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An Unfolding Story With Familiar and 
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Base excision repair (BER) is a critical genome defense pathway that deals with a broad 
range of non-voluminous DNA lesions induced by endogenous or exogenous genotoxic 
agents. BER is a complex process initiated by the excision of the damaged base, 
proceeds through a sequence of reactions that generate various DNA intermediates, 
and culminates with restoration of the original DNA structure. BER has been extensively 
studied in microbial and animal systems, but knowledge in plants has lagged behind until 
recently. Results obtained so far indicate that plants share many BER factors with other 
organisms, but also possess some unique features and combinations. Plant BER plays 
an important role in preserving genome integrity through removal of damaged bases. 
However, it performs additional important functions, such as the replacement of the 
naturally modified base 5-methylcytosine with cytosine in a plant-specific pathway for 
active DNA demethylation.
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INTRODUCTION

The genomes of all organisms are susceptible to a variety of DNA lesions arising from endogenous 
and exogenous sources (Lindahl, 1993). Such threats to genome integrity are counteracted by diverse 
DNA repair pathways that are best understood in bacteria, yeast, and mammals. The base excision 
repair (BER) pathway is a critical DNA repair mechanism for removal of damaged bases arising 
from oxidation, alkylation, or deamination (Krokan and Bjoras, 2013). BER is initiated by DNA 
glycosylases that excise the damaged base and completed by additional proteins that remove the 
remaining sugar–phosphate moiety, fill the subsequent gap, and perform ligation. Knowledge about 
the BER pathway in plants has greatly advanced in the last two decades, mainly through studies 
in the model organism Arabidopsis thaliana, although additional progress has been made in other 
species. Results obtained so far indicate that plants have orthologs of most BER genes previously 
identified in other organisms. However, they also possess some plant-specific BER proteins, as well 
as distinctive enzyme combinations not found in other kingdoms. In the following sections, we first 
present a brief overview of the major stages in the BER pathway and then focus on the plant enzymes 
involved in every step, discussing their similarities and differences with BER factors from bacteria, 
yeast, and mammals.
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OVERVIEW OF BASE EXCISION REPAIR

BER is a complex mechanism that occurs in several steps: 
i) excision of the damaged DNA base, ii) cleavage of the 
sugar–phosphate backbone at the generated abasic (apurinic/
apyrimidinic, AP) site, iii) clean-up of the resulting DNA ends, iv) 
gap filling through DNA synthesis, and v) DNA ligation (Figure 
1). Repair factors involved in these stages have been identified 
primarily through studies in bacterial and mammalian systems.

The first BER step involves the excision of a modified or 
incorrect base through the action of a DNA glycosylase that 
cleaves the N-glycosidic bond, thus releasing the target base 
and leaving an AP site with the sugar–phosphate backbone 
intact. There are multiple DNA glycosylases with different 
substrates specificities (Friedberg et al., 2006; Jacobs and 
Schar, 2012).

Subsequent AP site processing can be achieved either by 
an AP lyase activity, usually associated with a subset of DNA 
glycosylases, or by AP endonucleases. Based on their catalytic 
activities, DNA glycosylases are classified into monofunctional 
and bifunctional. Monofunctional DNA glycosylases only 
remove the target base, thus generating an AP site, whereas 
bifunctional glycosylases possess an associated AP lyase activity 

that, after base excision, catalyzes 3′ incision to the AP site by 
β-elimination, generating 3′-α, β unsaturated aldehyde (3′-
PUA), and 5′-hydroxyl (OH) termini. Some bifunctional DNA 
glycosylases perform a later δ-elimination reaction converting 
the 3′-PUA end in a 3′-phosphate (3′-P) terminus. The AP 
site generated by monofunctional DNA glycosylases is usually 
processed by an AP endonuclease, which cleaves the DNA 
backbone 5′ to the abasic site, thus generating 3′-OH and 5′‐
deoxyribose-5-phosphate (5′-dRP) termini (Levin and Demple, 
1990; Dianov et al., 1992).

Unconventional ends generated by AP lyases (3′-PUA or 
3′-P) and AP endonucleases (5′-dRP) need to be processed 
to conventional 3′-OH and 5′-P termini, respectively, to 
allow DNA polymerization and ligation. Cleaning of 3′-PUA 
ends is performed by the 3′-phosphodiesterase activity of 
AP endonucleases, whereas the 3′-P termini are processed 
by a DNA 3′-phosphatase, which in mammalian cells is 
polynucleotide kinase phosphatase (PNKP) (Pascucci et  al., 
2002; Wiederhold et al., 2004). The 5′-dRP end must be 
processed to a 5′-P end by a deoxyribosephosphate (dRP) 
lyase activity that, in mammalian cells, is associated to DNA 
polymerase β (Srivastava et al., 1998).

Once the blocked termini have been processed to 5′-P and 
3′-OH ends, gap filling may proceed either by insertion of one 
nucleotide (short‐patch or “single-nucleotide BER,” SP-BER) 
or 2–13 nucleotides (long-patch, LP-BER). In mammals, DNA 
polymerase β is involved in nucleotide insertion during SP-BER 
(Srivastava et al., 1998), and the resulting nick is ligated by a 
complex of XRCC1 and LigIIIα (Nash et al., 1997). In contrast, 
LP-BER requires replicative DNA polymerases (Pol δ and Pol ε, 
in mammals), which displace the strand containing the 5′-dRP 
terminus, generating a flap structure that is processed by a flap 
endonuclease (FEN1), and finally, the generated nick is sealed by 
LIG1 (Levin et al., 1997).

Plants possess homologs of most BER proteins identified in 
other organisms (Britt, 2002; Hays, 2002; Roldan-Arjona and 
Ariza, 2009b) (Table 1), and the complete BER pathway was 
reproduced in vitro using Arabidopsis cell extracts (Cordoba-
Cañero et al., 2009). However, some factors are absent in plants, 
such as Pol β (Garcia-Diaz and Bebenek, 2007; Roy et al., 2008), 
others are encoded by multiple gene copies in plant genomes, 
such as PCNA and FEN1 (Kimura et al., 2003; Strzalka and 
Ziemienowicz, 2011), and additionally some BER proteins 
appear to be restricted to plants (Choi et al., 2002; Gong et al., 
2002). Such differences suggest that plant-specific characteristics 
arose during BER evolution. In the following sections, we review 
plant factors involved in the main BER stages.

BASE REMOVAL

BER is initiated by DNA glycosylases that recognize and excise 
the modified or damaged bases by hydrolytic cleavage of the 
N-glycosidic bond between the C1′ of the 2′-deoxyribose and the 
N atom at the target base. Most DNA glycosylases studied to date 
remove the target base through a base-flipping mechanism that 
involves DNA bending and distortion to facilitate base extrusion. 

FIGURE 1 | Schematic representation of the base excision repair (BER) 
pathway. See text for details.
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Then, the damaged base is inserted into a hydrophobic pocket 
so that catalytic residues can access the N-glycosidic bond, and 
an amino acid (the base flipper residue) fills in the vacant space 
left behind in the double helix. In some cases, the intercalated 
residue and/or other enzyme residues make specific interactions 
with the orphan opposite base in the complementary strand 
(Huffman et  al., 2005; Dalhus et al., 2009). Monofunctional 
DNA glycosylases cleave the N-glycosidic bond using an 
activated water molecule as nucleophile to attack the C1′ of the 
target nucleotide, whereas bifunctional DNA glycosylases use as 
nucleophile the amine moiety of a residue from the active site, 
thereby forming a Schiff base intermediate.

There are different types of DNA glycosylases, each specialized 
for a particular type of chemical damage or a range of structurally 
related lesions. Five structural superfamilies of DNA glycosylases 
have been identified: uracil DNA glycosylase (UDG), alkyladenine 
DNA glycosylase (AAG), helix-hairpin–helix (HhH-GPD), helix–
two-turn–helix (H2TH), and HEAT-like repeat (HLR) (Dalhus 
et al., 2009). Despite their different structures, it seems clear that 
all DNA glycosylase families, except the HLR family (Mullins et 
al., 2015), use a base-flipping strategy to recognize and excise 
their substrates. Since HLR-like DNA glycosylases are mostly 
prokaryotic and not present in plants, in the following sections, 
we will concentrate on the remaining four superfamilies.

