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Abstract: We have synthesized fourteen 3-phenylcoumarin derivatives and evaluated their 

anti-HIV activity. Antiviral activity was assessed on MT-2 cells infected with viral clones 

carrying the luciferase gene as reporter. Inhibition of HIV transcription and Tat function 

were tested on cells stably transfected with the HIV-LTR and Tat protein. Six compounds 

displayed NF-κB inhibition, four resulted Tat antagonists and three of them showed both 

activities. Three compounds inhibited HIV replication with IC50 values < 25 µM. The 

antiviral effect of the 4-hydroxycoumarin derivative 19 correlates with its specific 

inhibition of Tat functions, while compound 8, 3-(2-chlorophenyl)coumarin, seems to act 

through a mechanism unrelated to the molecular targets considered in this research. 
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1. Introduction 

Human immunodeficiency virus (HIV) infection is the cause of acquired immunodeficiency 

syndrome (AIDS) [1], one of the leading causes of morbidity and mortality in the World [2]. Although 

Highly Active Antiretroviral Therapy (HAART) has resulted highly effective in suppressing HIV load 

and in decreasing mortality of AIDS patients, current treatments do not eradicate the virus from the 

infected host. After HIV entry into the host cell, viral RNA is transcribed to proviral DNA, transported 

to cell nucleus and stably integrated into the host genome. At this point, depending on several cellular 

and viral factors, provirus can be actively transcribed to viral RNAs or remain in a latent state, 

integrated in the genome of CD4+ cells, constituting viral reservoirs [3], not easily reached by 

HAART [4]. Thus, long-term treatments are needed to prevent viral reactivation after therapy 

discontinuation, leading to drug adverse effects and emergence of viral resistances. Novel targets for 

anti-HIV drugs are necessary, and viral transcription seems to be particularly relevant in this context. 

Among viral and cellular factors involved in HIV transcription, the NF-κB/Rel family of cellular 

transcription factors and the viral protein Tat, are the most important factors in Long Terminal Repeat 

(LTR)-induced HIV transcription [3]. Therefore, inhibition of the activity of these critical proteins 

should result in an effective blocking of viral replication. Failures in efforts to develop an effective 

vaccine against HIV-1 infection [5], have also emphasized the importance of antiretroviral therapy for 

treating AIDS patients. Therefore, medicinal chemists are interested in the development of novel  

anti-HIV agents that might be particularly effective in controlling the HIV strains resistant to the 

current drugs [6]. 

The viral cycle of the HIV can be divided into early and late stages. Early stages comprise several 

steps, from viral attachment on the cell surface to integration in the host genome. Late stages include 

the processes of HIV mRNA synthesis, protein expression and morphogenesis. Once integrated, HIV 

can remain in a latent state in resting lymphocytes or undergo active replication. Transition from 

latency to HIV expression occurs mainly when cells are activated and requires the concerted action of 

cellular transcription factors and regulatory HIV proteins [7]. Among the transcription factors involved 

in LTR transactivation, the HIV proximal enhancer contains three binding sites for SP1 transcription 

factor and two binding sites for NF-κB. The NF-κB/Rel family of transcription factors represents a 

major inducible regulatory element involved in HIV transcription. Located downstream of the basal 

promoter TAR sequence is the RNA target for the viral protein Tat, which acts in concert with other 

cellular factors to generate full-length RNA transcripts [8]. Furthermore, NF-κB and Tat cooperate in 

driving HIV replication from the state of latency [9]. Therefore, inhibition of the activity of these 

critical proteins should result in an effective blocking of viral replication [10,11]. 

Coumarins are well-known natural products displaying a broad range of biological activities [12,13]. 

