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A B S T R A C T   

The non-destructive evaluation of internal maturity in watermelons, which are large fruits with a thick rind, 
during their development on the vine can be considered as a challenge for the growing sector. Near infrared 
spectroscopy (NIRS) was used to assess in situ soluble solid content (SSC), the main parameter to establish full 
maturity, in 249 intact watermelons, of which, 152 had a striped light green rind and 97 a solid dark green rind. 
Two handheld new generation spectrophotometers were compared for this purpose. Different pre-processing 
methods and the partial least squares (PLS) regression algorithm were used to build global calibration models 
and specific calibration models for each one of the two types of watermelon analysed. The results obtained for 
the global models showed that NIRS is a suitable technology for screening the fruit for maturity, and that the 
linear variable filters (LVF) sensor is the best equipment for this purpose (SECV = 1.02%; RPDp = 1.36). 
Moreover, the best results were obtained when different models were used depending on the type of watermelon. 
Additionally, near infrared (NIR) classification models were developed to discriminate the samples by stage of 
maturity for each type of watermelon available, using partial least squares discriminant analysis (PLS-DA). The 
optimum threshold values for the striped light green and solid dark green rind watermelons (0.82 and 0.65, 
respectively) were displaced from the mean value of the discriminant variable due to the differences in terms of 
number of samples per class used. A total of 66.4% and 82.2% of the striped light green and solid dark green rind 
watermelons, respectively, were correctly classified. The results of this study demonstrated the viability of using 
NIRS technology as a decision-making support tool to measure the maturity of watermelons and to establish the 
optimum harvest time of watermelons and therefore meet the consumers’ demand for sweet-tasting fruits. 
Further studies will be needed to improve calibration robustness, and to further interpret outdoor applications in 
fruits with thick rind.   

1. Introduction 

The watermelon [Citrullus lanatus (Thunb.)] is a fruit that must be 
harvested when fully mature, since once separated from the vine, 
neither the sugar content nor the internal colouration increase (Sun 
et al., 2010). In watermelons, the soluble solids content (SSC) can vary 
widely at the time of harvesting, and depends mainly on the cultivar 
harvested (Suslow, 1997; Yativ et al., 2010). However, watermelons are 
considered to be ready to be harvested when the SSC of the pulp is over 
10% (Suslow, 1997). 

Measuring SSC while the fruits are developing is, therefore, key to 
establishing the optimal moment for harvest, since, as mentioned above, 

the physiological maturation process finishes at harvest. It should be 
also considered the fact that, unlike other fruit, the internal maturity of 
watermelons cannot be established by observing their external appear-
ance and that it is difficult to recognize until the fruit is cut open (Flores 
et al., 2008; Jie et al., 2019). 

The traditional way of establishing if watermelons are mature is to 
sense sound or vibration by slapping or rapping them. However, this 
method is tedious, time-consuming, and highly subjective, so therefore 
subject to error, and must also be carried out by specially trained teams 
(Abbaszadeh et al., 2011). Moreover, since consumer acceptance of 
watermelons is based, among other factors, on their sweetness, 
measuring objectively this quality parameter of the fruits on the vine 
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would allow them to be harvested selectively and then sorted according 
to their quality. 

Near infrared spectroscopy (NIRS) is a non-invasive, multiparameter 
analytical technology that can be used to facilitate the rapid individual 
internal quality control of intact fruits (Arendse et al., 2018; Catta-
neoand Stellari, 2019; Torres et al., 2019; Walsh et al., 2020), thus 
meeting the needs of the industry and the producers. The recent 
development of portable and light-weight instruments has led to this 
technology being considered ideally suited for use in the field (Pasquini, 
2018; Yan and Siesler, 2018; Bec et al., 2020). However, the fact that 
watermelons have a thick rind makes it difficult for light to penetrate the 
fruit to evaluate the inside, which could imply certain limitations in the 
use of this technology for field analyses, together with their high water 
content (90% w/w) (Bianchi et al., 2018) and the fact that in this fruit, 
the sweetness varies from the rind to the center of the pulp (Lammertyn 
et al., 2000; Magwaza and Opara, 2015). 

