Mostrar el registro sencillo del ítem

dc.contributor.authorMartín-Romero, M.T.
dc.contributor.authorArgudo, Pablo G.
dc.contributor.authorCamacho, Luis
dc.contributor.authorCarril, Mónica
dc.contributor.authorCarrillo-Carrión, C.
dc.contributor.authorGiner-Casares, Juan J.
dc.date.accessioned2019-09-23T12:13:51Z
dc.date.available2019-09-23T12:13:51Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/10396/19004
dc.description.abstractFluorescent inorganic quantum dots are highly promising for biomedical applications as sensing and imaging agents. However, the low internalization of the quantum dots, as well as for most of the nanoparticles, by living cells is a critical issue which should be solved for success in translational research. In order to increase the internalization rate of inorganic CdSe/ZnS quantum dots, they were functionalized with a fluorinated organic ligand. The fluorinated quantum dots displayed an enhanced surface activity, leading to a significant cell uptake as demonstrated by in vitro experiments with HeLa cells. We combined the experimental and computational results of Langmuir monolayers of the DPPC phospholipid as a model cell membrane with in vitro experiments for analyzing the mechanism of internalization of the fluorinated CdSe/ZnS quantum dots. Surface pressure-molecular area isotherms suggested that the physical state of the DPPC molecules was greatly affected by the quantum dots. UV–vis reflection spectroscopy and Brewster Angle Microscopy as in situ experimental techniques further confirmed the significant surface concentration of quantum dots. The disruption of the ordering of the DPPC molecules was assessed. Computer simulations offered detailed insights in the interaction between the quantum dots and the phospholipid, pointing to a significant modification of the physical state of the hydrophobic region of the phospholipid molecules. This phenomenon appeared as the most relevant step in the internalization mechanism of the fluorinated quantum dots by cells. Thus, this work sheds light on the role of fluorine on the surface of inorganic nanoparticles for enhancing their cellular uptake.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.sourceColloids and Surfaces B: Biointerfaces 173, 148-154 (2019)es_ES
dc.subjectFluorinationes_ES
dc.subjectLangmuir monolayerses_ES
dc.subjectQuantum dotses_ES
dc.subjectUptakees_ES
dc.subjectDipéptidoses_ES
dc.subjectAutoensamblajees_ES
dc.subjectNanotecnologíaes_ES
dc.subjectMonocapases_ES
dc.titleFluorinated CdSe/ZnS quantum dots: Interactions with cell membranees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.colsurfb.2018.09.050es_ES
dc.relation.projectIDGobierno de España. CTQ2017-83961-Res_ES
dc.relation.projectIDGobierno de España. RyC-2014-14956es_ES
dc.relation.projectIDGobierno de España. IJCI-2014-19614es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem