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Abstract 
 
This paper presents an extension of the inverted decoupling approach that allows for 
more flexibility in choosing the transfer functions of the decoupled apparent process. In 
addition, the expressions of the inverted decoupling are presented for general nxn 
processes, highlighting that the complexity of the decoupler elements is independent of 
the system size. The realizability conditions are stated in order to select a proper 
configuration, and the different possible cases for each configuration are shown. 
Comparisons with other works demonstrate the effectiveness of this methodology, 
through the use of several simulation examples and an experimental lab process. 
 
Keywords: decoupling control, inverted decoupling, simplified decoupling, PID 
control. 
 
 
1. Introduction 
 
Multi-input multi-output (MIMO) processes consist of several measurement and control 
signals, and there are often complicated couplings between them, which can cause 
difficulties in feedback controller design. Control engineers traditionally solve these 
problems using single-loop PID controllers because they can be easily understood and 
implemented [1]. These decentralized approaches have evolved through years of 
experience, and they are adequate when the interactions in different channels of the 
process are modest [2-3]. Nevertheless, when interactions are significant, the 
decoupling is often treated inefficiently, e.g., by detuning control loops. In these cases, a 
full matrix controller (centralized control) is advisable. 
 
There are two approaches of centralized control: a pure centralized strategy [4-9] or a 
decoupling network combined with a diagonal decentralized controller [10-14]. A 
decentralized control system with a decoupling matrix can be designed by combining a 
diagonal controller C(s) with a block compensator D(s) in such a way that the controller 
sees the apparent process G(s)·D(s) as a set of n completely independent processes. The 
essence of decoupling is the imposition of a calculation net that cancels the existing 
process interaction, allowing for independent control of the loops. Although model 
predictive control (MPC) is becoming the standard technique to solve multivariable 
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control problems in the process industry, several authors [6, 7, 12] claim that when 
MPC is used today, it is mostly used on a higher level to give setpoints to the PID 
controllers that are operating on the basic level. They are operating in a supervisory 
mode with sampling times that are longer than in the PID controllers at the lower level. 
And there are some difficulties in dealing with the interaction at the MPC level because 
the bandwidths of the MPC loops are limited. Therefore, the centralized control using 
PID controllers and decoupler networks is an interesting strategy in the process 
industry. 
 
The theory of decoupling control has been addressed in the literature [15-18]. Some 
decoupling schemes are static [19], and others are dynamic [6], [13], [14], [20]. Most of 
these methodologies focus on systems with two inputs and two outputs (TITO systems). 
 
Most decoupling approaches use a conventional decoupling scheme in which the 
process inputs are derived by a time-weighted combination of feedback controller 
outputs (Figure 1). In this case, the design of the decoupler network for an nxn process 
is obtained from (1), generally specifying n elements of the decoupler D(s) or the n 
desired transfer functions of the apparent process Q(s). The most extended forms of 
conventional decoupling were termed ideal and simplified decoupling in [10]. This 
approach has received considerable attention in both control theory and industrial 
practice for several decades. 
 
INSERT HERE FIGURE 1 
 

-1D(s) = G (s)·Q(s)      (1) 
 
In ideal decoupling, the goal is to make the apparent processes as simple as the diagonal 
elements of the process matrix G(s). The main inconveniences of this method are the 
complexity of the decoupler elements (2) and realizability problems. 
 

( )
diag

Adj G(s)
D(s) = ·G (s)

G(s)
    (2) 

 
On the other hand, with simplified decoupling, n elements of the decoupler, generally 
the diagonal ones, are set to unity. Decoupler network design is easier, but the 
complexity of the apparent process (3) is greater since it consists of the determinant of 
G(s) and the gii(s) cofactor, Gii(s). 
 

i ii

G(s)
q (s) =

G (s)
      (3) 

 
An alternative means of decoupling, called inverted decoupling, derives a process input 
as a time-weighted combination of one feedback controller output and the other process 
inputs. It is rarely mentioned in the literature [11], [21], [22], [23], and in those cases, it 
is only applied to TITO processes using the scheme depicted in Figure 2. In this case, it 
is possible to keep the same apparent process of ideal decoupling while using the simple 
decoupler elements of simplified decoupling [11]. 
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In [21], a comparative study of simplified, ideal and inverted decoupling is presented, 
and the practical advantages of inverted decoupling are mentioned. Chen and Zhang 
[23] improved upon the inverted decoupling technique for a class of stable linear 
multivariable processes with multiple time delays and non-minimum-phase zeros. 
 
INSERT HERE FIGURE 2 
 
Nevertheless, the authors have not found any published works in which inverted 
decoupling is applied to processes that are larger than a 2x2 system. In this work, the 
formulation of a general inverted structure for decoupling of nxn processes is presented. 
It is shown that the complexity of the transfer functions of the decoupler elements and 
of the decoupled equivalent open loop process is independent of the system size. In 
conventional decouplings, when the input and output number of the square system 
increases, the complexity of the decoupler elements or the decoupled process is 
increased as well, and so they are more difficult to implement. 
 
In addition, this formulation is carried out using decoupler elements that differ from 
unity, in such a way that the decoupled apparent processes can be specified with more 
flexibility. The paper is structured as follows. Section 2 presents the general formulation 
of inverted decoupling for nxn processes and the different possible configurations. 
Furthermore, a study focused on TITO processes is carried out in order to show all 
possible cases. The expressions for 3x3 processes are also obtained. In Section 3, the 
realizability conditions are stated and some rules are suggested for selecting a proper 
configuration. In Section 4, the performance of the proposed decoupling methodology is 
tested and compared with other methods using several simulation examples and a real 
quadruple tank process. Finally, conclusions are summarized in Section 5. 
 
2. Inverted decoupling for nxn processes 
 
Currently, most papers in the literature regarding inverted decoupling only apply the 
approach to 2x2 processes (Figure 2), and only the expressions for this case are 
presented. In this section, the formulation for the general case of nxn processes is 
calculated, and then, the equations for the cases n=2 and n=3 are given. 
 
In order to study inverted decoupling for a square process with n inputs and n outputs, 
the use of a matrix representation is proposed as shown in Figure 3. There are n 
elements of the decoupler (Dd(s) matrix), which try to directly connect the decoupler 
inputs “m” with the process inputs “u”, while the rest of the elements (Do(s) matrix) 
feedback the input process “u” toward the decoupler inputs in order to decouple the 
system. 
 
INSERT HERE FIGURE 3 
 
The whole decoupler D(s) is split into two matrices: a matrix Dd(s) in the direct path 
(between controller outputs c and process inputs u) and a matrix Do(s) in a feedback 
loop (between process inputs u and controller outputs c). The Dd(s) matrix must have 
only n non-zero elements, since there must be only a direct connection for each process 
input. Note that these relationships are not required in the Do(s) matrix. Additionally, 
since the signal flow direction in Do(s) is opposite that of Dd(s), the corresponding 
elements of Do(s) that must equal zero are the transpose non-zero elements of Dd(s). 