In fact, NIRS sensor applications in watermelons –mainly concerned 
with measuring SSC– have been developed using different benchtop 
NIRS instruments working in transmittance mode (Abebe, 2006; Tian 
et al., 2007; Jie et al., 2013, 2014; Qi et al., 2014), since this method of 
analysis has been traditionally recommended for hard-rind fruits (Sar-
anwong and Kawano, 2007). However, these instruments use intense 
illumination and involve long integration times, which potentially could 
lead to heat damage in the fruit (Long and Walsh, 2006). 

Only Flores et al. (2008) and Tamburini et al. (2017) have measured 
SSC in products already harvested using benchtop instruments working 
in reflectance mode. The results obtained by these authors allow to 
confirm that light penetrated the fruit enough to measure the parame-
ters tested accurately, thanks to improvements in photodetectors and 
measuring devices. However, it is worth noting that no research articles 
exist in the scientific literature which demonstrate the feasibility of 
using new generation portable NIRS instruments working in reflectance 
mode to monitor the pre-harvest internal quality of intact watermelons 
in the field. 

The aim of this research was to investigate the potential of NIRS 
technology to be used at a field level, i.e., in situ analysis, using two new 
generation handheld NIRS sensors of different optical designs and 
technical specifications, working in reflectance mode to gage the opti-
mum moment for the watermelons to be harvested, based on the soluble 
solid content, and thus meet the consumers’ demands. 

2. Materials and methods 

2.1. Watermelon sampling 

A total of 249 watermelons (Citrullus lanatus Thunb.) – of which 152 
had a striped light green rind (cv. ‘Bazman’, ‘Bengala’, ‘Boston’, ‘Pre-
mium’, ‘Premium-Frilly’ and ‘Red Jasper’) and 97 a solid dark green rind 
(cv. ‘Fashion’, ‘Fenway’ and ‘Jamaica’) (Table 1) were grown in 
greenhouses and in open fields in different regions of Spain (Andalusia, 
Canarias, Castilla La Mancha, and Murcia). The fruits were harvested at 
different stages of maturity, ranging from early to full maturity, between 
May and October 2021. The fruits were taken to the laboratory at the 
Faculty of Agricultural and Forestry Engineering at the University of 
Cordoba, Spain, and kept at 10 ◦C and 90% relative humidity until the 
following day, when laboratory testing was performed. 

2.2. Instrumentation and NIR spectra acquisition 

The acquisition of the near infrared (NIR) spectra of intact water-
melons was carried out using two portable handheld NIRS instruments 
of different optical designs (Table 2). These instruments were suitable 
for the in situ analysis of the product in the field. 

Spectra of the intact watermelons were initially taken using a Linear 
Variable Filters (LVF) spectrophotometer (MicroNIR™ Pro 1700, VIAVI 
Solutions, Inc., San Jose, California, USA). Spectra acquisition was 

carried out using the VIAVI MicroNIR Pro software version 2.2 (VIAVI 
Solutions, Inc., San Jose, California, USA). The instrument’s perfor-
mance was checked every 10 min. Four spectra were taken per fruit on 
the equator region, and the fruit was rotated through 90◦ after each 
measurement. The four spectra were averaged to provide a mean spec-
trum for each fruit. 

Additionally, following the same procedure, four spectra were taken 
per fruit and later averaged, using a compact, handheld instrument 
based on diode-array (DA) technology (Aurora spectrophotometer, 
GraiNit S.r.l., Padova, Italia). This instrument has an internal reference 
which is taken automatically prior to the measurement of each sample. 
The UCal 4™ software (Unity Scientific LLC, Milford, MA, USA) was 
used for spectra acquisition. 

2.3. Reference analysis 

The watermelons were then cut in half along the equatorial axis and 
the rind thickness of the half containing the stem was measured at four 
equidistant points using a digital precision calliper (0–300 ± 0.01 mm; 
Comecta, Barcelona, Spain). These 4 values were averaged to obtain a 
mean rind thickness per fruit. After that, the same half was again cut into 
two identical pieces, one of which was used to measure the SSC (%). To 
achieve this, the rind was removed, the flesh was squeezed, and the SSC 
of the extracted juice was measured by refractometry using a 
temperature-compensated digital Abbé-type refractometer (model B, 
Zeiss, Oberkochen, Würt, Germany). The samples were analysed in 
duplicate, the data per fruit were averaged and the standard error of 

Table 1 
Rind type, number of samples (N) and mean (standard deviation) values of the 
rind thickness (mm) and soluble solid content (%) parameters of the different 
watermelon cultivars analysed.  

