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Contribucciones sobre métodos óptimos y subóptimos de

aproximaciones poligonales de curvas 2-D

Eusebio J. Aguilera Aguilera

Departamento de Informática y Análisis Numérico

Universidad de Córdoba

Resumen

Esta tesis versa sobre el análisis de la forma de objetos 2D. En visión artificial existen

numerosos aspectos de los que se pueden extraer información. Uno de los más usados es la

forma o el contorno de esos objetos. Esta caracteŕıstica visual de los objetos nos permite,

mediante el procesamiento adecuado, extraer información de los objetos, analizar escenas, etc.

No obstante el contorno o silueta de los objetos contiene información redundante. Este

exceso de datos que no aporta nuevo conocimiento debe ser eliminado, con el objeto de agilizar

el procesamiento posterior o de minimizar el tamaño de la representación de ese contorno, para

su almacenamiento o transmisión. Esta reducción de datos debe realizarse sin que se produzca

una pérdida de información importante para representación del contorno original. Se puede

obtener una versión reducida de un contorno eliminando puntos intermedios y uniendo los

puntos restantes mediante segmentos. Esta representación reducida de un contorno se conoce

como aproximación poligonal.

Estas aproximaciones poligonales de contornos representan, por tanto, una versión com-

primida de la información original. El principal uso de las mimas es la reducción del volumen

de información necesario para representar el contorno de un objeto. No obstante, en los últimos

años estas aproximaciones han sido usadas para el reconocimiento de objetos. Para ello los algo-

ritmos de aproximación poligonal se han usado directamente para la extracción de los vectores

de caracteŕısticas empleados en la fase de aprendizaje.

Las contribuciones realizadas por tanto en esta tesis se han centrado en diversos aspectos de

las aproximaciones poligonales. En la primera contribución se han mejorado varios algoritmos

de aproximaciones poligonales, mediante el uso de una fase de preprocesado que acelera estos

algoritmos permitiendo incluso mejorar la calidad de las soluciones en un menor tiempo. En la

segunda contribución se ha propuesto un nuevo algoritmo de aproximaciones poligonales que

obtiene soluciones óptimas en un menor espacio de tiempo que el resto de métodos que aparecen

en la literatura. En la tercera contribución se ha propuesto un algoritmo de aproximaciones que

es capaz de obtener la solución óptima en pocas iteraciones en la mayor parte de los casos. Por

último, se ha propuesto una versión mejorada del algoritmo óptimo para obtener aproximaciones
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poligonales que soluciona otro problema de optimización alternativo.



Contribucciones sobre métodos óptimos y subóptimos de
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Eusebio J. Aguilera Aguilera

Departamento de Informática y Análisis Numérico

University of Cordoba

Abstract

This thesis focus on the analysis of the shape of objects. In computer vision there are

several sources from which we can extract information. One of the most important source of

information is the shape or contour of objects. This visual characteristic can be used to extract

information, analyze the scene, etc.

However, the contour of the objects contains redundant information. This redundant data

does not add new information and therefore, must be deleted in order to minimize the processing

burden and reducing the amount of data to represent that shape. This reduction of data

should be done without losing important information to represent the original contour. A

reduced version of a contour can be obtained by deleting some points of the contour and linking

the remaining points by using line segments. This reduced version of a contour is known as

polygonal approximation in the literature.

Therefore, these polygonal approximation represent a compressed version of the original

information. The main use of polygonal approximations is to reduce the amount of information

needed to represent the contour of an object. However, in recent years polygonal approximations

have been used to recognize objects. For this purpose, the feature vectors have been extracted

from the polygonal approximations.

The contributions proposed in this thesis have focused on several aspects of polygonal ap-

proximations. The first contribution has improved several algorithms to obtain polygonal ap-

proximations, by adding a new stage of preprocessing which boost the whole method. The

quality of the solutions obtained has also been improved and the computation time reduced.

The second contribution proposes a novel algorithm which obtains optimal polygonal approx-

imations in a shorter time than the optimal methods found in the literature. The third con-

tribution proposes a new method which may obtain the optimal solution after few iterations

in most cases. Finally, an improved version of the optimal polygonal approximation algorithm

has been proposed to solve an alternative optimization problem.
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Chapter 1

Introduction

The improvements of the computers and other devices obtained in recent years has made com-

puter vision an important research area. We can find several devices like smartphones, personal

computers, etc, which incorporate a computer vision system. These systems use computer vision

algorithms and methods to improve the human-computer interface. Moreover, other applica-

tions of computer vision are found in other fields of engineering, agriculture, medicine, etc.

These systems apply different computer vision methods to recognize objects, areas of interest

in digital images, determine the configuration of some object to automatize an industrial process,

etc. We focus on different items of digital images and information sources depending on the

task that the system is performing.

1.1 Polygonal approximations

One of the main characteristics used in Computer Vision is the shape of the objects. The contour

of an object contains a great amount of information that we can use for a variety of purposes.

However, the shape of an object also contains redundant data that can be removed without

devaluing the original information. This can be done by reducing the size of the representation

of the shape. This compression is achieved by approximating the shape of the contour using

line segments. This reduced version of the contour is known as polygonal approximation in the

literature.

Formally, we can define a polygonal approximation of a curve A as a subset of points M of

the original set of points N of the curve. The size of the subset of points M is always lower (or

equal) than the size of the original set of points N . Therefore, the polygonal approximation is

the result of connecting the consecutive points of the subset M . In Fig. 1.1 a contour of a horse

and an example of polygonal approximation are shown. Polygonal approximations are usually

formed by line segments, however, other models are present in the literature [30, 42, 11, 36, 56].

As is said above, the main purpose of the polygonal approximation is to reduce the amount

3
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(a) Contour of a horse (b) Polygonal approximation

Figure 1.1: This figure shows an original contour of a horse with 1383 points in (a) and a
polygonal approximation of 75 line segments in (b).

of information needed to represent the shape of an object. For instance, in the literature we

can find these methods for reducing the amount of information in several fields: medical image

analysis [21], industrial robots garment manipulation [51], preprocessing of other computer

vision methods [50, 62]. However, we can use polygonal approximations of digital planar curves

for other purposes like object detection and shape recognition [29, 35, 52].

1.1.1 Assessment of the quality of polygonal approximations

In the literature there are a great amount of methods to obtain polygonal approximations. How-

ever, the evaluation of the quality of the approximations and the performance of the algorithms

have demonstrated to be a complex task.

Most interest in assessing polygonal approximations focus on quantifying the physical dis-

tortion regarding the original planar curve. Different distortion measures can be found in the

literature. A widely used distortion measure is the known as Integer Square Error (ISE). Let us

suppose that a curve S has been approximated using a segment si, sj , then a distortion measure

can be defined as

∆(i, j) =

j∑
k=i

d(sk, si, sj)
2 (1.1)

where d(sk, si, sj) is the orthogonal distance from the point sk to the segment si, sj . There-

fore, the term ∆(i, j) is the summation of the squared distance of the points between si and

sj and the segment si, sj . The summation of these distortions for all the line segments of the

polygonal approximation give us the Integral Square Error, also known as the L2-norm in the

literature. Some authors use the maximum orthogonal distance from a point sk to the segment

that approximates it. This distortion measure is known as E∞ or L∞-norm in the literature.
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These are the most common distortion measures used to solve the polygonal approximation

problem, however some authors have used other distortion measures to solve the polygonal

approximation problem. For instance, instead of using the squared orthogonal distance (L2-

norm), Pikaz and Dinstein [39] used the absolute orthogonal distance (L1-norm or city block

metric).

As explained above, one of the main uses of polygonal approximations is the data reduction

on planar curve representation. For this reason, one of the first assessing measures defined was

the compression ratio (CR), defined as

CR =
N

M
(1.2)

where N is the number of points of the original planar curve and M is the number of points

of the polygonal approximation obtained.

Based on the Integral Square Error and the Compression Ratio, Sarkar [47] proposed to

combine these two measures in a normalized Figure Of Merit (FOM) defined as

FOM =
CR

ISE
(1.3)

This measure of evaluation is biased towards polygonal approximation with lower distortion

as was demonstrated by Rosin [43]. We can obtain polygonal approximations with a low value

of distortion associated by obtaining solutions with high number M of segments. Moreover,

this evaluation measure is not suitable for comparing polygonal approximation with a different

number of segments.

Marji and Siy [24] proposed a modified version of the FOM defined as

Fx =
ISE

CRx (1.4)

where x is used to reduce the imbalance between the numerator and the denominator. The

common values used for x are 1, 2 and 3. Carmona-Poyato et al. [6] demonstrated that the best

performance is obtained when x = 2 because numerator and denominator are of equal power.

Other modification of the FOM was defined by Nguyen and Debled-Rennesson [31]. The

authors combines the ISE, the maximum deviation and the number of line segments of the

polygonal approximation to assess the solution. This measure is defined as

MFOM3 = ISE · E∞ ·M3 (1.5)

where M is the number of line segments of the solution.

In [19] the parametric FOM was proposed. This modified FOM is defined as follows

FOMa = ISE ·Ma (1.6)

where the parameter a is computed for each contour. This is done by using the distortion-
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ration curve (RD) that depends on the values selected for the lower (M1) and upper (M2)

bounds of the number of segments (M) of the solution.

Other modified version of the FOM was defined by Kolesnikov and Kauranne [20]. This

measure is defined as

pFOMp =

ISE ·Ma, a = 2D−12 , p = 2

E∞ ·Ma, a = 2D−1∞ , p =∞
(1.7)

where M is the number of line segments of the polygonal approximation, and the parameter

Dp is obtained from a log-linear model.

Rosin [43] showed that the measures that combine ISE and CR are not suitable to assess

polygonal approximations with a different number of points. In [43], the author proposed a

novel framework to assess the quality of polygonal approximations based on two measures:

fidelity and efficiency. Fidelity is defined as

Fidelity =
Eopt

Eapprox
× 100 (1.8)

where Eapprox is the distortion of polygonal approximation which is been evaluated and Eopt

is the distortion of the optimal polygonal approximation with the same number of points.

Efficiency is defined as

Efficiency =
Mopt

Mapprox
× 100 (1.9)

where Mapprox is the number of segments of the polygonal approximation and Mapprox is

the number of segments that an optimal polygonal approximation would require to obtain the

same error.

These two measures are combined using a geometric mean known as Rosin’s merit. This

merit is defined as

Merit =
√

Fidelity × Efficiency (1.10)

The main advantage of using this merit function to assess polygonal approximations is,

that can be used to compare approximations with different number of segments in a fair way.

However, this framework to assess the quality presents some problems. Carmona-Poyato et al.

[8] stated that this framework does not take into account if the number of segments of the

solution to be evaluated is adequate or not. For instance, an optimal polygonal approximation

with very few line segments (e.g. M = 3) will obtain better merit than a suboptimal solution

with a reasonable number of line segments.

To deal with this problem a novel framework for evaluating the quality of polygonal ap-

proximations was proposed in [8]. This method obtains an optimal polygonal approximation

that is used as a reference (PAref ) by using a thresholding method. This optimal solution has
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a distortion ISEref associated and a number of points nref . Then, for each optimal polygonal

approximation PA(i) with a distortion ISE(i) associated and a number of points n(i), a value

M(i) is defined as

M(i) = 100 · (1− |n(i)− nref |
nb

) · e−
|ISEref−ISE(i)|

min(ISEref ,ISE(i)) (1.11)

where nb is the number of breakpoints of the original planar curve. The authors obtain the

efficiency curve that represents the values of M(i) versus the number of points n(i). In a similar

way the fidelity curve that represents the values M(i) and the distortion ISE(i) is obtained.

Using these two curves we can estimate a value of efficiency and fidelity using the number of

points and the distortion (ISE) of the polygonal approximation to be evaluated.

Most of the measures use a combination of the distortion (ISE) and the compression ration

(CR). However, some other distortion measures are used to assess a polygonal approximation.

For example, Parvez and Mahmoud [33] defined a measure which combines the length of the

polygonal approximation and the original contour. The measure is defined as

LR =
Ld

L
(1.12)

where Ld is length of the solution and L is the length of the original contour. Lowe [23]

proposed to use the maximum deviation (E∞) of the solution and the length of the original

shape to determine the significance . This measure is defines as follows

L

E∞
(1.13)

Sato [48] defined a distortion measure based on the ration between the length of the solution

and the original length. This measure was defined as

ε =
L− Ld

L
(1.14)

Other authors [55] have proposed to use the deviation of the normalized area as

|A−Ap|
L

(1.15)

where A is the area of the original contour, Ap is the area of the polygonal approximation

and L is the length of the contour.

1.1.2 State of the art

The polygonal approximation problem is usually defined in two separated ways as was stated

in [18]. Depending on the function to minimize the polygonal approximation problem can be

defined as:
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• min-#: In this problem the number of line segments M that forms a polygonal approx-

imation are minimized. The distortion error should not excess a threshold ε defined by

the user. The optimal solution to this problem should also have the minimum distortion

associated among all the solutions with the same number of line segments.

• min-ε: This optimization problem minimizes the distortion associated to a polygonal

approximation with a number of line segments M fixed by the user.

Several method have been proposed in the literature to solve both the min-ε and the min-#

problems. Depending on the task we are carrying out a different distortion measure may be

used: L∞-norm is used to assure that the maximum deviation does not exceed a threshold

determined by the user; L2-norm is used to obtain a polygonal approximation whose distortion

is lower than a threshold.

We can separate the different methods to obtain polygonal approximations depending on the

optimality of the solution found. Thus, algorithms can be classified into optimal and suboptimal

methods.

Optimal methods

As is explained above, the polygonal approximation problem is a discrete optimization problem.

Thus, the optimal methods to solve, both the min-ε and the min-# problems, are based on

different optimization frameworks.

We can consider the first optimal algorithm the method introduced by Papakonstantinou

[32]. This method based on Dynamic Programming, computes the minimum number of seg-

ments needed to approximate the points from Pi to Pj , taking into account that the maximum

deviation is lower than the error threshold supplied by the user.

One of the first optimal algorithm described in the literature was proposed by Dunham [13].

This approach uses the L∞-norm as the distortion criterion for solving the min-# problem. The

method described is based on the recursive computation of the minimum number of segments

needed to approximate the original open curve C from the initial point P0 to a point Pu. This

computation is done using the Dynamic Programming framework.

Another optimal alternative for solving the min-# problem was proposed by Melkman and

O’Rourke [28]. The authors sort out the problem using the L∞-norm by constructing a graph

where the nodes are the vertices of the curve C. Nodes for points Pi and Pj are connected by

an arc if the maximum error for the approximated segment PiPj is lower than the defined error

threshold.

An interesting approach was proposed by Sato [48]. The author obtains the optimal polyg-

onal approximation with a number of segments M which minimizes the differences of the arc

length of the original curve and the approximation. That is, the optimal solution is the polyg-

onal approximation with M segments and the maximum arc length.
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Perez and Vidal [37] proposed to solve the min-ε problem using the L2-norm distortion

measure. This method based on Dynamic Programming, computes all the possibilities to ap-

proximate point Pi using M segments. This process is repeated until the last point is reached.

A method to compute the distortion values in constant time O(1) is also given. The definition

of the algorithm appears in Algorithm 1.

Data: C (Digital planar curve), N (Number of points of the curve), M (Number of
segments of the solution)

Result: The optimal polygonal approximation
var g // used to memorize the minimum global error to reach any point of the contour
using any number of segments;
var Points // Points of the digital planar curve;
var Father // Array that contains the ending point of the previous segment ;
g[1, 0]← 0;
for n← 2 to N do

g[n, 0]← maxValue;
end
for m← 1 to N do

for n← 2 to M do
// Search the minimum error to reach point n with m segments;
g[n,m]← mini∈[m,n−1] g[i,m− 1] + error(i, n) // Memorize imin;
Father[n,m]← imin;

end

end
TotalError← g[n,m];

Algorithm 1: Algorithm to solve optimally the min-ε problem proposed by Perez and Vidal
[37].

Another alternative based on Dynamic Programming was proposed by Tseng et al. [54].

This author used three different error measures to optimally solve the min-# problem. The

problem is sorted out using the L∞-norm, L2-norm and also the differences of the perimeter

between the original curve and the polygonal approximation.

A different approach based on graph search was introduced by Salotti [44]. The novel

method uses the A? algorithm to search for the optimum solution of the min-ε problem using

the L2-norm error criterion. The nodes of the graph represent the ending points of the segments

and their rank (the number of segments needed to reach that point). An edge between two

nodes defines a line segment, where the cost, the error value of the segment, is associated to

that edge. The function f(x) associated to a node is formed by the function g(x) plus the

heuristic function h(x). Function g(x) represents the cost (distortion) required to reach point

of the node x from the initial point. The heuristic function h(x) represents a lower bound of the

remaining distortion to reach the ending point of the curve. The defined heuristic function is

computed using the linear regressions of the points between the point of node x and the ending

point of the curve.

Salotti [45] also solved the min-# optimally using the L2-norm error criterion. This approach
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also uses the A? algorithm to obtain the optimal solution. To compute the g(x) function a

creation cost is added to sort the solutions according to two criteria: the number of segments

and the distortion error associated. The heuristic function h(x) represents a lower bound of the

remaining number of segments to reach the ending point of the curve from the point of node x.

To compute this lower bound a procedure that uses the linear regression is defined.

Most of the methods proposed to optimally solve both the min-ε and the min-# problem,

are defined for open curves. To optimally solves these problems on closed curves have been

proposed to duplicate the initial point of the curve as also the ending one. Then, the algorithm

must try all points of the curve as the fixed point of the final solution [37]. This solution can

be applied on small contours, due to the huge computational burden needed.

To overcome this problem, some heuristic methods have been proposed. Sato [48] proposed

to use the farthest point to the centroid of the curve as one of the distinctive points. Horng and

Li [15] proposed a method to determine a good candidate for using as the fixed point of the

final solution. The method first select a random fixed point for the final solution and executes

the Dynamic Programming algorithm. Taking into account the vertices obtained after run the

Dynamic Programming process, the method selects a new initial point for the second iteration.

This new initial point is the farthest vertex from the initial point of the first iteration and is

separated from its nearest vertex by more than a given threshold. The authors suggest a value

for the threshold equal to 0.5N
M , where N is the length of the shape and M is the number of

points of the polygonal approximation. This two iterations algorithm is heuristic and therefore

may lead to suboptimal solutions.

Suboptimal methods

The number of methods to solve the polygonal approximation problem is enormous. To give

an overview of the methods used in the literature an small classification is proposed. Among

the huge number of algorithms proposed, we can separate them into two categories: methods

based on metaheuristics and heuristics.

Metaheuristics have been widely used to successfully solve the polygonal approximation

problem. For instance, the Ant Colony Optimization (ACO) framework [65] has been used

to solve the min-# problem using the L2-norm. This method represents the problem using a

graph where nodes are the points of the curve and the edges between two nodes represent the

approximation error associated to the segment. The ants are initially placed in some nodes and

move from node to node until a complete tour is completed, that is, the initial node is reached

again. The pheromone intensity rule used in this approach is computed used the quality of the

solution obtained in each iteration. The polygonal approximation returned is the best solution

found at a specified iteration.

Another metaheuristic approach based on the Artificial Bee Colony (ABC) was proposed

by Huang [16]. This nature inspired method solves the min-ε problem using the L2-norm. The

process starts generating a set of solutions. A fitness function is compute for each solution. A
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serch process is then executed, where different stages (Employed Bee, Onlooker Bee and Scout

Bee Stage) try to optimize the pool of solutions generated. If a solution is improved, that is,

the fitness function is better than the previous solution; is stored in the pool. Otherwise, the

old solution is kept and the trial is incremented. If the trial of any solution is higher than a

limit, then this solution is discarded. This search process is repeated a number of times and

then the best stored solution is returned.

Another optimization framework used to solve the polygonal approximation problem is

the Particle Swarm Optimization approach. Yin [66] was the first author to solve the min-#

problem by using this framework of optimization. The representation of each particle (possible

solution) is done by a binary vector, where each item is one or zero whether this vertice is

selected for the solution. A fitness function is used to assess the quality of the solution in the

optimization process. This process determines the best solution for each particle and for the

whole swarm at each iteration. The process is repeated a number of iterations and then the best

solution is returned. To increment the diversity of the population of the particles, Wang et al.

[57] incorporate a mutation operator. Wang et al. [61] solves the min-ε and min-# problem

using the PSO optimization framework building a probabilistic model of the distribution of

the good regions in the search space (Estimation of Distribution Algorithms). Wang et al. [60]

proposed a method to solve the min-# problem. This method uses the Integer Particle Swarm

Optimization framework, where the particles are represented using integer coding scheme.

Genetic Algorithms have also been used to solve the polygonal approximation problem. A

first solution to the min-ε problem was proposed by Yin [64]. The individuals (solutions) are

represented by binary strings, where a bit is equal to one if this vertice is select for the final

solution, or zero otherwise. A fitness function represent how well a solution approximates the

original planar curve. In each iteration this population is evolved using the defined mutation

operator and using a process of elitism. We can find other approaches [17, 67, 46, 22, 14, 59]

that employ the genetic algorithm framework using different distortion measures and types of

polygonal approximation problems.

Other metaheuristic approaches have been used to solve the polygonal approximation prob-

lem. For instance, Zhang and Guo [67] proposed a tabu search approach to solve the min-#

using the L2-norm as the distortion measure.

The main drawback of the metaheuristic approaches is the computational cost. Usually,

heuristics approaches obtain worse results than the metaheuristic approaches, but the compu-

tation burden is lower. The great number of heuristic methods described in the literature can

be classified into three different subcategories: sequential scan approach, split approach, merge

approach.

The sequential scan approach is a fast type of polygonal approximation framework, where

the algorithm performs an operation on each point of the curve. Using the result of this

operation the method is able to create a polygonal approximation. This type of algorithms

are very fast because the complexity order is O(N). Some examples of this kind of algorithms



12 CHAPTER 1. INTRODUCTION

could be found in the literature [49, 53, 41, 24]

Some methods start using a rough approximation as the initial solution for the polygonal

approximation of the curve C. The methods keep adding points to this initial approximation

until some criteria is satisfied, for instance, the distortion error is lower than a threshold. This

heuristic is known in the literature as the split approach and some examples could be found in

[40, 12, 23].

On the other hand, several methods use an opposite approach, that is, the initial solution

is the whole curve C. These algorithms merges line segments deleting the intermediary points

of these segments. This procedure is repeated until the condition is violated, for instance, the

distortion error associated is higher than a threshold. This merge approach is widely used in

the literature [38, 27, 25, 26, 7].

These heuristic approaches are usually put together into the split-and-merge approach. This

type of algorithms start with an initial polygonal approximation. Then, the two stages split-

and-merge process is iteratively executed. First the segment with the maximum distortion error

associated to the point Pk is split into two segments by adding this point Pk to the solution.

Then, the merge procedure searches for the point Pi with the minimum distortion to the

segment connecting its two adjacent points Pi−1, Pi+1, and removes Pi from the solution. This

process is graphically shown in Fig. 1.2. This procedure repeats until a condition is satisfied.

This two stages procedure is very popular and several examples can be found in the literature

[34, 5, 63, 58].

Figure 1.2: Split and merge heuristics are usually used together to solve the polygonal approix-
mation problem.
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a b s t r a c t

In this work, a new proposal to improve some methods based on the merge approach to obtain polygonal
approximations in 2D contours is presented. These methods use a set of candidate dominant points
(CDPs) to obtain a polygonal approximation. Then, redundant candidate dominant points of the set of
CDPs are deleted, and the remaining dominant points will be the polygonal approximation of the original
contour. The main drawback of most of these methods is that they use all breakpoints as CDPs and most
of these breakpoints depict only the noise of the original contour.

Our proposal, based on a concavity tree, obtains a more reduced and significant set of CDPs. When this
proposal is used by some methods based on the merge approach (the Masood methods and the Carmona
method), their computation times are reduced. The experimental results show that the new proposal is
efficient and improves the tested methods.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Polygonal approximation can be categorised into two classes of
subproblems [15]:

(1) Min — # problem: given an N-vertex polygonal curve P,
approximate this curve by using another polygonal curve Q
with a minimum number of segments M, considering that
the approximation error E does not exceed a given maxi-
mum tolerance E0.

(2) Min — �0 problem: given an N-vertex polygonal curve P,
approximate this curve by using another polygonal curve Q
with a given number of line segments M, so that the approx-
imation error E is minimised.

The proposed methods to solve these problems can be classified
as heuristic, metaheuristic, and optimal algorithms.

� Heuristic algorithms produce non-optimal polygonal approxi-
mations with a low computational cost. Heuristic algorithms
are based on a greedy approach and can be classified as follows:

– Sequential scan approach [36,29].
– Split approach [28,9,23].
– Merge approach [26,17,20–22,7].
– Split and merge approach [24,18,42,12].
� Metaheuristic approach with different stochastic optimisation

methods:
– Genetic algorithms [13,39].
– Colony optimisation [45].
– Particle swarm optimisation [38,40].
– Tabu Search [44,45].
� Optimal algorithms produce optimal polygonal approximations

but a high computational cost is required. Usually optimal algo-
rithms are relied in Dynamic Programming [2,10,25,27,15] or an
A�-search approach [32,33].

According to Attneave [1], most of the information in a contour
is located at points of high curvature. For this reason, these points
are used to obtain polygonal approximations. These points are
known as dominant points and are an important target in many
machine vision applications [41]. The dominant points are used
in image matching, shape description and pattern recognition
because they provide significant data reduction while preserving
crucial information about the object [14]. The dominant points
are used in computer vision, for example, in an aerial image, and
dominant points are used to recognise man-made objects. In a time
sequence, dominant points can be used to compute the displace-
ment between each pair of consecutive images, etc. [14].

http://dx.doi.org/10.1016/j.jvcir.2014.09.012
1047-3203/� 2014 Elsevier Inc. All rights reserved.
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A candidate dominant point (CDP) is defined as a high-
curvature point that belongs to the set of candidates to be used
to obtain a polygonal approximation. This candidate can be selected
or removed according to the method used for obtaining the polyg-
onal approximation. The breakpoints of a contour are points where
the contour turns. To be more exact, a point is a breakpoint if its
Freeman chain code is not equal to the chain code of its previous
point. Because the dominant points are points of high curvature,
the dominant points are all breakpoints. Therefore, dominant
points are breakpoints that provide significant and important infor-
mation about the contour, and they are connected to obtain a polyg-
onal approximation of the original contour. For this reason, all the
breakpoints of a contour are used as CDPs to obtain its polygonal
approximation in most merge methods [26,20–22,7]. However,
the number of breakpoints is very high in any contour, and most
of them are redundant candidate dominant points for two reasons:

� They may depict the noise obtained by the digitization of the
original contour.
� They may belong to a digital straight segment.

For these reasons most of the breakpoints never belong to the
polygonal approximation.

These redundant candidate dominant points are then deleted,
and only the most significant and important candidates are selected
to obtain the polygonal approximation. Furthermore, the computa-
tion time of these methods can be reduced if the set of candidate
dominant points is reduced by deleting the redundant candidate
dominant points.

In this paper, a new proposal, based on a concavity tree, to
reduce and improve the initial set of candidate dominant points
is presented. An extended concavity tree (different from the origi-
nal concavity tree proposed by Sklansky [35]) is obtained. From
this extended concavity tree, convex hulls, corresponding to differ-
ent parts of the contour with different levels of detail, are obtained.
These convex hulls may represent concave and convex parts of the
contour. The endpoints corresponding to concave and convex parts
are significant and important dominant points for the following
reasons:

� They are breakpoints.
� They can be used to separate the concave and convex parts of

the contour.
� They consider the different levels of detail of the different parts

of the contour. In this way, fewer dominant points are added
where the contour is straight or relatively straight and more
dominant points are added where the contour is curved.

For these reasons, these endpoints can be used as CDPs.
The new proposal is explained in detail in Section 4.
Section 2 describes the calculation of the original concavity tree

and the previous methods related to the present proposal. Section 3
presents some basic measurements to evaluate the quality of a
polygonal approximation. Section 4 describes how to obtain the
extended concavity tree for the present proposal, and Section 5 dis-
cusses the performance of the proposal. Finally, Section 6 shows
the main conclusions.

2. Related work

A concavity tree is a tree whose different levels represent the
convex and concave parts of a contour. These convex and concave
parts are obtained using the convex hull. In a 2D contour, the
convex hull is the smallest convex polygon that contains all points
of the contour.

The concave parts (concavities) are formed by points of the con-
tour that do not match the vertices of the convex hull and do not
belong to the segment lines that join two consecutive points of
the convex hull.

The convex parts are formed by points of the contour that
match the vertices of the convex hull or belong to the segment
lines that join two consecutive points of the convex hull.

When all points of the original contour belong to the segment
lines that join two consecutive points of the convex hull, there
are no concave parts, and the convex hull represents the original
contour faithfully. In this case, the tree contains only the root. In
the other case, there are concave parts, and these concave parts
can be obtained from the points of the contour that do not belong
to the segment lines that join two consecutive points of the convex
hull. These concave parts will be the sons of the root.

For each concave part there are two vertices, the previous and
next vertices belonging to the convex hull. The segment line that
joins these vertices is called the cover. If we consider the points
of a concave part and the ends of its cover as a subcontour corre-
sponding to this concave part, a new convex hull of this subcontour
can be obtained. Thus, the subcontour can be treated as the original
contour obtaining new concave parts and their corresponding
nodes are added to the concavity tree, etc. Finally, the concavity
tree represents the original contour faithfully. (See Fig. 1.)

To test if a contour or subcontour has concave parts, the sum of
the squared orthogonal distances between the contour or subcon-
tour points and their corresponding segment line that joins their
previous and next points of the convex hull, is used. If this sum
is not 0, the contour or subcontour has concave parts. For this rea-
son, the measurement ISE is used. This measurement is explained
in Section 3.

Fig. 1 shows a synthetic contour (a), its concavities (b, c, d, e, f,
g) and its concavity tree depicting the hierarchies between its con-
cavities (h). In this case, on the first level, the whole contour is rep-
resented (a). The boundary has four concavities represented as
subcontours in the level two of the tree. On the second level, the
first subcontour (b) and the last subcontour (e) are convex, and
they have no concavities, the second subcontour (c) and the third
subcontour (d) are not convex and have one triangular concavity
(third level, (f) and (g)). In (h), the hierarchies between the concav-
ities are shown. The nodes are expanded until no new concavity is
obtained.

The concavity tree was first introduced in [35], then the concav-
ity has been proposed to represent 2D shapes [3–5,43,11,31,16]. In
these studies, the concavity tree has been used as a representation
of the original contour or to obtain minimal length polygons.

Fig. 1. Example of concavity tree of a synthetic contour. Original contour (a).
Subcontours corresponding to the concavities of first level (b), (c), (d) and (e).
Subcontours corresponding to the concavities of second level (f) and (g). Concavity
tree of the contour with the hierarchies between concavities (h).
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In this paper, we use a extended concavity tree to obtain a sig-
nificant and reduced set of CDPs. This set can be used by merge
methods to obtain polygonal approximations.

The proposal presented will be used with the Masood [20–22]
and Carmona [7] methods to improve them.

Masood [20,21] proposed a method based on an iterative algo-
rithm that deletes redundant dominant points with the smallest
error value. Breakpoints are taken as the initial set of CDPs. To
calculate the error associated with each dominant point DPj, two
neighbouring dominant points, DPj�1 and DPjþ1, are joined with a
straight line. The maximum perpendicular (squared) distance of
all boundary points between DPj�1 and DPjþ1 from the straight line
is called the associated error value (AEV) of dominant point DPj. In
each iteration, only the redundant dominant point with the smallest
error value (AEVmin) is eliminated. A stop condition is used to end the
iterative elimination. Redundant dominant points are deleted until
the error due to the deletion is greater than a fixed error, �.

Masood [22] proposed an optimised and related method. This
method is based on the suppression of redundant dominant points
from an initial set of candidate dominant points (breakpoints) with
the smallest error value (AEVmin) and then, by using an optimisa-
tion and adjust procedure, the method reduces the integral square
error (ISE) when a redundant dominant point is deleted. The inte-
gral square error (ISE) can be reduced if the neighbouring points
share the error properly when a redundant dominant point, DPj,
is eliminated. For this purpose, some DPs may adjust their position.
When a DP is moved, that DP may de-optimise the position of the
two neighbouring DPs. Therefore, an optimisation algorithm must
be iterated until all of the DPs are optimised. Masood therefore rec-
ommended updating the associated error value (AEV) of neigh-
bouring DPs (in sequence on both sides) until the new AEV of any
DP is equal to its previous AEV. Masood compared the polygonal
approximations obtained using his second method so that the
number of DPs was equal to the DPs of the compared algorithm.
The results were all optimal. The complexity of this method is
OðMN2Þ, where M is the number of points of the polygonal approx-
imation and N is the number of points of the original contour.

The Masood methods [20–22] delete one redundant dominant
point in each iteration. For this reason, a polygonal approximation
with any number of points could be obtained.

Carmona et al. [7] proposed a method to obtain polygonal
approximations based on the suppression of dominant points from
an initial set of candidate dominant points (breakpoints). The
method of Carmona removes redundant dominant points until a
required level of approximation is obtained. The method is itera-
tive. In each iteration, several quasi-collinear and redundant dom-
inant points are suppressed, and a new polygonal approximation is
obtained. In this case, polygonal approximations with any number
of points cannot be obtained.

3. Measurements to evaluate polygonal approximations

In this section, some basic measurements used in this work to
evaluate the quality of polygonal approximations are described.

– Compression Ratio (CR).

CR ¼ N
M

ð1Þ

where N is the number of points in the contour, and M is the
number of points of the polygonal approximation.

– Sum of square error (ISE). Given a segment with end points
ðPi; PjÞ the ISE for this segment is

ISE ¼
Xj�1

k¼iþ1

d2
k ð2Þ

where dk is the orthogonal distance from point Pk to the straight
line defined by points Pi; Pj. Fig. 2 shows a line segment ði; jÞ of
the polygonal approximation corresponding to the points
i;1;2;3; j of the original contour. In this case, ISE ¼ d2

1 þ d2
2 þ d3

3.
– Sarkar [34] combined these two measures as a ratio, pro-

ducing a normalised figure of merit (FOM) defined as

FOM ¼ CR
ISE

ð3Þ

– Maximum error (E1) is the maximum value of dk.

Rosin [30] shows that FOM is biased towards approximations
with lower ISE because its two terms are unbalanced. He proposed
a new measurement (merit) relying on two components: fidelity
and efficiency. Fidelity measures how well the polygon obtained
by the algorithm to be tested fits the curve relative to the optimal
polygon in terms of the approximation error. Efficiency measures
how compact the polygon obtained by the algorithm to be tested
is, relative to the optimal polygon which incurs the same error.
Depending on the shape of the curve, the two measures may vary
considerably. Rosin used a combined measure (geometric mean of
fidelity and efficiency).

Merit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fidelity� Efficiency

p
ð4Þ

Marji and Siy [19] used a modified version of FOM (in this case, he
used the inverse of FOM). The new measure is defined as

Fx ¼
ISE
CRx ð5Þ

where x is used to control the contribution of the denominator to
the overall result to reduce the imbalance between the two terms.
They used x ¼ 1;2 and 3.

4. The present proposal

The objectives of the present proposal can be summarised as
follows:

� Reduce the initial set of candidate dominant points.
� This initial set must consider the different levels of detail of

the different parts of the original contour. In those parts
where a high level of detail is needed, the number of candi-
date dominant points will be higher than in those parts
where a small level of detail is needed. For example, in
Fig. 3, a small level of detail is required between the points
1 and 14 because this part of the contour is more or less
straight, and fewer dominant points are needed. However,
a high level of detail is required between points 15 and
29 because this part of the contour contains more details,
and a greater number of dominant points is needed.

� All relevant dominant points must belong to the initial set
of CDPs. They are usually the points of transition between
parts of different levels of detail. For example, in Fig. 3,
some of the transition points are points 15, 29, 47 and 59
in the first level; points 22, 37, 42 and 53 in the second
level; and points 16, 19, 25, 27, 49 and 51 in the third level.

Fig. 2. Example of calculation of ISE for a line segment of the polygonal
approximation.
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To improve the quality of the initial set of CDPs and reduce the
size of the set, a procedure based on the concavity tree is used. The
nodes of the original concavity tree contain all the concavities
along the contour and subcontours (Fig. 1). However, our proposal
differs as follows:

� Each node (except the root) contains two consecutive ver-
tices of the convex hull corresponding to the original con-
tour or a subcontour. Thus, a node may represent the
cover of a concave part (concavity) corresponding to the
original contour or a subcontour.

� Only the nodes corresponding to the most relevant concav-
ities are expanded. In the original concavity tree, all the
concavities are expanded. For this reason, the extended
concavity tree has fewer levels than the original concavity
tree.

For this purpose, a split method is proposed. Fig. 3 (chromo-
some contour) is used as an example. In this Figure, to explain
the method, the initial point is labelled with 0, and the contour will
travel using the counterclockwise direction. The new points added
in each level are labelled. The method is described in the next
steps.

(1) The convex hull of the original contour is obtained. Fig. 3(a)
shows the vertices of its convex hull. The convex hull
consists of vertices 0, 1, 11, 14, 15, 29, 31, 46, 47 and 59.
These points are added to the set of CDPs. All the segment
lines that join two consecutive vertices are depicted in the
nodes of second level of the extended concavity tree
(Fig. 4). The first level depicts the original contour. Thus,
the extended concavity tree will always have at least two
levels.

(a) (b)

(c) (d)

Fig. 3. Example of the proposed method for the chromosome contour. (a) First level polygonal approximation. (b) Second level polygonal approximation. (c) Third level
polygonal approximation. (d) Set of final candidate dominant points.

Fig. 4. Reduced concavity tree for chromosome contour.

1908 E.J. Aguilera-Aguilera et al. / J. Vis. Commun. Image R. 25 (2014) 1905–1917



(2) If the overall points of the original contour are contained in
the segment lines that join the vertices of the convex hull,
then there are no concave parts, and this convex hull repre-
sents the original contour faithfully. In the other case, there
are concave parts, and each segment line depicted in the
sons of the root is the cover of its concave part (if exists).

(3) If there are concave parts:
(a) The concave parts can be obtained from the points of the

contour that do not belong to the segment lines that join
two consecutive points of the convex hull. Fig. 3(a) shows
four concave parts and its covers. In this case, the points
between 1 and 11 are the first part, the points between 15
and 29 are the second part, the points between 31 and 46
are the third part, and the points between 47 and 59 are
the last part. The ends of each cover and its correspond-
ing concave part is considered a subcontour of the origi-
nal contour. In this case, four subcontours, corresponding
to shady zones in Fig. 3(a), are obtained.

(b) The ISE=CR value is calculated in each cover. This value is
obtained considering that each cover is the polygonal
approximation of its associated concave part. For exam-
ple, cover (15, 29) is considered the polygonal approxi-
mation of its concave part. For this reason, the value of
ISE is the corresponding value between the points 15
and 29, and CR ¼ 15=2 because 15 is the number of
points of concave part and 2 is the number of points of

its polygonal approximation (its cover). This value is
called the cover error (Ec), and it is a local error. In this
case, ISE is divided by CR to weight the error with the
number of points of the approximated segment. Thus,
the values of Ec corresponding to the covers
ð1;11Þ; ð15;29Þ; ð31;46Þ; ð47;59Þ are obtained.

(c) The convex hulls of the four subcontours are obtained.
Considering that each subcontour is approximated by
the segment lines that join the vertices of its correspond-
ing convex hull, the values of ISE=CR are calculated for
the four subcontours. For example, the subcontour cor-
responding to the points between 15 and 29 (15 points)
is approximated by a convex hull with 5 vertices (15, 20,
22, 23 and 29), so the value of ISE is the ISE correspond-
ing to the approximation using the convex hull and
CR ¼ 15=5. This value is called the subcontour approxi-
mation error (Esa). Similarly to the calculation of Ec; ISE
is divided by CR to weight the error with the number
of points of the polygonal approximation.

(d) Now we have two values for each concave part:
� Cover error (Ec) considers the error obtained if the

concave part is approximated by its cover, for exam-
ple, the first concave part is approximated by the
cover (15, 29).

� Subcontour approximation error (Esa) considers the
error obtained if the concave part is approximated
using its convex hull, for example, the convex hull
of the subcontour corresponding to the cover (15,
29) and its concave part.

If the Esa value is less than the Ec value in a concave part, this
part is approximated by the segment lines that join the vertices
of its corresponding convex hull, and their vertices are added to
the set of CDPs. Thus, the node corresponding to the associated
cover is expanded, and nodes corresponding to consecutive
vertices of the convex hull of the subcontour are added (nodes
of the third level in Fig. 4). Otherwise, this concave part will beFig. 5. Flowchart of the method to obtain the extended concavity tree and CDP.

Table 1
Obtained results for all the used contours. N is the number of the points of the original
contour. NBP is the number of initial candidate dominant points for the related
methods. NCDP is the number of initial candidate dominant points for the proposed
method. Nnodes is the number of nodes of the extended concavity tree. Nlevels is the
number of levels of the extended concavity tree.

Contour N NBP NCDP Nnodes Nlevels

tin-openers 580 242 89 108 4
pliers 2040 1020 187 216 5
plane1 1015 477 125 145 5
plane2 787 397 121 149 4
plane3 1073 535 129 152 5
plane4 1126 461 160 192 4
plane5 1098 579 158 188 4
plane6 921 483 128 148 4
plane7 897 460 114 128 4
rabbit 745 334 147 175 5
chromosome 60 36 29 35 3
spoon 1370 1070 76 91 4
screwdriver 1677 1410 76 90 4
dinosaur1 795 307 121 144 4
dinosaur2 625 263 111 139 5
dinosaur3 889 379 156 190 5
dinosaur4 779 298 143 174 5
leaf 120 56 37 51 3
infinity 45 30 18 24 4
hand 1041 370 168 219 5
hammer 1583 1017 66 74 3
semicircles 102 52 29 36 3
turtle 553 273 109 132 5
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approximated using its cover, and no nodes will be added to
the extended concavity tree. In the example, only three
concave parts (corresponding to covers (15,29), (31,46) and
(47,59)) are approximated using their convex hulls (red lines
in Fig. 3(b)). The first concave part (corresponding to cover
(1,11)) is approximated using its cover (blue line in Fig. 3(b)).

(e) This procedure is applied to the concave parts approxi-
mated by the convex hull in a similar way, until no Esa

value is better than its corresponding Ec . Thus, the set
of CDPs is obtained. Fig. 3(c) shows the next level of
polygonal approximation and the new dominant points
added. In this case, the method has been applied to the
three concave parts approximated by the convex hull
and obtained in the previous level. For example, the first
subcontour approximated by the convex hull in the pre-
vious level (corresponding to cover (15,29)) is split into
two subcontours (subcontour between points 15 and
20 and subcontour between points 23 and 29), and their
corresponding concave parts are approximated using
their convex hulls. Thus, five new dominant points (16,
17, 19, 25 and 27) are added to the CDPs ((see
Fig. 3(c)). In a similar way, the points 48, 49 and 51 are
added at this level.

(f) Finally, Fig. 3(d) shows the set of CDPs. There are 29
CDPs, and they are contained in the 28 leaves of the
extended concavity tree (see Fig. 4). Highlight that all
CDPs are contained in the leaf nodes.

Fig. 5 shows the flowchart corresponding to the method to
obtain the extended concavity tree and the set of CDPs.

The example of the chromosome contour shows that the three
objectives of the proposed method have been fulfilled:

� The initial set of CDPs has been reduced because the number of
candidates obtained by using our proposal is less than the num-
ber of breakpoints. This reduction is much higher in real
contours.
� The set of CDPs obtained for the chromosome contour considers

the different levels of detail of the different parts of the contour.
For example, in Fig. 3(a), the first concave part is relatively
straight, it is approximated by only one segment (1, 11) and
only two points are added to set of CDPs. However, the other
three concave parts need a high level of detail, and they are
approximated by many segments. In this case, many points
are added to the set of CDPs.

pliers

spoon

Fig. 6. Times obtained by the original Masood method (breakpoints) and the
modified Masood method with our proposal (CDP), using pliers and spoon contours.

pliers

spoon

Fig. 7. Values of ISE=CR2 obtained by the original Masood method (breakpoints) and
the modified Masood method with our proposal (CDP), using pliers and spoon
contours.
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� All the relevant dominant points are added to set of CDPs
because all the points of transition between parts of different
level of detail have been taken into account. For example,
the points 15, 29, 47 and 59 are added in the first level, the
points 22, 37, 42 and 53 are added in the second level, and
the points 16, 19, 25, 27, 49 and 51 are added in the third
level.

Moreover, tests with real contours have shown that when the
ISE=CR2 and ISE=CR3 measures have been used to calculate the error
instead of ISE=CR, the number of nodes in the extended concavity
tree is significantly decreased, and many relevant dominant points
are discarded. Therefore, the discarded points never belonged to
the initial set of CDPs, and the discarded points never belonged
to the polygonal approximation. For this reason, the measurement
ISE=CR has been selected.

In conclusion, the following features on the present proposal
should highlighted:

� The present proposal considers the different levels of detail of
the resultant subcontours of the concavity tree.

� The use of the concavity tree allows us to obtain dominant
points of the contour as follows:
– On the odd levels, relevant points of the convex parts of the

contour or subcontours are added to the set of CDPs.
– On the even levels, relevant points of the concave parts of

the contour or subcontours are added to the set of CDPs.
� A non-parametric stop condition to obtain the set of CDPs is

used. This condition depends on the local values of the mea-
surement ISE=CR. Thus, this method considers the levels of
detail of the different parts of the contour. In this way, many
dominant points are added to the set of CDPs where the contour
has a higher level of detail, and few dominant points are added
to the set of CDPs where the contour is relatively straight.
� Redundant dominant points are selected, so no relevant domi-

nant point will be discarded.
� We can assume that the time complexity is OðNlogNÞ because

the time complexity is defined by time complexity of convex
hull calculation.

Table 1 contains the results obtained using real contours. This
table shows the number of the initial set of CDPs (all the

pliers

spoon

Fig. 8. Times obtained by the original Carmona method (breakpoints) and the
modified Carmona method with our proposal (CDP), using pliers and spoon
contours.

pliers

spoon

Fig. 9. Values of ISE=CR2 obtained by the original Carmona method (breakpoints)
and the modified Carmona method with our proposal (CDP), using pliers and spoon
contours.
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breakpoints) used in [20–22,7] and the number of the initial set of
CDPs obtained with our proposal. Moreover, this Table shows the
number of nodes of the extended concavity tree and its number
of levels. The results can be summarised as follows:

� The set of CDPs is significantly reduced when the proposed
method is used.

Fig. 10. Obtained polygonal approximations for synthetic contours.

Table 2
Comparison, using synthetic contours, with other methods.

Contour Method ndp CR ISE Merit

Chromosome (N ¼ 60) Teh and Chin [37] 15 4.00 7.20 61.79
Wu [41] 16 3.75 4.70 77.64
Marji and Siy [19] 10 6.00 10.01 87.58
Carmona [6] 14 4.21 4.93 88.19
Masood [20,21] 15 4.00 4.14 92.75
Masood [22] 15 4.00 3.88 98.16
Carmona [7] 15 4.00 4.27 90.57
Parved [23] 10 6.00 14.34 66.19
Proposed 12 5 5.82 100

Leaf (N ¼ 120) Teh and Chin [37] 29 4.14 14.96 50.13
Wu [41] 24 5.00 15.93 64.50
Marji and Siy [19] 17 7.06 28.67 82.45
Carmona [6] 23 5.17 15.63 69.99
Masood [20,21] 23 5.22 10.61 92.46
Masood [22] 23 5.22 9.46 100
Carmona [7] 23 5.22 10.68 92.03
Parved [23] 21 5.71 13.82 89.99
Proposed 22 5.45 11.42 95.28

Semicircles (N ¼ 102) Teh and Chin [37] 22 4.64 20.61 44.89
Wu [41] 26 3.92 9.04 58.69
Marji and Siy [19] 15 6.80 22.70 73.07
Carmona [6] 24 4.21 9.88 65.54
Masood [20,21] 26 3.92 4.91 88.37
Masood [22] 26 3.92 4.05 100
Carmona [7] 26 3.92 4.91 88.37
Parved [23] 17 6.00 19.02 71.45
Proposed 15 6.8 14.40 100

Infinity (N ¼ 45) Teh and Chin [37] 13 3.46 5.93 50.04
Wu [41] 13 3.36 5.78 50.83
Carmona [6] 10 4.40 5.56 68.69
Masood [22] 11 4.09 2.90 99.05
Carmona [7] 10 4.50 5.29 70.77
Parved [23] 9 5.00 7.35 66.39
Proposed 9 5 4.86 85.62

Fig. 11. Obtained polygonal approximations for real contours (I).
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� The number of nodes is much lower than the number of break-
points, and the number of levels of the tree is always less than
or equal to 5.
� If the original contour has many small concave parts as a result

of the digitization process, most of these parts do not appear in
the extended concavity tree because the tree does not reach the
necessary level of depth. For example, in spoon, screwdriver and

hammer contours there are many small concave parts. In these
cases, the set of CDPs obtained, and the number of levels in the
extended concavity tree are even smaller than other real
contours.

Obviously, the time spent in getting the breakpoints (OðNÞ) is
less than the time spent in getting the set of CDPs in our proposal
(OðNlogNÞ). However, the next experiments will demonstrate that
the large reduction in the number of the set of CDPs obtained with
our proposal compensates for the time.

5. Experiments, results and discussion

In this section, four experiments have been evaluated. The cal-
culations were performed using a standard PC with Intel(R) Core
i7(R) 8 CPU with 2.20 GHz, 5.7 Gb of RAM using Ubuntu(R) 10.04.

In the first and second experiments, the measurement ISE=CR2 is
used to compare the results instead of ISE=CR or ISE=CR3 because
the numerator and the denominator are balanced [7,19] and there-
fore a better balance between the error of the polygonal approxi-
mation and the number of points is achieved. This measurement
will also be used in the third experiment as a stop condition to
obtain polygonal approximations for all the contours used.

Figures shown in the first and second experiment are obtained
in representative and real contours (pliers and spoon). The curves
obtained in the other real contours are similar.

5.1. First experiment

In the first experiment, the set of CDPs obtained using the pro-
posed method has been used as the initial set of CDPs in the Mas-
ood method [20,21] using real contours. Polygonal approximations
with any number of points less than or equal to the number of CDPs
has been obtained. The results have been compared to the results
obtained when all breakpoints are used as the initial set of CDPs
in this method.

Fig. 6 shows the times obtained for all the polygonal approxi-
mations with the number of points less than the number of CDPs.
The results show that the times are vastly improved.

Fig. 7 shows the values of ISE=CR2 obtained for different polyg-
onal approximations with an appropriate number of points (bal-
anced values of ISE and CR2). The results show that the values of
ISE=CR2 are improved except in the spoon contour when the num-
ber of points of the polygonal approximation obtained is small (less
than 14). However, for this reduced number of points, the polygo-
nal approximations are very distorted, and they are very dissimilar
to the original contour.

5.2. Second experiment

In this experiment, the set of CDPs obtained using the proposed
method has been used as the initial set of CDPs in the Carmona
method [7] using real contours. The results have been compared
with the results obtained when all the breakpoints are used as
the initial set of CDPs in this method.

Fig. 8 shows the times obtained for polygonal approximations
with number of points less than the number of CDPs. The results
show that the times obtained by the proposed method are worse
than the times in the original method. However, the times
obtained in the proposed method are less than 55 ms in all the real
contours.

Fig. 9 shows the values of ISE=CR2 obtained for different polyg-
onal approximations with an appropriate number of points (bal-
anced values of ISE and CR2). The results show that the values of
ISE=CR2 are improved using our proposal.

Fig. 12. Obtained polygonal approximations for real contours (II).
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5.3. Third experiment

In this experiment, our proposal has been used to obtain
polygonal approximations in some contours. For this purpose, the
following conditions have been applied:

� The optimised Masood method [22] has been used with the
initial set of CDPs obtained by our proposal.

� The minimum value of the measurement ISE=CR2 has been used
as the stop condition [8].

Fig. 10 shows the polygonal approximations obtained for the
synthetic contours using the proposed method.

Table 2 shows the results obtained, using synthetic contours,
compared with other methods. The merit measurement of Rosin
[30] has been used to compare. The results of the proposed
method are better than other methods, except the Masood
method [22] (leaf and infinity contours). For this reason, this
method will be compared with our proposal using real contours.
On the other hand, these synthetic contours are very small with a
reduced number of points and the results should be confirmed
using real contours. Figs. 11 and 12 show the polygonal approxi-
mations obtained for the real contours using the proposed
method.

The polygonal approximations obtained using real contours
have been compared with the polygonal approximations obtained
by the optimised Masood method [22] when all breakpoints are
used as the set of CDPs. For this purpose, the merit measurement
of Rosin [30] has been used to compare. The results are shown in
Table 3.

Table 3
Summary of the results for real contours. N is the number of points of the contour, and M is the number of points of the polygonal approximation.

Contour N M Optimised Masood method (breakpoints) Optimised Masood method (proposal)

Efficiency Fidelity Merit Efficiency Fidelity Merit

tin-openers 580 40 96.01 91.07 93.51 98.51 96.48 97.49
pliers 2040 62 97.41 96.38 96.90 97.99 97.17 97.58
plane1 1015 42 91.23 85.84 88.50 98.56 97.36 97.96
plane2 787 34 98.05 95.92 96.98 98.10 96.02 97.05
plane3 1073 39 97.96 94.12 96.02 97.99 94.21 96.08
plane4 1126 67 93.85 90.65 92.24 96.94 95.13 96.03
plane5 1098 67 93.02 89.47 91.23 93.29 89.84 91.55
plane6 921 42 99.23 97.97 98.60 98.10 95.16 96.62
plane7 897 41 97.28 93.45 95.34 98.22 95.61 96.91
plane8 722 36 88.48 81.37 84.85 96.54 93.57 95.04
rabbit 745 52 97.87 93.08 95.45 97.32 91.44 94.33
spoon 1370 24 97.75 94.43 96.07 97.75 94.43 96.07
screwdriver 1677 18 97.42 91.80 94.57 97.48 91.96 94.68
dinosaur1 795 42 96.51 93.94 95.22 97.14 94.98 96.05
dinosaur2 625 45 99.44 98.85 99.14 99.44 98.85 99.14
dinosaur3 889 52 97.73 94.79 96.25 96.84 92.90 94.85
dinosaur4 779 51 97.04 95.04 96.21 97.53 95.28 96.40
hand 1041 51 99.72 99.53 99.63 99.72 99.53 99.63
hammer 1583 17 98.05 94.80 96.41 97.98 94.62 96.29
turtle 553 46 86.22 85.31 85.76 97.49 96.96 97.23
Average 96.01 92.89 94.44 97.65 95.08 96.35

Table 4
Comparison, using synthetic contours, with the Roussillon method [31].

Contour Method M CR ISE Merit Length

Chromosome (N ¼ 95) Roussillon [31] 27 3.52 21.09 43.31 64.43
Proposeda 25 3.8 20.70 47.93 77.39

Leaf (N ¼ 161) Roussillon [31] 38 4.24 32.33 45.34 111.08
Proposed 38 4.24 14.81 88.97 127.63

Semicircles (N ¼ 137) Roussillon [31] 34 4.03 31.20 35.79 102.97
Proposed 34 4.03 19.22 59.14 114.51

Infinity (N ¼ 67) Roussillon [31] 18 3.72 13.22 46.18 46.17
Proposed 18 3.72 7.27 82.55 54.16

a In Chromosome contour, the maximum number of points of the polygonal
approximation obtained using our proposal is 25.

Table 5
Comparison, using real contours, with the Roussillon method [31] using polygonal approximations with the same number of points.

Contour Method M CR ISE Merit Length

Tin-openers (N ¼ 781) Roussillon [31] 107 7.30 125.99 45.32 621.19
Proposed 107 7.30 125.32 46.05 652.78

Rabbit (N ¼ 1003) Roussillon [31] 150 6.69 168.30 61.81 800.48
Proposed 150 6.69 98.72 92.49 851.59

Dino1 (N ¼ 1041) Roussillon [31] 146 7.13 168.48 49.90 841.91
Proposed 146 7.13 234.54 27.85 895.75

Dino2 (N ¼ 833) Roussillon [31] 138 6.04 154.49 51.97 663.91
Proposed 138 6.04 198.66 38.80 713.87

Dino4 (N ¼ 1023) Roussillon [31] 159 6.43 167.56 55.30 823.26
Proposed 159 6.43 162.77 56.98 882.01

turtle (N ¼ 781) Roussillon [31] 106 7.37 137.15 56.92 608.04
Proposed 106 7.37 94.03 85.55 693.86
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From this table, the following conclusions can be reached:

� For the present proposal, merit measurement is greater
than 94% (except plane5) in all tested contours.

� In most contours (except plane6, rabbit, dinosaur3 and
hammer for which the results are slightly worse), our pro-
posal obtains better results.

� The mean values of efficiency, fidelity and merit are better
for the present proposal.

The non-parametric Wilcoxon signed-rank test has been used to
compare the values of merit. The results show that the values of
merit when our proposal is used are better than the values obtained
with breakpoints using a high significance level (a ¼ 0:05%). More-
over, the mean value of merit obtained by our proposal is 96:35
while the mean value obtained with all the breakpoints is 94:44.

Considering the polygonal approximations obtained using the
present proposal in the optimised Masood method [22] with the
measurement ISE=CR2, we can conclude the following:

� The polygonal approximations obtained are very similar to
the original contours.

� The polygonal approximations have an appropriate number
of points (neither excessive nor reduced), and they fit prop-
erly into the original contour.

� The number of dominant points in different parts of a con-
tour depends on the level of detail in these parts. Straight
lines produce very few dominant points, and the curved
lines produce many dominant points.

� The merit values for tested real contours are very high.

5.4. Fourth experiment

In this experiment our proposal has been compared with the
Roussillon method [31]. This method obtains minimal length
polygons (MLP), and these polygons can be used as polygonal
approximations without changing important geometrical and
topological properties. For this purpose synthetic and real con-
tours has been used and the following conditions have been
applied:

� Since the Roussillon method uses 4-connectivity, the contours
have been transformed from 8-connectivity to 4-connectivity.
� The optimised Masood method [22] has been used with the ini-

tial set of CDPs obtained by our proposal.
� The merit measurement of Rosin [30] has been used to compare

the results.
� In order to compare the results, the polygonal approximation

obtained with our proposal has the same number of points
as the MLP obtained using the Roussillon method (Tables 4
and 5).
� In real contours, the best polygonal approximations obtained

using our proposal with the optimised Masood method [22]
have been compared to the polygonal approximations obtained
using the Rousillon method (Table 6).

Fig. 13 shows the polygonal approximations obtained in syn-
thetic contours using the Roussillon method. Black lines depict
the original contour, blue grids depict the inner and the outer poly-
gon and red lines depict the MLP. Fig. 14 shows the polygonal
approximations using our proposal with 4-connectivity.

Table 6
Comparison, using real contours, with the Roussillon method [31] using the optimised polygonal approximations obtained with our proposal.

Contour Method M CR ISE Merit Length

tin-openers (N ¼ 781) Roussillon [31] 107 7.30 125.99 45.42 621.19
Proposed 36 21.69 142.75 96.39 632.73

pliers (N ¼ 2855) Roussillon [31] 293 9.74 454.76 62.86 2239.14
Proposed 54 52.87 620.42 97.78 2244.71

plane1 (N ¼ 1353) Roussillon [31] 230 5.88 217.49 53.01 1064.11
Proposed 41 33 335.77 92.67 1072.57

plane2 (N ¼ 1177) Roussillon [31] 177 6.65 188.44 55.92 850.95
Proposed 31 37.97 260.14 98.48 856.01

plane3 (N ¼ 1447) Roussillon [31] 266 5.44 238.14 64.59 1121.73
Proposed 35 41.34 608.39 98.90 1129.62

plane4 (N ¼ 1451) Roussillon [31] 250 5.80 256.33 37.30 1166.11
Proposed 55 26.38 316.72 94.63 1179.12

plane5 (N ¼ 1565) Roussillon [31] 252 6.21 278.92 55.84 1191.43
Proposed 52 30.10 396.74 97.87 1201.46

plane6 (N ¼ 1341) Roussillon [31] 186 7.21 229.92 60.60 1020.56
Proposed 41 32.71 323.93 95.64 1030.13

plane7 (N ¼ 1191) Roussillon [31] 188 6.34 191.74 57.58 937.46
Proposed 37 32.19 297.93 94.87 945.11

plane8 (N ¼ 1003) Roussillon [31] 155 6.47 184.14 40.82 775.65
Proposed 35 28.66 215.72 95.49 784.41

rabbit (N ¼ 1003) Roussillon [31] 150 6.69 168.30 61.81 800.48
Proposed 36 27.86 347.23 98.67 803.82

dino1 (N ¼ 1041) Roussillon [31] 146 7.13 168.48 49.90 841.91
Proposed 39 26.69 286.27 80.79 857.16

dino2 (N ¼ 833) Roussillon [31] 138 6.04 154.49 51.97 663.91
Proposed 35 23.08 269.18 98.03 661.75

dino3 (N ¼ 1257) Roussillon [31] 192 6.55 216.04 52.79 1010.79
Proposed 48 26.19 351.41 94.29 1022.02

dino4 (N ¼ 1023) Roussillon [31] 159 6.43 167.56 55.30 823.26
Proposed 41 24.95 298.92 93.08 836.15

hand (N ¼ 1413) Roussillon [31] 259 5.46 270.53 51.64 1124.22
Proposed 38 37.18 617.35 96.00 1127.51

hammer (N ¼ 2501) Roussillon [31] 416 6.01 421.07 76.21 1836.12
Proposed 15 166.73 1064.78 98.85 1837.75

turtle (N ¼ 781) Roussillon [31] 106 7.37 137.15 56.92 608.04
Proposed 30 26.03 205.26 92.79 611.82
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Table 4 shows the results obtained using synthetic contours,
compared with the Roussillon method [31]. This table shows that
the results of Merit for the proposed method are better than the
Roussillon method for all the synthetic contours, however the val-
ues of length are better in the Rousillon method. These results are
due to our proposal optimises the error of the polygonal approxi-
mation while the Rousillon method optimises the length of the
polygonal approximation.

Table 5 shows the results obtained using real contours, com-
pared with the Rousillon method [31], when the number of
points of the polygonal approximations are equal. In this case
six contours are shown. In the remaining contours the number
of CDPs is less than the number of points of the polygonal
approximations obtained with the MLP method. This table shows
that the results of Merit for the proposed method are better in
four contours, and the Rousillon method is better in two
contours.

Table 6 shows the results obtained using real contours,
compared with the Rousillon method [31]. In this case the best
polygonal approximations obtained using our proposal with the
optimised Masood method [22] have been compared. This table
shows that the results of Merit for the proposed method are
better than the Rousillon method for all the real contours,
however the values of length are slightly better in Rousillon
method.

6. Conclusions

An efficient method to improve merge methods to obtain
polygonal approximations in closed 2D contours is presented.
The new proposal is non-parametric and relies on the split
approach.

The extended concavity tree is used to obtain the initial set of
CDPs. The new proposal considers the level of detail of the different
parts of the original contour. For this reason, a non-parametric stop

Fig. 13. Obtained polygonal approximations using the Roussillon method [31].
Black lines depict the original contour, blue grids depict the inner and the outer
polygon and red lines depict the MLP. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Obtained polygonal approximations using our proposal with 4-connectivity.
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condition, relying on the measurement ISE=CR, is used to obtain the
set of CDPs. More relevant information about the overall contour is
provided, and the different levels of detail are considered. There-
fore, few dominant points are added to the set of CDPs where the
contour is relatively straight or straight, and many dominant
points are added to CDP where the contour has a higher level of
detail (contour is curved).

When the proposed method is used to obtain the initial set of
CDPs, and this set is used in the Masood method [20,21], and the
Carmona method [7], the value of the measurement ISE=CR2 is
improved in all cases. The times obtained are also improved, except
in the Carmona method, where the times are slightly worse.

When the proposed method has been used in real contours, and
it is applied in the optimised Masood method [22], the merit values
have been greater than 91% in all tested contours and the merit val-
ues improve the results obtained by the optimised Masood method
[22] when all breakpoints are used as the initial set of CDPs.
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a b s t r a c t

Polygonal approximations of digital planar curves are very useful for a considerable number of applica-
tions in computer vision. A great interest in this area has generated a huge number of methods for obtain-
ing polygonal approximations. A good measure to compare these methods is known as Rosin’s merit. This
measure uses the optimal polygonal approximation, but the state-of-the-art methods require a tremen-
dous computation time for obtaining this optimal solution.

We focus on the problem of obtaining the optimal polygonal approximation of a digital planar curve.
Given N ordered points on a Euclidean plane, an efficient method to obtain M points that defines a
polygonal approximation with the minimum distortion is proposed.

The new solution relies on Mixed Integer Programming techniques in order to obtain the minimum
value of distortion. Results, show that computation time for the new method dramatically decreases in
comparison with state-of-the-art methods for obtaining the optimal polygonal approximation.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Polygonal approximations of digital planar curves are important
for a great number of applications, for example image analysis [14],
shape analysis [9] and digital cartography [7]. For this reason, a
great interest in this area has generated a huge number of methods
for obtaining polygonal approximations [22,4,3].

The polygonal approximation problem can be formulated as
two different optimization problems [12]:

� min-#: Given a distortion threshold obtain the polygonal
approximation with the minimum number of points M.
� min-e: Minimize the distortion error for a polygonal approx-

imation given the number of points M of the approximation.

Methods in the literature can be classified into suboptimal and
optimal, depending on the type of the solution obtained, that is,
optimal algorithms guarantee optimal polygonal approximations,
whereas, suboptimal methods do not assure the optimality of the
solution obtained.

Usually, optimal methods to obtain polygonal approximations
are used to compare suboptimal methods. This is done by using
the error associated to the optimal polygonal approximation.

The associated error measures the distortion introduced by the
polygonal approximation regarding the original digital planar
curve. The distortion decreases as the number of points of the
polygonal approximation increase, but many of these points may
be redundant, that is, they do not provide relevant information.
Therefore, a good balance between the distortion and the number
of points is a desirable characteristic for polygonal approximations.
Due to these two objectives are opposite, achieving a good balance
between them is complicated.

A widely used measure of the distortion associated to the
polygonal approximation is known as Integral Square Error (ISE).
Let’s suppose that a curve S has been approximated using a seg-
ment composed of points si and sj, then, a distortion measure
Dði; jÞ can be defined as follows:

Dði; jÞ ¼
Xj

k¼i

dðsk; sisjÞ2 ð1Þ

where the term dðsk; sisjÞ indicates the orthogonal distance from the
point sk to the segment sisj. Fig. 1 shows a curve that is approxi-
mated using a segment sisj, therefore the distortion Dði; jÞ is the
sum of the squared orthogonal distances from points between point

i and j to segment sisj, that is, Dði; jÞ ¼ d2
1 þ d2

2 þ d2
3. The distortion
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measure ISE associated to a polygonal approximation with M points
can be defined as follows:

ISE ¼
XM�1

k¼0

Dðik; jkÞ ð2Þ

where ik ¼ jk�1 (modular arithmetic is assumed). Thus, the distor-
tion associated to each of the M segments of the polygonal approx-
imation are added. The original curve has associated a value of ISE
equal to zero. The minimum number of points, that form a polygo-
nal approximation with a value of distortion of zero, are named as
breakpoints in the literature.

To compare the different methods to obtain polygonal approx-
imations, Rosin [18] introduced two components named as fidelity
and efficiency. Fidelity defines how well the polygonal approx-
imation fits the optimal polygonal approximation in terms of the
approximation error. Efficiency measures how compact is the
polygonal approximation supplied regarding the optimal polygon
with the same error.

Fidelity is defined as:

Fidelity ¼ Eopt

Eapprox
� 100 ð3Þ

where Eapprox is the distortion (ISE) of the polygonal approximation
and Eopt is the distortion of the optimal polygonal approximation.
Both distortion values, Eapprox and Eopt, are obtained for the same
number of points.

Efficiency is defined as:

Efficiency ¼ Mopt

Mapprox
� 100 ð4Þ

where Mapprox is the number of segments of the polygonal approx-
imation and Mopt is the number of segments that an optimal polygo-
nal approximation would require to obtain the same error.

These two measures may vary depending on the curve. In order
to avoid this problem Rosin [18] used a geometric mean of these
two measures named as merit. The Rosin’s merit is defined as:

Merit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fidelity� Efficiency

p
ð5Þ

The advantage of using Rosin’s merit as a measure for compar-
ing algorithms to obtain polygonal approximations is, that these
polygonal approximations may have a different number of points.
Therefore, all algorithms can be evaluated in a fair way.

To compute Rosin’s merit, the optimal polygonal approximation
is required. For this purpose, the method proposed by Perez and
Vidal [17] is used. This algorithm relies on the Dynamic
Programming (DP) technique, to obtain the optimal polygonal
approximation with a fixed number of points M for a digitized pla-
nar curve with N points. The main drawback of this method is the
complexity, OðMN2Þ for closed curves. This complexity also
increases because the initial point of the polygonal approximation
has to be set as a parameter to the method [17]. Therefore, to
obtain the optimal polygonal approximation, the method must
try all points as initial point. Taking into account this problem, final
complexity for obtaining the optimal polygonal approximation for
a closed curve is OðMN3Þ.

Some authors has proposed great improvements over the
Dynamic Programming method for reducing the computation time.
Horng and Li [11] proposed a method to determine the initial point
of the polygonal approximation. This heuristic method needs two
iterations of the Dynamic Programming algorithm to construct a
polygonal approximation. The algorithm does not assure that the
solution obtained is optimal.

Another attempt to reduce the computation time was intro-
duced by Salotti [20]. This method used the A⁄ algorithm to search
in a graph formed by the points of the curve. This graph has a root
node, which is the starting point of the curve. Therefore, this solu-
tion needs to try all points as initial point (initial node in the graph)
to obtain the optimal solution. Nevertheless, this solution has a
complexity close to OðN2Þ[20], where N is the number of points
of the curve.

Masood [15] proposed another framework of optimization. This
method selects an initial set of points and deletes one point per
iteration depending on the error associated to this point. After
removing the point a local optimization process search the optimal
position of the remaining points that minimizes the distortion. This
process does not guarantee that the solution obtained is optimal.

In this paper a new method to optimally solve the min-e problem
is proposed. The new method relies on Mixed Integer Programming
(MIP) technique and has some advantages over previous algo-
rithms: (1) no initial point is needed to be set as a parameter, (2)
time required to compute optimal solution is significantly lower
than the state-of-the-art alternatives and (3) and the solution
obtained is optimal.

The rest of this paper is structured as follows: Section 2
describes the proposed method. Section 3 describes the experi-
ments carried out and results obtained by the proposed method.
Section 4 discusses some relevant aspects of the proposed method
and experimental results. Finally, Section 5 shows the main
conclusions.

2. MIP model formulation

The problem of obtaining the optimal polygonal approximation
of a planar curve has been solved as an optimization problem,
using mainly dynamic programming techniques. We propose to
state the polygonal approximation problem as a Mixed Integer
Programming problem (MIP).

A MIP problem is a mathematical problem in which an objective
function has to be minimized or maximized and is subject to a set
of linear constraints. MIP problems may contain a subset of the
variables that has also the constraint of being integer.

The problem formulation has an objective function defined as:

z ¼ min cT x; z; x 2 Rn ð6Þ

which has to be a linear expression formed by a vector x of decision
variables and a cost vector c. This objective function is subject to a
set of constraints defined as:

Ax 6 b ð7Þ

where A is called constraint matrix. Decision variables may take val-
ues between an upper and a lower bound which is defined as:

l 6 x 6 u ð8Þ

Some decision variables are required to take integer values.
Integer variables that must take values 0 or 1 are called binary vari-
ables and play a special role in MIP modeling and solving.

Solving MIP usually includes two different stages. First, the
problem is solved with a relaxation of the integer constraint, that
is, the problem is solved by using the Simplex method (introduced
by Dantzig [6]) as if there were no integer restrictions. This process

Fig. 1. Distortion sum of an approximated line segment.
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obtain a value of the objective function that is a lower bound on
the MIP since we are minimizing over a large set that encompasses
all the integer solutions.

The next phase uses the algorithm named as Branch & Bound.
This method was introduced by Land and Doig [13] and relies on
a process of searching in a tree. This algorithm works by enu-
merating the possible combinations of the integer variables in a
tree. Each node of the tree is a continuous optimization problem,
based on the original problem, but with some decision variables
set to a fixed value. The remaining variables are allowed to take
some value of the possible integer range provided. The root of this
tree is the original problem with all of the integrality constraint
relaxed. The algorithm generates the tree by selecting an integer
variable xi and add a node for each integer value of the possible
range. Then, the method selects a node of the tree, and solves the
problem with the variable xi fixed to a value and the constraints
updated. Four possible results can be obtained:

� The subproblem is infeasible if the Simplex obtained is
unbounded, then, any further restriction of the subproblem
would also be infeasible. Therefore, the current node of the tree
could be pruned.
� The subproblem is feasible, but the objective function is worse

than a previous known integer solution, then, no children of
the current subproblem could get a better solution. This node
could be pruned.
� All the integer constraints are satisfied for the current subprob-

lem, and the objective function is better than the best previous
known solution, so, this solution and objective function are
recorded as the best feasible solution found. This node is a leaf
of the tree and no children nodes can be generated.
� If none of the above occurs, then, one variable xi is fractional

(not integer) at optimality, so, the subproblem must be
branched on this variable. New subproblems are generated by
fixing integer values to variable xi from its possible range. The
new subproblems are generated as children nodes of variable xi.

This algorithm repeats until no new nodes can be generated,
because no fractional decision variables can be used to branch.

Fig. 2 shows a MIP problem example. The MIP model of the
problem is defined in Fig. 2(a) and a graphical representation of
the generated tree is shown in Fig. 2(b). The Branch & Bound starts
applying Simplex to this model, obtaining the upper bound value
of 92 for the objective function. The algorithm creates the root
node (node 1 in Fig. 2(b)) of the tree with this value as the esti-
mated value for the objective function (E ¼ 92). Current value of
the objective function for the integer solution is 0 due to no integer
solution is known yet (V ¼ 0). Constraint is not updated
because decision variables are equal to 0 (C ¼ 0). Simplex algo-
rithm has solved the relaxed version of this problem obtaining
x1 ¼ 1; x2 ¼ 0:25 and x3 ¼ 1. Variable x2 is fractional at optimality,
therefore, we must set an integer value for this variable. The algo-
rithm sets the variable x2 to 0 and then use Simplex with this infor-
mation. Thus, the node 2 is created. The new solution is integer at
optimality (x1 ¼ 1; x2 ¼ 0; x3 ¼ 1) obtaining an objective function
value of 80. The new integer solution satisfies all the constraints
and is better than the previous one (because no previous integer
solution had been obtained), therefore, this solution is stored.

The algorithm also sets variable x2 to value 1 and solve the
problem using Simplex with this new constraint, and the node 3
is generated. The results of this solution are x1 ¼ 0; x2 ¼ 1 and
x3 ¼ 0:6667 for decision variables and the estimated objective
function value is E ¼ 71:33. The best integer solution obtained
has an objective function value of 80, hence, the new node solution
(node 3) can be pruned, because no children of this subproblem
could improve the objective function. The algorithm stops because

(a) MIP model (b) Tree generation

Fig. 2. Branch & Bound example. The model Fig. 2(a) defines a linear objective function to be optimized subject to a set of constraints. The algorithms generates a tree,
Fig. 2(b), where the method estimates an upper bound of the objective function (value E). Each leaf node represents a solution with an objective function value V associated
for some fixed integer values of the decision variables, which satisfies the model constraints (C ¼ 5x1 þ 8x2 þ 3x3).

Fig. 3. Branch & Bound algorithm.
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no new nodes could be generated. The best integer solution
obtained in node 2, with values x1 ¼ 1; x2 ¼ 0 and x3 ¼ 1; is the
optimal solution for this problem. A flowchart of this basic
Branch & Bound algorithm is shown in Fig. 3.

Mixed Integer Programming technique has successfully been
used in several fields: allocation of distributed generators in radial
distribution systems [19], data envelop analysis [21], modern
semiconductor manufacturing systems [1], etc.

2.1. Proposed MIP model

As explained above, the key point for solving a problem using
MIP techniques is to create a suitable model that defines the prob-
lem. In this work, a novel MIP model for solving the problem of
obtaining the optimal polygonal approximation for M points is pro-
posed. Our model defines a matrix of binary decision variables X of
size N � N (where N is the number of points of the contour). We

(a) X matrix search space reduction (b) Possible values in X matrix

Fig. 4. Fig. 4(a) represents the status of matrix X after a segment from point 1 to point 4 is selected. The constraint defined in Eq. (11) forces the model to take some of the
values highlighted in Fig. 4(b).

(a) Matrix X representation (b) Polygonal approximation

Fig. 5. Solution A (counterclockwise direction).

(a) Matrix X representation (b) Polygonal approximation

Fig. 6. Solution B (clockwise direction).

E.J. Aguilera-Aguilera et al. / J. Vis. Commun. Image R. 30 (2015) 106–116 109



express the model using a matrix of decision variables in order to
simplify the explanations. A binary decision variable xij is set to 1
when the segment that starts at contour’s point i and ends at con-
tour’s point j is selected for the solution. Thus, we can express all
possible solutions with matrix X. On the other hand, we define a
matrix of coefficients D of size N � N, where an element dij is set
to the distortion (we use the ISE value) associated to the segment
defined by the element xij, which is calculated as appear in Eq. (1).
The objective function for the proposed model is defined as:

z ¼min
XN�1

i¼0

XN�1

j¼0
j–i

dijxij ð9Þ

This objective function calculates the distortion value (ISE) pro-
duced by a given solution represented by the matrix X. Note that
the decision variables where i ¼ j are not taken into account
because segments from point i to i does not make sense.

In order to obtain a feasible configuration of the binary matrix
X, and therefore, a feasible optimal solution to the problem; a set
of lineal constraints has to be supplied. The optimal solution pro-
vided must have a fixed number M of points, therefore, a constraint
must be added:

XN�1

i¼0

XN�1

j¼0

xij ¼ M ð10Þ

Moreover, if segment consisted of points i and j is selected for
the solution (item ði; jÞ of matrix X is equal to 1), then some seg-
ment which ends with point i must be selected (some value of col-
umn i must be 1); and some segment which starts with point j
must also be selected for the current solution (some value of row
j must be 1). These restrictions can be modeled as follows:

XN�1

r¼0

xir ¼
XN�1

c¼0

xci;8i 2 ½0;N � 1� ð11Þ

An example of this appear in Fig. 4(a), where the segment con-
sisted of points 1 and 4 is selected for the solution. Taking into
account the set of constraints defined in Eq. (11) some of the values
in column 1 must be set to 1 (because summation of row 1 is equal
to 1), and some of the values row 4 must be set to 1 (because sum-
mation of column 4 is equal to 1). This is represented in Fig. 4(b).

Finally, the proposed model may represent optimal solutions in
two equivalent ways, as appear in Figs. 5 and 6. These two matrix
configurations (Figs. 5(a) and 6(a)) are different, but define the
same polygonal approximation in either counterclockwise
(Fig. 5(b)) or clockwise direction (Fig. 6(b)).

Formally, a polygonal approximation of a curve S defined in
counterclockwise direction is represented with an ordered number
of points M, such as, their indexes I ¼ fi0; i1; . . . ; iM�1g satisfy
i0 < i1 < . . . < iM�1. Due to we represent a closed polygonal approx-
imation, all the segments of the approximation are defined
(si0 si1 ; si1 si2 ; . . . ; siM�2 siM�1; siM�1 si0 ). Therefore, M � 1 segments (sia sib )
satisfy ia < ib and one segment (siM�1 si0 ) satisfies iM�1 > i0. These
two groups of segments are represented in two symmetric spaces
in matrix X, which are graphically represented in Fig. 7. Segments
sia sib that satisfy ia < ib are represented in the upper (gray) space in
matrix X (Fig. 7); the segment siM�1 si0 that satisfies iM�1 > i0 is
represented in the lower (blue) space in matrix X.

This previous information is used in order to avoid symmetric
solutions and, therefore, boost the execution of the method. As
explained above, a polygonal approximation defined in counter-
clockwise direction uses M � 1 segments in the upper space in
matrix X and one in the lower space. This information is used to
create a constraint for symmetry breaking[2], that can be written
as follows:

XN�1

i¼0

Xi

j¼0

xij ¼ 1 ð12Þ

2.2. Analysis of the model

The proposed model has been presented in Section 2.1. The pro-
posed MIP model is defined using a set of constraints (Eqs. (10)–
(12)). This set of constraints are used to define the problem and
to obtain a feasible optimal solution for the polygonal approx-
imation problem. But, are all of these constraints mandatory to
define the model?

Let’s suppose we have deleted the constraint presented in Eq.
(10). This constraint forces the solver to select a number M of seg-
ments for the optimal solution. If this constraint is not used in the
model, the trivial solution where all decision variables are equal to
0 will always satisfy all constraint. This trivial solution has a value
of 0 for the objective function. Therefore, this constraint is neces-
sary to define a suitable model for this problem.

The constraint defined in Eq. (11) forces the solver to select a
closed polygonal approximation. If this constraint is deleted, the

Fig. 7. X matrix symmetric spaces.

(a) Matrix X representation (b) Polygonal approximation

Fig. 8. Not valid optimal solution for model without constraint defined in Eq. (11).
Fig. 9. The figure shows the chromosome contour. The optimal polygonal approx-
imation for M ¼ 5 is highlighted.
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solver may select segments that do not form a valid polygonal
approximation. For example, let’s use this model (without Eq.
(11)) to obtain the optimal polygonal approximation with M ¼ 4
for the contour that appears in Fig. 5(b). The MIP solver obtains a
optimal solution where x0;1 ¼ x7;8 ¼ x8;9 ¼ x9;0 ¼ 1 and objective
function is equal to 0. This solution satisfies constraints defined
in Eqs. (10) and (12). Fig. 8 shows the optimal solution obtained
for this model. The solution highlighted in Fig. 8(b) does not form
a polygon, therefore, the constraint defined in Eq. (11) forces the

solver to take closed polygonal approximations, instead of isolated
line segments.

Finally, the constraint defined in Eq. (12) is used to break sym-
metries in the model. A MIP problem is called symmetric if the
variables can be permuted without changing the structure of the
problem[2]. This type of models can represent feasible optimal
solutions in equivalent ways. Section 2.1 demonstrates that the
proposed model can represent optimal feasible solutions in coun-
terclockwise and clockwise direction. These symmetries should
be avoided, due to the additional computational burden required
by the Branch & Bound algorithm to explore the equivalent solu-
tions[2]. This problem is solved by adding the constraint defined
in Eq. (12).

This model defines the problem and the constraints manage to
obtain a feasible optimal solution. This is achieved by using the
Branch & Bound algorithm, as explained in Section 2. In order to
understand the whole process, a small example is shown.

Let’s suppose that we want to obtain the polygonal approx-
imation for contour chromosome, Fig. 9, with M ¼ 5. The process
starts applying the Simplex algorithm to the proposed model with
no integer restrictions. The algorithm obtains a value for the
objective function equal to 78:92. The decision variable x0;15 has
a integer value of 1, variables x15;22; x15;23; x22;29; x23;52; x29;47; x47;54;

x52;0; x54;0 are equal to 0:5, and the rest of the variables are equal
to 0.

The Branch & Bound algorithm enumerates all possible values, 1
or 0, in the present model, for decision variables which are not
integer. The value of 1 is fixed for the variable x15;22 and the
Simplex algorithm is executed with this new constraint. The node
1 is created in the search tree. The objective function value
obtained is equal to 79.03 and all the constraints are satisfied,
therefore, this solution is stored as the best solution found. The
algorithm also fixes variable x15;22 to value 0 and creates node 2
in the search tree. The Simplex algorithm is executed using this
constraint. The integrality constraint is not satisfied, that is, some
decision variable is fractional, but the objective function is equal
to 79:91 and this node is pruned due to no children of this sub-
problem could improve the best feasible solution found.

The Branch & Bound selects next decision variable, x15;23, and
fixes value to 1. The node 3 is created in the search tree. The
Simplex algorithm is executed using this new constraint. The
objective function value obtained is 80.05, therefore, the node is
pruned because no children of this node could improve the best
solution found. The variable is also fixed to value 0 and Simplex

Table 1
The table summarizes the steps of the algorithm Branch & Bound using the proposed
model. The model obtains the polygonal approximation for contour chromosome for
M ¼ 5.

Node Variable Value Function
value

Integrality
constraint

Action

1 x15;22 1 79:03 Yes Save this solution as
the best integer
solution found

2 x15;22 0 79:91 No Prune due to worse
objective function

3 x15;23 1 80:05 No Prune due to worse
objective function

4 x15;23 0 79:03 Yes Prune due to equal
objective function

5 x22;29 1 79:03 Yes Prune due to equal
objective function

6 x22;29 0 79:91 No Prune due to worse
objective function

7 x23;52 1 130:35 No Prune due to worse
objective function

8 x23;52 0 79:03 Yes Prune due to equal
objective function

9 x29;47 1 89:96 Yes Prune due to worse
objective function

10 x29;47 0 79:03 Yes Prune due to equal
objective function

11 x47;54 1 94:42 Yes Prune due to worse
objective function

12 x47;54 0 79:03 Yes Prune due to equal
objective function

13 x52;0 1 79:95 No Prune due to worse
objective function

14 x52;0 0 79:03 Yes Prune due to equal
objective function

15 x54;0 1 93:74 Yes Prune due to worse
objective function

16 x54;0 0 79:03 Yes Prune due to equal
objective function

Fig. 10. Search tree generated by the Branch & Bound algorithm tree. The optimal solution has been found in the node 1. The rest of the solutions found are pruned due to the
objective function value is not improved.

(a) Chromosome (b) Semicircle (c) Leaf

Fig. 11. Synthetic contours.
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is executed taking into account this new constraint. The node 4 is
created in the search tree. The integrality constraint is satisfied,
that is, all decision variables are integer. The objective function
value is equal to 79:03, therefore, this solution is not stored
because does not improve the value (the value is equal to the best
solution found).

This search process continues until no new nodes are generated,
as explained in Section 2. A summary of this process is present in
Table 1. The search process has found the optimal solution in node
1. The rest of nodes have been pruned due to the objective function
values do not improve the optimal value found in node 1.
Therefore, no new levels of the search tree have been added. The
generated search tree is shown in Fig. 10. The polygonal approx-
imation and the original digital curve appear in Fig. 9.

3. Experiments and results

This section describes the experiments carried out in order to
demonstrate the advantages of using this procedure to calculate
the optimal polygonal approximation of a digital planar curve.
Three experiments have been carried out comparing several meth-
ods and using different contours. In the first experiment we check
the optimality of the solution for several methods. In the second
experiment we compare computation times for methods that
assure optimal solutions. The third experiment shows the speedup
obtained using the present proposal.

For the comparisons we have considered the unique algorithms
that assure optimal solutions [17,20] among the literature and
some algorithms which obtain polygonal approximations close to
the optimal solution [11,15,5,16,3].

The experiments have been carried out in a generic computer
with processor Intel(R) Core(TM) i7-3930K CPU @ 3.20 GHz,
16 GB of RAM memory. The present proposal has been developed
using C++ as programming language and using Gurobi [10] (ver-
sion 5.6.3) as the LP/MIP solver library. The default configuration
for the MIP solver library was used. Gomory’s mixed integer cuts
[8] has also been enabled in order to boost the process. All the
compared methods were implemented and run according to the
specifications present in their respective papers. The method pro-
posed by Salotti [20] was supplied by the author.

3.1. Comparisons between optimal and suboptimal algorithms

The first experiment has been carried out to determine the
optimality of the solutions provided by some methods. As dis-
cussed in Section 1 the method proposed by Perez and Vidal [17]
is usually used to compute the optimal polygonal approximation.
However, an initial point must be set as a parameter. We have used
the common standard defined in the literature of using the first
point of the curve as the initial point for this purpose. We refer this
version of the algorithm as Perez-Vidal0. As is mentioned in
Section 1 this may produce suboptimal solutions, therefore, we
have tried all points as initial point. We refer to this way of using
the algorithm as Perez-VidalN. We evaluate the method proposed
by Salotti [20], which also must try all initial points to obtain the
optimal solution (SalottiN). We also evaluate the methods proposed
by Horng and Li [11], Masood [15], Carmona-Poyato et al. [5],
Parvez and Mahmoud [16], Backes and Bruno [3] and our proposal.

The synthetic contours chromosome, semicircle and leaf have
been used in this experiment. These contours are broadly used in
the literature as a standard benchmark to compare polygonal
approximation algorithms[22,4,3,11,15]. For each synthetic con-
tour, several polygonal approximations with different size M, have
been obtained. The synthetic contours are shown in Fig. 11.

Table 2 shows the results of the first experiment. These values
demonstrates that the optimal solution is always obtained for

methods Perez-VidalN, SalottiN and our proposal. The results show
that method by Horng and Li [11], Masood [15], Carmona-Poyato
et al. [5], Parvez and Mahmoud [16] and the method by Backes
and Bruno [3] obtains suboptimal results several times, hence,

Table 2
This table shows the results for methods Perez-Vidal (using the first point of the curve
as initial point Perez-Vidal0, and trying all points as initial point Perez-VidalN), Salotti
[20] (using the first point of the curve as initial node Salotti0, and trying all points
SalottiN), Horng and Li [11], Masood [15], Carmona-Poyato et al. [5], Parvez and
Mahmoud [16], Backes and Bruno [3] and our proposal. These results show that the
unique alternatives that obtain the optimal solution in every situation are Perez-
VidalN, SalottiN and our proposal.

Contour Method M ISE Optimal

Chromosome Parvez-Mahmoud 10 14.34 No
Proposed 10 8.0680 Yes
Backes-Bruno 11 7.8 No
Proposed 11 7.06 Yes
Perez-Vidal0 12 6.06 No
Perez-VidalN 12 5.82 Yes
Salotti0 12 6.06 No
SalottiN 12 5.82 Yes
Horng 12 5.82 Yes
Masood 12 5.82 Yes
Backes-Bruno 12 5.82 Yes
Proposed 12 5.82 Yes
Perez-Vidal0 15 3.97 No
Perez-VidalN 15 3.79 Yes
Salotti0 15 3.97 No
SalottiN 15 3.79 Yes
Horng 15 3.81 No
Masood 15 3.88 No
Carmona-Poyato 15 4.27 No
Proposed 15 3.79 Yes

Semicircle Backes-Bruno 12 28.9 No
Proposed 12 26.0045 Yes
Perez-Vidal0 15 14.40 Yes
Perez-VidalN 15 14.40 Yes
Salotti0 15 14.40 Yes
SalottiN 15 14.40 Yes
Horng 15 14.40 Yes
Masood 15 14.40 Yes
Backes-Bruno 15 14.40 Yes
Proposed 15 14.40 Yes
Parvez-Mahmoud 17 19.02 No
Proposed 17 12.2179 Yes
Perez-Vidal0 25 4.75 No
Perez-VidalN 25 4.62 Yes
Salotti0 25 4.75 No
SalottiN 25 4.62 Yes
Horng 25 4.75 No
Masood 25 4.75 No
Proposed 25 4.62 Yes
Carmona-Poyato 26 4.91 No
Proposed 26 4.0543 Yes

Leaf Backes-Bruno 12 70.5 No
Proposed 12 50.1983 Yes
Perez-Vidal0 13 55.88 No
Perez-VidalN 13 38.32 Yes
Salotti0 13 55.88 No
SalottiN 13 38.32 Yes
Horng 13 42.05 No
Masood 13 64.85 No
Proposed 13 38.32 Yes
Parvez-Mahmoud 21 13.82 No
Proposed 21 8.94993 Yes
Carmona-Poyato 23 10.68 No
Proposed 23 7.46609 Yes
Perez-Vidal0 32 4.45 No
Perez-VidalN 32 3.45 Yes
Salotti0 32 4.45 No
SalottiN 32 3.45 Yes
Horng 32 4.45 No
Masood 32 4.45 No
Proposed 32 3.45 Yes
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these methods do not assure the optimal solution. Note that using
the first point on the curve as the initial point in the methods by
Perez-Vidal and Salotti (Perez-Vidal0 and Salotti0) results in sub-
optimal solutions, as appear in Table 2.

3.2. Comparisons between optimal algorithms

The proposed method based on MIP techniques obtains the
optimal polygonal approximation for M points, therefore, we

(a) Tin-opener (N=580) (b) Plane1 (N=1015)

(c) Hammer (N=1583) (d) Pliers (N=2040)

(e) Contour #5 (N=3022) (f) Contour #6 (N=5004)

Fig. 12. Contours used in experiment 3.

Table 3
The computation time obtained in seconds for method Perez-VidalN, SalottiN and our proposal. The results show that our proposal obtains the optimal solution taking lower
computation time than the other methods.

Contour Method M

10 20 30 40 50

Tinopener Perez-VidalN 13.92 23.2 25.52 27.84 30.16
SalottiN 6.7 7.61 8.5 7.12 11.22
Proposed 5.03 4.54 4.33 4.14 6.96

Plane1 Perez-VidalN 85.26 121.8 178.64 219.25 259.87
SalottiN 37.23 30.45 39.5 42.85 43.31
Proposed 19.51 15.00 13.99 14.77 13.53

Hammer Perez-VidalN 291.27 525.56 740.85 918.14 1108.1
SalottiN 142.3 131.74 179.23 183.54 215.23
Proposed 47.01 40.33 38.10 43.25 59.38

Pliers Perez-VidalN 669.12 1175.04 1648.32 2088.96 2586.72
SalottiN 331.02 389.61 395.25 315.79 323.56
Proposed 94.89 77.72 72.32 67.55 64.21

Contour #5 Perez-VidalN 2546.41 4437.72 6240.98 8030.16 9791.16
SalottiN 1061.01 964.72 1101.35 1159.91 1073.59
Proposed 369.49 488.14 254.92 287.82 230.08

Contour #6 Perez-VidalN 9307.44 16012.80 22818.24 30024 36379.08
SalottiN 5318.53 4927.01 4563.65 4740.63 4921.87
Proposed 1682.45 909.45 915.03 790.70 867.86
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compare this method with the alternative proposed by Perez and
Vidal [17] and the method proposed by Salotti [20] because are
the unique alternatives which can obtain the optimal solution for
closed curves, as shown in Section 3.1.

A set of real contours, shown in Fig. 12, have been used in this
experiment (contour #5 and contour #6 are provided by Salotti
[20]). These contours have been used as the input for the method
by Perez-Vidal, the alternative proposed by Salotti and the present
MIP model. We have obtained polygonal approximations with
sizes M ¼ 10, 20, 30, 40 and 50.

The results in Table 3 show that the computation time obtained
by our proposal is lower than the computation time obtained by
Perez and Vidal [17] and Salotti [20]. The difference between the
computation times for the different methods is remarkable.

3.3. Comparing the speedup obtained

The differences shown in Table 3 between the method by Perez
and Vidal [17] and our proposal increases with increasing number
of points M of the polygonal approximation. We have performed

(a) Dino1 (b) Dino2 (c) Dino3 (d) Dino4 (e) Dino5

(f) Dino6 (g) Dino7 (h) Fish (i) Hammer (j) Hand

(k) Plane1 (l) Plane2 (m) Plane3 (n) Plane4 (o) Plane5

(p) Plane6 (q) Plane7 (r) Plane8 (s) Pliers (t) Rabbit

(u) Screwdriver (v) Spoon (w) Tinopener (x) Turtle

Fig. 13. Real contours dataset.

Fig. 14. The figure presents how the speedup (Speedup ¼ TimePerez�Vidal
TimeMIP

) raises with increasing number of points N of the contour and number of points M of the polygonal
approximation. The value N is normalized between the minimum and maximum number of points of the contours used in the experiment. The size of the polygonal
approximation M is represented as a percentage of the break points of the contour. The speedup obtained for the contour known as hammer is highlighted.
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another experiment in order to verify if this trend continues.
Fig. 13 shows the dataset used for this purpose, which includes
24 real contours. We have used five sizes for the polygonal approx-
imations (M = 10%, 20%, 30%, 40% and 50% of the breakpoints of the
contour). For each contour and size M of polygonal approximation
the computation times for the method based on Dynamic
Programming and our proposal have been obtained. We have com-

puted the speedup (Speedup ¼ TimePerez�Vidal
TimeMIP

) using these computation

times. Fig. 14 shows that the trend continues and the differences
between the method based on Dynamic Programming and the pro-
posed method keep increasing.

4. Discussion

In this section some relevant aspects of the proposed method
are discussed.

One of the drawbacks of the alternative proposed by Perez-
Vidal and the method proposed by Salotti is that the initial point
of the polygonal approximation is required, as is mentioned in
Section 1. The proposed method to obtain the optimal polygonal
approximation does not require an initial point to be set as a
parameter into the MIP model, that is, the method obtains the opti-
mal solution by enumerating all feasible combinations and pruning
those solutions which are worse that the best solution found, as
explained in Section 2.

The main problem for obtaining the optimal polygonal approx-
imation is that it is a computationally expensive process. This

issue, appears in Table 3, where computation times grow with
increasing number N of points of the original contour for the
Dynamic Programming alternative, the method by Salotti [20]
and our proposal. Although the computation time of all optimal
methods used in the experiments depends on the number N of seg-
ments of the original contour, the results shown in Table 3 demon-
strates that the computation time obtained by our proposal is
significantly lower than the time obtained by both the alternative
by Perez-Vidal and the method proposed by Salotti [20].

The method proposed by Perez-Vidal presents another problem.
The computation time increases with increasing number of points
M in the polygonal approximation. This problem is not present in
the MIP solution as Fig. 15(a) and (b) show. The figures show that
the computation time for the alternative by Perez-Vidal increases
as the number of points M of the polygonal approximation also
increases. On the other hand, the computation time for the pro-
posed MIP alternative does not change significantly with increas-
ing number of points M of the polygonal approximation. These
differences have been shown to increase with increasing number
of points N of the contour and also with increasing number of
points M of the polygonal approximation. This trend is shown in
Fig. 14, where the speedup over the method based on Dynamic
Programming keep increasing. The proposed method has achieved
computation times up to 300 faster than the method based on
Dynamic Programming. The differences between the proposed
method and the method proposed by Salotti [20] are also remark-
able as appear in Table 3. Our proposal has obtained computational
times up to 6 times faster than the method introduced by Salotti.

(a) Hammer

(b) Pliers

Fig. 15. These figures present the computation time evolution for obtaining optimal polygonal approximations of two contours. The computation time increments with
increasing number of points M of the polygonal approximation for the alternative proposed by Perez-Vidal. The figures show that the computation time for MIP solution does
not change significantly for different number of points M of the polygonal approximation. The figures also show that the computation time by the proposed method is
significantly lower than the other alternatives presented in the figures.
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5. Conclusions

A novel method to compute optimal polygonal approximations
of closed curves based on Mixed Integer Programming has been
presented in the present paper. This method presents several
advantages over the state-of-the-art alternatives, namely:

� The proposed method does not need the initial point of the
polygonal approximation to compute the optimal polygonal
approximation.
� The computation time does not depends on the number of

points M of the polygonal approximation.
� The computation time needed to obtain the optimal polygonal

approximation is significantly lower than the time required by
the state-of-the-art alternatives.

Since the computation time of our method is modest it may be
used for applications that need the optimal polygonal approx-
imation such as the computation of the merit.
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Abstract A new method for obtaining optimal polygonal

approximations in closed curves is proposed. The new

method uses the suboptimal method proposed by Pikaz and

an improved version of the optimal method proposed by

Salotti. Firstly, the Pikaz’s method obtains a suboptimal

polygonal approximation and then the improved Salotti’s

method is used for obtaining many local optimal polygonal

approximations with a prefixed starting point. The error

value obtained in each polygonal approximation is used as

value of pruning to obtain the next polygonal approxima-

tion. In order to select the starting point used by the Sal-

otti’s method, five procedures have been tested. Tests have

shown that by obtaining a small number of polygonal

approximations, global optimal polygonal approximation is

calculated. The results show that the computation time is

significantly reduced, compared with existing methods.

Keywords Digital planar curve � Global optimal

polygonal approximation � Local optimal polygonal

approximation � Pikaz’s method � Perez’s method � Salotti’s

method

1 Introduction

Polygonal approximations of digital planar curves are an

important problem in image processing, pattern recognition

and computer graphics. They are used in applications like

image analysis [1], shape analysis [2], geographical

information systems [3] and digital cartography [4]. The

main goal is to provide a compact representation of the

original curve with reduced memory requirements, pre-

serving the important shape information.

The problem can be defined as follows: given a digital

planar curve C with N points, approximate it by an other

digital planar curve Ca with a prefixed number of points M

so that the obtained error in this approximation is mini-

mized. This problem is known as min-e problem or mini-

mum-distortion problem. To solve this problem in an

optimal way, many methods have been proposed: (i) using

graph theory [5–7], (ii) using dynamic programming [8, 9]

and (iii) using A*-search algorithm [10].

These methods solve this problem in OðN2Þ � OðMN2Þ
time in open curves or closed curves when a starting point

is prefixed. The main drawback of the cited methods is due

to the solution that depends on the starting point, and only a

local optimum for this prefixed starting point is obtained.

For this reason, all the points of the contour should be

tested as starting point for obtaining the global optimal

polygonal approximation. Thus, the computational com-

plexity increases one level of complexity and becomes

OðN3Þ � OðMN3Þ.
Kolesnikov and Franti [11] proposed a new method

based on reduced search approach that provides a solution

very close to the optimal one; however, the global optimal

polygonal approximation is not guaranteed.

There are many suboptimal methods that solve this

problem; for example, the method proposed by Pikaz and

Dinstein [12] is Oðn log nÞ, though they are faster than

optimal methods but they are not optimal.

In this work, a method based on the Pikaz’s method [12]

and the Salotti’s method [10] is proposed to solve the min-e
problem. Its computational complexity is close to OðN2Þ
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123

Neural Comput & Applic

DOI 10.1007/s00521-016-2198-7



and between OðN2Þ and OðMN2Þ. Therefore the compu-

tational complexity of the previously cited methods is

reduced one level.

In Sect. 2 the main related methods are described. The

proposed method is explained in Sect. 3. The experimental

results are shown in Sect. 4, and finally, the main conclu-

sions are summarized in Sect. 5.

2 Related methods

2.1 Pikaz’s suboptimal method

Pikaz and Dinstein [12] proposed a suboptimal method

based on a greedy iterative algorithm that eliminates the

break point with the smallest error value. Break points are

taken as the initial polygonal approximation. To calculate

the error associated with each break point BPj, two

neighboring break points, BPj�1 and BPjþ1, are joined with

a straight line. Maximum perpendicular (squared) distance

of all boundary points between BPj�1 and BPjþ1 from the

straight line is called as associated error value of break

point BPj. In each iteration, only the break point with the

smallest error value is deleted. If more than one BP with

the smallest associated error value exists, any of them may

be removed because sequence of removal (in case of more

than one candidate) will not affect the results. When a

break point is deleted, only the error associated with its two

neighbors must be updated. For example, if BPj is deleted,

only the associated error value corresponding to BPj�1 and

to BPjþ1 is updated. This method is very fast ðOðn log nÞÞ
and can produce polygonal approximation with any preset

number of final points.

2.2 Perez’s method

Perez and Vidal [8] proposed a method, based on dynamic

programming, to solve the min-e problem, when the con-

sidered error is the integral squared error (ISE). The value

of ISE for a polygonal approximation is defined as

ISE ¼
XN

i¼1

e2
i ð1Þ

where:

– ei is the orthogonal distance from Pi to the approxi-

mated line segment.

– Pi depicts any point of the digital curve.

Dynamic programming is an optimization method which

makes a decision based on all possible previous states with

a proper recurrence relation. Perez et al. used the next

recursive function to solve the min-e problem:

EðN;MÞ ¼ min
M�1� i�N�1

fEði;M � 1Þ þ eðPi;PNÞg

where:

– E(N, M) depicts the minimum error of approximate the

first N points by using M points

– Eði;M � 1Þ depicts the minimum error of approximate

the first i points by using M � 1 points.

– eðPi;PNÞ depicts the error of approximate the curve

segment between Pi and PN by a single edge.

If the values of eðPi;PjÞ are calculated in an incremental

way, the computational complexity of this method is

OðMN2Þ in open planar curves or closed curves when the

starting point is prefixed. However, in closed curves, when

all the points should be considered as starting point, the

computational complexity is OðMN3Þ.

2.3 Salotti’s method

Salotti [10] proposed a method based on the search of the

shortest path in a graph using A� algorithm, to solve the

min-e problem. If the A� algorithm is applied to solve this

problem, it is slower than Perez’s method due to the cost of

the management of the graph and node sorting. In order to

reduce the search, Salotti [10] proposed two improvements:

– To obtain a first rough polygonal approximation to

estimate the value of a threshold on the maximum

global error. Thus, nodes which cannot lead to optimal

solutions are pruned. This rough polygonal approxi-

mation is obtained by using a suboptimal method with

low computational complexity.

– To stop the exploration of successors of the shortest

path in the graph as soon as possible. For this reason,

Salotti proposed a simple solution to stop the explo-

ration using a lower bound. This lower bound is

calculated using the linear regressions y / x and x / y to

estimate least-square errors. So, he obtains the next

expression for the lower bound:

E
Pi!Pj

low ¼ 1

2
Min E

Pi!Pj

reg1 ;E
Pi!Pj

reg2

� �

where Ereg1 and Ereg2 are the errors calculated using the

linear regressions y / x and x / y.

Using these improvements, Salotti managed to reduce the

time complexity of the A� algorithm. In this case the

computational complexity is close to OðN2Þ. Since in this

method the starting point is prefixed and a local optimal

polygonal approximation is obtained, all the points should

be considered as starting point to obtain the global optimal

solution. In this case the computational complexity is close

to OðN3Þ.
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2.4 Horng’s method

Horng and Li [9] proposed a method for obtaining the

global optimal polygonal approximation without testing all

the points of the closed curve as starting point. They used

three techniques to reduce the time complexity of the

dynamic programming algorithm proposed by Perez and

Vidal [8]

– Incremental error measure to estimate eðPi;PjÞ in a

constant time [8].

– Error measure is reused when the starting point

changes. So, unnecessary repeated computations are

avoided, because each error measure is computed only

once, although the starting point changes [13].

– Initial point determination. He proposed to apply

dynamic programming using a random starting point

and then applied dynamic programming using as

starting point the vertex farthest from the starting point

of the first iteration and separated from its nearest

vertex by more than a given threshold [9]

Horng’s method has an overall computational complexity

of OðMN2Þ. However it does not guarantee the global

optimal solution, because the starting point in the second

iteration might not belong to the global optimal polygonal

approximation.

2.5 Kolesnikov’s method

Kolesnikov and Franti [11] proposed a solution, based on

the optimal programming algorithm for open curves, very

close to the optimal one. This solution uses a cyclically

extended closed curve of double size and selects the opti-

mal starting point by search in the extended search space

for the curve. Kolesnikov’s method solves min-e and min-

# problems in a processing time between 1.5 and 2 times

of the processing time from the open curve.

To reduce the time-consuming search in the state space,

they use a reduced search algorithm [14]. This algorithm

starts from an initial solution generated using any fast

algorithm that defines a reference path in the state space. A

bounding corridor of width w is used along this path, and

then, the minimum cost path within the corridor is obtained

using Perez’s method [8].

Although this method improves Horng’method, it does

not guarantee the global optimal solution and only four

contours were used to test it.

3 Proposed method

The following features of the proposed method can be

highlighted:

– The proposed method relies on an improvement of the

Salotti method [15] to obtain a local optimal polygonal

approximation using a prefixed starting point in closed

curves. Thus the processing time is reduced.

– An iterative procedure to obtain the best starting point

is used. In each iteration of this procedure a new local

optimal polygonal approximation, using a new starting

point, is obtained, and this local polygonal approxima-

tion is better than the previous one.

– In order to select the new starting point in each

iteration, some proposals have been tested and the best

of them has been selected.

The method is detailed in the following subsections.

3.1 Improved Salotti’s method

To improve the Salotti method, we propose to calculate

the lower bound using the minimum error of the best line

segment approximating a set S of consecutive points

ðPi; . . .;PjÞ instead of using the linear regressions y /

x and x / y to estimate least-square errors. This method is

known as total least squares or orthogonal regression.

By using this method the time taken to calculate the

lower bound is halved. This improvement was used in a

previous work of the authors and reduces the computa-

tion time of the original Salotti’s method about 16 %

[16].

3.2 Global optimal polygonal approximation

A local optimal polygonal approximation is the optimal

polygonal approximation for a prefixed starting point. In

order to select the best starting point and for obtaining the

optimal approximation, our proposal is based on the fol-

lowing statement:

If we obtained the global optimal polygonal approxi-

mation (the best of all local optimal polygonal approxi-

mations) of M points for a planar digital curve of N points,

any local optimal polygonal approximation that uses any of

these M points as prefixed starting point would be a global

optimal polygonal approximation.

Demonstration: If we obtain a local optimal polygonal

approximation of M points for a planar digital curve of

N points, using a prefixed starting point, any local optimal

polygonal approximation of M points obtained using any of

the M points of this polygonal approximation will be equal

or better than the first local optimal polygonal approxi-

mation. Therefore if we use any of the M points of the

global optimal polygonal approximation, as starting point

to obtain a local optimal polygonal approximation, this

approximation will be equal to the global optimal polyg-

onal approximation (it can not be better).
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Considering these statements, two proposals have been

tested and the best one has been selected. Our proposals

can be summarized as follows:

3.3 Perez–Salotti proposal (PS)

1. Select a random starting point.

2. Obtain the local polygonal approximation for this

starting point using the Perez’s method. This method is

used because in the first iteration no value of pruning is

used and in this case the Perez method is faster.

Obviously, this is not the global optimum.

3. Select the starting point for the second and next

iterations. Horng and Li [9] propose only two

iterations, and he used as starting point the vertex

farthest from the starting point of the first iteration and

separated from its nearest vertex by more than a given

threshold. We have tested five methods to obtain this

starting point for the second and next iterations:

(a) Use the second point of the previous polygonal

approximation as starting point in the second

and next iterations (Dsp ¼ 1).

(b) Use the third point of the previous polygonal

approximation as starting point in the second

and next iterations (Dsp ¼ 2).

(c) Use the fourth point of the previous polygonal

approximation as starting point in the second

and next iterations (Dsp ¼ 3).

(d) Use the M / 2-th point of the previous polygonal

approximation as starting point in the second

and next iterations (Dsp ¼ opposite). This pro-

posal is similar to Horng’s method [9].

(e) Use the M=ð2i�1Þ-th point of the previous

polygonal approximation as starting point in

the i-th iteration, similar to the binary search

(Dsp ¼ binary � opposite).

4. To obtain the polygonal approximation in the second and

next iterations, taking into account the selection of the

starting point according to the previous step, improved

Salotti’s method is used. In this case, the value of ISE

corresponding to the previous polygonal approximation is

used as value of pruning in the second and next iterations,

so the computation time is greatly reduced.

3.4 Pikaz–Salotti proposal (PHS)

This proposal differs from the PS proposal only in the first

iteration.

1. Obtain the polygonal approximation using the Pikaz’s

heuristic method [12] in the first iteration.

2. Obtain the polygonal approximation in the second

iteration with the improved Salotti’s method using:

– The value of ISE corresponding to the first iteration

as value of pruning.

– The point of maximum associated error in the

polygonal approximation of the first iteration as

starting point.

3. The remaining iterations are similar to the second and

next iterations for the PS proposal, where five methods

are tested to select the starting point.

3.5 Advantages of PS and PHS proposals

These proposals have the next advantages:

– The Perez’s method [8] and Pikaz’s method [12] are

faster than improved Salotti’s method when a starting

point is prefixed and no value of pruning is used.

– From the second iteration and the next iterations, the

lowest value obtained of ISE in the previous iterations

is used as value of pruning for the next iterations. Thus,

the computation time is highly reduced. For this reason,

the improved Salotti’s method is used in these

iterations.

– The value of ISE in each iteration is always less than or

equal to the value of ISE of previous iterations. Due to

this, the global optimal polygonal approximation is

quickly reached.

4 Experimental results and discussion

The experiments have been carried out in a generic com-

puter with processor Intel(R) Core(TM) i7-3930K CPU @

3.20 GHz, 16 GB of RAM memory. The proposals PS and

PHS have been tested using two groups of contours:

– 24 digital contours used in other works by the authors

[16]. The number of points of these contours ranges

from 554 to 2041. For the five methods to select the

next starting point, all the global optimal polygonal

approximations, between 5 and 50 points, have been

calculated. From this group, 5520 global optimal

polygonal approximations have been obtained. Figure 1

shows some of the digital contours belonging to the

first group and their global optimal polygonal approx-

imations for 30 points.

– 1400 digital contours from MPEG7-CE-Shape1 data-

base [17]. The number of points of these contours
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ranges from 146 to 5149. For the five methods to select

the next starting point, all the global optimal polygonal

approximations between 5 and 50 points have been

calculated. From this group, 322460 global optimal

polygonal approximations have been obtained.

In order to assess the proposed method and taking into

account that the related methods have worse performance

when the number of points of the polygonal approximation is

small, polygonal approximations with few points (between 5

and 15) have been analyzed separately. Polygonal approxi-

mations between 16 and 50 points usually produce balanced

approximations similar to the original contours, with appro-

priate number of points (they are neither too high nor too low).

In order to test the accuracy of the proposed method, the

global optimal polygonal approximation has been obtained

using improved Salotti’s method for all possible starting

points. As it was said above, the results obtained from

optimal approximations between 5 and 15 points and

optimal approximations between 16 and 50 have been

analyzed separately, in order to assess the proposals PS and

PHS in polygonal approximations with a low number of

points.

Taking into account the two groups of contours and the

two proposals, two experiments have been performed.

4.1 First experiment

In this experiment the PS and PHS proposals, with the first

group of contours, have been tested.

Table 1 shows the percentage of global optimal polyg-

onal approximations obtained for the PS proposal in the

first group of contours depending on the number of points,

the method used to obtain the starting point and the number

of iterations (It).

The results obtained for PS proposal for the first group

of contours with Dsp ¼ opposite with four iterations were

shown in [16].

Table 1 shows that for polygonal approximations with

few points, if we use a number of iterations[3, the global

optimal polygonal approximation is obtained in more than

90 % of cases. In this case, the best method is Dsp ¼ 2.

Table 1 shows that for polygonal approximations with

many points, if we use a number of iterations[2 (except in

Dsp ¼ 1), the global optimal polygonal approximation is

Fig. 1 Some of the digital contours used in this experiment and their global optimal polygonal approximations for 30 points
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obtained in more than 95 % of cases. In this case, the best

method is Dsp ¼ 3.

Horng’s method is equivalent to Dsp ¼ opposite with

Iterations� 2. Table 1 shows that for this method the

global optimal polygonal approximations are obtained in

the 76.45 % of cases for approximations with few points

and 95.45 % of cases in approximations with many points.

Table 2 shows the percentage of global optimal polyg-

onal approximations obtained for the PHS proposal for the

first group of contours depending on the number of points,

the method used to obtain the first point and the number of

iterations.

Table 2 shows that for polygonal approximations with

few points, if we use a number of iterations[7 (except in

binary-opposite), the global optimal polygonal approxi-

mation is obtained in more than 90 % of cases. In this case,

the best method is Dsp ¼ 3.

Table 2 shows that for polygonal approximations with

many points, if we use a number of iterations[6, the global

optimal polygonal approximation is obtained in more than

95 % of cases. In this case, the best method is Dsp ¼ 3.

4.2 Second experiment

In this experiment the PS and PHS proposals, with

MPEG7-CE-Shape1 database, have been tested.

Table 3 shows the percentage of global optimal polyg-

onal approximations obtained for the PS proposal for

MPEG7-CE-Shape1 database depending on the number of

points, the method used to obtain the starting point and the

number of iterations.

Table 3 shows that for polygonal approximations with

few points, if we use a number of iterations[3, the global

optimal polygonal approximation is obtained in more than

90 % of cases. In this case, the best method is Dsp ¼ 2.

Table 3 shows that for polygonal approximations with

many points, if we use a number of iterations[2 (except in

Dsp ¼ 1), the global optimal polygonal approximation is

obtained in more than 95 % of cases. In this case, the best

method is Dsp ¼ 3.

Horng’s method is equivalent to Dsp ¼ opposite with

Iterations� 2. Table 3 shows that for this method the

global optimal polygonal approximations are obtained in

Table 1 Summary of the percentage of global optimal polygonal approximations obtained for the PS proposal for the first group of contours

depending on the number of points, the method used to obtain the starting point and the number of iterations (It)

M Method It B 2 It B 3 It B 4 It B 5 It B 6 It B 7 It B 8 It B 9 It B 10

5–15 Dsp ¼ 1 30.68 78.41 89.77 94.32 97.73 98.48 99.24 99.62 100.00

Dsp ¼ 2 57.20 90.15 96.21 96.97 98.86 99.62 100.00 100.00 100.00

Dsp ¼ 3 71.59 82.95 90.15 97.73 97.73 98.48 99.24 99.24 100.00

Dsp ¼ opposite 76.45 85.98 95.08 97.35 98.11 98.86 99.24 99.62 100.00

Dsp ¼ binary � opposite 76.45 91.32 95.87 96.69 97.11 97.52 98.35 99.59 100.00

16–50 Dsp ¼ 1 60.60 85.95 93.10 97.50 99.29 99.64 99.88 100.00 100.00

Dsp ¼ 2 75.71 95.71 99.64 100.00 100.00 100.00 100.00 100.00 100.00

Dsp ¼ 3 88.57 99.52 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Dsp ¼ opposite 95.45 97.50 98.69 99.29 99.76 100.00 100.00 100.00 100.00

Dsp ¼ binary � opposite 95.45 99.87 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 2 Summary of the percentage of global optimal polygonal approximations obtained for the PHS proposal for the first group of contours

depending on the number of points, the method used to obtain the starting point and the number of iterations (It)

M Method It� 2 It� 3 It� 4 It� 5 It� 6 It� 7 It� 8 It� 9 It� 10 It� 11

5–15 Dsp ¼ 1 17.80 38.64 56.82 74.24 85.23 90.91 94.32 97.73 99.24 100.00

Dsp ¼ 2 19.32 47.73 67.42 82.20 90.91 94.32 96.97 98.48 99.24 100.00

Dsp ¼ 3 19.70 49.62 69.32 85.23 93.94 95.08 97.35 98.11 98.86 100.00

Dsp ¼ opposite 19.32 38.26 65.15 81.82 87.88 93.18 95.83 97.35 98.86 100.00

Dsp ¼ binary � opposite 22.73 57.85 75.62 81.82 84.71 88.43 92.56 93.80 96.97 100.00

16–50 Dsp ¼ 1 46.31 66.67 83.21 89.29 93.57 96.07 98.21 99.17 99.52 100.00

Dsp ¼ 2 41.55 68.21 81.43 88.93 93.93 96.79 97.98 98.81 99.88 100.00

Dsp ¼ 3 40.83 65.24 80.60 88.81 92.98 95.83 98.69 99.52 99.64 100.00

Dsp ¼ opposite 42.74 62.50 85.95 91.90 94.52 96.55 98.69 99.17 99.40 100.00

Dsp ¼ binary � opposite 42.34 80.39 89.74 94.03 97.92 99.09 99.35 99.48 99.52 100.00
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the 83.71 % of cases in approximations with few points

and 97.35 % of cases in approximations with many points.

Table 4 shows the percentage of global optimal polyg-

onal approximations obtained by the PHS proposal for

MPEG7-CE-Shape1 database depending on the number of

points, the method used to obtain the starting point and the

number of iterations.

Table 4 shows that for polygonal approximations with

few points, if we use a number of iterations[8, the global

optimal polygonal approximation is obtained in more than

95 % of cases, except in Dsp ¼ binary � opposite. In this

case, the best method is Dsp ¼ 2.

Table 4 shows that for polygonal approximations with

many points, if we use a number of iterations[5, except in

Dsp ¼ binary � opposite, the global optimal polygonal

approximation is obtained in more than 90 % of cases. In

this case, the best method is Dsp ¼ 3.

In order to obtain a quantitative evaluation of the PHS

proposal (which is the best one, as it will be shown below),

a ratio of ISE corresponding to the different iterations has

been calculated. The ratio of ISE is computed as:

ratio ¼ 100 � ISEit � ISEopt

ISEit

ð2Þ

where:

– ISEit is the value of ISE corresponding to it-th iteration

– ISEopt is the optimal value of ISE.

Table 5 shows that for polygonal approximations with few

points, if we use three iterations, the ratio of ISE is\0.6 %.

In the case of polygonal approximations with many points,

if we use three iterations, the ratio of ISE is \0.01 %,

except in Dsp ¼ 1.

Finally, using the results obtained by the PHS proposal

for the MPEG7-CE-Shape1, it has been studied how the

length and the shape of the contour impact on the required

number of iterations to determine the optimal result.

Table 6 shows the means of the number of iterations

Table 3 Summary of the percentage of global optimal polygonal approximations obtained for the PS proposal for the MPEG7-CE-Shape1

database depending on the number of points, the method used to obtain the starting point and the number of iterations (It)

M Method It� 2 It� 3 It� 4 It� 5 It� 6 It� 7 It� 8 It� 9 It� 10 It� 11

5–15 Dsp ¼ 1 59.71 83.47 91.82 95.26 97.28 98.67 99.27 99.53 99.81 100.00

Dsp ¼ 2 75.20 91.25 96.09 97.84 99.11 99.34 99.64 99.72 99.94 100.00

Dsp ¼ 3 81.81 90.21 94.60 98.09 98.92 99.14 99.62 99.71 99.86 100.00

Dsp ¼ opposite 83.71 90.17 95.57 97.39 98.25 99.14 99.41 99.68 99.88 100.00

Dsp ¼ binary � opposite 83.87 93.36 95.95 96.71 97.07 97.62 98.42 98.92 99.64 100.00

16–50 Dsp ¼ 1 73.91 92.05 96.79 98.56 99.30 99.66 99.85 99.91 100.00 100.00

Dsp ¼ 2 86.97 98.14 99.50 99.82 99.92 99.97 99.98 99.99 100.00 100.00

Dsp ¼ 3 93.17 99.25 99.82 99.95 99.97 99.99 100.00 100.00 100.00 100.00

Dsp ¼ opposite 97.35 98.39 99.45 99.63 99.78 99.85 99.90 99.95 100.00 100.00

Dsp ¼ binary � opposite 97.33 99.61 99.79 99.84 99.88 99.88 99.91 99.92 100.00 100.00

Table 4 Summary of the percentage of global optimal polygonal approximations obtained for the PHS proposal for the MPEG7-CE-Shape1

database depending on the number of points, the method used to obtain the starting point and the number of iterations (It)

M Method It� 2 It� 3 It� 4 It� 5 It� 6 It� 7 It� 8 It� 9 It� 10 It� 11

5–15 Dsp ¼ 1 26.95 49.16 67.99 78.90 85.59 90.68 93.96 96.21 98.05 100.00

Dsp ¼ 2 28.42 56.68 74.06 85.16 92.56 95.14 97.77 98.62 99.64 100.00

Dsp ¼ 3 28.79 54.40 72.11 85.80 92.53 94.31 97.10 98.19 98.91 100.00

Dsp ¼ opposite 27.04 47.34 71.49 85.40 90.31 94.40 96.83 97.81 99.47 100.00

Dsp ¼ binary � opposite 24.97 51.12 64.65 74.87 78.07 85.43 89.50 94.25 97.40 100.00

16–50 Dsp ¼ 1 56.37 74.91 85.97 92.16 95.49 97.49 98.61 99.27 99.71 100.00

Dsp ¼ 2 56.50 78.02 89.67 94.83 97.44 98.67 99.37 99.63 99.79 100.00

Dsp ¼ 3 56.36 79.47 90.97 96.03 97.91 98.89 99.40 99.71 99.89 100.00

Dsp ¼ opposite 54.16 70.18 88.30 94.10 96.03 97.64 98.72 99.27 99.66 100.00

Dsp ¼ binary � opposite 48.81 70.53 77.48 80.75 84.77 87.83 91.60 95.48 98.03 100.00
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necessary to obtain the global optimal polygonal approxi-

mations depending on the number of points of the contour

(N) and the number of points of the polygonal approxi-

mation (M). The results show that:

– The number of iterations depends on M. When M is

increased, the number of iterations decreases.

– The number of iterations does not depend on N.

To evaluate the impact of the shape of the contour, Table 7

shows the means of the number of iterations necessary to

obtain the global optimal polygonal approximations in

some similar categories of the MPEMPEG7-CE-Shape1.

These categories are shown in Fig. 2. Taking into account

the results, the number of iterations does not depend on the

complexity of the shape because contours with similar

complexity can need very different number of iterations.

4.3 Computational time

In order to evaluate the computational time of each pro-

posal with the different methods to select the starting

points, the mean values of time to obtain the global optimal

polygonal approximations have been calculated for each

value of M for MPEG7-database. The obtained results are

shown in Figs. 3, 4, 5, 6 and 7.

These figures show that the obtained mean values of

time for PHS proposal are much lower than the values

obtained for PS proposal. The method used in the first

iteration is the reason for this great difference. While

Pikaz’s heuristic method is Oðn log nÞ, Perez’s method is

OðMN2Þ. For the next iterations, the computational time is

similar for the two proposals. Moreover, the computation

time is gradually decreased from the second iteration (in PS

proposal) and from the third iteration (in PHS proposal)

because the best value of ISE of the previous iterations is

used as value of pruning.

This experiment shows again that the PHS proposal is

the best proposal. Although in the PHS proposal are nec-

essary more iterations to obtain the global optimal polyg-

onal approximation, the computational time is much lower.

The PHS proposal needs more iterations because it uses a

heuristic method in the first iteration, and therefore, it

produces a worse starting point for the second iteration.

Taking into account the computation time the best methods

to select the starting point are Dsp ¼ 2 and Dsp ¼ 3.

Finally, the computational time obtained by the PHS

proposal using Dsp ¼ 3 has been compared with:

– PHS proposal using original Salotti’s method [15] in all

iterations instead of improved Salotti’s method.

Table 5 Summary of the ratio of ISE (100 � ðISEit � ISEoptÞ=ISEit)

in all iterations for the global optimal polygonal approximations

obtained for the PHS proposal for the MPEG7-CE-Shape1 database

depending on the number of points, the method used to obtain the

starting point and the number of iterations (It)

M Method It ¼ 1 It ¼ 2 It ¼ 3 It ¼ 4 It ¼ 5 It ¼ 6 It ¼ 7 It ¼ 8 It ¼ 9 It ¼ 10 It ¼ 11

5–15 Dsp ¼ 1 6.770 2.389 0.566 0.247 0.127 0.088 0.059 0.022 0.013 0.001 0.0

Dsp ¼ 2 6.743 1.031 0.560 0.153 0.135 0.065 0.062 0.053 0.039 0.001 0.0

Dsp ¼ 3 6.876 1.032 0.582 0.412 0.102 0.037 0.016 0.013 0.008 0.004 0.0

Dsp ¼ opposite 6.879 0.782 0.588 0.177 0.142 0.090 0.025 0.003 0.001 0.001 0.0

Dsp ¼ binary � o. 6.828 0.730 0.227 0.127 0.108 0.091 0.088 0.030 0.005 0.002 0.0

16–50 Dsp ¼ 1 1.626 0.491 0.150 0.022 0.008 0.004 0.002 0.001 0.0002 0.0 0.0

Dsp ¼ 2 1.647 0.137 0.008 0.004 0.001 \10�4 \10�5 \10�5 \10�6 0.0 0.0

Dsp ¼ 3 1.633 0.164 0.005 0.001 \10�4 \10�5 \10�6 0.0 0.0 0.0 0.0

Dsp ¼ opposite 1.633 0.031 0.002 0.001 0.001 \10�4 \10�4 \10�5 \10�6 0.0 0.0

Dsp ¼ binary � o. 1.633 0.031 0.002 0.001 \10�4 \10�5 \10�5 \10�5 \10�6 0.0 0.0

Table 6 Summary of means of the number of iterations necessary to

obtain the global optimal polygonal approximations for the PHS

proposal for the MPEG7-CE-Shape1 database depending on the

number of points of the contour (N) and the number of points of the

polygonal approximation (M)

N M ¼ 10 M ¼ 20 M ¼ 30 M ¼ 40 M ¼ 50

B1000 3.328 2.528 2.168 1.922 1.564

1001–1500 3.407 2.912 2.671 2.185 1.967

1501–2000 3.352 2.529 2.666 2.392 2.147

2001–3000 3.833 3.000 2.500 2.229 1.979

C300 3.384 2.769 3.115 2.346 2.538

All values 3.375 2.645 2.376 2.058 1.763

Table 7 Mean values of the number of iterations necessary to obtain

the global optimal polygonal approximations for the PHS proposal for

some similar categories of the MPEG7-CE-Shape1

Category Deer/horse Bone/hammer Apple/hat Frog/dog

Mean 1.847/4.079 2.493/1.604 2.883/1.810 1.719/4.195
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Fig. 2 Contours of the categories used to obtain the results of Table 7
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Fig. 3 Mean values of time for PS and PHS proposals for Dsp ¼ 1
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Fig. 4 Mean values of time for PS and PHS proposals for Dsp ¼ 2
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Fig. 5 Mean values of time for PS and PHS proposals for Dsp ¼ 3
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Fig. 6 Mean values of time for PS and PHS proposals for

Dsp ¼ opposite
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– Horng’s method [9].

Figure 8 shows that:

– When the original Salotti’s is used in the PHS

proposal, the computational time is greater than the

computational time when the improved Salotti’s

method is used.

– The computational time of Horng’s method is better

than the computational time obtained by PHS proposal

for polygonal approximations with a number of points

fewer than 29, and worst when the number of points is

C29. However, Horng’s method does not guarantee the

optimal solution.

4.4 Discussion

Taking into account that proposal PHS is the best, and

MPEG7-CE-Shape1 database contains a sufficient and

representative number of contours, the following features

can be highlighted:

– By using 11 iterations, the global optimal polygonal

approximation will be obtained in all cases.

– For polygonal approximations with few points, the

results are similar and very good in all cases when the

number of iterations is[8.

– For polygonal approximations with many points, the

results are similar and very good in all cases when the

number of iterations is[7.

Though the global optimal polygonal approximation can

be obtained in all cases using 11 iterations for any of the

five methods to select the starting point, it can also be

obtained with high probability using all methods with a low

number of iterations and selecting the best polygonal

approximation of the five methods. Let Pðei;nÞ be the

probability of not getting the global optimal polygonal

approximation using the i-th method with n iterations, the

probability P(E) of not obtain the global optimal polygonal

approximation in n iterations if m methods to select the

starting point are used is:

PðEÞ ¼
Y

i¼1;m

Pðei;nÞ

Therefore, the probability of obtaining the global optimal

polygonal approximation is 1 � PðEÞ. The values of Pðei;nÞ
for MPEG7-CE-Shape1 database can be obtained from

Table 4. Let vi;n be the value of table for the i-th method

with n iterations, then:

Pðei;nÞ ¼ 1 � vi;n

100:0

Table 8 shows the values of P(E) for MPEG7-CE-

Shape1 database when the five methods are used. In this

case:

– For polygonal approximations with few points, using 4

iterations, the probability of obtaining the global

optimal polygonal approximation is[0.99.

– For polygonal approximations with many points, using

3 iterations, the probability of obtaining the global

optimal polygonal approximation is[0.99.

Table 9 shows the values of P(E) for MPEG7-CE-

Shape1 database when the three best methods

(Dsp ¼ 2;Dsp ¼ 3 and Dsp ¼ opposite) are used. In this

case:

– For polygonal approximations with few points, using 5

iterations, the probability of getting the global optimal

polygonal approximation is[0.99.

– For polygonal approximations with many points, using

3 iterations, the probability of getting the global

optimal polygonal approximation is[0.99.
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Fig. 7 Mean values of time for PS and PHS proposals for

Dsp ¼ binary � opposite
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In these cases, when all methods or three methods are

tested, the computation time is the one corresponding to the

worse method, as parallel computing can be used.

5 Conclusions

The conclusions of this work can be summarized as

follows:

– Two proposals (PS and PHS) to obtain global optimal

polygonal approximations have been tested.

– Five methods to obtain the best starting point for the

next iteration in the two proposals have been tested.

– The experimental results show that:

1. The PHS proposal, based on the Pikaz’s method

and the improved Salotti’s method, is the best

because its computational time is much lower.

2. By using 11 iterations in the PHS proposal, the

global polygonal approximation is always obtained

for all the methods used to obtain the starting point.

3. Horng’s method obtains the global optimal polyg-

onal approximation in the 83.71 % of cases for

polygonal approximations with few points.

4. Horng’s method obtains the global optimal polyg-

onal approximation in the 97.35 % of cases for

polygonal approximations with many points.

5. For polygonal approximations with many points, if

the three best methods (Dsp ¼ 2;Dsp ¼ 3 and

Dsp ¼ opposite) with three iterations are used,

and the best of them is selected, the probability of

obtaining the global optimal polygonal approxi-

mation is[0.99.

6. For polygonal approximations with few points, if

the three best methods (Dsp ¼ 2;Dsp ¼ 3 and

Dsp ¼ opposite) with five iterations are used, and

the best of them is selected, the probability of

obtaining the global optimal polygonal approxi-

mation is[0.99.

7. In most cases, the best method to select the starting

point is Dsp ¼ 3, although any method can achieve

the global optimal polygonal approximation.

8. In order to obtain the global optimal polygonal

approximation with few points, more iterations are

necessary but the optimum is achieved as well.

– Since the computational complexity of the Salotti’s

method is close to OðN2Þ [10] and Pikaz’s method is

Oðn log nÞ [12], it can be considered that the compu-

tational complexity of the proposed method is also

close to OðN2Þ and between OðN2Þ � OðMN2Þ.
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Highlights

• A novel method to solve the min-# polygonal approximation problem is

proposed.

• The approach uses a modified Mixed Integer Programming model to solve

the min-# problem.

• The proposed model is smaller than previous proposals.

• The novel procedure obtains the optimal solution faster than state-of-the-

art methods.

• Only one execution of our procedure is needed to assure the optimality of

the solution.
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Fast computation of optimal polygonal approximations
of digital planar closed curves

E.J. Aguilera-Aguileraa,∗, A. Carmona-Poyatoa, F.J. Madrid-Cuevasa, M.J.
Maŕın-Jiméneza

aDepartment of Computing and Numerical Analysis, Córdoba University. 14071-Córdoba.
Spain

Abstract

We face the problem of obtaining the optimal polygonal approximation of a

digital planar curve. Given an ordered set of points on the Euclidean plane,

an efficient method to obtain a polygonal approximation with the minimum

number of segments, such that, the distortion error does not excess a threshold,

is proposed. We present a novel algorithm to determine the optimal solution for

the min-# polygonal approximation problem using the sum of square deviations

criterion on closed curves.

Our proposal, which is based on Mixed Integer Programming, has been

tested using a set of contours of real images, obtaining significant differences

in the computation time needed in comparison to the state-of-the-art methods.

Keywords: Digital planar curves, Polygonal approximation, Integral Square

Error, Mixed Integer Programming, Discrete optimization, min-# polygonal

approximation problem

1. Introduction1

Since Attneave [1] pointed out that the information is concentrated at domi-2

nant points, their detection has become an important research area in computer3
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Maŕın-Jiménez)
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vision. Dominant points are those that can describe the curve for visual percep-4

tion and recognition. In the literature two major categories can be found: corner5

detection methods [2, 3, 4] and polygonal approximation methods [5, 6, 7].6

In computer vision polygonal approximation of digital planar curves is an7

important task for a variety of applications like simplification on vectorization8

algorithms [8], image analysis [9], shape analysis [10], object recognition [11],9

Geographical Information Systems [12], and digital cartography [13].10

The main idea behind polygonal approximations of digital planar curves is11

to provide a compact representation of the original shape with reduced memory12

requirements, preserving the important shape information.13

The optimization problem of polygonal approximations has been formulated14

into two separated ways, depending on the objective function that we want to15

minimize:16

• min-#: Minimize the number of line segments M that forms a polygonal17

approximation, such that, the distortion error does not excess a threshold18

ε. Moreover the optimal solution should have the lowest distortion asso-19

ciated among all the solutions with the same number of line segments.20

• min-ε: Given a number of line segments M , minimize the distortion error21

associated to the polygonal approximation.22

In the literature, several alternatives to solve the min-# and min-ε problem23

can be found, using heuristic, metaheuristic and optimal approaches. The selec-24

tion of the distortion measure used in the algorithm is task dependent: the use25

of the L∞-norm is used to assure that the maximum deviation does not exceed26

the threshold provided by the user, whereas, the use of the L2-norm provides a27

polygonal approximation whose distortion (Integral Square Error) is lower than28

the provided threshold.29

For instance, to solve the min-ε problem using the L2-norm several meta-30

heuristics have been applied: genetic algorithms [14], ant colony search algo-31

rithms [15], integer particle swarm optimization algorithms [7], etc.32
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The main problem of using the metaheuristic approaches is the computa-33

tional cost. There are several proposals in the literature that use some heuristic34

with a low computational cost: split based methods [16], merge based methods35

[17, 18], merge-split based methods [5], etc.36

This problem is solved optimally by using dynamic programming approach37

[19] and graph approach [6]. These algorithms obtain optimal solutions, however38

a high computational burden is required to obtain them. A more recent and39

faster method based on Mixed Integer Programming was proposed in [20].40

In practice, the reduction of the description of a shape with a maximum41

tolerance error, that is, the min-# problem, is a more common task. There-42

fore, a great variety of algorithms have been proposed to solve this problem.43

For example, the min-# problem using the L2-norm has been solved by using44

metaheuristic solutions: genetic algorithms [21], ant colony optimization [15],45

particle swarm optimization [22, 23], tabu search [24], etc. More rapid algo-46

rithms are based on other heuristics like a split approach [13], merge approach47

[25], graph approach [26] etc.48

The min-# can also be solved optimally by using a modified version of the49

dynamic programming approach proposed by Perez and Vidal [19] and a graph50

approach by Salotti [27]. The original algorithm, by Perez and Vidal, was used51

to obtain the polygonal approximation with a fixed number of segments M which52

has the minimum distortion error associated (min-ε problem). This modified53

version of the algorithm was proposed in [27] and is shown in Algorithm 1. The54

idea is to increase the number of segments needed to reach the last point of the55

curve until the error associated to the polygonal approximation is lower than a56

threshold ε.57
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Data: c (Digital planar curve), ε (maximum error)

Result: The optimal polygonal approximation

var NP // Number of points;

var NS // Maximum number of segments;

var g // used to memorize the minimum global error to reach any point of

the contour using any number of segments;

var Points // Points of the digital planar curve;

var Father // Array that contains the ending point of the previous

segment ;

g[1, 0]← 0;

for n← 2 to NP do

g[n, 0]← maxV alue;

end

m← 0;

repeat

m← m + 1;

for n← 2 to NP do

// Search the minimum error to reach point n with m segments;

g[n,m]← min(g[i,m− 1] + ISE(i, n));

// Store the index imin of the point with the minimum error ;

Father[n,m]← imin;

end

until g[m,n] < ε;

Algorithm 1: Modified version of the algorithm by Perez and Vidal [19]

58

The main drawback of using optimal algorithms is the computational cost59

required to achieve the solution. Some improvements have been made to re-60

duce this computational burden. For instance, Horng and Li [28] proposed an61

heuristic method to determine the initial point for the method based on Dy-62

namic Programming used to solve the min-ε. This method uses two iterations63

of the Dynamic Programming method to obtain a polygonal approximation.64

Kolesnikov and Fränti [29] introduced a method to obtain polygonal approxi-65

6
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mations based on a cyclically extended closed curve of double size. The method66

selects the best starting point by searching on the extended search space for the67

extended curve. Both methods obtain good solutions using different heuristic68

approaches, however, neither of these methods can assure the optimality of the69

solution.70

However, optimal polygonal approximations are very important because they71

are commonly used to assess the quality of the suboptimal polygonal approxi-72

mations obtained by suboptimal methods.73

The main contributions of this paper are: (i) a novel Mixed Integer Program-74

ming (MIP) model to solve the min-# polygonal approximation problem using75

a different approach to the state-of-the-art optimal algorithms, (ii) our proposal76

reduces significantly the computation time to obtain the optimal solution; (iii)77

the proposed MIP model is smaller than previous proposals.78

Section 2 summarizes the most important measures to evaluate the quality of79

polygonal approximations that appear in the literature. In Section 3, we formu-80

late the problem and present the MIP model that solves this problem. Section81

4 defines the experiments carried out and the results obtained. In Section 5,82

we discuss the results obtained and the most important aspects of the proposed83

method. Finally, Section 6 presents the main conclusions of this paper.84

2. Measures to assess the quality of polygonal approximations85

The quality of a polygonal approximation is quantified by the amount of86

data reduction obtained and the closeness of the approximation to the original87

curve. Several authors have faced this problem using different approaches.88

Sarkar [30] proposed a method to evaluate the quality of the polygonal ap-89

proximation, based on the distortion associated to the solution (Integral Square90

Error) and the compression ratio obtained by the solution. This measure, called91

Figure of Merit (FOM), is defined as92

FOM =
CR

ISE
(1)

7
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where the compression ratio (CR) is defined as the number of points N93

of the original contour divided by the number of points M of the polygonal94

approximation (CR = N
M ). The ISE is the sum of the squared orthogonal95

distances from the points of the original contour to the line of the polygonal96

approximation which approximates them.97

Rosin [31] showed that the FOM measure is biased to favor approximations98

with larger number of line segments, because its two terms are unbalanced.99

Another problem of the FOM is that is not suitable to assess polygonal approx-100

imations with different number of points M . To solve these drawbacks, Rosin101

[31] proposed to use a novel measure. The new measure, named as Rosin’s merit,102

is defined based on two components: fidelity and efficiency. Fidelity measures103

how well the suboptimal polygonal approximation fits the curve relative to the104

optimal polygon in terms of the approximation error. This component is defined105

as106

Fidelity =
Eopt

Eapprox
(2)

where Eopt is the error associated to the optimal solution and Eapprox is the107

error of the suboptimal polygonal approximation. Both, the optimal solution108

and the suboptimal polygonal approximation, use the same number of points109

M .110

Efficiency measures how compact is the polygonal approximation relative111

to the optimal polygonal approximation that incurs in the same error. This112

measure is defined as113

Efficiency =
Mopt

Mapprox
(3)

where Mapprox is the number of points M of the polygonal approximation114

which is been tested, and Mopt is the number of points that an optimal solution115

needs to obtain the same error associated to the polygonal approximation which116

is been tested.117

8
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These two components are combined using a geometric mean that is named118

Rosin’s merit. This measure is defined as119

Merit =
√

Fidelity × Efficiency (4)

The main advantage of the Rosin’s merit over the FOM is that it can be120

used to compare two polygonal approximation with different number of points.121

However, Carmona-Poyato et al. [32] showed that the Rosin’s merit presents one122

significant disadvantage: this measure does not take into account if the number123

of points M of the polygonal approximation faithfully represents the original124

shape. That is, an optimal polygonal approximation with very low number125

of segments (M = 3, for instance) will obtain better merit than a suboptimal126

solution with a reasonable number of points. A modified version of the Rosin’s127

merit was proposed in [32] to solve this drawback. The novel measure uses an128

optimal solution which is taken as reference, and for each optimal polygonal129

approximation i is obtained a value M(i). Using these values, the proposed130

fidelity and efficiency are computed. Finally, Carmona’s merit is computed131

using the geometric mean of these two components.132

State-of-the-art techniques to assess polygonal approximations use optimal133

solutions to be computed. However, optimal algorithms require a high computa-134

tional cost to obtain the optimal polygonal approximation. We face the problem135

of obtaining the optimal polygonal approximation with the minimum number of136

segments using the sum of square error measure on closed curves. Our proposal137

is based on the Mixed Integer Programming optimization framework.138

3. MIP model formulation139

3.1. A brief introduction to Mixed Integer Programming140

Mixed Integer Programming (MIP) is an optimization technique broadly141

used to solve discrete optimization problems. Some examples of real problems142

are: allocation of distributed generators in radial distribution systems [33], data143

9
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envelop analysis [34], modern semiconductor manufacturing systems [35] and144

augmented reality [36].145

A MIP problem is the minimization or maximization of a linear objective146

function which is subject to a set of linear constraints. The objective function147

is defined as148

z = min cTx, c, x ∈ Rn (5)

where x is a vector of decision variables and c is the vector of cost values149

associated to the decision variables. This objective function is subject to a set150

of linear constraints which can be defined as151

Ax ≤ b (6)

where A is called constraint matrix. Decision variables may take values152

between an upper and a lower bound which is defined as:153

l ≤ x ≤ u (7)

Some decision variables are required to take integer values. Integer variables154

that must take values 0 or 1 are called binary variables and play a special role155

in MIP modeling and solving.156

The MIP problems are solved using two phases. In the first stage, the157

model is solved using the Simplex algorithm (introduced by Dantzig [37]) as if158

there were no integer restrictions. The Simplex algorithm obtains a value for159

the objective function that is used as a lower or upper bound, depending on160

whether we are maximizing or minimizing the objective function.161

The next stage is solved using the algorithm known as Branch & Bound162

(introduced by Land and Doig [38]) or some variant of the algorithm (Branch163

& cut, Branch & price, etc). This algorithm relies on a process of searching in164

a tree. The method works by enumerating all the possible combinations of the165

integer variables in the tree. Each node of this tree is a continuous optimization166

problem, based on the original problem, but with some of the decision variables167

10
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set to a fixed value of the integer range provided. The root of the tree is the168

relaxed version of the optimization problem without integrality constraints. The169

value of the objective function of the root node is always a bound of any integer170

solution found in the tree. The Branch & Bound method generates the tree by171

selecting an integer variable xi and adds a node for each possible integer value172

of the range. The algorithm selects one of these new nodes of the tree, and173

solves the model using Simplex with this variable xi fixed to the selected value.174

We can obtain four different results:175

• The subproblem is infeasible if the Simplex algorithm returns that the176

subproblem is unbounded. Therefore, any further restriction of this sub-177

problem would be also infeasible, then, this node should be pruned.178

• The subproblem is feasible, however the objective function obtained is179

worse than a previous integer solution, therefore, no children of this sub-180

problem could improve the objective function. This node should be pruned.181

• The subproblem is feasible, all the integer restrictions are satisfied and182

the objective function is better than any previous known integer solution.183

Then, the method stores this integer solution as the best feasible solution184

found. This node is a leaf of the tree because no children nodes can be185

generated.186

• If none of the above occurs, then some integer decision variable xj is frac-187

tional at optimality. The method branches the problem on this variable188

by generating a children node of xj for each integer value that the vari-189

able can take from its possible range. If there are several decision variables190

with fractional values, then the method selects one of these variables using191

some of the heuristic method proposed (e.g. [39, 40]).192

This algorithm repeats until no new nodes can be generated, because no193

fractional decision variable can be used to branch.194

11
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3.2. Problem formulation195

We can formulate the problem as follows. Let suppose a closed curve C196

defined by a number of ordered points N , where N > 2. A segment S can be197

determined using two points Pi and Pj belonging to the curve C.198

A polygonal approximation A can be defined as an ordered number of seg-199

ments M (A = {S1, S2, · · · , SM}), such that, the first point of segment Si+1 is200

the last point of segment Si.201

Any polygonal approximation A has an associated error. Several measures202

can be used to define the error associated, however we use the L2-norm which203

is used to define the Integral Square Error. We can define this error measure204

associated to a segment Sij formed by points Pi and Pj as205

∆(i, j) =

j∑

k=i

dist(Pk, Sij)
2 (8)

where dist(Pk, Sij) is the orthogonal distance from the point Pk to the seg-206

ment Sij that approximates it. Then, Integral Square Error (ISE) is the sum of207

the distortion associated to each segment belonging to the polygonal approxi-208

mation. We can define this measure as209

ISE =
M∑

k=1

∆(ik, ik+1) (9)

where ik and ik+1 are the indexes of the initial and end points of the segment210

Sk.211

Therefore, given an error threshold ε the polygonal approximation ISE as-212

sociated is less than or equal to this threshold. The solution provided must be213

optimal in the number of segments M and in the error ISE associated. That214

is, the polygonal approximation should have the minimum number of segments215

M whose distortion associated does not exceed the error threshold ε and the216

polygonal approximation should have associated the minimum error among the217

polygonal approximations with the same number M of segments.218
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3.3. MIP model proposed for closed curves219

As explained above, the keypoint is to create a suitable MIP model which220

defines the problem. In this paper we propose a MIP model to solve the min-#221

polygonal approximation problem on closed curves. Our model defines a set of222

binary decision variables. We use these binary variables to define whether a223

segment Si,j is used in the polygonal approximation provided as the solution.224

For this reason, we define the following set of variables:225

∀xi,j ∈ {0, 1} ∀i ∈ [1, 2, · · · , N ]∀j ∈ [1, 2, · · · , N ], i 6= j (10)

These decision variables are used to define all the possible solutions. Due226

to the fact that we are considering all possible solutions, the method does not227

need to fix any point as the initial point of the solution. The decision variables228

xi,j , where i = j, are not defined in the model, because a valid segment is229

formed by two different points. This reduction of decision variables regarding230

the MIP model in [20] causes this model to be more compact. We have defined231

(N − 1)× (N − 1) decision variables instead of N ×N defined in the model for232

solving the min-ε polygonal approximation problem.233

Taking into account these decision variables, the objective function is defined234

as:235

z = min

N∑

i=1

N∑

j=1

xi,j · (ε + 1) +

N∑

i=1

N∑

j=1

xi,j ·∆(i, j) , i 6= j (11)

where, all the segments belonging to the final solution are summed in the236

first summation of the objective function while the second summation is the237

distortion (ISE) of the solution. The first summation of the objective function238

uses the threshold error ε (plus one) to penalize adding a new segment to the239

solution. The first summation of the objective function is always greater than240

the second summation, because the distortion of the solution should be lower241

than the error threshold ε. Therefore, the second summation of the objective242

function is defined to obtain the solution with the minimum distortion associ-243
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ated, among all the solutions with the minimum number of segments. A further244

explanation of the objective function is given in Section 3.4.245

The error associated to the polygonal approximation should be lower than246

the threshold ε provided by the user. Therefore, to take into account this247

information we define a new constraint as248

N∑

i=1

N∑

j=1

xi,j ·∆(i, j) ≤ ε , i 6= j (12)

This model has also to take into account that we want to obtain closed249

polygonal approximations (not isolated segments). For this reason, the new set250

of constraints are defined as251

N∑

r=1

xi,r =
N∑

c=1

xc,i ∀i ∈ [1, 2, 3, · · · , N ] , i 6= r , i 6= c (13)

A new problem arises taking into account how a solution is represented us-252

ing the defined decision variables. A polygonal approximation is defined using253

M − 1 segments Si,j where i < j and one segment Sa,b where a > b. For254

instance, the polygonal approximation which is shown in Fig. 1(a) is defined255

setting the decision variables x0,2, x2,3, x3,5, x5,7, x7,8, x8,0 = 1 in the model.256

However, this polygonal approximation may be defined in the opposite direc-257

tion (x0,8, x8,7, x7,5, x5,3, x3,2, x2,0 = 1) as is shown in Fig 1(b). These two rep-258

resentations define the same solution. This problem is known in Mixed Integer259

Programming as symmetries [41], and makes the solver to take more computa-260

tional time to obtain the optimal solution. Therefore, these symmetries must be261

avoided by mainly adding new constraints, which define that these symmetric262

solutions are not considered valid. To avoid this problem we have defined a new263

constraint as264

N∑

i=1

i∑

j=1

xi,j = 1 , i 6= j (14)

where we state that only the solutions defined in counterclockwise direction265
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(a) Polygonal approximation de-

fined in counterclockwise direc-

tion

(b) Polygonal approximation de-

fined in clockwise direction

Figure 1: Polygonal approximation defined in counterclockwise (a) and clockwise (b) direction.

are valid. Therefore, this constraint expresses that a valid polygonal approxi-266

mation must contain one segment Sa,b where a > b.267

3.4. Model analysis268

Our MIP model is defined using a set of linear constraints (see inequalities269

12 to 14). These sets of constraints are used to define the problem and to obtain270

a feasible optimal solution for the min-# polygonal approximation problem. In271

this section we evaluate the convenience of using the defined constraints.272

We analyze the objective function of the model first. The min-# problem273

definition states that we are seeking the polygonal approximation with the min-274

imum number of segments which have an error associated that is lower than a275

threshold ε provided by the user. The objective function that is shown in equa-276

tion 11 minimizes the summation of binary decision variables xi,j , that represent277

the number of segments. However, we define that this number of segments are278

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

multiplied by a constant value (ε + 1). By multiplying the number of segments279

M by the value ε + 1, we are not modifying the optimal solution, but ordering280

the solutions according to the number of segments and the distortion associated.281

This is achieved because the distortion associated to the polygonal approxima-282

tion should be lower or equal than the error threshold ε and the number of283

segments multiplied by ε + 1 will be greater than this distortion. For instance,284

two solutions a and b with the same number of segments Ma = Mb have associ-285

ated distortion errors such that ISEa < ISEb. Therefore, the objective functions286

obtained are za = Ma · (ε + 1) + ISEa and zb = Mb · (ε + 1) + ISEb. Since the287

number of segments are equal, then Ma · (ε + 1) = Mb · (ε + 1). Therefore,288

the minimum value for the objective function is obtained for that polygonal289

approximation which has the minimum distortion associated, that is, ISEa.290

Let us suppose that the constraint defined in inequality 12 is removed. This291

linear constraint defines that distortion associated to the solution is lower or292

equal than a threshold ε defined by the user. Without this constraint, the MIP293

solver always obtains a trivial solution with 3 points, which is the minimum294

polygonal approximation that we can define. This trivial solution does not meet295

the requirements of the min-# problem. Therefore, this constraint is mandatory296

to define a suitable model for this problem.297

The constraint defined in inequality 13 forces the MIP solver to select con-298

secutive line segments, that is, if the line segment consisting of points i and299

j is selected (xi,j = 1) then some segment which ends with point i must be300

selected; and some segment which starts with point j must be selected as well.301

For instance, if the constraint 13 is not present in the model, we can define a302

solution using four line segments (x2,11 = x21,23 = x38,43 = x58,60 = 1) for the303

contour known as chromosome, however this solution is not a valid polygonal304

approximation as is shown in Fig. 2(b). Therefore, the constraint defined in305

inequality 13 is mandatory to obtain feasible optimal solutions.306

To avoid the symmetric solutions, the constraint defined in inequality 14307

is used. If this constraint is removed, the solver will consider the symmet-308

ric solutions valid, therefore the number of feasible solutions to explore grows309
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(a) Chromosome original contour (b) Isolated line segments

Figure 2: Original contour named as chromosome appear in Fig. 2(a) and the isolated line

segments in Fig. 2(b).

exponentially. This constraint is not mandatory to obtain optimal feasible solu-310

tions, however, considerably reduces the computation time required for solving311

the min-# problem.312

The defined MIP model is finally solved by using the Branch & Bound algo-313

rithm, introduced by Land and Doig [38]. This algorithm enumerates all possi-314

ble solutions to the problem creating a search tree: the nodes are new problems315

with some decision variables equal to some value. The method searches for the316

optimal solution in the search tree, pruning those solutions which do not pro-317

duce better results than the best solution found so far. To illustrate how the318

algorithm works, a little example is presented below.319

Let us suppose we want to solve the min-# problem for contour chromo-320

some (Fig. 2(a)) with distortion threshold ε = 12. The algorithm first runs321

the Simplex method (introduced by Dantzig [37]) on the proposed model with322

no integer restrictions. This relaxed version of the model is the root node of323

our search tree. We obtain a value of the objective function of 122.94 with324

all the decision variables with an integer value except the decision variables325

x29,31, x29,47, x31,37, x37,47. Notice that the objective function for the relaxed326

version of the problem will be lower than the objective function of the solu-327

tion where all the integrality constraints are satisfied. We should select a node328
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(decision variable) to branch and then fix possible values for this variable. In329

the literature, several branching techniques can be found [42]. To simplify the330

explanation we select the first fractional (not integer) decision variable, i.e.,331

the depth first strategy. We select the decision variable of x29,31 and fix the332

value to 1. We obtain a value for objective function of z = 129.95 where333

all decision variables have taken integer values except the decision variables334

x47,49, x47,54, x49,53, x53,0, x54,0. Therefore, we set x47,49 = 1 in the model and335

run the Simplex algorithm. We obtain an objective function z = 133.55 and the336

fractional variables x0,14, x0,15, x14,16, x15,22, x16,22. We set the value x0,14 = 1 in337

the model and run the Simplex algorithm again. The objective function obtained338

is z = 136.78 and the fractional variables are x14,16, x14,23, x16,22, x22,29, x23,29.339

We fix the decision variable x14,16 = 1 and executed the Simplex algorithm us-340

ing this new restriction. We obtain a solution where all the decision variables341

take integer values, the objective function obtained is z = 138.07. The solution342

of the problem is M = 10 and ISE = 8.07. This solution is stored as the best343

feasible optimal found and is highlighted in Fig. 3. This figure presents a small344

piece of the tree generated by the Branch & Bound algorithm.345

The algorithm should select a node to backtrack in order to continue. We346

select the last node which has been branched, that is, x14,16. The algorithm347

selects now a different value x14,16 = 0 and solves the model using this new348

restriction. The objective function obtained is z = 137.80 and the decision349

variables with no integer values are x14,17, x14,23, x17,22, x22,29, x23,29. The new350

value x14,17 = 1 is added to the model and solved. We obtain a solution where351

all decision variables are integer and an objective function z = 139.20, which352

is worse than the previous feasible solution found (z = 138.07). Therefore, this353

solution is not stored.354

The algorithm selects the last node that has been branched to backtrack,355

and fixes a different possible value x14,17 = 0. The model is solved taking into356

account this new restriction. The solution contains fractional decision variables,357

however, the objective function z = 139.59 is worse than the best feasible so-358

lution found z = 138.07; therefore, no children of this node could improve the359
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best solution found and the node should be pruned.360

361

362

Figure 3: This figure shows a little example (incomplete) of search tree generated by the

Branch & Bound algorithm on the proposed model. The algorithm has been executed using

the contour chromosome and an error threshold ε = 12.363

The algorithm keeps working as explained above, discarding those integer364
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solutions which have a worse objective function and pruning those nodes that365

have fractional variables, but whose objective function is worse than the best366

feasible solution found so far. The algorithm stops when no new nodes can be367

explored and the best feasible solution found is returned as the optimal solution.368

4. Experiments and results369

This section describes the experiments carried out to demonstrate the advan-370

tages of using the present proposal to solve the min-# polygonal approximation371

problem on closed curves. In the experiments we have used several state-of-the-372

art methods [19, 43, 27, 15, 21, 26, 7] to compare with out proposal.373

For the experimentation we have used a generic computer with processor374

Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz, 16 GB of RAM memory. The375

present proposal has been developed using C++ as the programming language376

and using Gurobi [44] (version 5.6.3) as the LP/MIP solver library. The default377

configuration for the MIP solver library was used. The modified version of the378

method proposed by Perez and Vidal [19] has been developed using C++ and379

taking into account that the distortion error can be computed in constant time380

O(1) [19]. The method by Salotti [27] has been supplied by the author. The381

results of the other methods [43, 15, 21, 26, 7] have been obtained from the382

original papers.383

4.1. Comparing optimal and suboptimal polygonal approximations384

This experiment has been carried out to determine the optimality of the385

solution provided. We have used three synthetic contours commonly used in the386

literature [26, 21, 15, 43, 7] for comparing polygonal approximation algorithms.387

These synthetic contours are shown in Fig. 4.388

Many of the algorithms that are defined in the literature obtain optimal389

solutions in several cases, however, the optimality of the solution is not assured.390

In this experiment we compare the results obtained by algorithms using genetic391

algorithms (GA [43], SMCR [21]), ant colony search algorithm (ACS [15]), graph392
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Figure 4: Synthetic contours

search approach (Betweenness [26]) and integer Particle Swarm Optimization393

(iPSO [7]).394

We have also compared with the modified method proposed by Perez and395

Vidal [19]. This algorithm fixes the initial point of the curve to obtain the396

optimal polygonal approximation, however, the initial point of the curve may397

not be part of the optimal solution. Therefore, we must try all points of the398

curve as initial point in order to assure the optimality of the solution. We refer399

to the original way of using the algorithm as DP0 (Dynamic Programming)400

and the approach which tries all points as initial point as DPN . We have also401

used the optimal algorithm proposed by Salotti [27] in this experiment. This402

algorithm also fixes the initial point of the curve, therefore, we must try all403

points of the curve to assure the optimality of the solution. We refer to the404

original algorithm as A?
0 and the alternative that tries all points of the curve as405

initial point as A?
N . The results of our proposal (MIP) are also summarized in406

Table 1.407

Table 1: This table shows the results for methods by Perez and Vidal [19] (using the first

point of the curve as initial point DP0, and trying all points as initial point DPN ), Salotti

[27] (using the first point of the curve as initial node A?
0, and trying all points A?

N ), Yin [43]

(GA), Wang et al. [21] (SMCR), Yin [15] (ACS), Backes and Bruno [26] (Betweenness), Wang

et al. [7] (iPSO) and our proposal (MIP). These results show that the only alternatives that

obtain the optimal solution in every situation are DPN , A?
N and our proposal.

Contour Method ε M ISE Merit

Chromosome

Betweenness [26] 10 10 8.1 99.9
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ACS [15] 10 10 9.5 87.2

GA [43] 10 11 9.15 82.6

SMCR [21] 10 10 8.07 100

DP0 [19] 10 10 8.07 100

DPN [19] 10 10 8.07 100

A?
0 [27] 10 10 8.07 100

A?
N [27] 10 10 8.07 100

MIP 10 10 8.07 100

Semicircle

iPSO [7] 10 20 9.20 98.5

SMCR [21] 10 20 9.68 94.9

DP0 [19] 10 20 9.01 100

DPN [19] 10 20 9.01 100

A?
0 [27] 10 20 9.01 100

A?
N [27] 10 20 9.01 100

MIP 10 20 9.01 100

Betweenness [26] 20 14 19.8 91.2

ACS [15] 20 16.4 19.9 72.6

GA [43] 20 17 19.78 69.5

SMCR [21] 20 14 18.16 97.0

DP0 [19] 20 14 17.39 100

DPN [19] 20 14 17.39 100

A?
0 [27] 20 14 17.39 100

A?
N [27] 20 14 17.39 100

MIP 20 14 17.39 100

Leaf

iPSO [7] 150 9 135.47 98.6

Betweenness [26] 150 9 136.2 98.4

ACS [15] 150 11.2 149.5 55.6

GA [43] 150 12 149.46 52.0

SMCR [21] 150 9 140.19 95.5

DP0 [19] 150 9 147.26 85.33
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DPN [19] 150 8 141.58 100

A?
0 [27] 150 9 147.26 85.33

A?
N [27] 150 8 141.58 100

MIP 150 8 141.58 100

408

4.2. Comparing the methods for solving the min-# problem optimally409

The proposed method solves the min-# problem optimally, hence, we com-410

pare our proposal with the methods that can assure the optimality of the so-411

lution. In the previous experiment, the methods proposed by Perez and Vidal412

[19] (DPN ), the alternative by Salotti [27] (A?
N ) and our proposal, are the only413

methods which have obtained optimal solutions in all cases. We have also in-414

clude the method proposed by Kolesnikov and Fränti [29] in this comparison415

although it can not be considered an optimal algorithm because the optimality416

of the solutions provided are not assured.417

These alternatives obtain optimal solutions, therefore, it is not possible to418

demonstrate the advantages of our proposal by comparing the quality of the solu-419

tions. Due to the fact that the MIP optimization framework is Non-deterministic420

Polynomial-time (NP) we cannot supply the computational complexity for our421

method. Therefore, to assess the different proposals which obtain optimal solu-422

tions, we compare the computation time needed to obtain the optimal solution423

as was proposed in [27].424

A set of real contours appearing in Fig. 5 has been used in this experiment425

(contour france and contour #1 are provided by Salotti [27]). These contours426

have been used to test the performance of the modified method by Perez and427

Vidal [19], the method based on graph search proposed by Salotti [27], the428

method by Kolesnikov and Fränti [29] and our proposal. We have used several429

distortion thresholds ε to obtain polygonal approximations using the different430

approaches. The results obtained are shown in Table 2.431
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(a) Tinopener (N = 581) (b) France (N = 992)

(c) Plane (N = 1015) (d) Spoon (N = 1370)

(e) Pliers (N = 2041) (f) Contour #1 (N = 3222)

Figure 5: Contours dataset
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Table 2: This table shows the computation times in seconds obtained using the method based

on Dynamic Programming [19] (DPN ), the alternative proposed by Salotti [27] (A?
N ), the

algorithm proposed by Kolesnikov and Fränti [29] (DP2) and our proposal (MIP); for solving

the min-# problem on the set of contours which appear in Fig. 5 and using different values

of the distortion threshold ε.

ε

Contour Method 50 100 200 500 1000 2000 5000

Tinopener

DPN [19] 794.6 632.2 533.6 429.2 417.6 359.6 336.4

A?
N [27] 348 371.1 330.6 301.6 255.2 336.4 307.4

DP2 [29] 2.74 2.18 1.84 1.48 1.44 1.24 1.16

MIP 2.97 3.07 3.13 3.29 3.47 3.84 4.85

1000 2000 5000 10000 20000 50000 100000

France

DPN [19] 1795.5 1359 1051.5 783.7 704.3 525.7 396.8

A?
N [27] 446.4 426.6 416.6 376.9 317.4 357.1 347.2

DP2 [29] 3.62 2.74 2.12 1.58 1.41 1.05 0.8

MIP 10.2 10.5 12.3 14 18.1 23.6 17.4

200 500 1000 2000 5000 10000 20000

Plane

DPN [19] 1755.9 1461.6 1187.5 1055.6 872.9 690.2 629.3

A?
N [27] 456.75 436.45 385.45 284.2 152.2 253.7 213.1

DP2 [29] 3.45 2.88 2.33 2.08 1.72 1.36 1.24

MIP 10.1 10.1 10.5 11.3 12.4 12.6 13.8

500 1000 2000 5000 10000 20000 50000

Spoon

DPN [19] 2192 1863.2 1589.2 1452.2 1205.6 1109.7 1082.3

A?
N [27] 726.1 616.5 520.6 630.2 575.4 712.4 671.3

DP2 [29] 3.2 2.72 2.32 2.12 1.76 1.62 1.58

MIP 28.7 28.6 33.3 35.7 53 56.1 41.2

500 1000 2000 5000 10000 20000 50000

Pliers

DPN [19] 13668 11587.2 9955.2 8364 7446 5467.2 4100.4

A?
N [27] 1611.6 1591.2 1448.4 1550.4 1530 1305.6 1346.4

DP2 [29] 13.39 11.35 9.76 8.20 7.30 5.36 4.02

MIP 51.8 54.7 56.4 65.7 68.4 77.8 109.9

20000 50000 100000 200000 500000 1000000 2000000

Contour #1

DPN [19] 55933.9 45043.6 38470.7 31350.1 22779.5 18526.5 14144.6

A?
N [27] 10439.3 5122.9 5251.9 5445.2 5187.4 6057.4 6186.2

DP2 [29] 34.72 27.96 23.88 19.46 14.14 11.50 8.78

MIP 171.3 180.2 210.8 336.4 186 237 263.1

432
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Figure 6: This figure shows the evolution of the computation time for the compared approaches

(DPN , A?
N , DP2 and MIP) to solve the min-# problem optimally using different contours as

input: (a) France, (b) Pliers. Both axes are plotted in logarithmic scale.
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5. Discussion433

In this section we discuss the most important aspects of the experiments434

carried out in this document. In Section 4.1 several state-of-the-art methods to435

solve the min-# problem have been compared with our proposal. That exper-436

iment shows that the state-of-the-art methods for solving the min-# problem437

obtain optimal results in some cases. For instance, the method by Wang et al.438

[21] obtains the optimal solution for contour chromosome using a value of ε = 10.439

However, none of the state-of-the-art methods [43, 15, 21, 26, 7] can assure the440

optimality of the solution. Nevertheless, the methods by Perez and Vidal [19],441

Salotti [27] and our proposal obtain the optimal solution in all cases.442

Due to the fact that the optimality of the solutions is only assured for the443

method based on Dynamic Programming (DPN ), the method based on graph444

search (A?
N ) and our proposal (MIP); we have performed another experiment445

to compare the performance of the optimal algorithms. We have included the446

method by Kolesnikov and Fränti [29] in this experiment, although can not be447

considered an optimal method. Table 2 shows the computation times obtained.448

These results show that our proposal obtains the optimal solution taking less449

computation time than the other optimal methods. The method DP2 obtains450

lower computation times in all cases, however the optimality of the solution451

is not assured. The gap between the computation times of the method DP2452

and our proposal are due to the use of optimization methods (MIP) instead of453

a heuristic algorithm. The differences between the proposed method and the454

other optimal methods are remarkable as is shown in Fig. 6. This figure also455

shows that the differences between our proposal based on MIP and the method456

based on Dynamic Programming (DPN ) increase when decreasing the distortion457

threshold ε. For example, to solve the min-# problem for contour #1 using the458

distortion value ε = 20000 our proposal has proven to be more than 300 times459

faster than the method DPN and more than 60 times faster than the method460

A?
N .461

These results have shown that the computation time of our proposal are not462
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so dependent on the threshold error ε. For example, the computation times ap-463

pearing in Table 2 for the method based on Dynamic Programming and contour464

Plane have a standard deviation of ±35.66% regarding the mean value. How-465

ever, the computation times obtained by the proposed method have a standard466

deviation of ±9.73% regarding the mean value, that is, do not change signifi-467

cantly on changing the value of the error threshold. This fact is also present in468

the method proposed by Salotti [27].469

The main operations to compute the optimal solutions in the methods DPN470

and A?
N are the computation of the distortion (ISE) which can be done in471

constant time [19]. On the other hand, the Branch & Bound method uses the472

Simplex algorithm, which has polynomial-time average-case complexity [45, 46],473

to solve MIP models. Therefore, the differences between the computation time474

needed to obtain the optimal solutions by the different methods depends on the475

search space explored. Table 3 contains the search space explored to obtain the476

optimal solution. The method based on Dynamic Programming needs to check477

the complete search space to obtain optimal solutions. However the method478

A?
N needs to check fewer nodes of the search space. Notice that the proposed479

alternative is the method which uses the fewest nodes to obtain the optimal480

polygonal approximation, and therefore needs to explore a small piece of the481

search space. Table 3 contains some values of 0 nodes explored for our proposal.482

This fact is due to the MIP model has been solved in the first stage of the483

process and all the integrality constraints are satisfied, and therefore, no nodes484

are explored by the Branch & Bound method. Notice that the first stage of the485

MIP solving is more time consuming than one Simplex iteration because some486

preprocessing is done (preprocessing of the decision variables, problem scaling,487

etc).488

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: This table shows the search space explored by the method based on Dynamic Pro-

gramming [19] (DPN ), the alternative proposed by Salotti [27] (A?
N ) and our proposal (MIP);

for solving the min-# problem on the set of contours which appear in Fig. 5 and using dif-

ferent values of the distortion threshold ε. For the methods A?
N and our proposal we have

considered the nodes on the graph or the tree explored to obtain the optimal solution. The

table shows that the search space explored by our proposal is smaller than the search space

needed to explore by the other optimal methods.

ε

Contour Method 50 100 200 500 1000 2000 5000

Tinopener

DPN [19] 1.6× 107 1.2× 107 9.1× 106 7.4× 106 6.1× 106 5.0× 106 4.0× 106

A?
N [27] 8.0× 106 5.5× 106 4.0× 106 3.1× 106 2.7× 106 2.3× 106 2.1× 106

MIP 0 0 0 0 1032 1291 0

1000 2000 5000 10000 20000 50000 100000

France

DPN [19] 4.6× 107 3.2× 107 2.1× 107 1.5× 107 1.2× 107 7.9× 106 5.9× 106

A?
N [27] 2.2× 107 1.5× 107 9.2× 106 6.3× 106 5.7× 106 3.5× 106 2.6× 106

MIP 1220 0 0 0 3117 2931 2116

200 500 1000 2000 5000 10000 20000

Plane

DPN [19] 4.4× 107 3.5× 107 3.0× 107 2.5× 107 1.8× 107 1.4× 107 1.3× 107

A?
N [27] 1.6× 107 1.2× 107 1.0× 107 8.8× 106 5.8× 106 3.9× 106 4.1× 106

MIP 0 0 0 1280 0 0 0

500 1000 2000 5000 10000 20000 50000

Spoon

DPN [19] 3.8× 107 3.0× 107 2.6× 107 2.3× 107 1.9× 107 1.7× 107 1.3× 107

A?
N [27] 1.5× 107 1.1× 107 1.0× 107 8.9× 106 7.1× 106 6.9× 106 6.0× 106

MIP 1115 0 1228 0 329 1497 0

500 1000 2000 5000 10000 20000 50000

Pliers

DPN [19] 2.0× 108 1.7× 108 1.4× 108 1.2× 108 1.0× 108 7.5× 107 5.4× 107

A?
N [27] 7.7× 107 6.3× 107 5.7× 107 4.6× 107 4.4× 107 3.2× 107 2.0× 107

MIP 0 2315 0 2159 1910 3233 0

20000 50000 100000 200000 500000 1000000 2000000

Contour #1

DPN [19] 5.3× 108 4.3× 108 3.6× 108 2.9× 108 2.1× 108 1.7× 108 1.2× 108

A?
N [27] 2.1× 108 1.7× 108 1.6× 108 1.3× 108 9.3× 107 8.1× 107 6.5× 107

MIP 5129 0 2369 5688 0 2772 0

489

6. Conclusions490

The current paper presents a novel and efficient method to obtain the min-491

imum number of line segments for the polygonal approximation of a digital492

planar curve, using the ISE error criterion. It is based on the Mixed Integer493
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Programming optimization framework. The main idea is to represent all possi-494

ble line segments and solutions using binary decision variables. Then, using a set495

of linear constraints, the MIP solver searches for the feasible optimal solution.496

The present proposal has demonstrated to be faster than all optimal methods497

tested. Due to this issue, we recommend to use the present approach on complex498

and big contours, where the optimal polygonal approximation is required, for499

instance to compute measures to assess the quality of suboptimal polygonal500

approximations.501

The present approach is capable to obtain the optimal solution on closed502

curves using the sum of square deviation criterion error. Our approach only503

needs one execution to assure the optimality of the solution in closed curves,504

because our proposal does not need to fix any point of the final solution as the505

initial point.506

We have used the square deviation error to solve the min-# problem on507

closed curves. However our proposal could be easily adapted to use another508

error criterion.509
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Chapter 6

Conclusions

Polygonal approximations are an active area of research in computer vision, because they are

involved in many processes of the research area. These algorithms are a key phase on vectoriza-

tion, due to polygonal approximation methods simplifies the polyline obtained in the previous

phase. Polygonal approximation methods are also used to obtain feature vectors for shape

matching and object recognition. These methods are also very popular for compressing shape

and contour representations.

This thesis has proposed three main contributions in the area of polygonal approximations.

The following objectives has been achieved:

• Some polygonal approximation methods use an initial set of points (e.g. the breakpoints)

to obtain the polygonal approximation. In [1], we have introduce a new subset of initial

points, named CDP (Candidate Dominant Points), that boost the polygonal approxima-

tion methods and also make these methods to improve the quality of the approximation

in some cases.

• In [2], we have proposed an optimal method to solve the min-ε polygonal approximation

problem using the L2-norm as the distortion measure. The optimal polygonal approxi-

mation is used as a reference solution for using frameworks for assessing the quality of

suboptimal polygonal approximations. However obtaining this optimal solution is a com-

plex process and also the computation burden is very high. Our method, which is based

on Mixed Integer Programming (MIP) obtains the optimal solution is all cases. The

proposed method is faster than all the optimal methods tested.

• We have also solved optimally the min-ε polygonal approximation problem using a novel

proposal. In [9], we have proposed a new algorithm with two stages. Firstly, the method

proposed by Pikaz and Dinstein [38] is used to obtain a suboptimal polygonal approx-

imation. Then, the improved Salotti’s method is used to obtain several local optimal

solutions with a prefixed starting point. In each iteration the distortion error is used as
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the threshold value to prune suboptimal solutions. Several strategies to select the starting

points has been tested.

• Finally, in [3], an optimal algorithm to solve the min-# polygonal approximation problem

is proposed. This method also uses the Mixed Integer Programming framework to obtain

the optimal solution.

We want to remark other additional contributions obtained. For instance, in [4] we propose

a method to determine an appropriate number of line segments that a polygonal approximation

needs to represent faithfully any planar digital curve. Another polygonal approximation method

was proposed in [10].

This thesis has focused on contributions of polygonal approximation methods. A future

research area could be focused on the usage of polygonal approximations. In this document

several usages for polygonal approximations have been pointed out: contour and shape recog-

nition, shape analysis, computer vision auxiliary methods and object placement recognition.
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Jiménez. Fast computation of optimal polygonal approximations of digital planar closed

curves. Graphical Models, April 2016.

Journal: Graphical Models

Impact Factor: JCR 2014: 1.049

Position of the journal: 45 of 104 (Q2)

Category: COMPUTER SCIENCE, SOFTWARE ENGINEERING


