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Abstract 19 

The determination of the fatty acid profile in food products is an important issue, as it 20 

serves as a guide to consumers who wish to follow healthy diets. Hyperspectral Imaging 21 

(HSI), permits rapid, non-destructive quality evaluation in foods by integrating the spatial 22 

dimension of the composition distribution. The aim of this research was to measure the 23 

fatty acid profile of almonds using HSI in 149 samples of shelled sweet and bitter 24 

almonds. In addition, we analysed the inter- and intra-kernel distribution of fatty acids for 25 

both type of almonds. Shelled sweet and bitter almonds were scanned in bulk by 26 

reflectance HSI (946.6-1648.0 nm) and then analysed by gas chromatography to 27 

determine their fatty acid composition. Next, we built quantitative prediction models 28 

using Partial Least Squares (PLS) regression and tested two validation strategies — mean 29 

spectrum and pixel-by-pixel. The developed HSI calibration models showed a good 30 

performance when quantifying oleic and linoleic acids, while the models developed could 31 

be used for screening purposes for the rest of the fatty acids analysed and for the oleic to 32 

linoleic ratio. The results obtained confirm that HSI can be considered a promising 33 

approach for estimating fatty acids and their inter- and intra-kernel distribution. 34 

 35 

Keywords: Shelled almonds; Hyperspectral Imaging; Fatty acid mapping; Non-36 

destructive analysis in bulk  37 
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1. Introduction 38 

 39 

The almond, the fruit of the almond tree (Prunus dulcis), is grown mainly for its 40 

seed, whose nutritional characteristics bring major health benefits due mainly to its high 41 

content of healthy fats (60 % of the total kernel mass), fibre, proteins, minerals and 42 

vitamins B and E (Askin, Balta, Tekintas, Kazankayab, & Balta, 2007; Yildirim, Akinci-43 

Yildirim, Şan, & Sesli, 2016).  44 

Almond lipid content is mainly composed, in decreasing order, of oleic (C18:1), 45 

linoleic (C18:2), palmitic (C16:0), stearic (C18:0) and palmitoleic (C16:1) acids (Yada, 46 

Lapsley, & Huang, 2011). Its lipid fraction is therefore mainly made up of unsaturated 47 

fatty acids, whose quantification determines the nutritional qualities and health benefits 48 

associated with consumption of this fruit (Chen, Lapsley, & Blumberg, 2006). Thus, due 49 

to its high oleic content, the intake of almonds has a similar effect on cardiovascular 50 

health to that of olive oil (Hernández & Zacconi, 2009). Another important aspect to take 51 

into account is the content of linoleic acid (omega-6), an essential fatty acid which is not 52 

synthesized by the body, and therefore must be obtained via the diet (Agunbiade & 53 

Olanlokun, 2006). Linoleic acid plays an important role in pro-inflammatory reactions, 54 

blood clots and allergic reactions (Mzimbiri, Shi, Liu, & Wang, 2014). Likewise, 55 

pamitoleic acid (omega-7), obtained by way of stearoyl CoA desaturase-1 in the synthesis 56 

of cis-vaccenic acid, is an omega-7 fatty acid associated with a lower risk of ischemic 57 

heart attack (Djoussé et al., 2014). 58 

In addition, measuring the oleic and linoleic acid content in almonds provides 59 

information on the state of the fruits and their shelf-life as a product. A high content of 60 

oleic acid guarantees oxidative stability, which prevents the fruits from going rancid 61 

(Venkatachalam & Sathe, 2006), while high levels of linoleic acid could indicate almond 62 
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spoilage (Kodad & Socias i Company, 2008), and the oleic/linoleic acid ratio provides an 63 

index of physical-chemical quality and a way of evaluating the shelf-life of the fruits 64 