Rind type Cultivar N Rind thickness 
(mm) 

SSC (%) 

Striped light 
green 

Bazman 5 14.74 (0.97) d 6.58 (0.31) a  

Bengala 26 10.35 (1.42) ab 9.37 (1.05) d  
Boston 33 12.51 (5.26) cd 8.06 (1.40) b  
Premium 68 9.34 (2.95) a 8.19 (1.68) bc  
Premium- 
Frilly 

17 8.71 (1.87) a 7.74 (1.06) ab  

Red Jasper 3 13.03 (0.48) bcd 9.43 (0.39) 
bcd 

Solid dark green Fashion 54 11.19 (1.67) bc 8.88 (1.25) d  
Fenway 38 11.14 (3.56) bc 8.73 (1.49) cd  
Jamaica 5 8.76 (2.23) ab 8.70 (0.90) 

bcd 

Standard deviation in bracket. 
Means in the same column followed by the same letter showed no significant 
differences between them (P > 0.05). 

Table 2 
Technical features of the linear variable filters and the diode-array 
spectrophotometers.  

Property Instrument 
MicroNIR™ Pro 1700 Aurora 

Analysis mode Reflectance Reflectance 
Detector type 128-pixel InGaAs 

photodiode array 
256-pixel InGaAs 
detector 

Dispersion element Linear variable filters Diode-array 
Wavelength range (nm) 908–1676 950–1650 
Resolution (nm) 6.2 2 
Sampling integration time 

(ms) 
11 6.57 

Scanning time per 
measurement (s) 

2–3 2–3 

Weight (kg) 64⋅10–3 2 
Optical window size (mm2) 227 1256  
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laboratory (SEL) was calculated from these duplicates. 

2.4. Data processing 

The WinISI II software package version 1.50 (Infrasoft International 
LLC, Port Matilda, PA, USA) (ISI, 2000) and the Matlab software version 
R2019a were used to carry out the chemometric treatment of the data. 
The CENTER algorithm (ISI, 2000) was applied to the sets of intact 
watermelons analysed with both instruments to study the structure and 
variability of the population. This algorithm performs a principal 
component analysis (PCA) and calculates the Mahalanobis distance 
(GH) between each sample and the center of the population (Shenk and 
Westerhaus, 1995). Prior to the application of this algorithm, a combi-
nation of mathematical pre-treatments was applied — standard normal 
variate (SNV) and de-trending (DT) for scatter correction (Barnes et al., 
1989), together with the first derivative treatment. Any samples 
showing GH values over 4 were studied as potential spectral outliers and 
were excluded from their sets if the removal was justified. 

2.4.1. Quantitative models for the prediction of the SSC in intact 
watermelons 

Once the spectral outliers were removed and the samples ordered by 
spectral distances to the centre of the population, a structured sample 
selection was carried out according to Shenk and Westerhaus (1991) to 
build the calibration and validation sets using the sets of watermelons 
analysed with both instruments. To achieve this, one out of every four 
samples were selected from the set of intact watermelons to be part of 
the validation set, and the remaining samples were used to build the 
calibration set. 

The quantitative models developed to predict the SSC in intact wa-
termelons analysed with both portable instruments were carried out 
using the Matlab software and the partial least squares (PLS) regression 
method. We tested the first and the second derivative treatments in 
combination with SNV and DT for scatter correction. The best models 
were selected by assessing their performance using the coefficient of 
determination for cross validation (r2

cv), the standard error of cross 
validation (SECV), and the residual predictive deviation for cross vali-
dation (RPDcv), calculated as the ratio of the standard deviation (SD) of 
the reference data for calibration to the SECV. The RPDcv values ob-
tained for both instruments were statistically compared using Fisher’s F 
test (Mark and Workman, 2003). 