More recently, other activities have been described for these compounds such as antidepressant [14], 

vasorelaxant and platelet-aggregation inhibition [15], enzymatic inhibition of MAO [16–18], 

antioxidant activity [19], and proapoptotic activity [20,21]. The discovery, structural modification and 

structure-activity relationships studies of coumarins as anti-HIV agents, have been the object of several 

updates and reviews [22–24]. It has been reported that natural tetracyclic dipyranocoumarins with  

n-propyl (calanolides, 1) [25], or phenyl (inophyllums, 2) [26], or methyl (cordatolides, 3) groups 

attached to position C-4 of the coumarin skeleton (Figure 1) and other related synthetic derivatives, 
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display substantial anti-HIV activity, through several mechanisms, including blockade of viral entry, 

inhibition of reverse transcriptase or interference with viral integration [27,28]. Some phenylcoumarins, 

have also been proposed as suppressors of HIV transcription, but the mechanism of action has not been 

fully characterized [29]. 

Figure 1. Natural and synthetic anti-VIH coumarins. 

 

Although optically active (+)-calanolide A (1) has been successfully synthesized in the laboratory 

through different procedures [30], its related 11-demethyl-12-oxocalanolide A (4), with less chiral 

centers, and used as a racemate, has shown comparable in vitro anti-HIV activity and even a better 

selectivity than (+)-calanolide A. Furthermore, the bromoderivative 5 has demonstrated much higher 

potency and selectivity [29]. According to these findings, it seemed clear that, structural changes at 

least, at positions C3-C4 and at the prenyl parts of the molecule, could be introduced while retaining or 

even enhancing the anti-HIV activity. Indeed, natural 3-phenylcoumarins have shown different types 

of biological properties. Among them, the prenyl derivative licopyranocoumarin (6), isolated from 

licorice, specifically suppresses the tetradecanoyl phorbol acetate (TPA)-induced HIV promoter [29]. 

In addition, several synthetic 3-phenylcoumarins have demonstrated their inhibitory activity on the 

HIV-1 protease at the μM range [31]. 

In a previous paper we reported on the HIV replication inhibition by a series of natural  

4-phenylcumarins (neoflavones) isolated from Marila pluricostata [32], followed by another report 

describing the NF-κB transcription pathway as the target for mesuol, one representative of those tested 

coumarins [33]. They were structurally related to the inophyllum series of coumarins, although without 

cyclisation of the prenyl groups across the 5- and/or 7-hydroxyl groups [34]. Furthermore, these 

compounds were tested in vitro against sensitive and multi-drug-resistant strains of Mycobacterium 

tuberculosis (MTB) with positive results, which will be published shortly. These relevant facts induced 

us to continue our research focused on the synthesis of new neoflavones and 3-phenylcoumarin 

derivatives. We aimed to enlarge the structural diversity to be evaluated and to obtain rather simple 

and readily accessible compounds, which could display enhanced anti-HIV and anti-TB activities. In 

this paper we report on the synthesis and the results of anti-HIV evaluation of fourteen structurally 

diverse 3-phenylcoumarin derivatives. 

2. Results and Discussion 

3-Phenylcoumarins have been synthesized by a variety of methods [35,36]. In our hands, direct 

condensation of 2-hydroxybenzaldehyde (salicylic aldehyde, SA) derivatives with substituted 

phenylacetic acids (PAAs) by the original Perkin’s procedure, did not give good yields of the desired 

products. Several modifications of the procedure were further applied, with results mainly dependent 
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on the type of substituent at the ring of the aldehyde substrate. A simple and convenient procedure, 

which we have now used to prepare the phenylcoumarins 7–15 is based on the reaction between SA 

derivatives (I) and ring-substituted PAAs (II), using dicyclohexylcarbodiimide (DCC) in DMSO 

(Scheme 1). With the objective of optimizing the reaction conditions, different reaction temperatures 

were tested, and we found that the best results were attained when heating the mixture at 100–110 °C 

for 24–28 h [37]. Lower temperatures proved to be less effective, while higher temperatures led to very 

complex mixtures in the crude reaction products. However, under the best conditions, important 

differences in yields, mainly determined by the type of substituent attached to the PAA ring, were 

observed. As an example, condensation of 4-chloroPAA with SA led to the expected coumarin 9 in 

60% yield, whereas the ortho isomer 2-chloroPAA led to only a 30% yield of coumarin 8.  

