. The populations were separated and labeled in paper envelopes and
taken into a cold chamber (4 ◦C day/night) until further assays (Table 1). For germination,
the seeds were placed in trays (15 × 15 × 5 cm) with previously humidified peat-moss and
trays were placed in a cold chamber for 48 h. After this time, they were taken to a growth
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chamber (26/18 ◦C day/night) with 60% relative humidity and 12 h of light density at
850 mmol m−2 s−1.

Table 1. Characteristics of Bromus rubens populations used in this work, code assigned to each population, history of
application, and coordinates.

Code Location Crops History of Application (Years) a Coordinates

Br1 Malaga Young olive organic 37.105500, −4.551778
Br2 Cordoba Orchard >10 37.646157, −4.311400
Br3 Granada Railway Tank mix b 37.389201, −3.582310
Br4 Granada Orchard 20 37.394245, −3.566320
Br5 Granada Orchard >15 37.393319, −3.564946
Br6 Cordoba Almond >10 37.736953, −4.645727
Br7 Cordoba Almond >15 37.737263, −4.645049
Br8 Cordoba Orchard >15 37.708111, −4.789167
Br9 Granada Orchard 10–15 37.394377, −3.570889

Br10 Cordoba Almond >15 37.737492, −4.646091
Br11 Cordoba Young olive 3 37.681839, −4.632792
Br12 Granada Orchard 10–15 37.393853, −3.572896
Br13 Cordoba No crop >15 37.631281, −4.280830
Br14 Cordoba Orchard >15 37.710540, −4.790917
Br15 Cordoba Orchard 10–15 37.707483, −4.789220
Br16 Malaga Olive >15 36.983067, −4.950822
Br17 Malaga Olive >15 36.979917, −4.939506
Br18 Malaga Olive 10–15 37.035831, −4.590087
Br19 Malaga Olive 20 36.978790, −4.649318
Br20 Malaga Olive 20 37.051456, −4.354452

a Years using glyphosate; during the last 10 years, farmers declared use of other herbicides such as oxyfluorfen (Protoporphyrinogen
Oxidase (PPO) inhibitor) or flazasulfuron (Acetolactate Synthase (ALS) inhibitor) in tank mixtures with glyphosate. b Mix of herbicides to
control grasses and broadleaf plants.

Seedlings of the 20 populations were transplanted into pots (one plant plot−1) with
240 g of substrate (soil:peat moss (1:1)) that was previously irrigated. All populations were
transferred to a greenhouse and watered daily to field capacity before and during assays.

2.2. Molecular Characterization of Bromus spp.

Four populations previously identified as B. sterilis, B. tectorum, B. diandrus, and
B. madritensis [24] plus twenty populations of B. rubens identified in situ were used for
molecular characterization. A total of 24 populations were characterized using Simple
Sequence Repeat (SSR) markers following the methodology described by Ramakrish-
nan et al. [25] with some modifications. For this step, ten individuals from each population
were used. Samples of ~100 mg of young leaf tissue from each plant at BBCH 13–14
stage [26] were taken to obtain DNA. Forward primers were tailed with the M13 sequence
(5′-TGTAAAACGACGCCAGT-3′) at the 5′ ends for fluorescent labelling of PCR frag-
ments [27]. Amplification of DNA was carried out in a 15 µL reaction mixture containing
20 ng of DNA, 5x Buffer (50 mM KCl, 10 mM Tris-HCl, 0.1% Triton X-100), 2.5 mM MgCl2,
250 µM of dNTPs, 0.1 µM of forward primer, 0.4 µM of reverse primer, 0.4 µM of 6-FAM,
and 0.25 units of Taq DNA polymerase (BIOTOOLS). PCR reactions were performed in
a Biometra® thermocycler and conditions of the PCR amplification were as follows: one
cycle of 15 min at 95 ◦C, then 40 cycles of 30 s at 95 ◦C, 30 s at 60 ◦C, and 30 s at 72 ◦C,
followed by 8 cycles of 30 s at 90 ◦C, 45 s at 53 ◦C, and 45 s at 72 ◦C, and one final extension
step of 10 min at 72 ◦C. Subsequently, the PCR products were separated using an automatic
capillary sequencer (ABI 3130 Genetic Analyzer Applied Biosystems, Madrid/HITACHI,
Madrid, Spain) from the University of Cordoba, Spain. The results were analyzed using
Genotyper software 3.7 (Applied Biosystems). A DNA standard (400HD-ROX) was used
to calculate the size of the amplified PCR fragments (alleles) for each SSR marker alleles.
Genetic distances between all individuals were calculated using Jaccard’s coefficient of
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similarity. Grouping of the genotypes was determined using the unweighted pair group
method with arithmetic mean (UPGMA) and a dendrogram was generated with the NTSYS
program [28].