The samples included in the validation set were then used to evaluate 
the best models developed and the validation results were assessed 
following the protocol outlined by Windham et al. (1989). 

In this way, the most suitable spectrophotometer was identified to 
predict the internal quality in intact watermelons, and new quantitative 
models were made, following the same procedure explained above, to 
predict the SSC by separating the set of samples into striped light green 
and solid dark green rind samples. In this case, given the number of 
watermelons available of each type, the external validation procedure 
was skipped, and in this case, the cross-validation approach was fol-
lowed to evaluate the models obtained. 

2.4.2. Classification models according to internal maturity of the fruit 
The viability of using NIRS technology for the in situ classification of 

intact watermelons in the field based on their stage of internal maturity 
was assessed by developing classification models for the striped light 
green and solid dark green rind watermelons, respectively, once the 
spectral outliers were removed. These two sets of striped light green and 
solid dark green rind watermelons were in turn divided into two groups, 
as determined by Suslow (1997), who reported that an SSC of 10% in the 
watermelon flesh was an indicator of full maturity in the fruit. Conse-
quently, the category of mature watermelons was made up of those 
samples showing an SSC equal to or over 10%, while the category of 
immature watermelons included those samples with an SSC lower than 
10%. 

The discriminant models were constructed using Matlab software 
and PLS discriminant analysis (PLS-DA) for supervised classification 
(Naes et al., 2002), in particular the PLS2 algorithm, which generates as 
many discriminant variables as there are classes in the learning group. 
The same signal pre-treatments described for quantitative analysis were 
used for qualitative model development. As the models were unbalanced 
in terms of the number of samples included in each class, an optimum 
threshold value was calculated using the Receiver Operating Charac-
teristic (ROC) curves (Brereton, 2009). The performance of these models 
was assessed using the number of correctly classified samples, both for 
the global model and for each class. 

2.4.3. Statistical analysis 
In order to study potential differences in terms of rind thickness 

(mm) and SSC (%) between the cultivars, a one-factor analysis of vari-
ance (ANOVA) was carried out per parameter using Matlab software 
version R2019a. Next, the differences between the means were 
compared using the Fisher’s Least Significant Difference (LSD) test, with 
differences at P < 0.05 considered as significant. 

3. Results and discussion 

3.1. Spectral analysis of the watermelon population 

The spectra of the samples were plotted, and three of them were 
removed from the set of samples analysed using the DA instrument due 
to problems in the spectral acquisition process. Fig. 1 shows the average 
spectra of the N = 249 and N = 246 intact watermelons available for the 
LVF and DA instruments, respectively. Both instruments yielded similar 
spectral patterns (absorption peaks aligned on the horizontal axis). The 
most relevant common absorption bands observed in the LVF and DA 
spectra were found at 970 nm, 1160–1200 nm, 1440–1450 nm. The 
spectra displayed water-related absorption peaks at 970 nm and 1450 
nm (Osborne et al., 1993; Shenk et al., 2008), as is usual in the case of 
fruit, and particularly watermelons, which are 90% water (Bianchi et al., 
2018). Other peaks, at around 1200 nm and 1440 nm, were character-
istic of the sugar-related absorption band (Osborne et al., 1993; Shenk 
et al., 2008), since sugar is the second largest component after water 
(Flores et al., 2008). 

After applying the CENTER algorithm to the sets of intact water-
melons analysed using the LVF and DA instruments, one outlier sample 
was identified and eliminated for each of the sets. The sample removed 
from the LVF set showed a GH value over the limit (GH = 7.27) and 
presented a yellow stain from the middle of the fruit to the area near the 
pistil scar. Likewise, the sample removed from the DA set showed a GH 

Fig. 1.. Mean NIR spectra for watermelons analysed using the linear variable 
filters (LVF) and diode-array instruments. 
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= 11.14 and external abrasions made during the postharvest manage-
ment of the fruit. Both defects on the watermelon rind could have 
interfered with the spectra acquisition and could have led to GH values 
over 4 being obtained for these samples. Consequently, the number of 
watermelons available in the LVF and DA instruments sets after 
removing the spectral outliers was 248 and 245, respectively. 