TABLE 1 | Proteins involved in BER in bacteria, yeast, humans, and Arabidopsis.

BER enzyme E. coli S. 
cerevisiae

H. 
sapiens

Arabidopsis

Name Gene ID Reference

DNA glycosylases

  Uracil DNA glycosylases superfamily Ung Ung1p UNG AtUNG AT3G18630 (Cordoba-Cañero et al., 2010)
Mug TDG

Smug1
 AAG MPG AthAAG AT3G12040 (Santerre and Britt, 1994)
 H2TH superfamily MutM AtFPG AT1G52500 (Ohtsubo et al., 1998)

Nei NEIL1
NEIL2
NEIL3

 HhH-GPD superfamily Nth Ntg1p NTHL1 AtNTH1 AT2G31450 (Roldan-Arjona et al., 2000)
Ntg2p AtNTH2 AT1G05900 (Gutman and Niyogi, 2009)
Ogg1p OGG1 AtOGG1 AT1G21710 (Dany and Tissier, 2001; Garcia-Ortiz et al., 2001)

MutY MYH AtMUTY AT4G12740
AlkA Mag1p AtAlkA Two putative homologs
Tag AtTag Nine putative homologs

MBD4 AtMBD4L AT3G07930 (Ramiro-Merina et al., 2013)
 DML family ROS1 AT2G36490 (Gong et al., 2002)

DME AT5G04560 (Morales-Ruiz et al., 2006)
DML2 AT3G10010 (Ortega-Galisteo et al., 2008)
DML3 AT4G34060 (Ortega-Galisteo et al., 2008)

AP endonucleases

 Xth family Xth Apn2p APE1 ARP AT2G41460 (Cordoba-Cañero et al., 2011)
AtAPE1L AT3G48425 (Li et al., 2015)

APE2 AtAPE2 AT4G36050 (Li et al., 2015)
 Nfo family Nfo Apn1p
3′ DNA phosphatases

Tpp1p PNKP ZDP AT3G14890 (Petrucco et al., 2002; Martinez-Macias et al., 2012)
DNA polymerases

 Family A Pol I Pol γ Pol γ
AtPolIA AT1G50840 (Trasvina-Arenas et al., 2018)
AtPolIB AT3G20540 (Trasvina-Arenas et al., 2018)

Pol θ AtPol θ AT4G32700 (Inagaki et al., 2006)
 Family B Pol α Pol α AtPol α AT1G67630

Pol δ Pol δ AtPol δ AT2G42120
Pol ε Pol ε AtPol ε AT1G08260

 Family X Pol β
PolIV Pol λ AtPolλ AT1G10520 (Amoroso et al., 2011; Roy et al., 2011)

Flap endonucleases Rad27p FEN1 AtFEN1 AT5G26680 (Zhang et al., 2016b)
DNA ligases

 NAD+-dependent LigA
 ATP-dependent Cdc9p LIG1 AtLig1 AT1G08130 (Cordoba-Cañero et al., 2011)

Lig3
LIG4 AtLIG4 AT5G57160 (Waterworth et al., 2010)

LIG6 AT1G66730 (Waterworth et al., 2010)
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UDG Superfamily
Uracil DNA glycosylases (UDG) are monofunctional glycosylases 
that remove uracil from DNA. In addition to spontaneous 
deamination of cytosine to uracil, which contributes significantly 
to the accumulation of mutagenic U:G mispairs, dUMP can be 
misincorporated during replication in U:A pairs (Kavli et al., 
2007). UDG activity has been partially purified in some plant 
species, such as carrot, wheat, onion, or maize (Blaisdell and 
Warner, 1983; Maldonado et al., 1985; Bensen and Warner, 1987; 
Talpaert-Borle, 1987; Bones, 1993).

All members of the UDG superfamily are proteins with a 
single domain comprising four-stranded parallel twisted β-sheet 
flanked by α-helices (Mol et al., 1995). On the basis of substrate 
specificity, UDGs are classified into six families distributed across 
eubacteria, archaea, yeast, animals, and plants (Schormann et al., 
2014). Family 1 of UDG, represented by Escherichia coli Ung 
and human UNG, is the most extensively studied and the most 
widely distributed, present in most species examined, with some 
remarkable exceptions such as Drosophila melanogaster and 
Archaea (Aravind and Koonin, 2000).

A member of the Family-1 UDG from Arabidopsis, 
AtUNG (AT3G18630), has been purified and characterized  
(Cordoba-Cañero et al., 2010). The AtUNG protein sequence 
conserves the active site motifs A and B present in the five UDG 
families and the critical residues implicated in base recognition 
and catalysis in Family-1 enzymes (Cordoba-Cañero et al., 2010). 
In human cells, two isoforms of UNG, with different cellular 
localizations, are generated by alternative splicing: UNG1 in 
the mitochondria and UNG2 in the nucleus (Nilsen et al., 
1997). The N-terminal sequence of AtUNG contains a putative 
PCNA-binding motif and shows higher degrees of similarity to 
human UNG2 than to UNG1 (Cordoba-Cañero et al., 2010). So 
far, no evidence of AtUNG multiple targeting has been found 
in Arabidopsis, although UDG activity has been detected in 
mitochondrial extracts and an AtUNG-eGFP fusion protein, 
transiently expressed in N. benthamiana leaves, colocalized with 
mitochondria in protoplasts generated from the agro-infiltrated 
tissues (Boesch et al., 2009). Therefore, the possibility that plant 
UNG is targeted to mitochondria and/or chloroplasts cannot be 
ruled out.

E. coli and human UNG excise uracil but no other 
5-substituted pyrimidines, except for 5-fluorouracil (5-FU) 
(Mauro et al., 1993; Krokan et al., 2002), probably because uracil 
and 5-FU residues are small enough to fit the tight uracil-binding 
pocket compared to the larger chloro-, methyl-, bromo-, and 
iodo-substituted uracils (Liu et al., 2002). In contrast to bacterial 
and human enzymes, AtUNG lacks detectable activity on 5-FU  
(Cordoba-Cañero et al., 2010), suggesting that steric constraints 
imposing selectivity and specificity for uracil against other 
pyrimidines are more strict in the plant enzyme.

Available evidence suggests that AtUNG encodes the major 
UDG activity detected in Arabidopsis cell extracts, since such 
activity disappears in atung null mutants (Cordoba-Cañero 
et al., 2010). Similarly to other multicellular organisms, atung 
mutant plants show neither visible phenotypic alterations nor 
detectable increased levels of uracil in the genome, although 

neither UDG activity nor uracil BER is detected (Cordoba-
Cañero et al., 2010). However, inactivation of the AtUNG 
gene protects plants against the cytotoxic effect of 5-FU, 
indicating that UDG activity is harmful for cells with high 
levels of dUTP/dTTP ratio (Cordoba-Cañero et al., 2010). The 
Arabidopsis genome contains another gene (AT2G10550) with 
partial sequence similarity to UNG, and it has been suggested 
that it is an inactive paralog interrupted by two transposon 
insertions, probably originated by a gene duplication process 
(Cordoba-Cañero et al., 2010). UDG Family 2 (exemplified by 
E. coli Mug and human TDG), Family 3 (typified by vertebrate 
SMUG1), and Families 4 and 5 (identified in thermophilic 
bacteria and archaea) are not represented in plants (Cordoba-
Cañero et al., 2010).

AAG Superfamily
The members of the AAG superfamily, also known as 
alkylpurine-DNA glycosylases or N-methylpurine DNA 
glycosylases, are compact single-domain enzymes with a 
mixed α/β structure and a positively charged DNA-binding 
surface (Brooks et al., 2013). These enzymes, unrelated to other 
BER enzymes, are monofunctional glycosylases that remove 
alkylated purines and ethenopurines, and the best characterized 
is human AAG (hAAG). In land plants, a hAAG ortholog 
(AtAAG) was first isolated in Arabidopsis (Santerre and Britt, 
1994). AtAGG complements the sensitive phenotype to methyl 
methanesulfonate (MMS) of an E. coli double mutant deficient in 
N3-methyladenine (N3-meA) glycosylases and excises N3-meA, 
but not N7-methylguanine (N7-meG) (Santerre and Britt, 1994; 
Malhotra and Sowdhamini, 2013). Expression of AtAAG seems 
to be higher in growing tissues, supporting the importance 
of maintaining genome integrity in dividing cells (Santerre 
and Britt, 1994; Shi et al., 1997). AAG genes have been also 
detected in other higher plants, including maize (Fu et al., 2010;  
Wang et al., 2015), wheat (Mak et al., 2006), grape (Tillett et al., 
2012), and Brachypodium distachyon (Kim et al., 2012).