 - 4 - 

For instance, in a 3x3 process, if element Dd(3,1) is specified as a direct path between 
u3 and c1, there will not be feedback from u3 toward c1, and thus, the element Do(1,3) 
must be zero. 
 
Following the decoupler representation given in Figure 3, the expression of the whole 
decoupler matrix D(s) is obtained as follows: 
 

-1D(s)=Dd(s)·(I-Do(s)·Dd(s))     (4) 
 
The transfer function matrix D(s) of conventional decoupling is related to the inverted 
decoupling structure according to (4). As it is a complex expression, it is easier to work 
with its inverse, which is very simple, as follows:  
 

-1 -1 -1D (s)=(I-Do(s)·Dd(s))·Dd (s)=Dd (s)-Do(s)   (5) 
 
Inverting equation (1) and substituting it into (5), the following expression is obtained: 
 

-1 -1Dd (s)-Do(s)=Q (s)·G(s)     (6) 
 
This last expression can be used to calculate the elements of the inverted decoupling. Its 
main advantage is its simplicity, regardless of the size of the system, because the Q(s) 
matrix is chosen to be diagonal and the resulting subtraction of the inverse of Dd(s) and 
Do(s) is a transfer matrix with only one element to be calculated in each position. 
 
Note that Dd(s) has to be non-singular because it is inverted, and therefore, when its 
elements are chosen, only one element in each row and column can be selected. 
Consequently, for an nxn process there are only n! possible choices of Dd(s). 
 
To name these possibilities, the authors propose a notation in which the indicated 
number corresponds to the column with the selected element. For instance, in a 3x3 
process, configuration 1-2-3 means that elements Dd(1,1), Dd(2,2) and Dd(3,3) are 
chosen; configuration 3-1-2 means that elements Dd(1,3), Dd(2,1) and Dd(3,2) are 
selected, and so on. Each configuration has a different set of decoupler elements, which 
is interesting since some choices can result in non-realizable decoupler elements. Thus, 
the configuration can be selected depending on the realizability, which will be discussed 
later.  
 
2.1. Inverted decoupling for 2x2 processes 
 
In this section, a detailed study of inverted decoupling for 2x2 processes is carried out 
using expression (6). In this case (n=2), there are two possible configurations to choose 
for the Dd matrix: diagonal elements (configuration 1-2) or off-diagonal elements 
(configuration 2-1). Hereafter, the Laplace variable s is omitted for simplicity. 
 
a) Configuration 1-2 
 
Using this configuration, the following expressions (8) for the elements of the inverted 
decoupling are obtained from (7), which is derived from (6). These are the expressions 
for general inverted decoupling with configuration 1-2. q1 and q2 are the desired 
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equivalent open loop transfer functions to be controlled by the decentralized control, 
and they can be specified freely as long as the decoupler elements are realizable. 
However, in most examples found in the literature on inverted decoupling, two of these 
elements are set to unity, and so only two elements need to be implemented. 
 

11 12
12

11 1 1

21 22
21

22 2 2

g g1 -do
dd q q

=
1 g g-do

dd q q

  
  
  
  
        

    (7) 

1 12
11 12

11 1

21 2
21 22

2 22

q -gdd = do =
g q
-g qdo = dd =
q g

    (8) 

 
Usually, the two non-zero elements equal to one are the elements in the direct way, that 
is, the elements of the Dd matrix. However, this case is only one of the four possible 
cases according to the two elements chosen to be equal to unity. The control schemes of 
these different cases are depicted in Figure 4. In an nxn process, the number of possible 
cases for each configuration is nn. Nevertheless, the realizability of the decoupler 
elements in each configuration is always the same, independent of the selected case. For 
example, as shown in Table 1, for inverted decoupling of TITO processes using 
configuration 1-2, the pair of decoupler elements that differ from one have the following 
expressions: 
 

12 21

11 22

-g -gand
g g

     (9) 

 
INSERT HERE FIGURE 4 
 

 Decoupler elements Decoupled process 

Case 1 
11 22

12 21
12 21

11 22

dd =dd =1
-g -gdo = , do =
g g

 11

22

g 0
Q=

0 g
 
 
 

 

 Case 2 
11 21

12 21
12 22

11 22

dd =do =1
-g -gdo = , dd =
g g

 11

21

g 0
Q=

0 -g
 
 
 

 

Case 3 
12 21

12 21
11 22

11 22

do =do =1
-g -gdd = , dd =
g g

 12

21

-g 0
Q=

0 -g
 
 
 

 

Case 4 
12 22

12 21
11 21

11 22

do =dd =1
-g -gdd = , do =
g g

 12

22

-g 0
Q=

0 g
 
 
 

 

 
Table 1 - Cases of 2x2 inverted decoupling with two unitary elements (configuration 1-

2) 
 
b) Configuration 2-1 
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In this configuration, the general expressions (11) for the inverted decoupling are 
obtained from (10), which is derived from (6). Note that care should be taken in 
inverting the Dd matrix. 
 

11 12
11

21 1 1

21 22
22

12 2 2

g g1-do
dd q q

=
1 g g-do

dd q q

  
  
  
  
        

    (10) 

 
11 2

11 12
1 21

1 22
21 22

12 2

-g qdo = dd =
q g
q -gdd = do =
g q

    (11) 

 
If two of these elements are set to unity, there are again four possible cases (as with 
configuration 1-2). However, the pair of decoupler elements that differ from one is 
given by (12), which is the inverse of (9) in the other configuration. 
 

11 22

12 21

-g -gand
g g

    (12) 

 
The cases in which the elements of the Dd matrix are equal to unity (case 1 in 
configuration 1-2, for instance) are the only ones found in the literature. 
 
2.2. Inverted decoupling for 3x3 processes 
 
For 3x3 processes, the procedure is the same: we obtain the expressions from (6) after 
choosing the configuration. In this case, there are six (3!) possible configurations 
according to the three elements of Dd chosen to be non-zero. In the following, two 
examples of these configurations are shown. Using configuration 1-2-3 (diagonal 
elements of Dd) in (6), equation (13) is obtained. From this, the expressions of the 
decoupler elements (14) are easily derived.  
 

1311 12
12 13

1 1 111

2321 22
21 23

22 2 2 2

31 32 33
31 32

33 3 3 3

gg g1 -do -do
q q qdd

gg g1-do -do =
dd q q q

1 g g g-do -do
dd q q q

  
  
  
  
  
  
  
        

   (13) 

 
131 12

11 12 13
11 1 1

2321 2
21 22 23

2 22 2

31 32 3
31 32 33

3 3 33

-gq -gdd = do = do =
g q q

-g-g qdo = dd = do =
q g q

-g -g q
do = do = dd =

q q g

   (14) 
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Using configuration 2-1-3 (15) and operating in the same way, the corresponding 
expressions of the decoupler elements (16) are achieved. 
 