3.2. Quantitative prediction of the SSC in intact watermelon samples 

Table 3 shows the calibration and validation sets of samples analysed 
using the LVF and DA instruments. These sets showed, for both in-
struments, similar values for SSC in terms of mean, standard deviation 
(SD), and coefficient of variation (CV). In addition, the values of the 
validation set range for this parameter laid within those of the calibra-
tion set. The CV parameter showed values ranging from 15.40 to 17.87% 
and 15.86–17.95% for the LVF and DA instruments, respectively. These 
values reflect the great variability in terms of the SSC parameter of the 
watermelons used in this study, which included samples harvested from 
early to full maturity which, in turn, is of great importance when the 
objective is to carry out a follow-up of this internal quality parameter 
while the fruit is developing on the vine and establish the optimal 
moment for harvest. 

Table 4 shows the cross-validation results for the best models 
developed to predict SSC in intact watermelon samples using the LVF 
and DA instruments. For both instruments, the best models were ob-
tained using the SNV + DT + 2nd derivative treatment. These results 
show that the models would enable to distinguish between low and high 
SCC values in intact watermelons using the LVF and DA instruments 
(Shenk and Westerhaus, 1996; Williams, 2001), which can be of great 
interest for preharvest decision-making in the fields, facilitating the in 
situ discrimination of watermelons at an optimal stage of maturity from 
those ones at an early stage. Significant differences (P < 0.05) were 
found when comparing the RPDcv values obtained for both instruments, 
which could be due, among other factors, to the difference in terms of 
the window size of both spectrophotometers and to the optical design 
(Table 2). The greater window size of the DA instrument could hinder 
the spectra acquisition process, due to the difficulty in covering the 
whole window with the fruit analysed due to its round shape. 

The regression coefficients for the model developed using the LVF 
instrument for the prediction of the SSC are illustrated in Fig. 2. The 
region between 1193 and 1360 nm showed several significant peaks 
which corresponds to the second overtone of the C–H stretching bonds 
(Shenk et al., 2008). In addition, the peaks at around 1385 nm and 1441 
nm could be related to sugars absorption (Osborne et al., 1993). 

Only two studies exist in the literature which developed models to 
predict SSC in intact watermelons using NIRS instruments working in 
reflectance mode. Flores et al. (2008) measured SSC in N = 203 intact 
watermelons belonging to the ‘Fashion’ cultivar using a Perten DA-700 
spectrometer (Perten Instruments North America, Inc., Springfield IL, 
USA) covering the 400–1700 nm range. These authors reported better 
results in terms of RPDcv (1.53) than those obtained in this study. 
Nevertheless, it must be stressed that the model used by these authors 
involved a single cultivar and a benchtop instrument covering a wider 
spectral range. In addition, Tamburini et al. (2017) predicted the SSC in 

N = 135 intact watermelons belonging to the ‘Minirossa’ cultivar using a 
NIR On-Line X-One instrument (Buchi, Flawil, Switzerland) working in 
the 900–1700 nm range and reported an RPDcv value (3.04) greater than 
that here obtained. Again, these authors worked with a benchtop device 
and a single cultivar, which was particularly small in size (diameter, 
100–150 mm) with a very thin (< 0.5 mm), striped, green rind. It is 
therefore important to stress the novelty of our research, since there are 
no works available in the literature dealing with the non-destructive 
measurement of the SSC in intact watermelons in the field using 
portable NIRS instruments. 

The calibration models developed for both instruments were sub-
jected to an external validation procedure. For the LVF instrument, good 
prediction results were obtained, with the samples at the ends of the SSC 
(%) range showing the highest residual predicted values, given the low 
representativeness of these samples in the calibration set after removing 
the outliers when setting up the calibration model (N = 180) (see dis-
tribution in Fig. 3). Thus, a sample belonging to the ‘Boston’ cultivar 
with a reference value of SSC = 11.3% was predicted as SSC = 8.6%, 
which turned out to be the highest residual predicted value of the 
samples in the validation set. The slope, SEP(c) and bias fell within the 
recommended limits of the Windham et al. (1989) protocol for the LVF 
instrument (Fig. 4). In addition, although the r2

p value did not meet the 
validation requirements established in this protocol, this equation 
would enable to carry out an initial screening for watermelon maturity 
in the field, which can be considered as a first step in the development of 
an in situ application to measure the internal quality of intact 

Table 3 
Number of samples (N), range, mean, standard deviation (SD) and coefficient of 
variation (CV) for the soluble solid content (%) in the calibration and validation 
sets of watermelons analysed using the linear variable filters and diode-array 
instruments.  