HhH-GPD Superfamily
The HhH-GPD superfamily is the most heterogenous DNA 
glycosylase superfamily, with widely different substrate 
specificities. Its characteristic HhH motif is a DNA-binding 
domain that is present in a number of proteins that bind DNA in 
a sequence-independent manner (Thayer et al., 1995; Doherty 
et al., 1996). This superfamily includes both monofunctional 
and bifunctional members, and their structures share two 
characteristic domains with the active site located at their 
junction. The core fold consists of four N-terminal and six 
to seven C-terminal α-helices, linked by a type-II β-hairpin 
(Doherty et al., 1996). The HhH motif is followed by a loop 
(GPD motif) containing glycine (G), proline (P), and an 
invariable aspartic acid (D) residue (Huffman et al., 2005). The 
conserved aspartic acid activates the nucleophile (a molecule 
of water or a lysine residue in monofunctional or bifunctional 
DNA glycosylases, respectively) for attack of the N-glycosidic 
bond (Huffman et al., 2005). These enzymes remove a broad 
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spectrum of lesions, including those generated by alkylation, 
oxidation, or hydrolytic damage.

Mammals do not appear to possess homologs of the 
3-methyladenine DNA glycosylases belonging to this family 
(Tag and AlkA), and rather, they use AAG to remove alkylated 
purines (Dalhus et al., 2009). However, in addition to AtAAG 
Arabidopsis possesses 9 and 2 putative homologs of Tag and 
AlkA enzymes, respectively (Britt, 2002), none of which has 
been characterized so far.

Oxidatively damaged pyrimidines in E. coli are repaired by 
Nth, also known as Endonuclease III (EndoIII), a bifunctional 
glycosylase with AP lyase activity (Katcher and Wallace, 
1983). Arabidopsis possesses two structural and functional 
homologs of Nth: AtNTH1 (AT2G31450) (Roldan-Arjona 
et  al., 2000) and AtNTH2 (AT1G05900) (Gutman and Niyogi, 
2009). AtNTH1 exhibits DNA glycosylase activity on urea and 
thymine glycol from double-stranded DNA and also possesses 
AP lyase activity (Roldan-Arjona et al., 2000). AtNTH2 has 
three splice variants described. Expressed AT1G05900.2 splice 
variant exhibited significant glycosylase/lyase activity on DNA 
containing thymine glycol (Gutman and Niyogi, 2009). AtNTH1 
and AtNTH2 (AT1G05900.2 splice variant) fused to GFP seem 
to be targeted to chloroplast nucleoids (Gutman and Niyogi, 
2009). An alternative AtNTH1 transcription initiation site 
would allow translation from a downstream ATG to generate 
a predicted protein with a putative nuclear localization signal 
and lacking chloroplast targeting (Roldan-Arjona et al., 2000; 
Gutman and Niyogi, 2009). A phylogenetic analysis of EndoIII 
homologs in bacteria, archaea, and eukaryotes reveals major 
phylogenetic relationships of AtNTH1 with eukaryotic proteins, 
being most similar to EndoIII from Schizosaccharomyces pombe 
(Roldan-Arjona et al., 2000). In Saccharomyces cerevisiae, there 
are also two functional homologs (Ntg1p and Ntg2p) of E. coli 
EndoIII, with Ntg1p localizing primarily to mitochondria and 
Ntg2p to the nucleus (You et al., 1999). In humans, however, the 
only functional homolog identified so far (hNTH1) contains a 
putative nuclear localization signal at the N-terminus (Aspinwall 
et al., 1997), although it has been located in both nucleus and 
mitochondria (Takao et al., 1998). The subcellular localization 
of other splice variants of AtNTH2 remains to be determined. 
Therefore, AtNTH1 and AtNTH2 could have a role in the removal 
of oxidative lesions in both nuclear and organellar genomes.

The major oxidation product of purines is 7-hydro-8-
oxoguanine (8-oxoG), which is originated as a consequence of the 
oxidation of the hydroxyl radical of C8 of a guanine (Dizdaroglu, 
1985). It is a highly mutagenic lesion due to its capacity to pair 
with both cytosine and adenine (Shibutani et al., 1991). Repair 
of 8-oxoG in eukaryotes is performed by 8-oxoguanine DNA 
glycosylases (OGG), bifunctional glycosylases belonging to the 
HhH-GPD superfamily, that catalyze the excision of 8-oxoG 
and cleave the generated AP site by a β-elimination mechanism 
(Girard and Boiteux, 1997). Ogg1 homologs are present in 
eukaryotes, including humans (Radicella et al., 1997; Roldan-Arjona 
et al., 1997), and in some archaea, but not in bacteria (Eisen and 
Hanawalt, 1999). Arabidopsis has an OGG1 homolog with more 
than 40% identity with yeast and human OGG1 proteins (Dany 
and Tissier, 2001; Garcia-Ortiz et al., 2001). In contrast with the 

mammalian OGG1 gene that produces several splice variants 
with mitochondrial or nuclear localization (Nishioka et al., 
1999), in Arabidopsis, only one isoform of this protein seems to 
be produced (Dany and Tissier, 2001). The Arabidopsis OGG1-
predicted protein possesses a putative nuclear localization signal 
at the N-terminus, but lacks identifiable signal sequences for 
targeting to plastids or mitochondria (Dany and Tissier, 2001; 
Garcia-Ortiz et al., 2001). Although it has been suggested that 
there is a putative mitochondrial targeting sequence in MtOGG1 
from Medicago truncatula (Macovei et al., 2011), the subcellular 
localization of OGG1 in plants remains to be determined.

Expression of AtOGG1 abolishes the mutator phenotype of an E. 
coli mutM mutY mutant strain, thus indicating its capacity to excise 
8-oxoG in vivo (Dany and Tissier, 2001; Garcia-Ortiz et al., 2001). 
Arabidopsis atogg1 mutants show no obvious phenotypic differences 
in comparison with wild-type plants (Murphy, 2005), but in vitro 
BER assays with atogg1 mutant cell extracts show that AtOGG1 
contributes to the excision of 8-oxoG and counteracts accumulation 
of oxidative DNA damage (Cordoba-Cañero et al., 2014). 
Biochemical characterization of AtOGG1 demonstrated its activity 
on DNA substrates containing 8-oxoG (Dany and Tissier, 2001; 
Garcia-Ortiz et al., 2001) and the imidazole ring-opened derivative 
2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) 
(Morales-Ruiz et al., 2003). The enzyme preferentially excises 
8-oxoG paired to guanine, in comparison with 8-oxoG:A pairs 
generated with high frequency during replication (Morales-Ruiz 
et al., 2003). In E. coli, the excision of A mispaired to 8-oxoG is 
catalyzed by MutY (Michaels et al., 1992). Homologs to bacterial 
mutY have been characterized in both eukaryotes and archaea 
(Eisen and Hanawalt, 1999). Arabidopsis possesses a putative 
MutY homolog (AT4G12740), which remains uncharacterized.

Spontaneous deamination of 5-methylcytosine (5-meC) 
to thymine leads to T:G mispairs targeted by thymine-DNA 
mismatch glycosylases, such as bacterial MIG and mammalian 
MBD4 (also known as MED1) (Horst and Fritz, 1996; Hendrich 
et al., 1999; Berti and McCann, 2006). MBD4, which possesses 
a methyl-CpG-binding domain (MBD) and a HhH-GPD DNA 
glycosylase domain, is a monofunctional DNA glycosylase that 
excises U or T mispaired to G, with a preference for mismatches 
at a CpG context (Nash et al., 1996; Hendrich and Bird, 1998; 
Bellacosa et al., 1999; Hendrich et al., 1999; Petronzelli et al., 
2000a; Petronzelli et al., 2000b; Turner et al., 2006). A plant 
MBD4 homolog, termed MBD4-like (AtMBD4L, AT3G07930), 
has been identified in Arabidopsis (Ramiro-Merina et al., 2013). 
AtMBDL4 and other plant MBD4 homologs lack the MBD 
domain present at the N-terminus of metazoan MBD4 proteins, 
but share a C-terminal catalytic domain with critical residues 
specifically conserved in MBD4 glycosylases. AtMBD4L excises 
uracil and 5-substituted uracil derivatives, such as 5-BrU or 
5-FU, with more efficiency than thymine (Ramiro-Merina et al., 
2013). Since AtMBD4L shows a clear preference for a CpG 
sequence context, where the majority of plant DNA methylation 
takes place, it has been suggested that this enzyme plays a role in 
preventing the potential mutagenic effects of 5-meC deamination 
(Ramiro-Merina et al., 2013). Four alternative splice variants of 
AtMBD4L have been described, two of which (AtMBD4L3 and 
AtMBD4L4) are expressed in leaves and flowers, whereas another 
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one (AtMBD4L3) has been localized in the nucleus (Nota et al., 
2015). Interestingly, plants overexpressing AtMBD4L3 show 
increased expression of AtLIG1 (Nota et al., 2015).