2.3. Resistant Fast Screening by Shikimic Acid Accumulation Assay

The main objective of this assay was to differentiate resistant and susceptible popu-
lations, knowing that the increase in shikimic acid accumulation referred to the action of
glyphosate and therefore, were considered susceptible (S). However, those populations
that accumulated very little or nothing were labeled as resistant (R). Discs were cut from
the youngest leaf of ten plants and then were pooled. In total, 50 mg from each mix per
population was transferred into 2 mL Eppendorf tubes containing 999 µL of monoam-
monium phosphate (NH4H2PO4 10 mM, pH 4.4) plus 1 µL of glyphosate (1000 µM).
The shikimic acid accumulation was performed according to methodology described by
Vázquez-García et al. [29] with some modifications. Four treated replications and four
nontreated samples were used in a completely random design test. Finally, the results were
indicated in µg of shikimic acid g−1 fresh tissue.

2.4. Glyphosate Dose–Response Curves Assay

Whole plants at BBCH 13–14 stage [26] of each population were treated with glyphosate
(Roundup Energy® SL, 45% as isopropylamine salt, Monsanto) doses ranging from 0 to
3000 g ae ha−1. Herbicide application was performed by chamber (SBS-060 De Vries Manu-
facturing, Hollandale, MN, United States) equipped with an 8002 flat fan nozzle delivering
200 L ha−1 at 250 KPa. After application, the plants were taken into the greenhouse and
irrigated daily as necessary. Ten replications (one plant = one replication) per glyphosate
dose were used in a completely random design test. At 21 days after application, the
survival plants were evaluated to estimate the lethal dose to kill 50% of population (LD50).
In addition, plants were weighed after dried them at 60 ◦C for 48 h. Subsequently, the dose
that inhibits the plant growth to 50% (GR50) was estimated.

2.5. Glyphosate Foliar Retention Assay

The retention experiment was performed in six plants of each B. rubens population. Ac-
cording to González-Torralva et al. [30], a glyphosate dose of 360 g ae ha−1 plus 100 mg L−1

Na-fluorescein was applied to B. rubens plants. The treatment equipment was described
in the previous section. Two hours after application, the plants were cut and transferred
to test tubes which contained 50 mL of 5 mM NaOH. Then, test tubes were shaken for
30 s to remove the spray solution. Subsequently, the washed solution was transferred
to glass vials to measure the fluorescein absorbance; for this step, a spectrofluorometer
(Hitachi F-2500, Tokyo, Japan) with an excitation wavelength of 490 nm and absorbance at
510 nm was used. Finally, plants were weighed after 48 h at 60 ◦C drying. A completely
randomized design was performed with two repetitions (one repetition = six plants per
population). The results are expressed in µL spraying solution per gram dry matter.

2.6. Chemical Alternatives In Situ

This trial was carried out during two growing seasons at winter–spring time (2018–
2019 and 2019–2020) in a field where some G-R populations originated. In “La Reina”
(37.737492, −4.646091), almond groves infested with B. rubens (80% infestation) were
treated with glyphosate and other herbicides (Table 2) to test their performances. A ran-
domized complete block design with four replications was used. The herbicide treatments
were performed in plots of 10 m2 at two different stages: (a) pre-emergence and (b) poste-
mergence. A Pulverex backpack sprayer equipped with four flat fan nozzles Teejet 11002,
at a spraying pressure of 200 kPa and calibrated to deliver a volume of 200 L ha−1 was
used for applications. The control was evaluated 30, 60, 90, and 120 days after application
(DAA) at pre- and 30, 60, and 90 DAA at postemergence stages for the percentage of
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effectiveness in B. rubens control. Control ratings were expressed on a 0 (no control) to 100
(plant dead) scale.

Table 2. Herbicide treatments tested in situ for control effectiveness of glyphosate-resistant Bromus rubens in field.