Instrument Set N Range Mean SD CV 
(%) 

Linear variable 
filters 

Calibration 187 4.40–12.05 8.34 1.49 17.87 
Validation 61 5.30–11.45 8.96 1.38 15.40 

Diode-array Calibration 184 4.40–12.05 8.41 1.51 17.95  
Validation 61 5.35–11.45 8.70 1.38 15.86  

Table 4 
Calibration statistics for the best equations obtained to predict the soluble solid 
content (%) in intact watermelons.  

Instrument a N Range b 

Mean 

c SD d r2
cv 

e 

SECV 

f 

RPDcv 

Linear 
variable 
filters 

180 4.40–11.45 8.39 1.39 0.47 1.02 1.36 

Diode-array 181 4.65–11.30 8.40 1.47 0.33 1.22 1.20  

a Number of samples. 
b Mean of the calibration set. 
c Standard deviation of the calibration set. 
d Coefficient of determination of cross validation. 
e Standard error of cross validation. 
f Residual predictive deviation for cross validation. 

Fig. 2. Regression coefficients for the best model developed for the prediction 
of the SSC in intact watermelons using the LVF instrument. a.u.: arbitrary units. 
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watermelons. On the contrary, the validation results obtained for the 
assay carried out using the DA instrument showed a very low predictive 
capacity (data not shown). We can therefore confirm that the LVF in-
strument performed better when measuring in situ the SSC parameter in 
intact watermelons, and that this instrument would be the one used from 
that moment onwards in this study. 

Given the important differences that can be observed between the 
two types of watermelons studied (striped light green and solid dark 
green), in terms of external color, brightness, rind thickness, etc., which 
could affect the light interaction with the product and the results ob-
tained, we decided to create new, separate models for striped light green 
and solid dark green rind watermelons to improve their performance. 
The comparison of rind thickness (mm) and SSC (%) between the cul-
tivars emphasised the need to distinguish between the two types of fruit, 
since significant differences (P < 0.05) were found between the ‘Baz-
man’, ‘Boston’, ‘Premium’, and ‘Premium-Frilly’ cultivars (striped light 
green rind) and at least one of the solid dark green rind cultivars, both in 
terms of the SSC (%) and in rind thickness (Table 1). Furthermore, the 

second derivative plot of the raw mean spectra for the striped light green 
and solid dark green rind watermelons showed differences in absorption 
peaks at around 1378 and 1447 nm (Fig. 5), which have been linked to 
sugar-related absorption peaks (Osborne et al., 1993). 

The set of striped light green rind watermelons included a greater 
number of samples and showed a wider variability in terms of the CV 
value for the SSC, compared to the one made up for solid dark green rind 
watermelons (Table 5). The prediction capacity in terms of RPDcv of the 
models developed, after separating the watermelons into the two 
available types (Table 6), were very similar to that obtained for all the 
samples without differentiating between types. Nevertheless, the num-
ber of samples is a key factor in developing NIRS models, especially 
when the size of the sets is around 100–150 samples. It must therefore be 
noted that, despite the lower number of samples of solid dark green rind 
watermelons used to set up the model (N = 94), the results obtained 
were slightly better in terms of RPDcv than those obtained with the set of 
samples including the two types, in which a total of N = 182 samples 
were used to make the model. These results confirm the importance of 
differentiating between the striped light green and solid dark green rind 
watermelons when creating NIRS prediction models. 