DML Family
The DEMETER-LIKE (DML) family is a plant-specific DNA 
glycosylase family belonging to the HhH-GPD superfamily. 
Its founding members are four Arabidopsis proteins: DME 
(DEMETER), ROS1 (REPRESSOR OF SILENCING 1), DME-
like 2 (DML2), and DME-like 3 (DML3) (Choi et al., 2002; 
Gong et al., 2002; Ortega-Galisteo et al., 2008). All four enzymes 
are 5-meC DNA glycosylases/lyases involved in active DNA 
demethylation through a BER process. Proteins from the DML 
family appear to be unique to plants, with putative orthologs 
present in mosses (Phycomitrella patens) and unicellular 
green algae (Ostreococcus, for example), suggesting that active 
demethylation through excision of 5-meC may have appeared 
early during plant evolution (Roldan-Arjona and Ariza, 2009a).

All DML proteins possess an HhH-GPD motif with the 
invariant aspartate, a conserved lysine residue characteristic of 
bifunctional DNA glycosylases, and a [4Fe–4S] cluster. They are 
very large proteins, ranging from 1,100 to 2,000 amino acids, in 
comparison to other members of the HhH-GPD superfamily 
(200–400 amino acids). One of its distinctive characteristics 
is their discontinuous catalytic domain, comprised of two 
conserved regions separated by a predicted unstructured 
sequence whose length varies across family members 
(Ponferrada-Marin et al., 2011). They also contain a conserved 
carboxy-terminal domain, that is not related with any known 
protein family (Choi et al., 2002; Gong et al., 2002; Morales-Ruiz 
et al., 2006) but is required for catalytic activity (Ponferrada-
Marin et al., 2010; Hong et al., 2014), and a short amino-terminal 
domain significantly rich in lysine that facilitates demethylation 
in long substrates (Ponferrada-Marin et al., 2010). In addition to 
5-meC, ROS1, DME, and DML3 excise T mispaired with G and 
show a preference for CpG contexts (Morales-Ruiz et al., 2006;  
Ortega-Galisteo et al., 2008), thus supporting an additional 
DNA repair role similar to that of MBD4L in counteracting the 
mutagenic consequences of 5-meC deamination.

Members of the DML family are bifunctional DNA 
glycosylase/lyases that excise the target base and cleave 
the phosphodiester backbone by β- or β, δ-elimination, 
generating a single-nucleotide gap with the 3′-PUA or 3′-P 
termini, respectively (Agius et al., 2006; Gehring et al., 2006;  
Morales-Ruiz et al., 2006; Penterman et al., 2007; Ortega-Galisteo 
et al., 2008). Such 3′-blocked ends must be processed to the 
3′-OH termini before a DNA polymerase and a DNA ligase may 
fill and seal the gap, respectively.

H2TH Superfamily
Proteins of the H2TH superfamily (also known as Fpg/Nei) are 
characterized by a common structure comprising of domains 
separated by a flexible linker sequence. The catalytic amino acid 
that acts as nucleophile is a conserved proline located at the 
N-terminal domain, whereas the C-terminal domain contains 
a zinc finger required for DNA binding (Sugahara et al., 2000). 

All of them are bifunctional DNA glycosylases that cleave the 
sugar–phosphate backbone by β, δ-elimination activity, and 
they are mostly involved in the repair of oxidative damage 
(Fromme and Verdine, 2004; Huffman et al., 2005). The two 
founding members of the H2TH superfamily are the E. coli 
proteins Formamidopyrimidine DNA glycosylase (Fpg, also 
known as MutM) and Endonuclease VIII (Nei). Fpg recognizes 
formamidopyrimidines, 8-oxoG, as well as its oxidation 
products guanidinohydantoin (Gh), and spiroiminodihydantoin 
(Sp), whereas Nei primarily acts on damaged pyrimidines 
(Kathe et al., 2009).

Phylogenetic analysis has confirmed that both Fpg and Nei 
homologs are widely distributed in prokaryotes. In eukaryotes, 
Fpg homologs are only found in plant and fungi clades, whereas 
Nei homologs are restricted to metazoans, although they have 
been lost in many non-vertebrate lineages (Kathe et al., 2009). 
Mammals possess three Nei-like proteins (NEIL1, NEIL2, and 
NEIL3) (Wallace, 2013).

Although plants have both Ogg and Fpg homologs (Ohtsubo 
et al., 1998; Dany and Tissier, 2001; Garcia-Ortiz et al., 2001; 
Scortecci et al., 2007; Macovei et al., 2011), the relative roles 
of these two types of enzymes in counteracting oxidative 
DNA damage are not well understood. Alternative splicing of 
Arabidopsis FPG leads to seven different isoforms, and two of 
them show variation in the expression levels depending on the 
analyzed tissue (Ohtsubo et al., 1998; Murphy and Gao, 2001). 
AtFPG1 is the only isoform characterized biochemically, and 
whereas its activity excising 8-oxoG was almost undetectable, it 
shows a potent AP lyase activity (Kathe et al., 2009). The inability 
of AtFPG1 to excise 8-oxoG has been attributed to the presence 
of a very short version of the a-F-b9/10 loop, which is involved in 
8-oxoG recognition (Duclos et al., 2012).

T-DNA insertion mutant plants lacking both AtFPG 
and AtOGG proteins do not show any obvious phenotype 
distinguishable from the wild type (Murphy, 2005). However, 
there is evidence that both enzymes participate in 8-oxoG repair 
and contribute to counteract the oxidative DNA damage in 
Arabidopsis (Cordoba-Cañero et al., 2014). Interestingly, atfpg 
atogg1 double mutants show increased levels of oxidative DNA 
damage not only in the nucleus but also in the mitochondria 
(Cordoba-Cañero et al., 2014).

AP SITE INCISION

AP sites are frequently found in DNA due to the spontaneous 
hydrolysis of the N-glycosylic bond. Additionally, they are 
also repair intermediates generated by monofunctional DNA 
glycosylases during BER (Figure 1). It has been estimated 
that more than 10,000 bases are lost spontaneously per day 
per mammalian cell, being purines much more susceptible 
to spontaneous loss than pyrimidines (Lindahl and Nyberg, 
1972). AP sites are DNA lesions with cytotoxic effects due to 
their capacity to block DNA replication and transcription, 
but also have potential mutagenic consequences if they are 
bypassed by DNA polymerases (Loeb, 1985; Prakash et al., 2005). 
AP site repair is initiated by either AP endonucleases or AP 
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lyases, generating single-strand breaks (SSB) with either 5′- or 
3′-blocked ends, respectively, that cannot be used as substrates by 
DNA polymerases or DNA ligases. Such SSBs can be converted 
into highly toxic double-strand breaks (DSB) if not processed 
before DNA replication (Caldecott, 2001).