Active Ingredient a Commercial Name b Doses (g ae/ai ha−1) Timing

Untreated - - -
Flazasulfuron + glyphosate Terafit® WG + Roundup Energy® SL 50 + 1080 Pre-emergence

Diflufenican + iodosulfuron +
glyphosate Musketeer® OF + Roundup Energy® SL 150 + 10 + 1080 Pre-emergence

Chlorotoluron + diflufenican Anibal® SC 1800+ 113 Pre-emergence
Diflufenican + glyphosate Zarpa® SC 280 + 1120 Pre-emergence

Glyphosate Roundup Energy® SL 1080 Postemergence
Glyphosate Roundup Energy® SL 1800 Postemergence

Flazasulfuron + glyphosate Chikara Duo® WG 20 + 860 Postemergence
Glyphosate + propaquizafop Roundup Energy® SL + Ágil® EC 1080 + 150 Postemergence

Glyphosate + quizalofop Roundup Energy® SL + Leopard® EC 1080+ 100 Postemergence
a (Flazasulfuron (Terafit®, 25% WG, Syngenta, Spain); Glyphosate (Roundyp Energ®, 45% p/v. SL, Monsanto, Spain); Diflufenican +
glyphosato (Musketeer®, 15% p/v. diflufenican + 1% p/v. iodosulfuron-methyl, OF, Bayer CropScience, Sapain); Chlorotoluron + diflufenican
(Anibal®. 40% p/v. chlorotoluron + 2.5% p/v. diflufenican, SC, ADAMA, Spain); Diflufenican + glyphosate (Zarpa®, 4% p/v. diflufenican +
16% p/v. glyphosate, SC, BASF Agro, Spain); Flazasulfuron + glyphosate (Chikara Duo®, 6.7 g kg−1 flazasulfuron + 288 g kg−1 glifosato,
WG, Belchim Crop Protection, Spain); Propaquizafop (Agil®, 10% p/v, EC, ADAMA, Spain); Quizalofop (Leopard®, 5% p/v, EC ADAMA,
Spain). b WG: water dispensable granules; SL: Soluble concentrate; OF: Oil miscible flowable concentrate; SC: Suspension concentrate; EC:
Emulsifiable concentrate.

2.7. Statistical Analyses

Parameters GR50 and LD50 described in dose–response curve assays were estimated
with a nonlinear regression using Equation (1).

Y = c + {(d − c)/[1 + (x/g)b]} (1)

where Y is the dry weight, or plant mortality expressed as a percentage of the value for
the untreated control, c and d are the coefficients corresponding to the lower (fixed at 0)
and upper asymptotes, respectively, b is the slope of the curve point (i.e., GR50, LD50), x
(independent variable) is the glyphosate doses, and g is the herbicide rate at the point of
inflection curve. The nonlinear regression analyses were conducted using the R package
“drc” [31].

In addition, GR50 and LD50 resistance factor (RF) was calculated with Equation (2).

RF = (GR50 or LD50 R/GR50 or LD50 S) (2)

where “R” is the resistant population and “S” is susceptible population.
For the rest of experiments, the normal error distribution and the homogeneity of the

variance were verified for each set. Finally, data were assessed via analysis of variance
(ANOVA) using the Statistix software version 10.0 (Analytical software, Tallahassee, FL, USA).
A Tukey (p < 0.05) test was conducted to compare the means.

3. Results
3.1. Bromus spp. Molecular Characterization

Seven SSR markers (Bt03, Bt04, Bt05, Bt12, Bt26, Bt30 and Bt33) were enough to
discriminate the Bromus species tested. The dendrogram shows five groups at a similarity
coefficient of 0.5 (Figure 1). Group I was formed by B. sterilis individuals. The second group
corresponded to B. rubens and included the 20 populations from Andalusia. All B. rubens
populations grouped together regardless of the province where they were collected, and R
and S individuals could not be distinguished by the seven SSR markers used in this study.
B. diandrus and B. madritensis were differentiated in groups III and IV, respectively. Finally,
group V was comprised of the B. tectorum population.
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3.2. Resistant Fast Screening by Shikimic Acid Accumulation Assay

Overall, the B. rubens populations response was different, which resulted in multi-
ple patrons of resistance to the herbicide glyphosate. This fast screening at 1000 µM of
glyphosate, showed 17 resistant populations out of 20, which had accumulated the least
shikimic acid (Figure 2). Br1, Br3, and Br11 populations accumulated the highest amount of
shikimic acid at a rate of 1200 to 1700 µg g−1 fresh weight, whereas the other 17 populations
accumulated 300 to 700 µg g−1 fresh weight.

Agronomy 2021, 11, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 2. Shikimic acid accumulation of 20 Bromus rubens populations at 1000 µM glyphosate. The different letters in the measure-
ments differed statistically in the Tukey’s test (95%). 

3.3. Glyphosate Dose–Response Curves 
The estimated dose–response curve parameters demonstrated different resistance 

levels in B. rubens populations (Table 3). Seventeen populations were resistant because 
they required at least 1080.33 to 2100.40 g ae ha−1 to reduce their mortality to 50%, indicat-
ing that the glyphosate field dose should be doubled or even tripled for total control. Br4 
and Br19 populations were the most resistant these required 2100.4 and 2024.47 g ae ha−1, 
respectively, to kill 50% of the population, whereas Br3 and Br1 populations needed only 
274.22 and 229.87 g ae ha−1, respectively. In contrast, GR50 values showed a S population 
(Br1) needed only 140.64 g ae ha−1, whereas the most resistant needed 1031 g ae ha−1 to 
reduce the dry weight at 50%. This meant that the RF referred to a dry weight reduction 
(GR50) varying from 1.05 to 7.61 (Table 3, Figure 3). According to the RF results, we char-
acterized 17 populations as G-R. (Figure 3). 

  

Figure 2. Shikimic acid accumulation of 20 Bromus rubens populations at 1000 µM glyphosate. The
different letters in the measurements differed statistically in the Tukey’s test (95%).



Agronomy 2021, 11, 535 7 of 13

3.3. Glyphosate Dose–Response Curves

The estimated dose–response curve parameters demonstrated different resistance
levels in B. rubens populations (Table 3). Seventeen populations were resistant because they
required at least 1080.33 to 2100.40 g ae ha−1 to reduce their mortality to 50%, indicating
that the glyphosate field dose should be doubled or even tripled for total control. Br4
and Br19 populations were the most resistant these required 2100.4 and 2024.47 g ae ha−1,
respectively, to kill 50% of the population, whereas Br3 and Br1 populations needed only
274.22 and 229.87 g ae ha−1, respectively. In contrast, GR50 values showed a S population
(Br1) needed only 140.64 g ae ha−1, whereas the most resistant needed 1031 g ae ha−1 to
reduce the dry weight at 50%. This meant that the RF referred to a dry weight reduction
(GR50) varying from 1.05 to 7.61 (Table 3, Figure 3). According to the RF results, we
characterized 17 populations as G-R. (Figure 3).

Table 3. Dose–response parameters of Bromus rubens resistant (R) and susceptible (S) populations.

Code d * b * GR50 (g ae ha−1) RF d * b * LD50 (g ae ha−1) RF

Br1 89.92 4.71 140.64 ± 5.86 - 101.17 3.80 229.87 ± 8.85 -
Br2 96.30 1.66 856.06 ± 54.09 6.09 100.27 7.37 1706.78 ± 18.78 7.42
Br3 102.30 2.84 148.33 ± 6.62 1.05 102.19 3.26 274.22 ± 7.46 1.19
Br4 88.54 2.99 1031.76 ± 55.51 7.34 99.92 7.76 2100.40 ± 80.12 9.14
Br5 99.43 1.24 955.96 ± 54.08 6.80 100.62 5.16 1766.50 ± 73.58 7.68
Br6 91.57 2.42 785.70 ± 42.36 5.59 99.36 7.12 1427.68 ± 18.57 6.21
Br7 93.65 4.01 736.51 ± 28.04 5.24 98.62 3.20 1378.60 ± 27.07 6.00
Br8 89.79 3.39 875.52 ± 35.49 6.23 100.41 6.11 1759.61 ± 24.00 7.65
Br9 94.28 3.37 611.65 ± 24.35 4.35 99.84 5.32 1284.82 ± 25.16 5.59

Br10 99.03 1.47 955.35 ± 62.06 6.79 100.27 1.27 1702.52 ± 34.02 7.41
Br11 94.70 1.48 226.21 ± 20.95 1.61 96.01 2.31 563.46 ± 38.95 2.45
Br12 93.20 3.23 634.08 ± 26.68 4.51 98.18 5.24 1320.45 ± 33.26 5.74
Br13 90.69 3.18 919.97 ± 42.06 6.54 98.64 8.49 1658.63 ± 22.88 7.22
Br14 97.60 1.89 926.95 ± 54.08 6.59 100.86 5.79 1570.29 ± 26.83 6.83
Br15 99.25 1.77 767.66 ± 57.86 5.46 99.22 4.77 1428.05 ± 42.49 6.21
Br16 95.23 3.96 855.78 ± 27.87 6.08 100.43 4.68 1292.96 ± 42.77 5.62
Br17 95.74 4.21 825.43 ± 17.74 5.87 100.33 3.47 1180.57 ± 43.28 5.14
Br18 96.68 4.60 669.84 ± 15.58 4.76 100.93 3.67 1080.33 ± 36.33 4.70
Br19 90.88 6.80 1070.97 ± 33.16 7.61 100.23 5.61 2024.47 ± 27.90 8.81
Br20 94.56 8.07 983.50 ± 17.23 7.00 99.00 6.73 1757.68 ± 31.79 7.65

* d is the upper coefficient and b is the slope of the curve.
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3.4. Foliar Retention Assay

There were not differences between the 20 B. rubens populations. They had values
from 371.6 to 416.75 µL glyphosate g−1 dry weight. Both R and S B. rubens populations
had no significant differences in this assay; thus, foliar retention was not involved in the
low susceptibility to glyphosate.

3.5. Chemical Alternatives In Situ

Field trials carried out in “La Reina” (Br10 (GR50 factor: 6.79 and LD50 factor: 7.41)) in
almond trees, demonstrated the potential alternatives to glyphosate. Overall, the percent-
age B. rubens control was similar in the two seasons. Treatments applied pre-emergence
were the least promising because only the glyphosate and flazasulfuron tank mix had the
best results in both seasons (Figure 4). This treatment maintained an efficacy close to 80%
(±) against B. rubens from 30 DAA to 120 DAA (Figure 4). Otherwise, the application
with chlorotoluron and diflufenican had the worst result, with poor control (20%) from
30 to 120 DAA in both growing seasons. Diflufenican plus iodosulfuron and glyphosate
had satisfactory control in nontarget species, such as Lolium sp., Vulpia sp., and Conyza sp.
but not against B. rubens (Figures 4 and 5). Herbicides applied in postemergence were a
more promising chemical alternative. Grass weed herbicides (ACCase inhibitors), such
as propaquizafop and quizalofop in tank mix with glyphosate, controlled B. rubens up to
90% from 30 to 90 DAA (Figure 5). Additionally, this tank mix controlled other important
weeds, such as Lolium sp., Hordeum murinum, and Bromus sp. Glyphosate resistance was
visualized with applications at 1080 g (control under 60%) and 1800 g ae ha−1 (control close
to 80% but only at 30 DAA). Flazasulfuron (20 g ai ha−1) plus glyphosate (860 g ae ha−1) is
a commercial product (Chikara Duo®) that showed to be a good treatment, but only for the
first 30 DAA, after which time B. rubens control was poor (Figure 4).
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4. Discussion

Molecular markers have been successfully employed for genetic diversity and genetic
characterization in a wide range of plant species. Particularly, SSR markers are very reliable
and suitable for the study of genetic diversity between species of the same genus because
of their transferability and power to detect closely related polymorphic individuals. It
has been reported that, in general, cross-species transferability within genera is moderate
to high (50–100% success) [32,33]. In this work, we used seven SSRs developed in B. tec-
torum [25] to discriminate five Bromus species. All SSR markers were polymorphic and
transferable to the five species. Although we could not genetically distinguish R and S
populations of B. rubens, the seven SSRs were useful tools for discriminating between the
Bromus species. Thus, the dendrogram constructed in this study revealed that the five
Bromus species are genetically distinct from each other and the 20 populations collected in
Andalusia belong to B. rubens.
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In contrast, the rapid screening using the leaf disc shikimic acid accumulation allowed
us to separate glyphosate-R and -S populations. In our study, the Br1 population accu-
mulated a higher shikimic acid compared to Br4, Br5, Br6, Br7, Br8, Br9, Br10, Br12, Br13,
Br14, Br15, Br16, Br17, Br18, Br19, and Br20 (Figure 2). These results indicate low sensibility
to glyphosate due to no interaction between herbicide and its target site (EPSPS). These
different patterns have been shown in different grasses, such as Chloris spp. [34–38] and
Hordeum spp. [29,39].

Glyphosate field doses recommended for the control of weeds in Southern Spain under
field conditions (1080 g ae ha−1) can control S (Br1, Br3, and Br11) B. rubens populations
(LD50 between 229.87 to 563.46 g ae ha−1). However, R populations required greater
field doses than those used by farmers (Table 3). These results are supported by the
definition of Herbicide Resistance Action Committee (HRAC), which defines tolerant
and/or resistant plants as those that survive higher doses of glyphosate than those usually
used by farmers [13]. However, this definition is very subjective since there are countries
where glyphosate doses are lower than in others; therefore, a weed may be resistant in one
country but not in another [15,29,34,35,37,39] (Figure 3). The high RF and low accumulation
of shikimic acid observed in the different R B. rubens are in agreement with those plants
that have acquired resistance to the addition of more than one resistance mechanism, which
could be a non-target site (NTSR) and/or mechanism of resistance to the target site (TSR).
This scenario has been demonstrated in other grass weed species [40–42]. Our results
conclude that RF values also separated the 20 populations of B. rubens into one group -S
and another much larger group (17 populations) of glyphosate-R (Figure 3). Therefore, we
can observe that all R populations meet the requirements of RF values greater than 4 to be
considered resistant [29,35].

Overall, this study revealed different levels of G-R in B. rubens harvested from dif-
ferent agricultural areas in Southern Spain, where there are a variety of soils and climatic
differences. The proposed response of herbicides between different places depends on
local ecological factors, such as a variation in climate, soil type, tillage practices, types of
crops, and fertilizers, among others. [34,43,44]. Additionally, the use of different glyphosate
formulations and the dose rate, application time per year, application technique used by
farmers, and environmental conditions could respond to the differences found [45,46].
In addition, an increase in relative humidity and temperature increases the absorption,
translocation, and effectiveness of glyphosate in many species of grass weeds, which could
help us understand the differences between populations of B. rubens [47,48].

Only in some cases did differences in plant architecture or total leaf surface area
contribute to a plant’s sensitivity to glyphosate, as a change in the fitness of R versus S
plants can alter the growth of R plants to reduce glyphosate retention [49–51]. Our results
determined that the R and S populations of B. rubens did not exhibit differences in fitness
and herbicide retention. In addition, glyphosate retention was similar to that found in
other grass weeds, such as Hordeum murinum [29], among others.

When a weed begins to predominate due to a lack of control, it is necessary to carry
out a study of alternative herbicides that will help in short- and medium-term management
in the field. The study must include pre-emergent or postemergence application alterna-
tives [52]. We found that for pre-emergent applications, the best results were obtained when
mixing glyphosate and flazasulfuron (Figure 5C); it is obvious that the control of B. rubens
offered by this mixture is attributed to flazasulfuron (an ALS herbicide). Similar results
were obtained by Reeves and Hoyle [53], where the application of flazasulfuron resulted
in acceptable controls against Poa anua up to 133 DAA. The application of postemergence
herbicides used alone or in combination with pre-emergence herbicides is very frequent in
plantations, as they help to carry out fewer applications per year. As for postemergence
applications, in this work, the best results were obtained with the mixture of glyphosate
plus propaquizafop or quizalofop (Figure 5D). ACCase herbicides have multiple advan-
tages of being applied in postemergence. However, they are specific to grass weeds, such
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as B. rubens, and have excellent selectivity in crops [54]. Other studies in B. tectorum and
B. japonicus found that glyphosate is effective in reducing biomass [55–57].

There is little information related to the application of graminicides for the control
of Bromus sp. [58,59]. Ball et al. [58] found better efficacy of quizalofop and fluazifop
than sethoxydim. Our results are promising for the benefit of farmers, both in pre- and
postemergence applications. The key to success in weed control is to alternate modes of
action, use the recommended dose and apply it in a suitable phenological state [60]. These
tools must be used correctly to preserve their efficacy. In addition, farmers must learn weed
management lessons and use other nonchemical measures that can help decrease the seed
bank and seedling density in the field.

5. Conclusions

The results confirmed the resistance of B. rubens populations to glyphosate collected
in Southern Spain. This research is the first scientific report with established resistance
parameters of G-R in B. rubens from Spain. Furthermore, field trials demonstrated that, at
the moment, there are alternative herbicides to control these R populations. Flazasulfuron
(pre-emergence herbicide) in the tank mix with glyphosate (postemergence herbicide),
propaquizafop, or quizalofop (postemergence herbicides) plus glyphosate increase the
control of B. rubens. Nowadays, we are aware of that fact and effective research is in
progress to characterize resistance mechanisms NTSR or TSR involving these populations.
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