3.3. Discriminant analysis of watermelons according to maturity 

According to the criterion established by Suslow (1997), the number 
of mature and immature striped light green watermelons analysed with 
the LVF instrument used to develop the classification models was 21 and 
131, respectively. Likewise, the number of mature and immature solid 
dark green samples available was 21 and 75, respectively. The best re-
sults for both types of watermelons were obtained using the 2nd de-
rivative treatment, along with the SNV + DT for scatter correction. The 
optimum threshold values were 0.82 and 0.65 for the assays carried out 
using striped light green and solid dark green rind watermelons, 
respectively. In the former case, the difference in terms of number of 
samples per class –mature and immature watermelons– was greater and, 
consequently, the optimum threshold value was further from the mean 
value of the discriminant variable (Naes et al., 2002; Brereton, 2009). 

The model created for the striped light green rind watermelons 
correctly classified 66.4% (101/152) of the samples (Table 7), 71.4% 
(15/21) as mature and 65.6% (86/131) as immature. Among the poorly 
classified samples, 7, 2, 13, 4, and 1 samples belonging to the ‘Bengala’, 
‘Boston’, ‘Premium’, ‘Premium-Frilly’ and ‘Red Jasper’ cultivars, 
respectively, presented a rind thickness 18.25% greater, on average, 
than the mean value of its corresponding cultivar, which can negatively 
impact on ability of the NIRS to predict the quality characteristics of the 
fruit (De Oliveira et al., 2014). The immature not correctly classified 
samples presented a mean and SD SSC values of 8.53% and 1.26%, 

Fig. 3. Histogram of frequencies for the soluble solid content (%) for the cal-
ibration* (N = 180) and validation sets (N = 61). *Calibration set: samples used 
to develop the model after removing outliers (N = 180). 

Fig. 4. Actual versus predicted values for the validation of the best models to 
predict the soluble solid content (SSC,%) of intact watermelons analysed using 
the linear variable filters instrument. 

Fig. 5. Second derivative of the absorbance spectra of the striped light green 
and solid dark green rind watermelons analysed using the linear variable fil-
ters instrument. 
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respectively. Likewise, the mature but not correctly classified samples 
showed a mean and SD SSC values of 10.60% and 0.45%, respectively. In 
addition, 6 samples showed an SSC value within the 10 ± 2 * SEL (SEL =
0.1%) range, which could be considered difficult to discriminate, since 
the error obtained could be attributed to the error of the reference 
method. 

It should also be noted that those cultivars with the lowest number of 
samples available showed the greatest relative number of misclassified 
samples (number of misclassified samples of a cultivar/total number of 
samples of this cultivar available), which highlights the importance of 
including a proper representation of each cultivar in the training set. For 
example, a total of 2 out of the 3 samples belonging to the ‘Red Jasper’ 
cultivar were not correctly classified (Table 7). It is clear that, for 
complex applications, such as the one proposed here, the number of 
samples needed to cover the variability of the product must be higher. 

The number of correctly classified fruits for the solid dark green rind 
type was 77/96 (82.2%) (Table 7), of which 15/21 (71.4%) belonged to 
the mature category and 62/75 (82.7%) to the immature set. In this case, 
of the poorly classified samples, 4, 5, and 1 watermelons belonging to 
the ‘Fashion’, ‘Fenway’ and ‘Jamaica’ cultivars, respectively, presented 
a rind thickness 15.70% greater, on average, than the mean value of its 
corresponding variety. From these samples, the immature but not 

correctly classified samples presented mean and SD SSC values of 9.24% 
and 0.68%, respectively. Similarly, the mature but not correctly classi-
fied samples showed mean and SD SSC values of 10.15% and 0.17%, 
respectively, and these values were very close to SSC = 10%. Further-
more, 5 samples showed an SSC value within the 10 ± 2 * SEL range. 