(Kodad, Estopañán, Juan, & Socias i Company, 2013). Thus, a high oleic to linoleic ratio 65 

has the potential to greatly enhance the marketability of almonds. 66 

The study of the saturated fatty acids (SFA) present in almonds - composed 67 

mainly of palmitic and stearic acids - is also of interest, since these acids act to protect 68 

the fruits from lipid oxidation during the postharvest period, which also lengthens their 69 

shelf-life (Pleasance et al., 2018). In addition, measuring this content helps to control the 70 

negative effect that SFA can have on human health caused by increased low-density 71 

lipoprotein cholesterol (LDL-c) (Zock, 2006; Kodad & Socias i Company, 2008). 72 

Almond kernels typically present wide variations in fatty acid composition, oil 73 

content, rate of rancidity, oxidative stability, due to the influence of the cultivar (Yildrim 74 

et al., 2016), agronomic practices and the environmental conditions during the growing 75 

season (Gama, Wallace, Trueman, & Hosseini-Bai, 2018), the stage of maturity and time 76 

of harvest (Piscopo, Romeo, Petrovicova, & Poiana, 2010) and the postharvest storage 77 

(Kazantzis, Nanos, & Stavroulakis, 2003). This requires the use of real time methods to 78 

assess the almond quality along the supply chain in order to identify low quality kernels 79 

and batches, and thus guarantee the correct nutritional labelling of product batches 80 

received and processed by the industry. 81 

At present, the traditional analytical methods to determine fatty acid profile in 82 

almonds are generally destructive, time-consuming and high-cost (Yada et al., 2011), and 83 

therefore do not meet the requirements for real-time control on industrial production lines. 84 

Hyperspectral imaging (HSI) is an emerging technique which can be used for this purpose 85 

(Dale et al., 2013). HSI combines the advantages of spectroscopy and artificial vision, 86 

providing both spectral and spatial information that can reflect internal physic-chemical 87 
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characteristics of food products. Thus, while conventional near infrared spectroscopy 88 

(NIRS) only provides the mean value of the parameters measured in the product but not 89 

their spatial distribution, HSI provides a complete spectrum at each pixel location in the 90 

product analysed, facilitating the mapping of the spatial distribution of the different 91 

physic-chemical components in the sample (Boldrini, Kessler, Rebnera, & Kessler, 2012; 92 

Huang, Liu, & Ngadi, 2014; Pu, Feng, & Sun, 2015; Lu, Huang, & Lu, 2017). However, 93 

the signal pre-processing and data management stage is even more complex than with 94 

NIRS, with huge amounts of data needing to be processed (Riccioli, Pérez-Marín, & 95 

Garrido-Varo, 2018). Similarly, although scientific literature exists on HSI using the short 96 

wavelength infrared region — up to 1100 nm — there is a conspicuous gap of using the 97 

extended NIR region up to 1700 nm or even to 2500 nm (Qin, Chao, Kim, Lu, & Burks, 98 

2013; Liu, Zeng, & Sun, 2015). 99 

In this context, no references have been found in the literature related to measuring 100 

the fatty acid profile in intact shelled almonds using HSI technology, and only two studies 101 

have been published in legumes: one, a review highlighting the importance of using HSI 102 

technology to study the fatty acid profile in peanuts (Mzimbiri et al., 2014) and another, 103 

in which single soybeans of different varieties were classified according to their oleic and 104 

linoleic contents (Fu, Zhou, & Scaboo, 2019). 105 

The aim of this study was therefore to quantify and map, at the laboratory scale, 106 

the main fatty acids of shelled almonds analysed in bulk using a line-scan hyperspectral 107 

reflectance imaging system working in the NIR (946.6 to 1648.0 nm) range to establish 108 

the nutritional quality of the product on receipt and in the sorting lines in the industry.  109 

 110 

2. Material and methods 111 

 112 



6 
 

2.1. Sampling and reference analysis 113 

 114 

A total of 149 samples of shelled almonds — consisting of 89 samples of sweet 115 

almonds (Prunus dulcis Mill., cv. 'Antoñeta', 'Belona', 'Guara', 'Lauranne', 'Soleta', and 116 

'Vairon') and 60 samples of bitter almonds of non-specific varieties were analysed. The 117 

samples were collected during the 2018-2019 season. On arrival at the laboratory, the 118 

almonds were immediately placed in dark, refrigerated storage. Prior to measurement, 119 

each sample was left to stabilize at the laboratory temperature of 20 ºC. 120 

The fatty acid (FA) profile, used as reference data to develop the prediction 121 

models, was determined using gas chromatography. The methyl esters of the fatty acids 122 

with hexane were extracted, using a PerkinElmer Sigma 3D chromatograph with an FID 123 

detector and an automatic injection system (OJEC, 1991). Values were expressed as g per 124 

100 g of the total FA content. The five main fatty acids (palmitic (C16:0), palmitoleic 125 

(C16:1), stearic (C18:0), oleic (C18:1), and linoleic (C18:2)), as well as the ratio between 126 

the oleic and linoleic acids (O/L), were used for the calibration development. All the 127 

analytical measurements were performed in duplicate and the standard error of laboratory 128 

(SEL) was calculated from these replicates (Table 1). 129 

 130 

2.2 Hyperspectral imaging acquisition 131 

 132 

Spectral images were acquired in reflectance mode using a laboratory-based push-133 

broom HSI system. The HSI system consisted of the following parts: 1. a charge-coupled 134 

device (CCD) camera with a spatial resolution of 320 × 256 pixels (model Xeva-FPA-135 

1.7-320, Xenics, Leuven, Belgium); 2. a C-mount objective lens (F1.4 25-mm compact 136 

lens, Schneider Optics, Hauppauge, NY, USA); 3. a line scan spectrograph (Specim 137 
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ImSpector V10E, Oulu, Finland) working in the range of 946.6 to 1648.0 nm with a 138 

spectral resolution of 3.3 nm; 4. two lamps of 250 W located at a 45° angle to the sample; 139 

5. a conveyor belt system (Velmex, Inc., Bloomfield, NY, USA), which moved the sample 140 

across the camera’s field of view.  141 

From each sample, about 100 g were uniformly distributed on a black plastic plate 142 

(12.5 x 17.5 cm). were uniformly distributed on a black plastic plate (12.5 x 17.5 cm). To 143 

obtain square pixels, the conveyor belt was set up to move at 0.39 mm/scan and the 144 

number of lines was 450, obtaining a hypercube of dimensions 450 x 320 x 212. A dark 145 

current image was obtained each hour by covering the camera lens and a white reference 146 

was collected immediately after the dark current image, using a 99 % reflectance standard 147 

(SpectralonTM, SRS-99-10, Labsphere, Inc., North Sutton, NH, USA).  148 

 149 

2.3. Hyperspectral image processing. Spectral profile extraction 150 

 151 

Data analysis was performed using Matlab v. 2015a, equipped with the PLS and 152 

the Image Processing toolboxes (The Mathworks, Inc., Natick, MA, USA).  153 

The reflectance value of each sample was initially calculated as the difference 154 

between the intensity of the sample and dark reference divided by the difference between 155 

the white and dark references (Kim, Chen, & Mehl, 2001). Once the images were 156 

corrected, segmentation was applied to remove the background and to extract the Region 157 

of Interest (ROI) in each sample. To do this, the difference between the images obtained 158 

at 1009.80 and 1541.60 nm was calculated and then applied a threshold value of 0.08 to 159 

the resultant image. From this procedure, a binary image (mask) was obtained for each 160 

sample, with 0 value for the background and 1 for the pixels corresponding to almonds. 161 

To find the mean spectra of each sample, the mask was applied to the reflectance spectral 162 



8 
 

data for each image; next, all the spectra extracted from the pixels not identified as 163 

background were averaged to obtain a mean spectrum per sample, producing a total of 164 

149 spectra. 165 

 166 

2.4. Model building and evaluation  167 

 168 

Before developing the models, a Principal Component Analysis (PCA) was 169 

carried out to study the structure and variability of the population. The Q residuals and 170 

Hotelling’s T2 statistics, which represent how far each sample is from the center of the 171 

population, were used to detect the possible spectral outliers (Biancolillo & Marini, 172 

2018). After that, the dataset composed of the average spectrum for each sample was split 173 

into calibration and validation samples using the Kennard-Stone method, which selects 174 

the samples for calibration set based on the Euclidean distance (Kennard & Stone, 1969; 175 