AP Endonucleases
AP endonucleases recognize AP sites and perform hydrolysis at 
their 5′-side, yielding SSBs with 3′-OH and 5′-dRP ends (Levin 
and Demple, 1990) (Figure 1). Based on structural folding and 
amino acid sequence similarity to the major AP endonucleases 
of E. coli, these enzymes are classified under Endonuclease IV 
(EndoIV, also known as Nfo) and Exonuclease III (ExoIII) 
families. Under physiological conditions, ExoIII is responsible 
for the vast majority of AP endonuclease activity detected in E. 
coli (Weiss, 1976), whereas EndoIV is induced during oxidative 
stress (Chan and Weiss, 1987). Although EndoIV and ExoIII 
families have overlapping DNA substrate specificities, they 
are distinguished by their modes of DNA damage recognition 
(Redrejo-Rodriguez et al., 2016). Moreover, their tertiary 
structure and their divalent metal requirements are completely 
different; while ExoIII family proteins are Mg2+-dependent, 
EndoIV family members are Zn2+-dependent, indicating that 
they have evolved independently from different ancestors. 
Importantly, ExoIII family members are present in all kingdoms 
of life, while EndoIV members are absent in some groups, such 
as mammals and plants (Daley et al., 2010). An EndoIV homolog 
in S. cerevisiae (Apn1) has been identified as the main AP 
endonuclease activity in this species (Popoff et al., 1990). In S. 
pombe, an EndoIV homolog exists, too, but seems to play only a 
backup role in DNA repair (Ramotar et al., 1998).

Mammalian genomes encode two proteins, APE1 and APE2 
(also known as APEX1 and APEX2), with sequence similarity to 
ExoIII. APE1 is the major AP endonuclease activity, performing 
more than 95% of total AP site incision (Demple and Sung, 2005), 
whereas the activity of APE2 is significantly lower (Hadi and 
Wilson, 2000). APE1 possesses a C-terminal region responsible 
for interaction with DNA and AP endonuclease activity (Fritz, 
2000) and a unique N-terminal region, absent in ExoIII, required 
for a redox activity regulating the DNA-binding potential of 
several transcription factors (Georgiadis et al., 2008).

The Arabidopsis genome encodes three AP endonuclease 
homologs of ExoIII: APE1L, ARP, and AtAPE2. APE1L 
(AT3G48425) and ARP (AT2G41460) are similar to the major 
human AP endonuclease APE1, and AtAPE2 (AT4G36050) is 
similar to the human APE2 (Murphy et al., 2009). Homologous 
sequences have been identified also in sugarcane (Maira et al., 2014; 
Cabral Medeiros et al., 2019) and rice (Joldybayeva et al., 2014).

Like its human APE1 homolog, Arabidopsis ARP possesses 
a repair-independent redox activity able to regulate the DNA-
binding capacity of some transcription factors (Babiychuk et al., 
1994). On the other hand, its DNA incision activity is essential 
during uracil or AP site repair in vitro (Cordoba-Cañero et al., 
2011). ARP also processes AP sites generated by AtFPG and/or 
AtOGG1 during 8-oxoG repair and performs an important role 
in repairing oxidative DNA damage accumulated during seed 

aging (Cordoba-Cañero et al., 2014). Several T-DNA insertion 
mutants in ARP show no phenotypic differences with wild-
type plants (Gutman and Niyogi, 2009; Murphy et al., 2009; 
Cordoba-Cañero et al., 2011), despite the fact that ARP acts as 
a protective factor when levels of uracil in DNA are artificially 
increased by 5-FU treatment (Cordoba-Cañero et al., 2011). 
ARP fusion proteins to GFP are targeted to chloroplasts, and 
the capacity of chloroplast protein extracts to incise osmium 
tetroxide-treated DNA is reduced in Arabidopsis arp mutants  
(Gutman and Niyogi, 2009).

All three AP endonucleases from Arabidopsis have been 
biochemically characterized by several groups (Lee et al., 2014; 
Li et al., 2015; Li et al., 2018). AP endonuclease activity of ARP, 
APE1L, and AtAPE2 has been demonstrated, with AtAPE2 
activity the weakest (Lee et al., 2014; Li et al., 2015). Unlike 
human APE1, ARP discriminates between AP sites generated 
by spontaneous base loss or by enzymatic excision. Thus, ARP 
cleaves AP sites generated by N7-meG excision but is unable to 
process AP sites originated due to spontaneous depurination 
of N7-meG, suggesting that these two types of AP sites possess 
different chemical or structural properties not yet identified 
(Barbado et al., 2018). In addition to AP endonuclease activity, 
AP endonucleases are endowed with phosphodiesterase and/or 
phosphatase activities involved in cleaning blocked DNA ends 
(see the section Cleaning of DNA Termini).

Whereas deletion of the APE1 gene results in very early 
embryonic lethality in mice (Xanthoudakis et al., 1996), 
Arabidopsis T-DNA insertional mutants of APE1L, AtAPE2, 
or ARP display no phenotypic defects (Murphy et al., 2009). 
However, the simultaneous inactivation of APE1L and AtAPE2 
leads to a seed abortion phenotype, whereas a joint deficiency 
with either APE1L or AtAPE2 does not cause any effect. 
These results indicate that APE1L and AtAPE2 are probably 
performing overlapping functions required for seed viability 
(Murphy et al., 2009), likely in repair of DNA damage generated 
during seed development and/or the 3′-blocked ends generated 
by DML DNA glycosylases during active DNA demethylation 
(see the section DML Family). Although ARP is dispensable for 
normal seed development, it performs a protective role against 
the adverse effects of seed aging (Cordoba-Cañero et al., 2014).

AP Lyases
Although it has been widely assumed that AP sites are mainly 
processed by AP endonucleases, accumulating evidence points to 
an additional important role for AP lyases. For example, in both 
S. cerevisiae and S. pombe, AP sites are first incised by the AP 
lyase activity of Nth1 homologs, which produce 3′-PUA blocked 
termini that are subsequently processed by AP endonucleases 
(Pascucci et al., 2002; Li et al., 2015). Evidence of an important 
role of AP lyases in the processing of abasic sites has also 
been reported recently in plants. In Arabidopsis, spontaneous 
depurination of MMS-induced N7-meG generates AP sites 
that are not recognized by ARP (see above) and are exclusively 
repaired through an AP endonuclease-independent route 
initiated by the AP lyase activity of AtFPG (Barbado et al., 2018). 
AtFPG is the major, possibly the only, AP lyase activity detectable 
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in Arabidopsis cell extracts (Barbado et al., 2018). AP site incision 
catalyzed by AtFPG generates a 3′-P end that is converted to 
3′-OH by the DNA 3′-phosphatase ZDP (see the section Blocked 
3′-Termini) before repair is completed (Barbado et al., 2018).

CLEANING OF DNA TERMINI

Blocked 3′-Termini
Blocked 3′-termini arise from the incision activity of 
bifunctional DNA glycosylases/AP lyases. Incisions performed 
by β-elimination generate 3′-PUA blocked ends, whereas those 
caused by β, δ–elimination produce 3′-P ends (Figure 1).

Human APE1 possesses 3′-phosphodiesterase activity 
to remove 3′-PUA blocked ends and also exhibits a weak 
3′-phosphatase activity (Demple and Harrison, 1994; Suh et al., 
1997). In contrast, human APE2 has weak AP endonuclease 
activity but potent 3′-phosphodiesterase and 3′→5′-exonuclease 
activities (Burkovics et al., 2006).

In Arabidopsis, APE1L is able to efficiently process the 3′-PUA 
ends in vitro (Lee et al., 2014; Li et al., 2015). Furthermore, 
APE1L has been demonstrated to function in the active DNA 
demethylation pathway by processing the 3′-PUA termini 
generated by the bifunctional 5-meC DNA glycosylases/lyases of 
the DML family (Li et al., 2015). It has been also shown that APE1L 
and APE2 possesses 3′-phosphatase activity in vitro (Li et al., 2015; 
Li et al., 2018). The wheat homolog of APE1L possesses a weak AP 
endonuclease activity, as compared to human APE1, but displays 
3′-phosphodiesterase, 3′-phosphatase, and 3′→5′ exonuclease 
activities (Joldybayeva et al., 2014). It has been also demonstrated 
that Arabidopsis ARP exhibits NIR (Nucleotide Incision Repair) 
and 3′→5′ exonuclease activities (Akishev et al., 2016).

When BER is initiated by bifunctional DNA glycosylases 
that perform β, δ-elimination, a gap flanked by phosphates is 
generated (Figure 1). The 3′-P blocked end is not a substrate 
for DNA polymerases, and AP endonucleases seem not to be 
efficient 3′-phosphatases. In mammalian BER, this problem is 
solved using polynucleotide kinase/3′-phosphatase (PNKP) for 
3′-P removal (Jilani et al., 1999). Mammalian PNK functions in 
AP endonuclease-independent BER of oxidative DNA damage 
(Wiederhold et al., 2004) as well as in SSBs and DSBs repair 
(Whitehouse et al., 2001; Chappell et al., 2002).

In plants, proteins with 3′-DNA phosphatase activity have 
been described in maize (ZmDP2) and Arabidopsis (ZDP, zinc 
finger DNA 3′-phosphoesterase, AT3G14890). They show partial 
sequence similarity to mammalian PNKP, but lack the associated 
5′-kinase activity, suggesting that, unlike PNKP, they are unable 
to phosphorylate the 5′-hydroxyl termini at SSBs (Betti et al., 
2001; Petrucco et al., 2002; Martinez-Macias et al., 2012).

ZDP, which apparently is the only enzyme responsible for 
the DNA 3′-phosphatase activity detectable in Arabidopsis cell 
extracts, participates in the processing of the 3′-P ends generated 
by AtFPG and AtOGG1 during 8-oxoG repair, as well as those 
produced by the 5-meC DNA glycosylases ROS1 and DME 
during the active DNA demethylation BER pathway (Martinez-
Macias et al., 2012; Cordoba-Cañero et al., 2014). Mutants 
deficient in ZDP do not display any phenotypic alteration under 

normal growth conditions, but show hypersensitivity to MMS 
(Martinez-Macias et al., 2012). As indicated above, AP sites 
generated by nonenzymatic release of MMS-induced N7-meG 
are cleaved by AtFPG, and the generated 3′-P is processed by 
ZDP. In fact, zdp-deficient plants possessing an additional fpg 
mutation partially recover MMS resistance, suggesting that 
unrepaired AP sites are less toxic than downstream SSB repair 
intermediates with blocked 3′-P ends (Barbado et al., 2018).

Blocked 5′-Termini
When abasic sites are incised by AP endonucleases, a gap flanked 
by a 3′-OH group and a 5′-dRP blocked terminus is generated 
(Figure 1). To continue the repair pathway, the 5′-dRP end is 
processed to a 5′-P end by a dRP lyase activity. In mammals, 
the major dRP lyase activity is associated to DNA Polymerase β 
(Srivastava et al., 1998), through an N-terminal 8-kDa domain 
characteristic of Family X of DNA polymerases (Beard and 
Wilson, 2000). Processing of 5′-dRP may be rate limiting, and 
this blocking group may be also removed by strand displacement 
and incision during the LP-BER sub-pathway (Figure 1) 
(see the section Gap Filling: Short-Patch and Long-Patch BER 
Sub-pathways).

Unlike mammals, plants and yeast do not possess DNA 
polymerase β orthologs, but have related enzymes termed 
Pol λ and Pol IV, respectively. Pol λ, which is also present in 
mammalian cells, belongs to the X-family of DNA polymerases, 
shares more than 30% of sequence homology with mammalian 
Pol β (Garcia-Diaz et al., 2000) and also displays DNA polymerase 
and dRP lyase activities (Garcia-Diaz et al., 2000; Garcia-Diaz et 
al., 2002). Like Pol IV in yeast, Pol λ is the only member of the 
Family X of DNA Polymerases present in most plants. However, 
sequences with similarity to X-family members Pol μ and TdT 
have been identified in the unicellular alga Chlamydomonas 
reinhardtii (Morales-Ruiz et al., 2018). It has been shown that 
human Pol λ possesses dRP lyase activity (Garcia-Diaz et al., 
2001), and it can function as a backup enzyme for DNA Pol β in 
BER (Braithwaite et al., 2010). The role of plant Pol λ has been 
studied in rice and Arabidopsis (Uchiyama et al., 2004; Amoroso 
et al., 2011; Roy et al., 2011). The rice Pol λ ortholog has been 
partially characterized, and biochemical analysis indicates that 
it possesses dRP lyase activity (Uchiyama et al., 2004). Although 
some biochemical properties of Arabidopsis Pol λ have been 
described, there is no evidence reported of its dRP lyase activity 
(Amoroso et al., 2011; Roy et al., 2011).

In addition to Pol β and Pol λ, Pol θ, other human DNA 
polymerase that belongs to Family A, possesses dRP lyase activity, 
and it has been demonstrated to function in human BER (Prasad et 
al., 2009). It has been suggested that although human Pol θ is not 
essential in BER, it may be a backup enzyme, and the same may be 
true in plants. In Arabidopsis, the gene TEBICHI (TEB) codes for 
a Pol θ homolog. Inactivation of TEB causes sensitivity to DNA-
damaging agents, such as mitomycin C and MMS, that promote 
DNA crosslinks and SSBs/DSBs, respectively (Inagaki et al., 
2006; Inagaki et al., 2009). Nevertheless, there is no data available 
supporting an implication of AtPolθ in dRP processing during BER 
in plants.
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The Arabidopsis genome encodes two family-A DNA 
Polymerase paralogs, AtPolIA and AtPolIB, which are the only 
DNA Polymerases in plant organelles identified to date. Both 
have been implicated in organellar DNA replication, whereas 
only AtPolIB, but not AtPolIA, is involved in organellar DNA 
repair (Ono et al., 2007; Parent et al., 2011). Recently, the capacity 
of both AtPolIA and AtPolIB to remove the 5′-dRP moiety by 
an intrinsic lyase activity it has been described (Trasvina-Arenas 
et al., 2018).

GAP FILLING: SHORT-PATCH AND  
LONG-PATCH BER SUB-PATHWAYS

Gap filling during BER may proceed either via short-patch (SP), 
by incorporation of only a single nucleotide, or long-patch (LP), 
by insertion of 2 to 13 nucleotides (Figure 1). In mammalian 
cells the contribution of DNA Pol β and DNA Ligase III in 
SP-BER has been demonstrated (Kubota et al., 1996), and since 
plants lack homologs of both enzymes, it was initially accepted 
that plants only perform LP-BER (Uchiyama et al., 2008). 
Nevertheless, it has been confirmed that Arabidopsis cell extracts 
repair uracil and AP sites by both SP- and LP-DNA synthesis 
(Cordoba-Cañero et al., 2009; Cordoba-Cañero et al., 2011). 
As indicated above, Pol λ is the only member of Family X of 
DNA polymerases in plants. Although functions of plant Pol λ 
in nucleotide excision repair (Roy et al., 2011), oxidative DNA 
damage bypass (Amoroso et al., 2011), non-homologous end 
joining (Roy et al., 2013; Furukawa et al., 2015), and DSB repair 
(Sihi et al., 2015) have been stablished, its role, if any, in SP-BER 
remains to be clarified.

The alternative BER sub-pathway, LP-BER, occurs when two or 
more nucleotides are inserted in the repair gap. In mammals, Pol 
β is able to incorporate the first nucleotide in LP-BER (Podlutsky 
et al., 2001), but the elongation step is performed by replicative 
DNA Polymerases, such as DNA Pol δ and Pol ε. Plants possess 
orthologs of both DNA polymerases δ and ε, and evidences 
obtained in rice and Arabidopsis demonstrate the important role 
of Pol ε in DNA replication (Uchiyama et al., 2002; Ronceret 
et al., 2005). However, their involvement in LP-BER remains to 
be determined.

It has been suggested that the choice between SP- and LP-BER 
could be influenced by the nature of the lesion and/or the DNA 
glycosylase that initiates BER, and that the equilibrium between 
both sub-pathways may be additionally affected by the phase 
of the cell cycle (Fortini and Dogliotti, 2007). In Arabidopsis, 
the choice between SP- and LP-BER is affected by the nature 
of the 5′-end of the repair gap. When the 5′-end is a reduced 
dRP not amenable to β-elimination by dRP lyases, the SP-BER 
sub-pathway is abrogated, and repair is performed exclusively 
by LP-BER (Cordoba-Cañero et al., 2009; Cordoba-Cañero 
et al., 2011). Also, it has been demonstrated in Arabidopsis that 
AP sites generated by spontaneous depurination of N7-meG are 
repaired by SP-BER, whereas those generated enzymatically can 
be repaired by both SP- and LP-BER (Barbado et al., 2018).

DNA polymerases performing LP-BER promote strand 
displacement and generate a 5′-end single-stranded “flap” that 

needs to be removed by endonucleolytic cleavage. In mammals, 
this step is performed by Flap Endonuclease 1 (FEN1) (Kim et al., 
1998), a structure-specific 5′ endo/exonuclease (Harrington and 
Lieber, 1994) belonging to the Rad2 nuclease family with essential 
roles in the processing of Okazaki fragments during replication 
and in LP-BER (Liu et al., 2004).