The difference in terms of correctly classified fruits for both types of 
watermelons –66.4% for the striped light green and 82.2% for the solid 
dark green rind– could possibly be attributed to the greater number of 
cultivars included in the striped light green rind set of watermelons 
(‘Bazman’, ‘Bengala’, ‘Boston’, ‘Premium’, ‘Premium-Frilly’, and ‘Red 
Jasper’) compared to the solid dark green rind set (‘Fashion’, ‘Fenway’, 
and ‘Jamaica’), and also to the differences in the brightness and hard-
ness of the product that hinders analysis and light penetration in the case 
of the striped watermelons more than for the dark green ones. In addi-
tion, the number of fruits included per cultivar was not the same, 
especially in the case of the striped light green rind watermelons, which 
could compromise the cross-validation results, since it may imply that 
these cultivars were not well represented in some of the cross-validation 
tests, where it is of the utmost importance to work with equitable cross- 
validation splits (Shenk and Westerhaus, 1991) when aiming to obtain 
representative cross-validation results. Therefore, given the importance 
of including different cultivars in the training set, which should include 
a wider variability in future watermelon fruits to be predicted, further 
studies should focus on adding more samples to the training set in order 
to work with a similar number of watermelon fruits per cultivar. 

The results obtained demonstrate the possibility of developing ap-
plications for the in situ differentiation between mature and immature 
intact watermelons using portable NIRS handheld instruments, which is 
of great interest since it could be used as a support tool for decision- 
making about the optimum harvest time for watermelons in the field. 

No studies in the literature were found for the classification of intact 
watermelon samples based on their stage of maturity using near infrared 
reflectance spectroscopy techniques. 

4. Conclusions 

The results showed the potentiality of NIRS technology to be used as 
a tool to study the stage of maturity of intact watermelons during their 
development on the vine based on the prediction of the SSC of the fruits 
analysed. This covers the demands of the growing watermelon sector for 
the incorporation at the field level of non-destructive and objective 
technologies to follow the development of the fruit and to establish the 
best time for harvest to meet the consumers’ demand for sweet, tasty 
fruits. Moreover, due to the differences between the striped light green 
and solid dark green rind watermelons, the results suggest that the two 
types of fruits must be treated separately, and better results for SSC 
prediction were obtained with this approach. Additionally, successful 
results were obtained when NIRS technology was used to classify the 
striped light green and solid dark green rind watermelons as fully 
mature or immature, respectively. Thus, this research can be considered 
as a successful first step towards the in situ implementation of NIRS 
technology in this kind of fruit with a thick rind and large size, using a 
handheld new generation spectrophotometer working in reflectance 
mode. A larger database will be needed in the future to develop more 
robust prediction models and to test the equations using samples 
belonging to different harvesting seasons and considering the influence 
of outdoors environmental factors. 
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Table 5 
Number of samples (N), range, mean, standard deviation (SD) and coefficient of 
variation (CV) for the soluble solid content (%) of the striped light green and 
solid dark green rind samples analysed using the linear variable filters 
instrument.  

Fruit rind N Range Mean SD CV (%) 

Striped light green 152 4.65–11.45 8.28 1.54 18.60 
Solid dark green 96 4.40–12.05 8.81 1.34 15.21  

Table 6 
Calibration statistics for the best equations obtained to predict the soluble solid 
content (%) in intact striped light green and solid dark green rind watermelons 
using the linear variable filters instrument.  

Fruit rind a N Range b 

Mean 

c SD d r2
cv 

e 

SECV 

f 

RPDcv 

Striped light 
green 

147 4.80–11.45 8.38 1.46 0.48 1.06 1.38 

Solid dark 
green 

94 4.40–11.45 8.81 1.27 0.51 0.90 1.41  

a Number of samples. 
b Mean of the calibration set. 
c Standard deviation of the calibration set. 
d Coefficient of determination of cross validation. 
e Standard error of cross validation. 
f Residual predictive deviation for cross validation. 

Table 7 
Percentage of samples correctly classified (%) calculated as number of samples 
per cultivar correctly classified (N) in the PLS-DA models divided by total 
number of samples available per cultivar (Ntotal).  

Rind type Cultivar N/Ntotal (%) 

Striped light green Bazman 5/5 (100.0%)  
Bengala 13/26 (50.0%)  
Boston 23/33 (69.7%)  
Premium 49/68 (72.1%)  
Premium-Frilly 10/17 (58.8%)  
Red Jasper 1/3 (33.3%)  
Total 101/152 (66.4%) 

Solid dark green Fashion 43/53 (81.1%)  
Fenway 30/38 (78.9%)  
Jamaica 4/5 (80.0%)  
Total 77/97 (82.2%)  
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