Naes, Isaksson, Fearn, & Davies, 2002). Thus, the calibration set was made up of 104 176 

samples and the remaining 43 samples constituted the validation set.  177 

Partial Least Squares (PLS) regression was used to develop the calibration 178 

models, applying venetian blinds for cross validation (10 splits). For each analytical 179 

parameter, Standard Normal Variate (SNV) was used as spectral pre-processing for 180 

scatter correction (Barnes, Dhanoa, & Lister, 1989), and the first and second Savitsky-181 

Golay derivatives treatments were also tested. The best calibration models for each 182 

parameter were selected by statistical criteria, using the coefficient of determination for 183 

calibration (R2
c), the standard error of calibration (SEC), the coefficient of determination 184 

for cross validation (R2
cv), the standard error of cross validation (SECV) and the residual 185 

predictive deviation for cross validation (RPDcv), calculated as ratio of the standard 186 

deviation (SD) of the reference data for calibration to the SECV.  187 
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 188 

2.5. Validation strategies 189 

 190 

Two strategies were considered for validation purposes for the parameters 191 

analysed. For Strategy I, the best calibration models were subjected to external validation 192 

using the mean spectrum for each sample extracted from the ROI and the predictive 193 

ability of the models was evaluated following the protocol outlined by Windham, 194 

Mertens, and Barton II (1989), based on the following statistics: standard error of 195 

prediction (SEP), standard error of prediction corrected for bias (SEP(c)), bias, coefficient 196 

of determination for external validation (R2
p) and slope. Generally, for validation groups 197 

containing nine or more samples, the following control limits are assumed: Limit Control 198 

SEP(c) = 1.30 x SEC, Limit Control bias = ± 0.60 x SEC and minimum value of 0.6 for 199 

r2p and slope value between 0.9 – 1.1. 200 

For strategy II, we performed the pixel-by-pixel prediction (mapping) of the 201 

images corresponding to the validation set using 12 samples, randomly selected images 202 

from the validation set. Initially, the validation of all the pixels in the images 203 

corresponding to the ROIs was carried out. After that, taking into account that the 204 

calibration models had been developed using the mean spectrum extracted from the ROI 205 

and the average reference value obtained for that sample, we assumed that when the PLS 206 

model was applied to an image for its pixel-by-pixel prediction, some pixel values would 207 

not be included within the available calibration range (Chaudhry et al., 2020). For this 208 

purpose, we excluded from the prediction map those pixels whose predicted values fell 209 

outside the calibration range ± 2 x SECV (Westerhaus, 1989; Williams, 2001). Finally, 210 

we compared the results obtained using both pixel-by-pixel validation strategies — total 211 
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of pixels and pixels within calibration range ± 2 x SECV—in terms of the standard error 212 

of prediction (SEP). 213 

 214 

3. Results and discussion 215 

 216 

3.1. Main features of the calibration and validation sets 217 

 218 

After applying the PCA and before the calibration and validation sets were 219 

selected, a total of 2 samples, which presented Hotelling’s T2 values greater than the limit 220 

established for a confidence level of 95 %, were identified as outliers. A detailed analysis 221 

of the outliers showed that these samples had a high content in stearic and oleic acids. We 222 

therefore removed these two samples, thus leaving a set composed of 147 available 223 

samples.  224 

Table 1 shows the number of samples, range, mean, standard deviation (SD) and 225 

coefficient of variation (CV) of the calibration and validation sets for the different 226 

parameters analysed. The Kennard-Stone method proved to be suitable for selecting the 227 

calibration and validation sets. It can be appreciated that both sets displayed similar 228 

statistics for all parameters, and that the validation set ranges laid within those of the 229 

calibration set, which allows to confirm that the validation set is representative of the 230 

whole range of variance.  231 

The parameter with the greatest variability is the O/L ratio, with a CV of 26.90 % 232 

and 23.57 % for the calibration and validation sets, respectively. The great variability 233 

showed for this parameter is due to the fact that it includes a wide variation of linoleic 234 

acid (CVcalibration = 16.94 % and CVvalidation = 20.24 %) among the different almond 235 

cultivars included in this work (Kodad & Socias i Company, 2008). Likewise, the stearic 236 
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and palmitoleic acid also showed considerable variability (CVcalibration = 20.74 % and 237 