Plant homologs of FEN1 were first partially characterized 
in cauliflower (Brassica oleracea var. botrytis) inflorescences 
(Kimura et al., 1997) and later in rice [OsFEN1a and OsFEN1b 
(Kimura et al., 2000; Kimura et al., 2003)] and Arabidopsis 
[AtFEN1 (AT5G26680) (Zhang et al., 2016a; Zhang et al., 
2016b)]. OsFEN1a and OsFEN1b proteins show a high degree 
of sequence similarity, and analysis of their expression revealed 
correlation with cell proliferation (Kimura et al., 2003). However, 
only OsFEN1a is able to complement S. cerevisiae null mutants 
deficient in the FEN1 homolog rad27 (Reagan et al., 1995; Kimura 
et al., 2003). Similarly, Arabidopsis AtFEN1 partially complements 
a rad27 mutant. OsFEN-1a possesses both 5′-endonuclease and 
5′-exonuclease activities (Kimura et al., 2000), but AtFEN1 lacks 
exonuclease activity (Zhang et al., 2016a; Zhang et al., 2016b). 
Rice and Arabidopsis FEN1 homologs have been localized to the 
nucleus, and interaction between OsFEN-1a and PCNA has been 
reported (Kimura et al., 2001; Zhang et al., 2016a).

Whereas the knockout mutant of FEN1 causes early embryonic 
lethality in mice (Kucherlapati et al., 2002), yeast mutants are 
viable and show increased sensitivity to UV light and mutagens 
(Reagan et al., 1995; Vallen and Cross, 1995). In plants, AtFEN1 
seems to be essential since no homozygous Arabidopsis mutants 
could be obtained from the progeny of a heterozygous fen1-2 
T-DNA insertion mutant (Zhang et al., 2016a). Shade avoidance 
mutant 6 (sav6) plants, which contain a single point mutation that 
affect mRNA splicing efficiency of AtFEN1, are hypersensitive to 
ultraviolet (UV)-C radiation and DSB-inducing agents (Zhang 
et al., 2016b). Furthermore, another AtFEN1 mutant, with a 
single nucleotide substitution (fen1-1), shows hypersensitivity 
to MMS and exhibits shortened telomeres (Zhang et al., 2016a). 
However, no evidence has been yet reported for a role of plant 
FEN1 homologs in BER.

NICK LIGATION

The SP and LP-BER sub-pathways converge by generating the 
same product: a nick flanked by 3′-OH and 5′-P termini. The 
culminating BER step is the action of a DNA ligase that seals 
the nick by catalyzing formation of a phosphodiester bond. 
DNA ligases are grouped into two families, ATP- and NAD+-
dependent ligases, according to whether catalysis is coupled with 
pyrophosphate hydrolysis of ATP or NAD cofactors. The NAD+-
dependent DNA ligases are highly conserved enzymes identified 
only in eubacteria, whereas most eukaryotic DNA ligases, 
together with archaeal and bacteriophage enzymes, are ATP-
dependent DNA ligases (Ellenberger and Tomkinson, 2008).

In E. coli, the NAD+-dependent DNA LigA functions in 
both DNA replication and BER. Eukaryotes generally possess 
three ATP-dependent DNA ligases (Lig I, Lig III, and Lig IV in 
mammals). Lig IV is implicated in non-homologous end joining 
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(Baumann and West, 1998) and seems to have no role in BER. The 
final ligation step during mammalian LP-BER is performed by 
Lig I, which is also essential in DNA replication, and the complex 
formed by Lig III and the X-ray repair cross-complementing 1 
(XRCC1) protein participates in SP-BER (Cappelli et al., 1997; 
Timson et al., 2000; Sleeth et al., 2004).

Arabidopsis also possesses three ligases, AtLIG1, AtLIG4, 
and AtLIG6, but lack a Lig III homolog. AtLIG1 and AtLIG4 
are orthologs of mammalian Lig I and Lig IV, respectively, 
whereas AtLIG6 is a plant-specific DNA ligase (Bonatto et al., 
2005). AtLIG4 has been implicated in double-strand break repair 
(West et al., 2000; van Attikum et al., 2003) and, together with 
AtLIG6, seems to be critical for seed viability (Waterworth et al., 
2010). Arabidopsis mutants in AtLIG1 are lethal, and plants with 
a diminished expression display important phenotypic defects 
and deficiencies in the repair of single- and double-strand 
DNA breaks (Waterworth et al., 2009). Moreover, it has been 
demonstrated that AtLIG1 is essential for both SP- and LP-BER 
in Arabidopsis cell extracts (Cordoba-Cañero et al., 2011).

The mammalian LIG3 gene, unlike the LIG1 and LIG4 
genes, encodes different DNA ligase polypeptides by alternative 
translation initiation with different cellular functions and, 
notably, encodes the only mitochondrial DNA ligase (Tomkinson 
and Sallmyr, 2013). In contrast, in yeast and plants, different 
translation initiation sites generate distinct isoforms of DNA 
ligase 1 found in the nuclei and mitochondria (Donahue 
et  al., 2001; Sunderland et al., 2006). No AtLIG1 targeting to 
chloroplasts has been detected in Arabidopsis.

ADDITIONAL PROTEINS INVOLVED IN BER

In addition to the BER factors discussed above, there are 
additional proteins (Table 2) that increase BER efficiency and/or 
function in the coordination of the various BER stages.

Proliferating Cell Nuclear Antigen (PCNA)
PCNA is an accessory factor that endows eukaryotic replicative 
polymerases with the high processivity required to duplicate an 
entire genome. Moreover, PCNA acts as a scaffold protein to 
facilitate recruitment of proteins to replication fork (Moldovan et al., 
2007). In addition to DNA replication, PCNA plays also important 
roles in multiple DNA repair pathways (Maga and Hubscher, 2003). 
In eukaryotes PCNA is required for efficient DNA synthesis by 

Pol δ or Pol ε in LP-BER (Stucki et al., 1998) and also in SP-BER 
by interacting with Pol β and XRCC1 (Kedar et al., 2002; Fan et al., 
2004). Interestingly, PCNA appears to be involved not only in the 
DNA synthesis step, since it interacts with multiple BER factors 
acting in other BER stages, such as UNG, MPG, MUTYH, NTHL1, 
APE1, APE2, FEN1, and Lig I (Maga and Hubscher, 2003).

Eukaryotic genomes possess at least one gene copy encoding 
PCNA. In mice and humans, one PCNA gene and several 
pseudogenes are present (Almendral et al., 1987; Ku et al., 1989; 
Travali et al., 1989; Yamaguchi et al., 1991). Plants such as Oryza 
sativa (rice) or Pisum sativa also contain a single-copy PCNA 
gene, but other species like Arabidopsis or Zea mays possess at 
least two PCNA paralogs (Lopez et al., 1997; Shultz et al., 2007; 
Strzalka and Ziemienowicz, 2011).

The Arabidopsis genome encodes two nearly identical PCNA 
genes. The AtPCNA1 (AT1G07370) and AtPCNA2 (AT2G29570) 
proteins have been purified and crystallized, and it has been 
demonstrated that they conserve a three-dimensional structure 
very similar to that of human PCNA (Strzalka et al., 2009). 
AtPCNA2 interacts with AtPolλ and enhances its bypass activity 
on oxidative DNA damage (Amoroso et al., 2011). However, no 
data have been yet reported on the involvement of plant PCNA 
homologs in BER.

The Scaffolding Protein X-Ray Cross-
Complementation Group 1 (XRCC1)
XRCC1 does not exhibit any enzymatic activity but plays a 
major role in BER and SSBR pathways interacting with multiple 
components and facilitating repair (Caldecott, 2003). As 
mentioned above, mammalian XRCC1 functions in SP-BER 
(Cappelli et al., 1997) interacting with LigIIIα and enhancing 
its DNA ligase activity (Caldecott et al., 1994; Nash et al., 1997) 
In mammalian cells, additional interaction partners of XRCC1 
in BER have been described, such as hOGG1 (Marsin et al., 
2003), UNG2 (Akbari et al., 2010), hNEIL1 (Wiederhold et al., 
2004), hNEIL2, MPG, hNTH1 (Campalans et al., 2005), PNKP 
(Whitehouse et al., 2001), APE1 (Vidal et al., 2001), or DNA 
Pol β (Kubota et al., 1996). Mammalian XRCC1 proteins possess 
two BRCT (BRCA1 C-terminal) domains (BRCT1 and BRCT2) 
implicated in protein–protein interactions between XRCC1 and 
poly (ADP-ribose) polymerase (PARP) proteins and DNA Ligase 
IIIα, respectively (Hanssen-Bauer et al., 2012). Interaction of 
XRCC1 through its BRCT2 domain with DNA Lig IIIα stimulates 
its DNA ligation activity (Caldecott et al., 1994; Nash et al., 1997).