3-Phenylcoumarins 16 and 17 were prepared by a slightly different procedure (Scheme 1). To obtain both 

compounds in good yield, instead of the free carboxylic acids, PAA and 4-methoxy PAA, the 

corresponding PPA chlorides, were heated to reflux with resorcinol and catechol derivatives, respectively. 

The reaction was done in dry acetone and in the presence of anhydrous potassium carbonate [38]. Under 

such conditions these compounds were obtained in yields of 92% (16) and 90% (17) (Scheme 1). 

Scheme 1. The synthesis of the 3-phenylcoumarins 7–17. 

 

Methods reported in the literature for the preparation of 3-phenylcoumarins 18–20 involve multistep 

procedures with low yields [39]. However, heating of diethyl 2-phenylmalonate with the appropriate 

substituted phenols in diphenyl ether, above 250 °C, can afford compounds 18 and 19 with better 

yields [40] (Scheme 2). Subsequent reaction of compound 19, with excess of POCl3, leads to  

4-chlorocoumarin 20 in high yield. 

Scheme 2. The synthesis of 3-phenylcoumarins 18–20. 

 

As it can be seen, the 3-phenyl group is present in all the coumarins tested. Other substituents differ 

in nature and/or location on the coumarin system, thus configuring a series of close yet enough varied 

structural arrangements, despite the small number of coumarins involved. Furthermore, these 

compounds contain common and less common natural-like electron-donating groups (hydroxyl, 
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methoxyl, methylenedioxy, trimethoxyphenyl, methylsulfanyl), and the most typical electron-withdrawing 

chlorine substituent. A complete description of the chemical procedures used for the synthesis of  

3-phenylcoumarins and characterization data for the compounds included in this study are given in the 

experimental part. 

In the characterization of anti-HIV activity, the effect of these coumarins on Tat and NF-κB 

functions has been evaluated in a similar manner as we described in a previous publication [41]. We have 

used two transfected 5.1 cell lines, in which we measured NF-κB activation induced by TNF [42] and 

HeLa-Tat-Luc cells, in which the HIV-1 LTR is directly activated by the HIV-1 Tat protein. Most of 

the compounds were submitted for further evaluation through a HeLa-Tet-ON assay in order to 

determine the selectivity of their action [41]. To avoid missing compounds acting through another 

mechanism, all substances were also evaluated using a recombinant virus (RV) assay. In this system, a 

luciferase reporter gene was cloned in full-length infectious DNA. As a result, the measured luciferase 

activity is therefore proportional to viral replication [43]. 

The results of anti-HIV evaluation of coumarins 7–20 are shown in Table 1. Data for AZT and 

mesuol [33], a prenyl derivative of 4-phenylcoumarin, have been included for comparison purposes. In 

a preliminary analysis of the results, it can be observed that coumarins 10, 11, 13, 15, 16 and 17 

showed a fair inhibitory activity in the NF-κB test at 50 μM, and this behaviour was also confirmed for 

two of them, the phenylcoumarins 11 and 17, at 25 μM. Regarding the HeLa-Tat-Luc and Hela-Tet-ON 

assays, coumarins 10, 11 and 17 also showed a potent though unspecific anti-Tat activity, while 

compound 19 showed a modest, but specific inhibition of this target. Unfortunately, coumarins that 

revealed higher inhibitory potencies in both assays (coumarins 17, 11 and 10) displayed unspecific 

modes of action through the HeLa-Tet-ON evaluation. 

Table 1. Results of in vitro anti HIV-1 evaluation of 3-phenylcoumarins. 