18.95 %; CVvalidation = 17.10 % and 21.02 %, respectively). However, for the oleic 238 

(CVcalibration = 6.05 % and CVvalidation = 6.40 %) and palmitic (CVcalibration = 9.22 % and 239 

CVvalidation = 8.30 %) acids, the sets showed the lowest variability. These results also agree 240 

with those reported in a study on the fat composition of 20 almond cultivars by Zamany, 241 

Samadi, Kim, Keum, and Saini (2017), who stated that stearic and linoleic acids showed 242 

the greatest variability in the fatty acid profile. However, it must be highlighted that it is 243 

important to have sets not only with high variability, but also with a uniform distribution 244 

of the samples along the variation range. Thus, for stearic acid, despite the wide 245 

variability displayed for both the calibration and validation sets, the samples from the 246 

calibration set were not uniformly distributed throughout the entire available range (Fig. 247 

1), with certain areas underrepresented, which can affect the robustness of the models 248 

developed and their validation. 249 

 250 

3.2. Development and validation of models for the prediction of the fatty acid composition 251 

in almonds 252 

 253 

Table 2 shows the statistics of the best calibration models obtained for the 254 

characterization of whole shelled almonds in terms of their fatty acid profile using an HSI 255 

system. For all the fatty acids analysed, the best prediction models were obtained using 256 

SNV and the first derivative as spectral pre-treatments. 257 

To predict the SFA analysed (palmitic and stearic acids), the models enabled to 258 

discriminate between high, medium and low values of the two acids tested. The models 259 

developed to predict oleic and linoleic acids showed a good predictive capacity. In 260 

addition, the models devised to predict palmitoleic acid and the O/L ratio showed a 261 
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predictive capacity which allowed almonds to be classified as high, medium and low 262 

values of these parameters when interpreting the coefficient of determination of cross 263 

validation, as proposed by Shenk and Westerhaus (1996) and Williams (2001).  264 

Predicting the fatty acid profile in almonds is of great importance due to its 265 

correlation with kernel quality during the storage, processing and transportation of 266 

almonds, and to their nutritional value (Kodad et al., 2013; Yildirim et al., 2016; Oliveira 267 

et al., 2019). The results obtained here are therefore of great interest to the industry and 268 

consumers, since they confirm the feasibility of using HSI as a non-destructive analytical 269 

tool which enables not only to monitor the product’s shelf life and the oxidative variations 270 

during the transportation and storage, but also to specify on food labels the nutritional 271 

properties of almonds processed in bulk. Despite the importance of measuring the fatty 272 

acid profile in almonds in a non-destructive way, no references have been found related 273 

to the use of an HSI system for this purpose. 274 

After that, the best models were subjected to external validation using firstly the 275 

mean spectrum extracted for each sample (Table 2). Following the protocol outlined by 276 

Windham et al. (1989), the SFA models developed met the validation requirements in 277 

terms of the standard error of prediction corrected for the bias (SEP(c)) for stearic acid and 278 

the bias for palmitic acid. However, the models did not meet the validation requirements 279 

in terms of R2
p (R2

p > 0.6), although palmitic acid came close (R2
p = 0.58), as was the case 280 

for the slope (0.9–1.1). 281 

For stearic acid, the lower predictive capacity obtained after validating the model 282 

using the mean spectrum strategy could be a result of the final distribution of the samples 283 

from the calibration and validation groups. As can be seen in the frequency histogram 284 

(Fig. 1), around 28 % of the samples from the validation group (12 of the 43 samples) 285 

correspond to a range of values (between 1.40 g/100 g and 1.70 g/100 g) with a low 286 
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representativeness within the calibration group. This indicates that the calibration model 287 

developed for stearic acid does not satisfactorily cover this range of values, and therefore 288 

the prediction of samples showing values within this range will be less accurate. This fact 289 

can be verified when calculating the SEP values in the different ranges of the parameter 290 

interval, which were 0.57 g/100 g and 0.15 g/100 g for the intervals between 1.46–1.70 291 

g/100 g and between 1.70–3.03 g/100 g, respectively, thus showing higher SEPs values 292 

in the less representative area of the calibration model chosen. 293 

In addition, for palmitoleic, oleic and linoleic acids, as well as for the O/L ratio, 294 

the models complied the validation requirements established by Windham et al. (1989) 295 

in terms of R2
p and bias, whereas the SEP(c) did not lie within the confidence limits and 296 

the slope values did not attain the recommended value for palmitoleic, oleic and linoleic 297 

acids. 298 

Fig. 2 shows two random sweet and bitter almond samples used for the external 299 

validation to visualize the mapping for the different fatty acids analysed. Each sample is 300 

accompanied by the reference and mean predicted value for each parameter. In sweet 301 

almond kernels, there is clearly a more homogeneous distribution of the different fatty 302 

acids than in bitter almond kernels. This may be due to the fact that the samples of sweet 303 

almonds analysed belonged to a certain variety which is perfectly suited to later 304 

commercialization, while the bitter almond samples consisted of mixtures of different 305 

varieties. In turn, a greater difference was detected between the reference and predicted 306 

values using the mean spectrum in the samples of bitter almonds, which could be a result 307 

of the difficulty in obtaining representative samples of variability, as they were in this 308 

case a mixture of varieties obtained for later wet analysis. 309 

 310 

3.3. Comparison between the different validation strategies 311 
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 312 

Table 3 shows the SEP values obtained for the different prediction strategies: the 313 

mean spectrum for each sample, the prediction of the total number of pixels in the images, 314 

and the prediction of only those pixels within the established range of the calibration set. 315 

In the pixel-by-pixel prediction, it is common to find pixels which, when predicted, 316 

presented higher or lower values than the range of the calibration group. This could be 317 

due to the fact that the PLS model is usually developed by using the mean spectrum of 318 

each sample, which might not explain all the variability of each individual almond and/or 319 

pixel in the image. Therefore, in order to consider only those pixels whose fatty acid 320 

content was represented in the model, as discussed in the Material and Methods section, 321 

we discarded all the pixels whose predicted value was outside the ± 2 x SECV calibration 322 

range, thus taking into account the predictive uncertainty of the model. The percentage 323 

of pixels removed for all the parameters tested is also shown in Table 3. 324 

For the parameters tested, it can be observed that the SEP values obtained when 325 

the mean spectrum of the samples was used in validation were lower than those obtained 326 

when pixel-by-pixel validation was carried out using all the pixels available (Table 3). 327 

This lower degree of error may be due to the closer correlation between the spectral 328 

information used to develop the models and that used to perform the validation. We 329 

should also add that by averaging the spectra of all the pixels, the sources of error due to 330 

the possible existence of extreme pixels and outliers are minimized. Despite the fact that 331 

the SEP values obtained when carrying out the prediction pixel by pixel were higher, it 332 

should be noted that in this validation strategy, not only did we obtain the predicted value 333 

of all the pixels in the sample, but we acquired important information, which makes it 334 

possible to establish both the average content of fatty acids of each sample and the spatial 335 

distribution of this composition within a batch of almonds, which enables to evaluate the 336 
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homogeneity or heterogeneity of the batch. It must also be considered that in the pixel-337 

by-pixel validation, the SEP values were calculated using the mean reference data of the 338 

samples, and so it can therefore be assumed that this value is the same for all the pixels 339 

(Torres & Amigo, 2019). Moreover, the SEPs values for the pixel-by-pixel validation 340 

were minimized by deleting non-representative pixels from the image, thus avoiding the 341 

extrapolation of the models.  342 

For all the parameters analysed, the number of pixels deleted was higher in the 343 

case of the bitter almond samples, which may be due to their greater heterogeneity, as 344 

mentioned above. Additionally, and with the exception of stearic acid, the mean 345 

percentage of deleted pixels ranged between 33.73 % and 41.07 %, thus reducing the SEP 346 

values between 15.12 % and 39.13 %. For stearic acid, only 5.27 % of pixels were 347 

removed, lowering the SEP value by 0.73 %. For this acid, the existence of a smaller 348 

number of pixels out of range may be due to the fact that this parameter could present a 349 

lower variability between almonds of the same sample, in line with Kodac and Socias I 350 