TABLE 2 | Additional proteins involved in base excision repair in yeast, humans, and Arabidopsis.

Function S. cerevisiae H. sapiens Arabidopsis

Name Gene ID Reference

Processivity factor Pol30p PCNA AtPCNA1 AT1G07370
AtPCNA2 AT2G29570 (Amoroso et al., 2011)

Scaffolding XRCC1 AtXRCC1 AT1G80420 (Martinez-Macias et al., 2013)
Nick sensing PARP1 AtPARP1 AT2G31320 (Boltz et al., 2014)

PARP2 AtPARP2 AT4G02390 (Song et al., 2015)
PARP3 AtPARP3 AT5G22470 (Rissel et al., 2014)
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XRCC1 knock-out mice are embryonic lethal and show increase 
DNA breakage (Tebbs et al., 1999; Thompson and West, 2000). 
In contrast, XRCC1 deficiency has no drastic consequences in 
plants. The Arabidopsis genome encodes an XRCC1 ortholog 
(AT1G80420) (Taylor et al., 2002), and plant xrcc1 mutants 
develop normally, although they show radiosensitivity 
(Charbonnel et al., 2010). Rice OsXRCC1 interacts with ss- and 
ds-DNA, as well as with OsPCNA in vivo and in vitro (Uchiyama 
et al., 2008). The Arabidopsis XRCC1 protein stimulates uracil 
BER in vitro (Cordoba-Cañero et al., 2009) and is required for 
efficient DNA ligation, probably through interaction with AtLIG1 
(Martinez-Macias et al., 2013). In agreement with the absence 
of a DNA ligase III homolog, plant XRCC1 lacks a BRCT2 
domain (Taylor et al., 2002; Uchiyama et al., 2008). Arabidopsis 
XRCC1 also stimulates the 3′-DNA phosphatase activity of ZDP 
(Martinez-Macias et al., 2013).

Nick Sensors: Poly (ADP-Ribose) 
Polymerases (PARP)
Another type of proteins involved in the recruitment of BER 
enzymes are poly (ADP-ribose) polymerases (PARP). These 
proteins detect and bind tightly DNA strand breaks, signaling 
recruitment of repair proteins to the damaged site (Caldecott 
et al., 1996). The mammalian PARP family includes 17 proteins 
with homology to PARP1, its founding member (Schreiber et al., 
2006; Hassa and Hottiger, 2008). In response to damage, PARP1 
binds DNA strand breaks and is thereby activated to catalyze the 
synthesis of poly ADP-ribose (PAR) by transferring ADP-ribose 
from NAD+ to both itself and nuclear target proteins (Schreiber 
et al., 2006). Mammalian PARP1 is the most extensively studied 
PARP protein, and evidences of its role in BER have accumulated. 
The participation of PARP1 in BER has been demonstrated in 
association with XRCC1 (Caldecott et al., 1996; Masson et al., 
1998), and the requirement of PARP1 in both SP and LP-BER 
has been reported (Dantzer et al., 1999; Dantzer et al., 2000). 
Additionally, it has been found that PARP2 interacts with 
XRCC1 and belongs to a BER complex containing XRCC1, 
PARP1, DNA Pol β, and DNA LigIII (Schreiber et al., 2002). Both 
PARP1- and PARP2-deficient cells display a significant delay in 
resealing of DNA strand breaks (Trucco et al., 1998; Beneke et al., 
2000; Schreiber et al., 2002). However, in vitro repair reactions 
using PARP1-deficient mice extracts showed to be partially 
compromised (Allinson et al., 2003), and since the pathway can 
be reconstituted with purified enzymes in the absence of PARP, 
it has been suggested that this protein is dispensable for BER, at 
least in vitro.

In contrast to mammals, the Arabidopsis genome contains 
only three genes encoding PARPs: AtPARP1 (AT2Gg31320), 
AtPARP2 (AT4G02390), and AtPARP3 (AT5G22470), with 
homology to human PARP1, PARP2, and PARP3, respectively 
(Babiychuk et al., 1998; Rissel et al., 2014; Vainonen et al., 
2016). AtPARP1 and AtPARP2 seem to be broadly expressed, 
whereas AtPARP3 is detected mostly in developing seeds 
(Becerra et al., 2006). AtPARP1 and AtPARP2 localize to 
the nucleus and possess poly (ADP-ribose) polymerase 
activity, although AtPARP2 shows higher levels of activity 

than AtPARP1 (Feng et al., 2015). It has been suggested 
that variant residues at the active site in AtPARP3 could 
eliminate NAD+ binding and, therefore, enzymatic activity 
(Lamb et al., 2012). Like in animals, plant PARPs play a role 
in DNA repair processes. In Arabidopsis, increasing levels 
of PARP expression after DNA damage have been described 
 (Doucet-Chabeaud et al., 2001; Waterworth et al., 2010; Dubois 
et al., 2011), although it has been suggested that AtPARP2 plays 
the major role in response to ionizing radiation (Song et al., 
2015). Arabidopsis single atparp null mutants are viable and, 
in contrast to animals, atparp1 atparp2 double mutants are 
also viable (Boltz et al., 2014). Single mutant atparp2 plants 
are more sensitive to DNA damaging agents than wild-type 
or atparp1 plants (Song et al., 2015), whereas double atparp1 
atparp2 mutants exhibited further increased sensitivity (Boltz 
et al., 2014). A role of AtPARP3 in the repair of DNA damage 
accumulated during seed storage has also been suggested 
(Rissel et al., 2014). However, a function for plant PARP 
enzymes in BER has not yet been stablished.

OPEN QUESTIONS AND FUTURE 
CHALLENGES

Significant advances have been achieved in the biochemical 
and genetic analysis of plant BER. However, much remains 
to be elucidated regarding several important issues. A major 
unresolved question is the identity of the DNA polymerase(s) 
involved in gap filling. Although several indirect lines of 
evidence point to Pol λ, direct proof of its involvement in 
plant BER is still lacking, and the possible role of other DNA 
polymerases cannot be ruled out. An additional important 
area to be explored is the deployment of BER factors in a 
chromatin environment. Plant BER has been successfully 
studied in vitro with purified proteins or cell extracts using 
naked DNA substrates, but identification of additional BER 
factors will certainly require more complex approaches using 
nucleosome substrates. The interaction between BER proteins 
and factors that facilitate DNA accessibility in chromatin is 
likely to play an important role in BER efficiency and may 
dictate the spatial distribution of endogenous and exogenous 
DNA damage across the plant genome. It will also be 
important to clarify whether specific BER pathways operate in 
plant mitochondria and/or chloroplasts, as well as to identify 
the main proteins involved. As with BER studies in other 
organisms, advances in addressing these and other challenges 
could be accelerated by the development of novel BER assays 
with in vivo, rather than in vitro, endpoints. Additionally, 
increased BER knowledge will undoubtedly have an impact 
in the emerging field of CRISPR/Cas-mediated precision 
genome editing, which holds enormous potential for plant 
breeding and crop improvement (Puchta, 2017). For example, 
targeted C:G-to-T:A base pair substitution can be achieved 
by expressing dCas9–cytidine deaminase fusions, but lower 
than expected conversion efficiencies have been detected 
(Komor et al., 2016; Nishida et al., 2016). However, additional 
co-expression of the specific UDG inhibitor Ugi partially 
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inhibited endogenous BER of U:G intermediates, leading 
to increased levels of base substitution (Komor et al., 2016; 
Nishida et al., 2016). In summary, it is most likely that the 
near future will bring new and exciting results on this critical 
DNA repair pathway and its physiological roles in plants, 
as well as promising applications in existing and upcoming  
DNA technologies.
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