1311 12
11 13

1 1 121

2321 22
22 23

12 2 2 2

31 32 33
31 32

33 3 3 3

gg g1-do -do
q q qdd

gg g1 -do -do =
dd q q q

1 g g g-do -do
dd q q q

  
  
  
  
  
  
  
        

   (15) 

 
1311 2

11 12 13
1 21 1

231 22
21 22 23

12 2 2

31 32 3
31 32 33

3 3 33

-g-g qdo = dd = do =
q g q

-gq -gdd = do = do =
g q q
-g -g q

do = do = dd =
q q g

    (16) 

 
These expressions are as simple as in 2x2 processes. If three elements are fixed to unity, 
there are 27 cases for each configuration. Nevertheless, we study only the case in which 
the elements of the Dd matrix are equal to unity. In this case and using configuration 1-
2-3, the following expressions are obtained: 
 

1312
11 12 13

11 11

2321
21 22 23

22 22

31 32
31 32 33

33 33

-g-gdd =1 do = do =
g g

-g-gdo = dd =1 do =
g g
-g -g

do = do = dd =1
g g

    (17) 

 
The apparent processes are the diagonal elements of G(s), as obtained with ideal 
decoupling, and the decoupler elements are as simple as the simplified decoupler 
elements for 2x2 processes. 
 
In [24], an interaction compensator is designed for a 3x3 process as a static 
compensator. This design is carried out as in the simplified decoupling case. The 
expressions of simplified decoupling for 3x3 processes are shown in (18) where Gij is 
the cofactor corresponding to gij(s) of G(s). Then, the realization is made as with the 
inverse decoupling structure using the static simplified decoupling elements for 3x3 
processes (18). It is said that the resulting interaction compensator obtains the apparent 
process of the ideal decoupling case in steady-state conditions. This last statement is 
wrong, because it would only be correct for TITO processes, not for systems with 
greater dimensions. 
 
In the case of 3x3 processes, the cofactor of g11 is G11= g22·g33-g32·g23. Therefore, it is 
easy to find that the expressions of the inverted decoupler elements in (17) are much 
simpler than the simplified decoupler elements in (18). In addition, the apparent 
processes are given by equation (3), which is much more complex than the diagonal 
elements of G(s). 
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21 31

22 33

12 32

11 33

13 23

11 22

G G1
G G

G GD= 1
G G
G G 1
G G

 
 
 
 
 
 
 
  
 

     (18) 

 
2.3. General expressions of inverted decoupling 
 
From (6) and the equations of the previous sections, it is possible to obtain the general 
expressions of inverted decoupling for nxn processes. If the configuration {p1-p2-…-pi-
…pn-1-pn} is chosen, the elements that differ from zero of the Dd and Do matrices are 
given by (19) and (20), respectively. The transfer functions of the apparent process qi(s) 
can be selected in any way that assures the realizability of these decoupler elements. 
 

;= ∀ =j
ij i

ji

q
dd i j p

g
     (19) 

 

, ;
−

= ∀ ≠ij
ij j

i

g
do i j i p

q
    (20) 

 
The following advantages of inverted decoupling are concluded from these general 
expressions: 
 
- The apparent processes do not contain sums of transfer functions, and therefore, tuning 
of the diagonal controllers is easier. In multivariable processes with strong cross 
couplings, even if the elements of the system have simple dynamics, conventional 
decoupling may result in complicated diagonal apparent processes consisting of parallel 
coupled processes that may have different signs and different time delays [12]. An 
example of such a diagonal element is: 
 

( )( ) ( )( )
-4s -s1.2 1G(s)= e - e

0.5s+1 0.7s+1 3s+1 2s+1
    (21) 

 
which consists of a difference between two fairly simple transfer functions. The step 
response of this process is shown in Figure 5. If PID controllers are used to control a 
system with diagonal elements like (21), design methods that rely on simple process 
dynamics, like step response methods [25], are not appropriate. 
 
INSERT HERE FIGURE 5 
 
- Decoupler elements do not contain either sum of transfer functions, so they are easy to 
design. Using conventional decoupling, in some cases, it is possible to have decoupler 
elements with complexity similar to that of process (21), and therefore, they are difficult 
to implement. 
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- The complexity of the decoupler elements and apparent processes is always the same, 
independent of the size of the process. With conventional decoupling, these elements 
become more complex as the system size increases. 
 
Nevertheless, inverted decoupling presents an important disadvantage: due to stability 
problems, it cannot be applied to processes with RHP zeros in the determinant of the 
transfer matrix G(s). For internal stability, these RHP zeros should appear in the 
apparent process. In a conventional decoupling structure, RHP zeros of the determinant 
of G(s) can be included in the desired equivalent open loop transfer functions qi(s). 
However, this is not possible using inverted decoupling, because such RHP zeros would 
appear as unstable poles in some decoupler elements doij(s). If the multivariable RHP 
zero is associated with a single output and is therefore included in the process transfer 
functions of the same row, inverted decoupling can be applied because the RHP zero 
will be cancelled. 
 
Therefore, as mentioned in [23], it seems that inverted decoupling cannot be applied in 
general to a process with a determinant that has RHP zeros. To apparently solve it, in 
[23], the decoupler structure is changed from inverted decoupling to conventional ideal 
decoupling without feedback, and so, the inverted decoupling structure is not used. 
 
When the non-zero elements of the Dd matrix in (19) are fixed to unity, the expressions 
of the decoupler elements and apparent processes qi(s) are given by (22), (23) and (24).  
 

1 ;= ∀ =ij idd i j p      (22) 

, ; ;
−

= ∀ ≠ =ij
ij j k

ik

g
do i j i p k p i

g
   (23) 

;= ∀ =j ji iq g j i p j     (24) 
 
In this case (non-zero ddij=1), inverted decoupling presents several practical advantages 
over conventional decoupling, which makes this structure very interesting from a 
practical point of view. These advantages [11] are the following: 
 

- The apparent process seen by each controller is the same as that obtained if there 
was no decoupling and the alternate controllers were in the manual mode. 

- Inverted decoupling can often be implemented within a DCS using PID function 
blocks with feedforward inputs. This will automatically provide such features as 
initialization and bumpless transfer between manual and automatic. 

- The antireset windup feature of the PID, combined with its feedforward input, 
can be used to directly take into account the saturation of the manipulated 
variables when inverted decoupling is implemented. 

- When decoupler outputs are used as cascade setpoints to lower level controllers, 
each decoupled control loop is immune to abnormalities (e.g., a valve at a limit 
or a secondary controller in manual) in the secondary of the opposite control 
loops. 

 
Conventional decoupler networks present several practical disadvantages: problems like 
bumpless transfer or antireset windup are more difficult to solve, and the controller 
parameters should change when some decoupler element is disenable, since the apparent 
process will be different. In addition, for high dimensional systems (3x3 or 4x4) the 
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design of conventional decouplers becomes more complicated and important 
approximations are usually necessary. For these reasons, many industrial multivariable 
processes are preferred to be controlled by decentralized PID controllers due to the 
easiness of implementation and tuning. 
 
Nevertheless, using inverted decoupling (with non-zero ddij=1), as the apparent process 
is the same for such processes, their performance could be easily improved simply 
adding decoupling blocks (lead-lags plus time delay blocks). This is important, because 
it means that inverted decoupling can be used in most modern DCS systems using the 
standard blocks that are already available in their function block library. Thanks to the 
easiness of implementation and achieving bumpless transfer, it would be easy to 
alternate between a decentralized or centralized control without modifying the PID 
parameters. For this reason, inverted decoupling may be a good and easy way to 
improve the performance of industrial multivariable processes with interaction 
problems. 
 
3. Decoupler realizability 
 
The realizability requirement for the decoupler is that all of its elements must be proper, 
causal and stable. For processes with time delays or non-minimum-phase zeros, direct 
calculation of the decoupler can lead to elements with prediction or right-half-plane 
(RHP) poles. This problem is discussed in [23] for inverted decoupling of 2x2 
processes. 
 
In this section, the conditions that a specified configuration needs to satisfy in order to 
be realizable are discussed. In addition, the constraints on the apparent process are 
indicated. There are three aspects to take into account and to be inspected for each row: 
 
- Non-causal time delays i jθ  must be avoided in decoupler elements.  If gik is the 
transfer function of the row i with the smallest time delay ikθ , the element ddki of Dd 
should be different from zero. In addition, the time delay of the qi apparent process (

iqθ ) 
must fulfill (25): 
 

min( )
≠

≤ ≤
iq ijik j k

θ θ θ      (25) 

 
- Decoupler elements must be proper, that is, the relative degrees rij must be greater 
than or equal than zero. Similar to the case of time delays, if gik is the transfer function 
of the row i with the smallest relative degree rik, the element ddki of Dd should be 
different from zero. In addition, the relative degree of the qi apparent process (rqi) must 
fulfill (26): 
 

min( )
≠

≤ ≤
iq ijik j k

r r r      (26) 

 
- When some transfer function gim has a RHP zero, the element ddmi of Dd should not 
be different from zero in order to avoid this zero becoming a RHP pole in some 
decoupler element. When the same zero appears in all elements of the same row, it is 
necessary to check the multiplicity ijη  in each element. Again, similar to the other cases, 
if gik is the transfer function of the row i with the smallest RHP zero multiplicity ikη , the 
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element ddki should be non-zero. This RHP zero must appear in the qi apparent process 
with a multiplicity (

iqη ) that fulfils: 
 

min( )
≠

≤ ≤
iq ijik j k

η η η      (27) 

 
From (25), (26) and (27), it is found that when the smallest value (time delay, relative 
degree or RHP zero multiplicity) is shared by two or more transfer functions of the 
same row, there are more possibilities for the configuration, but the flexibility (time 
delay or relative degree) of the apparent process qi is limited to this common smallest 
value of the row. 
 
When two or more elements of Dd must be selected in the same column to satisfy the 
previous conditions in all rows, there are no realizable configurations. Then, it is 
necessary to insert an additional diagonal block N(s) between the system G(s) and the 
inverted decoupler D(s) in order to modify the process and to force the non-realizable 
elements into realizability. Then, inverted decoupling can be applied to the new process 
GN(s)=G(s)·N(s). 
 
N(s) is a diagonal block with the necessary extra dynamics. If there are no realizability 
problems in row i, the N(i,i) element is equal to the unity. If the non-realizability comes 
from an element with a non-causal time delay, an additional time delay ( i se θ− ) is inserted 
in the corresponding diagonal element of N(s) to obtain realizability. If it comes from a 
RHP zero z, which has become an unstable pole, the following element is used in N(s): 
 

*

is z
s z

η− + 
 + 

      (28) 

 
where z* is the complex conjugate of z. If it comes from a properness problem, a simple 
stable pole with the adequate multiplicity can be inserted as follows: 
 

( )
1

1 irsλ +
      (29) 

 
For illustration, considering the following example [5] 
 

( )
( )

( )
( )

2 6

23 8

2 3

2 2
G(s)

0.5 0.5
2 2 2

s s

s s

e e
s s

s e s e
s s

− −

− −

 −
 + + =  − ⋅ − ⋅
  + + 

   (30) 

 
This process has a multivariable RHP zero at s=0.5. Nevertheless, it is associated with a 
single output, the second one, and therefore, inverted decoupling can be applied. 
However, this RHP zero appears in the two process transfer functions of the second row 
with different multiplicity. According to the previous RHP zero condition, the element 
dd21 should be selected to be non-zero in the Dd matrix because element G(2,1) has the 
smallest RHP zero multiplicity. In addition, it has the smallest time delay of the second 
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row. In the first row, due to time delay condition, the element dd11 should be selected to 
be non-zero in the Dd matrix. Since elements dd11 and dd21 are in the same column, no 
configuration is initially realizable. To achieve realizability, an extra time delay of 4 
units has to be added in the first input. In this case, the new process to be decoupled is 
given by (31), and using configuration 2-1, the element dd12 can be selected in the first 
row. Then, according to (11), the decoupler matrices are given by (32) and the apparent 
decoupled process is composed by off diagonal elements of (31). The RHP zero appears 
in the apparent process of the second output, which is necessary for internal stability. 
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   (31) 
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2

ss e
s
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− − ⋅   
   + 

   (32) 

 
Generally, it is preferable to add the minimum extra dynamics. Therefore, after 
checking the necessary additional dynamics of each configuration, we choose the one 
with fewer RHP zeros or time delays in N(s). 
 
The problem of determining the minimal N(s) for a given configuration can be 
formulated as a linear programming problem. For instance, the next example of a 3x3 
process (33) shows the procedure when it is only necessary to add extra time delays in 
N(s). This process, the Tyreus distillation column [26], does not have any 
configurations in which all inverted decoupling elements are realizable. According to 
the previous condition, the elements dd11, dd23 and dd33 should be selected to be non-
zero in the Dd matrix because they have the smallest time delays by row. However, two 
of them are in the same column, so no configuration is initially realizable. 
 

( )
( ) ( ) ( )
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-0.71 -60 -2.24
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2
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-0.0204 0.33 -2.38G s
7.14 1 2.38 1 1.43 1

-0.374 11.3 9.811
22.22 1 11.36 121.74 1

 
 
 + + + 
 =  + + +


 + ++ 

s s s

s s s

s s s

e e e
s s s
e e e

s s s

e e e
s ss






   (33) 

 
To force realizability, the diagonal block of extra time delays 
N(s)=diag( 31 2, , n sn s n se e e−− − ) is proposed, and the goal is to specify the smallest ni≥0 that 
obtains realizability for the inverted decoupling. The time delay matrix Θ  of the new 
process G(s)·N(s) is given by (34). 
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1 2 3

1 2 3

1 2 3

0.71 60 2.24
0.59 0.68 0.42
7.75 3.79 1.59

n n n
n n n
n n n

+ + + 
 Θ = + + + 
 + + + 

   (34) 

 
Configuration 1-2-3 is selected, and consequently, the diagonal elements of (34) should 
be the smallest. According to (17), where the same configuration is used, the time delay 
matrix of the Do matrix is given by (35), and its time delays must be equal to or greater 
than zero in order to obtain realizability in the decoupler ( 0DoΘ ≥ ). 
 

2 1 3 1

1 2 3 2

1 3 2 3

0 59.29 1.53
0.09 0 0.26

6.16 2.2 0
Do

n n n n
n n n n

n n n n

+ − + − 
 Θ = − + − − + − 
 + − + − 

   (35) 

 
This condition can be represented as follows: 
 

1

2

3

1 1 0 59.29
1 0 1 1.53
1 1 0 0.09

· ·
0 1 1 0.26
1 0 1 6.16
0 1 1 2.2

N

n
A b n

n

− −   
   − −       −  Θ ≥ ⇔ ≥    −    

    − −
      − −   

   (36) 

 
Then, the problem can be formulated as the following linear programming minimization 
(37), which obtains the smallest sum of time delays. 
 
min

: · , 0
i

N i

n
subject to A b n− Θ ≤ − ≥

∑     (37) 

 
For the example under study, the solution is n1=0.09, n2=0 and n3=0.26, and 
configuration 1-2-3 is the only one that achieves realizability. Using other possible 
configurations, there is no feasible region in problem (37), independent of N(s).  
 
This procedure can be similarly applied to realizability problems that arise from relative 
degrees or RHP zeros. When the inclusion of an additional block N(s) is necessary to 
obtain realizability, one of the main inconveniences is a loss of the practical advantages 
of the inverted decoupling, as mentioned in [11]. 
 
4. Examples   
 
In this section, the proposed methodology is applied to three simulated processes of 
different dimensions. Additionally, its effectiveness is verified in a real quadruple tank 
plant. 
 
4.1. Example 2x2: An industrial-scale polymerization reactor 
 
This process [7] is an industrial-scale polymerization reactor given by (38), where the 
time scales are in hours. The two controlled variables are measurements of the reactor 
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condition, and the two manipulated variables are the setpoints of the two reactor feed 
flow loops.  
 

0.2 0.4

R 0.2 0.4

22.89 11.64
4.572 1 1.807 1G (s)
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2.174 1 1.801 1

− −

− −

 ⋅ − ⋅
 + + =
 ⋅ ⋅
 + + 

s s

s s

e e
s s
e e
s s

   (38) 

 
In this case, due to the time delays of the system, there are no realizable configurations 
for inverted decoupling. To obtain realizability, it is necessary to add an extra time 
delay associated with the first input. The diagonal block N(s) is given by n11(s)=e-0.2s 
and n22(s)=1. Then, the new apparent process is the following: 
 

N

R

0.4 0.4

0.4 0.4

22.89 11.64
4.572 1 1.807 1G (s)

4.689 5.80
2.174 1 1.801 1

− −

− −

 ⋅ − ⋅
 + + =
 ⋅ ⋅
 + + 

s s

s s

e e
s s
e e
s s

   (39) 

 
As there are no RHP zeros in the determinant of G(s), inverted decoupling is applicable. 
If configuration 1-2 is chosen and the two elements of the Dd(s) matrix are fixed to one, 
according to Table 1, the apparent processes q1(s) and q2(s) are given by g11(s) and 
g22(s) of (39). The other two decoupler elements of Do(s) are collected in Table 2. 
 
After determining the decoupler network, the parameters of the decentralized controller 
can be tuned independently for the corresponding qi(s). Therefore, the existing SISO 
PID tuning methods can be directly applied to guarantee the stability and performance 
of each loop. In this work, gain margin specifications are used to tune the PID 
controllers according to the tuning rules in [27]. A gain margin of 5 is specified for both 
loops. The parameters of the two resulting PI controllers are shown in Table 2.  

 
Method Decoupler PI parameters IAE1 IAE2 μRS μRP Kp1 Kp2 Ti1 Ti2 

Proposed 
(n11=e-0.2s) 

( )

( )

( )

( )

Dd=I
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22.89 1.807 1
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4.689 1.801 1
0
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s

s

s

s

+

+

− +

+

 
 
 
  
 

 0.157 0.244 4.57 1.8 1.27 1.27 0.2 0.8 

Xiong 
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1 1
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K
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 - - - - 1.31 1.22 0.39 1.23 

Simplified 
decoupling 
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D=

4.572 1
0.508 1
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s

s

s
e

s

s
e

s

−

−

+
−

+

+
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 -0.066 0.119 3.35 1.24 1.34 1.3 0.2 0.81 
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Lee 

(λ1=1.3, 
λ2=1.3) 

 

- 0.133 0.19 6.47 2.61 4.46 2.03 0.3 1.34 

 
Table 2 – Different control methods for Example 1 with performance and robustness 

indices 
 
Next, in order to verify the nominal control system performance, the closed loop system 
responses are shown in Figure 6. There are unit step changes at t=1 h, in the first 
reference, and at t=25 h, in the second one. The IAE of each loop is obtained as 
performance index and collected in Table 2. For comparison, other control 
methodologies are also shown in the figure: the centralized PID control of Xiong [7], a 
multiloop PI controller based on Lee’s method [28], and a simplified decoupling using 
the third configuration in [10]. They are tuned trying to achieve similar performance (a 
gain margin of 5 in each loop). All parameters of these other controllers are shown in 
Table 2 with the corresponding IAE indices. With regard to simplified decoupling, it is 
interesting to note the greater complexity of the apparent decoupled processes (40). 
 

2 0.4

simp1 3 2

2 0.4

simp2 3 2

(13.92 12.56 2.685)q (s)=
1.327 0.5498 0.06721

(5.996 5.411 1.157)q (s)=
1.569 0.8172 0.1413

s

s

s s e
s s s

s s e
s s s

−

−

− + + ⋅
+ + +

+ + ⋅
+ + +

   (40) 

 
INSERT HERE FIGURE 6 
 
The proposed design presents better performance. In the outputs, the inverted 
decoupling is better in terms of overshoot, decoupling and settling time. It also has the 
best average IAE index. The control signals are less aggressive, and their peaks are 
smaller. The response of simplified decoupling is quite similar. 
 
In order to evaluate the robustness of the controllers, a μ-analysis is carried out in 
presence of diagonal multiplicative input uncertainty. Multiplicative input uncertainty is 
represented as illustrated in Figure 7, where ΔI(s) is the disturbance and WI(s) and 
WP(s) are the diagonal weights for uncertainty and performance, respectively. In this 
example, the selected weights are 
 

I I

P P

(0.1s+0.2)W (s)=w (s)·I= ·I
0.05s+1
(s/2.2+0.3)W (s)=w (s)·I= ·I

s

   (41) 

 
The weight wI(s) can be loosely interpreted as the process inputs increase by up to 
200% uncertainty at high frequencies and by almost 20% uncertainty in the low 
frequency range. The performance weight wP(s) specifies integral action, a maximum 
peak for ( )Sσ  of Ms=2.2 and a bandwidth of about 0.3 rad/s. 
 
INSERT HERE FIGURE 7 
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To achieve robust stability the necessary and sufficient condition [16] is  
 
 [ ]RS I I-W (s)T (s) 1= < ∀µ µ ω    (42) 
 
where μ is the structured singular value (SSV) and TI(s)=K(s)G(s)(I+K(s)G(s))-1 is the 
input complementary sensitivity function. To evaluate if the closed loop system will 
respect the desired performance even in presence of diagonal multiplicative input 
uncertainty, the necessary and sufficient condition [16] is 
 

I I I
RP

P P

-W (s)T (s) -W (s)K(s)S(s)
1

W (s)S(s)G(s) W (s)S(s)
 

= < ∀ 
 

µ µ ω  (43) 

 
where S(s)= (I+G(s)K(s))-1 is the sensitivity function and T(s)=G(s)K(s)(I+G(s)K(s))-1 
is the complementary sensitivity function. 
 
Figure 8 shows the SSV for robust stability and robust performance for the different 
controllers. The robust stability (RS) is clearly smaller than one for all frequencies, 
indicating that the systems will remain stable in spite of an uncertainty of 20% on each 
process input. The peak values are shown in Table 2. The proposed method and the 
simplified decoupling have the smallest values. The robust performance analysis shows 
that the proposed method and simplified decoupling satisfy the robust performance (RP) 
condition (43). For the other controllers, the performance will deteriorate at frequency 
range of [1-10] rad/s, where the peaks appear. These values are also collected in Table 
2. The multiloop PI controller of Lee has a good robust stability; however, it shows the 
worst robust performance, even at low frequencies, due to the strong interactions in the 
first loop. 
 
INSERT HERE FIGURE 8 
 
4.2. Example 3x3: Tyreus distillation column 
 
This process [26] is a sidestream column separating a ternary mixture, where a feed 
containing 10 percent benzene, 45 percent toluene and 45 percent o-xylene is separated 
in a single column into three product streams. The transfer function matrix is given by 
(33), where the controlled and manipulated variables are y1 (toluene impurity in the 
distillate); y2 (benzene impurity in the sidestream); y3 (toluene impurity in the bottom); 
u1 (reflux ratio); u2 (sidestream flow rate); u3 (reboil duty). 
 
As was explained in Section 3, there are no realizable configurations for this process 
due to the time delays. Thus, it is necessary to include an additional block N(s) with 
delays. To achieve realizability by adding the minimum quantity of delays, the best 
choice is configuration 1-2-3 with n11(s)=e-0.09s, n22(s)=1 and n33(s)=e-0.26s. The new 
apparent process to design the inverted decoupling is: 
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   (44) 

 
Therefore, using configuration 1-2-3 and fixing the three elements of the Dd(s) matrix 
to one, the open loop processes are the diagonal elements of (44), and the decoupler 
matrix Do(s) can be calculated according to (17), obtaining: 
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 (45) 

 
Although the process is a 3x3 system, the complexity of the elements of (45) is as 
simple as that of the inverted decoupler elements for 2x2 processes. Three PI controllers 
are independently tuned for the corresponding decoupled processes qi(s) based on the 
IMC rules of Rivera [29]. Closed-loop time constants of 15, 20 and 18 s are specified in 
each loop, respectively. The parameters are listed in Table 3. 
 

Method PI parameters IAE1 IAE2 IAE3 μRS μRP Kp1 Kp2 Kp3 Ti1 Ti2 Ti3 
Proposed 

(n11=e-0.09s, n33=e-0.26s) 2.25 0.77 0.07 67.1 5.1 12.3 15 21.3 22.9 0.28 0.86 

Wang - - - - - - 38.7 31 38.3 0.22 1.24 

Liu - - - - - - 17.6 25.1 22.9 0.23 0.77 

Lee 
(λ1=15,λ2=20,λ3=18) 2.14 -0.04 0.13 61.1 2.39 37.5 65.1 22.8 133 0.31 1.8 

 
Table 3 – PI parameters, performance and robustness indices for the different control 

methods for Example 2 
 
The closed loop system responses (outputs and control signals) are shown in Figure 9. 
There are unit step changes at t=0 s in the first reference, at t=333 s in the second one 
and at t=666 s in the third one. 
 
For comparison, other control methodologies are also shown in the figure: the pure 
centralized control of Wang in [18], the analytical decoupling control of Liu in [30], and 
a multiloop PI controller. Some elements of the controllers of Wang, K(s), and Liu, 
C(s), are shown in (46) and (47), respectively. In them, all of the elements have a high 
order in the numerator and denominator, about third, fourth, fifth or sixth order plus 
time delay. Their higher complexity is clear in comparison with the elements of the 
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proposed control in (45). The multiloop PI controller is tuned based on Lee’s method 
[28], and using the same closed-loop time constants as the proposed control. According 
to the relative gain array (RGA), the chosen pairing has been y1-u1, y2-u3 and y3-u2. 
The PI parameters are collected in Table 3 with the performance and robustness indices 
of the different methodologies.  
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INSERT HERE FIGURE 9 
 
The proposed design achieves perfect decoupling performance without overshoot or 
inverse response in the outputs; although the control signals are more oscillatory than in 
Wang’s control. In addition, it obtains the smallest IAE. The response is quite similar 
than that of Liu’s controller. Nevertheless, it is important to note that the complexity of 
the controller of Wang or Liu is much greater than that of the proposed control. In 
addition, these design procedures are more complex than that of the proposed inverted 
decoupling. The response of the multiloop controller is very good in the second loop; 
however, it shows important interactions in the other outputs. 
 
In order to investigate the robustness of the controllers, a μ-analysis is carried out as it 
was in the previous example. The selected weights are given by (48). Figure 10 shows 
the SSV for robust stability and robust performance for the different controllers. The 
robust stability is easily satisfied by all of controllers. The smallest values are achieved 
by the methods of Wang and Liu, although all values are very close. The robust 
performance analysis shows that the Liu’s control and the proposed controller satisfy 
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the robust performance condition (43). In spite of its high complexity, the performance 
of Wang’s controller will deteriorate at frequency range of [0.01-0.1] rad/s, where a 
peak appears. The multiloop PI controller has a good robust stability; however, due to 
the strong interactions, it shows the worst robust performance at frequencies below 0.1 
rad/s. 
 

I I

P P

(2s+0.2)W (s)=w (s)·I= ·I
s+1

(s/2.75+0.025)W (s)=w (s)·I= ·I
s

   (48) 

 
INSERT HERE FIGURE 10 
 
4.3. Example 4x4: HVAC process 
 
This interactive 4x4 process is the experimental centralized HVAC system of four 
rooms that appears in [31]. Air temperature control for four rooms is a complicated 
multivariable control problem because there are interactions among the air flow rates to 
the different rooms. The air temperature in the four rooms is controlled by regulating 
the position of four variable-air-volume (VAV) dampers. The 4x4 model is: 
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  (49) 

 
In [31], using the normalized decoupling control system design rules, an apparent 
decoupled process (50) is proposed. Then, a normalized decoupling network is designed 
using the ETF method [14]. By selecting a gain margin of 5 and a phase margin of 2π/5 
rad in all of the loops, a diagonal PI controller is designed. The parameters are collected 
in Table 4. 
 

21.82 21.32 22.21 23.12

HQ (s) , , ,
113.83 1 121.37 1 113.9 1 123.55 1

s s s se e e e
diag
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  (50) 

 
In process (49), the only configuration for inverted decoupling that achieves 
realizability without adding extra dynamics is configuration 1-2-3-4. Using this 
configuration, the proposed extended approach of inverted decoupling is applied in such 
a way that the same apparent process (50) is specified in (19) and (20), resulting in the 
following Dd and Do matrices: 
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(52) 
 
In order to achieve the same performance obtained with the normalized decoupling in 
[31] and because the apparent decoupled process is practically identical, the same PI 
parameters are used in the proposed control. Figure 11 shows the closed loop system 
response (outputs and control signals) of the designed inverted decoupling control in 
comparison with that of the normalized decoupling of [31]. A multiloop PI controller 
based on the Lee’s method [28] is also shown. 
 

Method PI parameters IAE1 IAE2 IAE3 IAE4 μRS μRP Kp1 Kp2 Kp3 Kp4 Ti1 Ti2 Ti3 Ti4 

Proposed 1.64 1.79 1.61 1.68 69.4 67.8 70.7 73.5 80.4 78.1 81.7 85.1 0.22 0.97 

Normalized 
Decoupling 1.64 1.79 1.61 1.68 69.4 67.8 70.7 73.5 87.2 84.5 87.9 90.7 0.24 1.04 

Lee 
(λ i=45, i∀ ) 

-
20.5 

-
23.5 

-
19.3 

-
19.2 101.8 108.3 108.2 117.4 99.9 99.1 95.2 95.8 0.41 1.22 

 
Table 4 – PI parameters, performance and robustness indices for the different control 

methods for Example 3 
 
INSERT HERE FIGURE 11 
 
There is a unit step change in each reference every 500 seconds, and at t=2000 s, there 
is a unit step in all process inputs at the same time as the input disturbance.  
The performances of the different methodologies are quite similar with the same settling 
time. However, the proposed control achieves perfect decoupling, while the multiloop 
control presents some interactions. Normalized decoupling also shows some little 
interactions. The IAE indices are collected in Table 4. They are very similar; however, 
the proposed control obtains the smallest ones because it achieves perfect decoupling. 
 
Although the complexities of both decouplers are practically the same, another 
advantage of the proposed methodology over normalized decoupling is its direct method 
of carrying out the decoupler network design. In the normalized decoupling design, the 
procedure is slightly more complex with the calculation of the normalized gain matrix, 
the RGA, the RNGA and the RARTA. 
 
Using the weights in (53), a μ-analysis in presence of diagonal multiplicative input 
uncertainty shows that the three controllers have similar robust stability and robust 
performance. Results are depicted in Figure 12 and the peak values are collected in 
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Table 4. The multiloop control has a worse robust performance in a small range of 
frequencies due to the interactions. 

I I

P P

(10s+0.2)W (s)=w (s)·I= ·I
5s+1

(s/2+0.008)W (s)=w (s)·I= ·I
s

   (53) 

 
INSERT HERE FIGURE 12 
 
4.4. Experimental process: quadruple tank system 
 
The experimental process is a quadruple tank plant [32] in the lab of the Computer 
Science Department of the University of Córdoba. The outputs are the level of the lower 
tanks inside the range of [0-35] cm, and the inputs are the flow references of the 
secondary control loops that regulate the operation of the pumps, in the range of [0-200] 
cm3/s. The plant was configured in order to show interaction problems without having 
multivariable RHP zeros, and then, the process was identified around the operation 
point h=[20 20] cm and u=[135 135] cm3/s. The resultant model is given by (54), and it 
has a RGA of 2.29. 
 

( )( )

( )( )
Q

0.3284 0.2454
184.5 1 184.5 1 535.1 1

G (s)
0.2457 0.3378

185 1 503.2 1 185 1

 
 + + + =
 
  + + + 

s s s

s s s

 (54) 

 
Due to relative degrees, configuration 1-2 must be chosen for realizability without 
adding extra dynamics. If the Dd(s) matrix is fixed to the unitary matrix, according to 
Table 1, the apparent processes q1(s) and q2(s) are given by g11(s) and g22(s) of (54), 
and the other two decoupler elements of Do(s) are: 
 

( )

( )

12
12

11

21
21

22

-g 2454do =
g 3284 535.1 1
-g 2457do
g 3378 503.2 1

s

s

−
=

+

−
= =

+

   (55) 

 
After determining the decoupler elements, the parameters of a PI decentralized 
controller are independently tuned for the corresponding qi(s) using the IMC tuning 
rules of [29]. A closed loop time constant of 120 s is specified in both loops to obtain a 
settling time of about 600 s. The parameters of the two resulting PI controllers are 
shown in Table 5 with the performance and robustness indices.  

 
Method PI parameters IAE1 IAE2 μRS μRP Kp1 Kp2 Ti1 Ti2 
Proposed 4.68 4.56 184.4 185 1002 1.27 0.35 0.97 

Decentralized 4.68 4.56 184.5 185 1895 1.22 0.37 0.99 

 



 - 22 - 

Table 5 – PI parameters and performance and robustness indices for a quadruple tank 
process 

 
Figure 13 shows the resultant response of the closed loop system for a step of 5 cm in 
the references. For comparison, we also show the response of the decentralized 
controller obtained only with the PI controllers in Table 5, without the decoupler 
elements (55). Therefore, it is like two independent SISO controllers, one for g11(s) and 
the other for g22(s). 
 
With inverted decoupling, a better response is achieved with a very good decoupling 
performance and a smaller settling time in both loops. The decentralized control reaches 
the references later, and the rejection of the interactions is very slow, and therefore, the 
corresponding IAE indices are greater than those of the proposed control. Using the 
model in (54), a μ-analysis in presence of diagonal multiplicative input uncertainty is 
carried out. The robust stability and robust performance indices in Table 5 for both 
controllers are quite similar. 
 
INSERT HERE FIGURE 13 
 
5. Conclusions 
 
A new generalized approach of the inverted decoupling technique for nxn processes has 
been developed in this work. The problem is approached from a compact matricial 
formulation, and we demonstrate that the transfer functions of the decoupler elements 
and the decoupled equivalent open loop process have the same complexity, regardless 
of the system size. This is a great advantage over other conventional decoupling 
methods. In addition, the methodology allows for more flexibility in choosing the 
decoupled apparent processes, and since they are usually very simple, the tuning of 
decentralized controllers is much easier. Therefore, it is concluded that the proposed 
methodology has important design advantages that make it very easy to apply when the 
process does not have multivariable RHP zeros. 
 
A study of all possible configurations for inverted decoupling was carried out, and the 
realizability conditions for applying this decoupling method were expounded. The 
expressions of inverted decoupling for 2x2 and 3x3 processes are shown in more detail. 
The methodology is illustrated with three simulation examples of different sizes (2x2, 
3x3 and 4x4). PI decentralized controllers were used to control the apparent decoupled 
processes. The system time responses are compared with other works, demonstrating 
that this decoupling achieves similar or better performance. Additionally, an 
experimental lab process of four tanks was used to verify the effectiveness of this 
methodology. 
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Table Captions 
 
 
Table 1 - Cases of 2x2 inverted decoupling with two unitary elements (configuration 1-
2). 
 
Table 2 – Different control methods for Example 1 with performance and robustness 
indices. 
 
Table 3 – PI parameters, performance and robustness indices for the different control 
methods for Example 2. 
 
Table 4 – PI parameters, performance and robustness indices for the different control 
methods for Example 3. 
 
Table 5 – PI parameters and performance and robustness indices for a quadruple tank 
process. 

 

Table Captions

http://ees.elsevier.com/jprocont/viewRCResults.aspx?pdf=1&docID=1994&rev=2&fileID=36492&msid={B2177918-AD3C-4244-9FE7-F58DABC559E8}


 Decoupler elements Decoupled process 

Case 1 

11 22

12 21

12 21

11 22

dd =dd =1

-g -g
do = , do =

g g

 
11

22

g 0
Q=

0 g

 
 
 

 

 Case 2 

11 21

12 21

12 22

11 22

dd =do =1

-g -g
do = , dd =

g g

 
11

21

g 0
Q=

0 -g

 
 
 

 

Case 3 

12 21

12 21

11 22

11 22

do =do =1

-g -g
dd = , dd =

g g

 
12

21

-g 0
Q=

0 -g

 
 
 

 

Case 4 

12 22

12 21

11 21

11 22

do =dd =1

-g -g
dd = , do =

g g

 
12

22

-g 0
Q=

0 g

 
 
 

 

 

Table1



Method Decoupler 
PI parameters 

IAE1 IAE2 μRS μRP 
Kp1 Kp2 Ti1 Ti2 

Proposed 
(n11=e-0.2s) 
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Lee 

(λ1=1.3, 
λ2=1.3) 

 

- 0.133 0.19 6.47 2.61 4.46 2.03 0.3 1.34 

 

 

 

Table2



 

Method 
PI parameters 

IAE1 IAE2 IAE3 μRS μRP 
Kp1 Kp2 Kp3 Ti1 Ti2 Ti3 

Proposed 

(n11=e-0.09s, n33=e-0.26s) 
2.25 0.77 0.07 67.1 5.1 12.3 15 21.3 22.9 0.28 0.86 

Wang - - - - - - 38.7 31 38.3 0.22 1.24 

Liu - - - - - - 17.6 25.1 22.9 0.23 0.77 

Lee 

(λ1=15,λ2=20,λ3=18) 
2.14 -0.04 0.13 61.1 2.39 37.5 65.1 22.8 133 0.31 1.8 

 

Table3



 

Method 
PI parameters 

IAE1 IAE2 IAE3 IAE4 μRS μRP 
Kp1 Kp2 Kp3 Kp4 Ti1 Ti2 Ti3 Ti4 

Proposed 1.64 1.79 1.61 1.68 69.4 67.8 70.7 73.5 80.4 78.1 81.7 85.1 0.22 0.97 

Normalized 

Decoupling 
1.64 1.79 1.61 1.68 69.4 67.8 70.7 73.5 87.2 84.5 87.9 90.7 0.24 1.04 

Lee 

(λi=45, i ) 
-20.5 -23.5 -19.3 -19.2 101.8 108.3 108.2 117.4 99.9 99.1 95.2 95.8 0.41 1.22 

 

Table4



 

Method 
PI parameters 

IAE1 IAE2 μRS μRP 
Kp1 Kp2 Ti1 Ti2 

Proposed 4.68 4.56 184.4 185 1002 1.27 0.35 0.97 

Decentralized 4.68 4.56 184.5 185 1895 1.22 0.37 0.99 

 

Table5



Figure 1. Conventional decoupling control system 

http://ees.elsevier.com/jprocont/download.aspx?id=36486&guid=3f4249cc-624f-4d74-9371-f7ce2f3353b0&scheme=1


Figure 2. Inverted decupling control system of a TITO process.

http://ees.elsevier.com/jprocont/download.aspx?id=36487&guid=4f6de577-9406-44c1-b951-73d7fdd48b6f&scheme=1


Figure 3. Matrix representation of inverted decoupling.

http://ees.elsevier.com/jprocont/download.aspx?id=36488&guid=7cc59760-413b-41fe-874f-56fcf2ac827c&scheme=1


Figure 4. Control schemes of the four cases of 2x2 

http://ees.elsevier.com/jprocont/download.aspx?id=36489&guid=065c52da-a6c9-4cc1-98bd-b0049de9f8f8&scheme=1


Figure 5. Step response of system (21).

http://ees.elsevier.com/jprocont/download.aspx?id=36485&guid=81ab67f1-3a99-4c76-8d6c-736cb5ba014b&scheme=1


Figure 6. Outputs and control signals of example 1

http://ees.elsevier.com/jprocont/download.aspx?id=36501&guid=e4f0cb1e-6354-4e86-9633-ee017b2daa69&scheme=1


Figure 7. System with multiplicative input uncertainty

http://ees.elsevier.com/jprocont/download.aspx?id=36502&guid=087c5614-804c-4991-81f4-ab685a9f71e9&scheme=1


Figure 8. SSV for RS and RP in example 1

http://ees.elsevier.com/jprocont/download.aspx?id=36504&guid=22cac453-3668-487f-93a1-1bfb4434fedd&scheme=1


Figure 9. Outputs and control signals in example 2

http://ees.elsevier.com/jprocont/download.aspx?id=36506&guid=68b2dde2-360e-45da-98c6-d91e99b95bdd&scheme=1


Figure 10. SSV for RS and RP in example 2

http://ees.elsevier.com/jprocont/download.aspx?id=36508&guid=879749e3-497d-4e68-981b-72436588b55f&scheme=1


Figure 11. Outputs and control signals in example 3

http://ees.elsevier.com/jprocont/download.aspx?id=36510&guid=b6be913e-e116-42ae-a4d8-e816c0403c61&scheme=1


Figure 12. SSV for RS and RP in example 3

http://ees.elsevier.com/jprocont/download.aspx?id=36512&guid=8f0a421f-c3db-4799-851f-25c68f86e850&scheme=1


Figure 13. Outputs and control signals in example 4
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