Company (2008), who found that there were no significant differences for stearic acid 351 

content between different genotypes, regions or year of production. This would indicate 352 

a greater representativeness of the reference value for the entire sample analysed and, in 353 

turn, a lower sampling error. 354 

Fig. 3 shows the predicted pixel frequency histogram and the prediction map of 355 

one sample for oleic acid for all the pixels available, and for the pixels within the 356 

calibration range. Before removing the pixels, the range of predicted values oscillated 357 

between 0.98 g/100 g and 127.32 g/100 g, while the calibration range was 59.32–76.70 358 

g/100 g. In the distribution map obtained after removing the pixels, it can be seen that 359 

most of the pixels removed for presenting values outside the calibration range 360 

corresponded to the outer edge of the almonds. This means we could be dealing with areas 361 
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in shadow, which are extremely difficult to delete when performing image segmentation. 362 

What is more, pixels from the central area of the almonds were also removed, which may 363 

be linked to the texture; since it has a curved surface, this area could present higher 364 

intensity levels than the rest. 365 

 366 

4. Conclusions 367 

 368 

The results obtained demonstrated the viability of HSI for predicting the fatty acid 369 

profile in intact shelled almonds analysed in bulk, thus enabling almonds to be 370 

characterised by their lipid composition without any previous grinding or extraction 371 

process. HSI technology can be applied at a single pixel level, with the potential to 372 

provide mapping information on the distribution of the fatty composition in both the batch 373 

and the individual kernels. This approach can be extremely useful at an industrial level 374 

for detecting batches with high heterogeneity in fatty acid composition, especially when 375 

dealing with a mixture of different qualities or varieties. It is also of special interest as it 376 

can provide precise nutritional labelling of the product when sold in packaged formats.  377 
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Table 1.  553 

Statistics of main fatty acids and oleic to linoleic ratio measured in intact shelled almonds. 554 

Parameter Calibration set (N = 104 samples) Validation set (N = 43 samples) SEL 

Range Mean SD CV (%) Range Mean SD CV (%) 

Palmitic acid (g/100 g of total 

fatty acids) 

5.32 – 7.70 6.55 0.60 9.22 5.36 – 7.46 6.42 0.53 8.30 0.19 

Palmitoleic acid (g/100 g of 

total fatty acids) 

0.34 – 0.77 0.55 0.10 18.95 0.34 – 0.76 0.52 0.11 21.02 0.02 

Stearic acid (g/100 g of total 

fatty acids) 

1.46 – 3.39 2.17 0.45 20.74 1.46 – 3.03 1.93 0.33 17.10 0.04 

Oleic acid (g/100 g of total 

fatty acids) 

59.32 – 76.70 69.60 4.21 6.05 60.85 – 76.40 71.21 4.55 6.40 0.42 

Linoleic acid (g/100 g of total 

fatty acids) 

14.67 – 29.98 20.73 3.51 16.94 14.87 – 28.87 19.52 3.95 20.24 0.30 

Oleic/Linoleic ratio 1.98 – 5.22 3.49 0.78 26.90 2.11 – 5.14 3.83 0.90 23.57 - 

N = Number of samples; SD = standard deviation; CV = coefficient of variation; SEL = standard error of laboratory 555 
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 556 

Table 2.  557 

Calibration, cross validation and prediction statistics for the best PLS regression models of the main fatty acids and the oleic to linoleic ratio 558 

measured on intact shelled almonds. 559 

Parameter Calibration Prediction Limits 

N LV R2
cv SECV RPDcv R2

p SEP SEP(c) Bias Slope RPDp SEP(c)  Bias  

Palmitic acid (g/100 g of total 

fatty acids) 

104 11 0.66 0.36 1.67 0.58 0.35 0.36 0.07 0.86 1.50 0.34 ± 0.16 

Palmitoleic acid (g/100 g of total 

fatty acids) 

104 12 0.68 0.06 1.67 0.63 0.07 0.07 0.02 0.89 1.64 0.05 ± 0.02 

Stearic acid (g/100 g of total fatty 

acids) 

102 7 0.51 0.32 1.42 0.32 0.27 0.33 0.19 0.86 1.21 0.35 ± 0.16 

Oleic acid (g/100 g of total fatty 

acids) 

104 12 0.74 2.17 1.94 0.69 2.58 2.65 -0.59 1.13 1.76 1.96 ± 0.91 

Linoleic acid (g/100 g of total 

fatty acids) 

104 12 0.73 1.83 1.92 0.70 2.22 2.26 0.42 1.16 1.78 1.61 ± 0.74 

Oleic/Linoleic ratio 104 11 0.67 0.45 1.73 0.68 0.52 0.54 -0.16 1.10 1.75 0.44 ± 0.20 

N = number of samples of calibration; SNV = standard normal variate; LV = latent variables; R2
cv = coefficient of determination for cross validation; SECV = standard error of 560 

cross validation; RPDcv = residual predictive deviation for cross validation; R2
p = coefficient of determination for prediction; SEP = standard error of prediction; SEP(c) = standard 561 

error of prediction corrected for bias; RPDp = residual predictive deviation for prediction. Limits = Control limits established in the protocol of Windham et al. (1989) 562 

 563 
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Table 3.  564 

Comparison between the different validation strategies tested and percentage of pixels removed.  565 

Parameter Validation strategies  Pixels removed (%) 

Mean 

spectrum 

Pixel-by-pixel 

Totality of 

pixels 

Pixels within 

calibration 

range ± 2 x SECV 

ΔSEP 

(%) 

SEP SEP SEP  Sweet 

almonds 

Bitter 

almonds 

Mean 

Palmitic acid (g/100 g of total fatty acids) 0.35 1.24 0.78 37.47 31.20 40.39 34.73 

Palmitoleic acid (g/100 g of total fatty 

acids) 

0.07 0.15 0.11 22.74 34.75 51.17 41.07 

Stearic acid (g/100 g of total fatty acids) 0.27 0.48 0.48 0.73 2.79 7.76 5.27 

Oleic acid (g/100 g of total fatty acids) 2.58 7.21 5.03 30.27 33.97 43.57 37.66 

Linoleic acid (g/100 g of total fatty acids) 2.22 4.86 4.12 15.12 33.54 43.34 37.31 

Oleic/Linoleic ratio 0.52 1.53 0.93 39.13 30.03 39.65 33.73 

SEP = standard error of prediction.  566 

 567 
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Fig. 1. Frequency distribution of calibration (orange) and validation (green) sets for 568 

stearic acid. 569 
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Fig. 2. Distribution maps for the fatty acids analysed and for the oleic to linoleic ratio for sweet and bitter almonds. Reference and predicted 577 

mean values are included for each parameter analysed. 578 

 579 

SA: a)Reference: 6.66 g/100 g TFA, Predicted: 6.29 g/100 g TFA; b)Reference: 0.61 g/100 g TFA, Predicted: 0.53 g/100 g TFA; c)Reference: 1.69 g/100 g TFA, Predicted: 2.47 g/100 g TFA; 580 
d)Reference: 72.05 g/100 g TFA, Predicted: 72.38 g/100 g TFA; e)Reference: 18.59 g/100 g TFA, Predicted: 18.54 g/100 g TFA; f)Reference: 3.88 g/100 g TFA, Predicted: 4.24 g/100 g TFA. 581 

BA: a)Reference: 6.66 g/100 g TFA, Predicted: 6.29 g/100 g TFA; b)Reference: 0.61 g/100 g TFA, Predicted: 0.53 g/100 g TFA; c)Reference: 1.69 g/100 g TFA, Predicted: 2.47 g/100 g TFA; 582 
d)Reference: 72.05 g/100 g TFA, Predicted: 72.38 g/100 g TFA; e) Reference: 18.59 g/100 g TFA, Predicted: 18.54 g/100 g TFA; f)Reference: 3.88 g/100 g TFA, Predicted: 4.24 g/100 g TFA. 583 
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Fig. 3. a) Histogram of frequencies for predicting oleic acid following pixel-by-pixel 585 

strategy; b) Distribution maps for oleic acid for all the pixels and for the pixels within the 586 

calibration range.  587 
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