Compound 

Antiviral activity 

5.1 + TNF Hela-Tat-luc HeLa-Tet-ON RV (VIH) Toxicity (%) 

25 µM 50 µM 25 µM 50 µM 50 µM IC50, µM CC50 

7 nt 21.7 ± 3 26.8 ± 2.9 33.7 ± 1.0 S 130 ± 11.4 >50 
8 nt −28.7 ± 4 nt 17.6 ± 2.1 S 20.7 ± 1.9 >50 
9 nt 33.0 ± 2.33 nt −4.9 ± 0.8 nt >195 >50 
10 nt 61.2 ± 2.4 73.5 ± 6.7 66.6 ± 3.4 U 73 ± 8.6 >50 
11 84.3 ± 3 81.6 ± 5.6 77.5 ± 8.5 80.1 ± 5.6 U 18.2 ± 0.2 >50 
12 nt −40.9 ± 2.3 nt 14.1 ± 0.6 S >172 >50 
13 nt 68.5 ± 3.4 32.8 ± 4.3 39.5 ± 2.3 S 138 ± 22,3 16.7 ± 3.4 
14 nt −23.0 ± 2.9 nt −25.1 ± 5.3 nt >177 >50 
15 nt 49.7 ± 7.0 47.6 ± 6.2 35.1 ± 3.9 U 62.7 ± 13.1 42.8 ± 16.2 
16 nt 59.0 ± 8.2 nt 17.2 ± 0.5 S 81.4 ± 14.0 >50 
17 82.2 ± 3.1 87.8 ± 9.8 85.7 ± 3.4 88.3 ± 5.5 U 84.6 ± 12.1 >50 
18 nt −3.5 ± 0.9 nt 22.8 ± 3.4 S 186 ± 10.8 >50 
19 −34.26 ± 5 −4.7 ± 0.3 48.9 ± 3.4 55.7 ± 4.9 S 23.8 ± 1.7 >50 
20 nt −21.2 ± 7.0 nt −64.4 ± 10 nt >209 18.4 ± 8.2 

Mesuol 71.0 ± 4.8 77.9 ± 4.9 nt 71.3 ± 8.9 S 2.5 >4 µM 
AZT nt nt nt nt nt 0.01 >1 µM 

S: specific; U: unspecific modes of action; compounds considered active in each essay are boldfaced. 
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More interestingly, coumarins 13, and 16 (3-phenylumbelliferone) resulted as specific inhibitors of 

the NF-κB function. Compound 15, showed a lower potency and was unspecific. It must be noted that 

simple structural differences within this series of 3-phenylcoumarins determine substantial changes in 

activity and selectivity. As an example, we could compare the NF-κB inhibitor 3-phenylumbelliferone 

(16) and the specific Tat inhibitor 19, also a 3-phenylumbelliferone-related coumarin. The drastic 

difference in bioactivity for these compounds should be due either to the presence of the hydroxyl 

group at C-4, or to the methylation of the hydroxyl group at C-7 or to both modifications. However, 

regarding the comparison of compound 13 with 16, it is worth noting that the introduction of a 

methylenedioxy fragment on the 3-phenyl substituent, not only retains but also enhances the NF-κB 

inhibitory activity. It should be also noted that compound 13 lacks the 7-hydroxyl group, which could 

play an important role in the inhibitory activity. 

Concerning the results of the antiviral RV assay, three 3-phenylcoumarins displayed IC50 values < 

25 μM and can be considered as potent replication inhibitors. As it could be expected, the 

sulfanylphenylcoumarin 11, one of the most potent dual-target inhibitors, resulted also the most potent 

inhibitor of HIV replication. Nevertheless, the two other potent dual inhibitors, methoxyphenyl 

derivatives 10 and 17, were 4-5-fold lesser potent. None of them was toxic at the concentration used in 

this study. Looking at the corresponding NF-κB and Tat inhibition values, the second more potent 

replication inhibitor, the o-chlorophenylcoumarin 8, with a light effect on Tat function only, seems to 

act, most probably, through another mechanism. On the other hand, the 4-hydroxy derivative 19, 

appears as the most interesting compound of this 3-phenylcoumarin series, because of its antiviral 

potency correlates well with its specific Tat inhibitory activity. 

The synthetic phenylcoumarins included in this research, while being more potent than mesuol 

against both NF-κB and Tat molecular targets, resulted around one-order of magnitude less effective in 

the RV assay. These facts would suggest that the presence of prenyl and/or prenacyl substituents 

attached to the aromatic ring of the coumarin nucleus, that are common in natural coumarins, could be 

a structural factor reinforcing the antiviral activity. 

3. Experimental 

3.1. Material and Reagents 

All the reagents for synthesis were commercially available and either used without further 

purification or purified by standard methods prior to use. Reaction progress was monitored using  

thin-layer chromatography carried out on precoated Merck silica gel Kiesegel 60 F254 plates and the 

spots were detected under UV light (254 nm). Melting points were determined on a Büchi 510-K 

melting point apparatus and are uncorrected. IR spectra were recorded (KBr 1%) in a Nicolet Impact 

410 spectrophotometer. 1H, 13C-NMR, COSY, HMQC and HMBC were recorded on Bruker AC 200 

(200 MHz) and Bruker DRX 400 (400 MHz) instruments. Chemical shifts (δ) are expressed in parts 

per million (ppm) relative to the residual solvent peak: CDCl3 7.26 ppm/77.0 ppm and MeOD  

3.35 ppm/49.0 ppm and coupling constants are reported in Hertz (Hz). For EIMS and HRFABMS 

analysis, a VG-TS250 mass spectrometer (70 eV) was used. Elemental analyses were performed with a 

LECO CHNS-932 and were within ±0.4% of the theoretical values. 
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3.2. General Procedure for the Synthesis of Compounds 7–20 

A solution of 2-hydroxybenzaldehyde (1.6 mmol), the appropriate phenylacetic acid (2.0 mmol) and 

DCC (2.5 mmol) in dimethyl sulphoxide (5.0 mL) was heated in an oil-bath at 100–110 °C for 24–48 h. 

Cold water (20 mL) and acetic acid (3.0 mL) were added to the reaction mixture; after keeping it at room 

temperature for 4 h, it was extracted with ether; dicyclohexylurea, which separated at the interface, 

was filtered and ether layer extracted with aqueous sodium bicarbonate solution (5%, 50 mL). The 

ether layer was separated and magnetically stirred for 1 h with sodium metabisulphite solution (5%,  

3 × 50 mL) to remove the unreacted 2-hydroxybenzaldehyde. The ether layer was separated, washed 

with water, the solvent distilled off and the residue kept in vacuo over phosphorus pentoxide for 24 h. 

The dry residue on recrystallization from ethyl acetate-methanol afforded the corresponding  

3-phenylcoumarins 7–15 as colourless solids. 

3-Phenyl-2H-chromen-2-one (7) was prepared from phenylacetic acid as described in the general 

procedure; yield 45%; mp 139–141 °C (MeOH). The spectral data (IR, 1H-NMR and 13C-NMR) were 

comparable with the data reported in reference [44]. MS (EI) m/z 222 (M+, 51). 

3-(2-Chlorophenyl)-2H-chromen-2-one (8) was prepared from 2-chlorophenylacetic acid according to 

the general procedure; yield 30%; mp 186–188 °C (MeOH); IR 3042, 1717, 1710, 1685, 1604, 1489; 
1H-NMR (CDCl3) δ 7.76 (s, 1H), 7.62 (bs, 1H), 7.52 (bs, 1H), 7.42 (bs, 1H), 7.35 (m, 1H), 7.35 (m, 

1H), 7.35 (m, 1H), 7.35 (m, 1H), 7.35 (m, 1H); 13C-NMR (CDCl3) δ 116.7, 119.0, 124.6, 126.9, 127.1, 

128.1, 129.9, 130.1, 131.4, 131.9, 133.6, 133.8, 142.7, 154.0, 159.8. MS (EI) m/z 256 (M+, 42). 

3-(4-Chlorophenyl)-2H-chromen-2-one (9) was prepared from 4-chlorophenylacetic acid using the 

general procedure described before; 60% yield; mp 190–192 °C (MeOH). The spectral data (IR,  
1H-NMR and 13C-NMR) were quite comparable with the data reported in reference [45]. MS (EI) m/z 

256 (M+, 55). 

3-(4-Methoxyphenyl)-2H-chromen-2-one (10) was prepared from 4-methoxyphenylacetic acid 

acording to general procedure; yield 55%; mp 141–143 °C (MeOH); IR, 1H-NMR and 13C-NMR 

(CDCl3) as described in reference [45]. MS (EI) m/z 252 (M+, 95). 

3-(4-Methylsulfanylphenyl)-2H-chromen-2-one (11) was prepared from 4-methylsulfanylphenylacetic 

acid according to general procedure; yield 45%; mp 157–159 °C (MeOH); IR 3045, 2918, 1713 ,1686, 

1607, 1494; 1H-NMR (CDCl3) (400 MHz) δ 7.80 (s, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.52 (d, J = 8.3 Hz, 

1H), 7.50 (dt, J = 1.8, 8.3 Hz, 1H), 7.33 (br d, J = 8.3 Hz, 1H), 7.31 (d, J = 8.3 Hz, 2H), 7.30 (br t,  

J = 8.3, 1.8 Hz, 1H), 2.5 (s, 3H); 13C-NMR (CDCl3) δ 116.4, 119.7, 124.5, 126.1, 126.1, 127.7, 127.8, 

128.8, 128.8, 131.1, 131.3, 139.1, 139.9, 15.5, 15.5, 153.4, 160.6. MS (EI) m/z 268 (M+, 100). 

3-(2,4-Dichlorophenyl)-2H-chromen-2-one (12) was prepared from 2,4-dichlorophenylacetic using the 

general procedure; 38% yield; mp 226–228 °C (MeOH); IR 1718, 1701, 1605; 1H-NMR (CDCl3)  

δ 7.75 (s, 1H), 7.57 (m, 2H), 7.52 (dd, J = 2.0, 8.0 Hz, 1H), 7.51 (m, 1H), 7.41 (br d, J = 8.0 Hz, 1H), 

7.36 (m, 1H), 7.35 (s, 1H); 13C-NMR (CDCl3) δ 116.8, 118.9, 124.7, 126.0, 127.3, 128.5, 129.8, 132.2, 

132.2, 134.5, 135.4, 143.0, 154.0, 159.7. MS (EI) m/z 290 (M+, 6). 
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3-(Benzo[d][1,3]dioxol-5-yl)-2H-chromen-2-one (13) was prepared from 2-(benzo[d][1,3]dioxol-5-yl) 

acetic acid using the general procedure; 32% yield; mp 168–170 °C (MeOH); IR 3,068, 1,715, 1,609, 

1,604; 1H-NMR and 13C-NMR (CDCl3) as described in reference [46]. MS (EI) m/z 266 (M+, 100). 

3-(3,4-Dimethoxyphenyl)-2H-chromen-2-one (14) Prepared as described in the general procedure from 

2-(3,4-dimethoxyphenyl)acetic acid; yield 55%; mp 127–129 °C (MeOH); IR, 1H-NMR and 13C-NMR 

(CDCl3) as described in reference [45]. MS (EI) m/z 282 (M+, 100). 

3-(3,4,5-Trimethoxyphenyl)-2H-chromen-2-one (15) was prepared using the general procedure from  

2-(2,3,4-trimethoxyphenyl)acetic acid; 35% yield; mp 122–124 °C (MeOH); IR 2964, 2940, 1717, 

1605; 1H-NMR (CDCl3) δ 7.80 (s, 1H), 7.55 (dd, J = 2.0, 8.0 Hz, 1H), 7.52 (dt, J = 2.0, 8.0 Hz, 1H), 

7.35 (bd, J = 8.0 Hz, 1H), 7.30 (dt, J = 2.0, 8.0 Hz, 1H), 6.94 (s, 2H), 3.92 (s, 3H), 3.91 (s, 3H), 3.89 

(s, 3H); 13C-NMR (CDCl3) δ 56.2, 56.2, 60.9, 106.0, 106.0, 116.4, 119.7, 124.5, 127.8, 128.1, 130.1, 

131.4, 138.8, 139.5, 153.1, 153.3, 153.3, 160.5. MS (EI) m/z 312 (M+, 100). 

7-Hydroxy-3-phenyl-2H-chromen-2-one (16) A solution of the 2,4-dihydroxybenzaldehyde (0.02 mol) 

and phenylacetyl chloride (0.04 mol) in dry acetone (200 mL) was refluxed with anhydrous K2CO3 (10 g) 

for 6 h on a water bath. Then, acetone was removed under reduced pressure and cold water (100 mL) 

was added to the mixture. The solid product was separated by filtration and washed with cold water  

(2 × 50 mL); yield 92%; mp 217–219 °C (CHCl3/MeOH); IR 3212, 1517, 1676, 1599; 1H-NMR as 

described in reference [38], 13C-NMR (CDCl3) 102.4, 112.0, 113.9, 123.1, 128.2 (5C), 129.1, 135.0, 

141.1, 155.1, 161.6, 161.9. MS (EI) m/z 238 (M+, 72). 

8-Hydroxy-3-(4-methoxyphenyl)-2H-chromen-2-one (17) was prepared from 2,3-dihydroxybenzaldehyde 

(0.02 mol) using the procedure described for 16. Yield 90%; mp 223–225 °C (CHCl3/MeOH);  

IR 3392, 2994, 2935, 2835, 1901, 1697, 1604; 1H-NMR (MeOD) δ 7.83 (s, 1H), 7.63 (d, J = 8.7 Hz, 

2H), 7.06 (br d, J = 7.6 Hz, 1H), 6.98 (dd, J = 1.4, 8.2 Hz, 1H), 6.94 (d, J = 8.7 Hz, 2H), 6.86 (dd,  

J = 1.4 Hz, 8.2 Hz, 1H), 3.82 (s, 3H); 13C-NMR (MeOD) δ 55.6, 55.6, 114.4, 114.4, 115.9, 120.4, 

121.4, 125.8, 127.1, 128.3, 130.5, 130.5, 141.6, 144.3, 150.5, 160.8, 163.0. MS (EI) m/z 268 (M+, 100). 

4-Hydroxy-6-methoxy-3-phenyl-2H-chromen-2-one (18) A solution of dimethyl 2-phenylmalonate 

(0.01 mol) and 4-methoxyphenol (0.01 mol) in diphenyl ether was heated for 3 h to 200–250 °C. When 

the liberation of methanol had stopped, the reaction mixture was heated in an oil bath at 300 °C for 2 h 

more. After cooling, the reaction mixture was diluted with toluene (10 mL), filtered off and washed 

with cyclohexane (20 mL). 91%; mp 215–217 °C (CHCl3/MeOH); IR 3337, 3085, 3061, 3028, 1659; 
1H-NMR (MeOD) δ 7.43 (m, 2H), 7.43 (m, 3H), 7.42 (br s, 1H), 7.29 (d, J = 9.1 Hz, 1H), 7.17 (dd,  

J = 3.0, 9.1 Hz, 1H), 3.87 (s, 3H); 13C-NMR (MeOD) δ 55.4, 105.3, 106.0, 116.4, 117.2, 120.2, 128.1, 

128.5, 128.5, 130.6, 130.6, 130.9, 147.0, 155.7, 160.7, 163.9. MS (EI) m/z 268 (M+, 82). 

4-Hydroxy-7-methoxy-3-phenyl-2H-chromen-2-one (19) was prepared from 3-methoxyphenol (0.01 mol) 

using the same procedure described for 18; yield 90%; mp 217–219 °C (CHCl3/MeOH); IR 3420, 

3092, 1654, 1604, 1559; 1H-NMR (CDCl3) δ 7.78 (d, J = 8.7 Hz, 1H), 7.41 (m, 2H), 7.41 (m, 3H), 

6.87 (dd, J = 2.1, 8.7 Hz, 1H), 6.81 (d, J = 2.1 Hz, 1H), 3.87 (s, 3H); 13C-NMR (CDCl3) 55.8, 100.4, 
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108.2, 112.5, 118.9, 124.8, 128.9, 129.7, 129.7, 130.4, 130.4, 137.5, 154.3, 159.8, 159.9, 163.4. MS 

(EI) m/z 268 (M+, 80). 

4-Chloro-7-methoxy-3-phenyl-2H-chromen-2-one (20) Compound 19 (0.01 mol) and POCl3 (0.5 mL) 

was heated at 135 °C for 4 h, cooled to room temperature, and stored at 0 °C for 1 h. This mixture was 

decanted into ice cold and then extracted with EtOAc to afford 19; yield 93%; mp 221–222 °C 

(MeOH); IR 3,065, 3,021, 1,703, 1,618, 1,590; 1H-NMR (CDCl3) δ 7.83 (d, J = 8.7 Hz, 1H), 7.43  

(m, 2H), 7.43 (m, 3H), 6.93 (dd, J = 2.1, 8.7 Hz, 1H), 6.85 (d, J = 2.1 Hz, 1H), 3.90 (s, 3H); 13C-NMR 

(CDCl3) δ 55.9, 100.5, 112.2, 113.0, 123.8, 127.3, 128.3, 128.3, 128.7, 130.1, 130.1, 132.8, 146.0, 

153.7, 160.0, 163.5. MS (EI) m/z 286 (M+, 94). 

3.3. Anti-HIV Bioassay 

The anti-HIV activity of these coumarins on Tat and NF-κB functions has been analysed. To this 

aim, we have used two stably transfected cell lines. The previously described 5.1 cell line [45] is a  

Jurkat-derived clone stably transfected with a plasmid containing the luciferase gene under the control 

of HIV-LTR. In this cell clone, activation with TNF induces NF-κB activation and subsequent HIV-1 

expression. We have also analyzed the anti-HIV activity in HeLa-Tat-Luc cells, in which the HIV-1 

LTR is directly activated by the HIV-1 Tat protein. A compound was considered active in one assay if 

it inhibited the target function by more than 50% (NF-κB) or 30% (Tat) at either 25 or 50 μM 

concentration. The active compounds were submitted for further evaluation through a HeLa-Tet-ON 

assay, as previously described [41]. In the Hela-Tet-ON cells the luciferase expression is under control 

of an artificial promoter that can be activated by tetracycline. Therefore, compounds that inhibit 

tetracycline-induced luciferase activity were considered non-specific for luciferase-based anti-HIV 

assays and were not examined further, and those showing specific activity (non-inhibitors in HeLa-Tet-ON 

cells) were analysed using a recombinant virus (RV) assay. In addition, those compounds that were 

specific and did not reach the threshold of NF-κB and anti-Tat activity were also tested in RV assay to 

rule out anti-HIV activity through other pathways. In this system, a luciferase reporter gene has been 

cloned in full-length infectious DNA. The measured luciferase activity is therefore directly proportional 

to the replication of the virus. This assay is more sensitive and reliable than classic infectious assays [43]. 

Cell viability was evaluated in non-infected treated cultures following the same protocol as in the 

recombinant virus assay and measuring cell toxicity with a classical MTT assay. IC50 and CC50 were 

calculated using GraphPad Prism software [non-linear regression, log (inhibitor) vs. response]. 

4. Conclusions 

In summary, a small collection of simple 3-phenylcoumarins has been prepared and evaluated  

in vitro against two molecular targets of HIV-1 and also as viral replication inhibitors. Along with  

4-phenylcoumarin skeleton, the 3-phenylcoumarin one can also be considered a scaffold for the design 

and development of new potential antivirals, acting through the specific inhibition of NF-κB or the 

transcriptional Tat protein. Considering that simple changes in structure promote highly significant 

changes in bioactivity, further research should take into account these findings for the preparation of 

more potent and selective inhibitors of the NF-κB and Tat viral pathways. 
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