• español
    • English
  • español 
    • español
    • English
  • Acceder
Ver ítem 
  •   Helvia Principal
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • Ver ítem
  •   Helvia Principal
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exogenous Measurements from Basic Meteorological Stations forWind Speed Forecasting

Thumbnail
Ver/
energies-06-05807.pdf (4.397Mb)
Autor
Sierra-Fernández, José María
Moreno-Muñoz, A.
Palomares-Salas, José Carlos
González de la Rosa, Juan José
Agüera Pérez, Agustín
Editor
MDPI
Fecha
2013
Materia
Wind speed prediction
Time series forecasting
Artificial neural network
On-site measurement
Exogenous information
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadatos
Mostrar el registro completo del ítem
Resumen
This research presents a comparative analysis of wind speed forecasting methods applied to perform 1 h-ahead forecasting. The main significant development has been the introduction of low-quality measurements as exogenous information to improve these predictions. Eight prediction models have been assessed; three of these models [persistence, autoregressive integrated moving average (ARIMA) and multiple linear regression] are used as references, and the remaining five, based on neural networks, are evaluated on the basis of two procedures. Firstly, four quality indices are assessed (the Pearson’s correlation coefficient, the index of agreement, the mean absolute error and the mean squared error). Secondly, an analysis of variance test and multiple comparison procedure are conducted. The findings indicate that a backpropagation network with five neurons in the hidden layer is the best model obtained with respect to the reference models. The pair of improvements (mean absolute-mean squared error) obtained are 29.10%–56.54%, 28.15%–53.99% and 4.93%–14.38%, for the persistence, ARIMA and multiple linear regression models, respectively. The experimental results reported in this paper show that traditional agricultural measurements enhance the predictions.
URI
http://hdl.handle.net/10396/15336
Versión del Editor
http://dx.doi.org/10.3390/en6115807
Colecciones
  • DACETE-Artículos, capítulos...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contacto | Sugerencias
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Listar

Todo HelviaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contacto | Sugerencias
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital