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Abstract 

This paper presents a new methodology to design multivariable Smith predictor for n×n 

processes with multiple time delays based on the centralized inverted decoupling 

structure. The controller elements are calculated in order to achieve good reference 

tracking and decoupling response. Independently of the system size, very simple 

general expressions for the controller elements are obtained. The realizability conditions 

are provided and the particular case of processes with all of its elements as first order 

plus time delay systems is discussed in more detail. A diagonal filter is added to the 

proposed control structure in order to improve the disturbance rejection without 

modifying the nominal set-point response and to obtain a stable output prediction in 

unstable plants. The effectiveness of the method is illustrated through different 

simulation examples in comparison with other works. 
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1. Introduction 

Time delays arise in many industrial processes as a consequence of different phenomena such 

as transport times of mass, information or energy; accumulation of time lags in processes 

interconnected in series; or processing time (Normey-Rico & Camacho, 2007). Time delays 

affect the performance of traditional control systems because they can lead to very poor 

system response as they prevent high controller gain from be used in order to avoid 

instability. The Smith Predictor (SP) was the first compensator specially designed for single-

input single output (SISO) systems with time delay (Smith, 1957). It allows the elimination of 

the time delay in the characteristic equation and gives an output prediction for set point 

changes. In the last years, different approaches of the SP have been developed to overcome 

some drawbacks of its initial proposal and to improve its performance (Normey & Camacho, 

2008; Normey-Rico & Camacho, 2006; Palmor, 1996). Other important aspects such as 

compensation of systems with time-varying delay (Krstic, 2010) and control of systems with 

uncertain time delay (Bresch-Pietri, Chauvin, & Petit, 2012; Zhang, Shi, & Wang, 2014; 

Zhang & Wang, 2015) have been addressed recently. 

On the other hand, most industrial processes are multiple-inputs multiple-outputs 

(MIMO) systems, which are much more difficult to control compared with SISO counterparts 

because of the existence of interactions between the measurement signals and the control 

signals. In presence of time delays, the control system design becomes even more difficult 

because each output is affected by each input with different time delays (Jerome & Ray, 

1986). As a result, a transfer function matrix representation of the MIMO process is preferred 

in these cases (Wang, Zhang, & Chiu, 2002). Different approaches have been developed in 

order to design controller for multivariable systems with multiple time delays. Some authors 

have developed directly multivariable methodologies based on the conventional unity 

feedback structure: decoupling control (Liu, Zhang, & Gao, 2007; Morilla, Garrido, & 



Vazquez, 2013; Wang, Zhang, & Chiu, 2003; Xie, Shiehb, Pana, Tsaic, & Canelond, 2014), 

multivariable PID controllers (Garrido, Vázquez, & Morilla, 2014b; Vijay-Kumar, Rao, & 

Chidambaram, 2012; Xiong, Cai, & He, 2007) or H∞ controllers (Galdos, Karimi, & 

Longchamp, 2010; Mirkin, Palmor, & Shneiderman, 2011). The main disadvantage of these 

methods is the complexity of the control design procedure that increases with the size of the 

process. In addition, the resultant controller elements need to be generally reduced for 

implementation. With decentralized controllers (Huang, Jeng, Chiang, & Pan, 2003; Vázquez, 

Morilla, & Dormido, 1999), the resultant control system is simpler; however, important 

interactions can arise and produce a poor closed-loop performance. 

 Other authors propose more advanced structures such as multivariable IMC schemes 

(Garrido, Vázquez, & Morilla, 2014a; He, Cai, & Wu, 2006; Wang et al., 2002), or extensions 

of the SP to the multivariable case using a similar scheme to that of Figure 1, where G(s) is 

the plant, Gn(s) is the nominal model of the plant, Go(s) is the fast model of the process and 

C(s) is the primary controller.  

 

Figure 1. Smith Predictor scheme. 

In order to apply SP to multivariable systems, two approaches can be usually found. 

The first one consists in designing a decoupling compensator D(s) for the original process 

G(s) in order to obtain a diagonal (or diagonal dominant) apparent process, and then, applying 

the SP to this apparent process H(s)=G(s)·D(s) (Figure 2) (Wang, Zou, & Zhang, 2000). 

Then, the SP design can be carried out as that of SISO case. The second one and more 



common applies simultaneously multivariable control and SP (Rao & Chindambaram, 2006) 

using the scheme of Figure 1. 

 

Figure 2. SP with decoupling scheme. 

In some methods, the output prediction property of the SP scheme does not hold 

(Chen, He, & Qi, 2011); in other cases, the time delay is not completely removed from the 

characteristic equation (Jerome & Ray, 1986). The control system design for first order plus 

time delay systems was addressed in (Chen et al., 2011; Rao & Chindambaram, 2006). In 

(Sánchez-Peña, Bolea, & Puig, 2009), a robust control strategy is presented; however, it is 

limited to processes with time delays that can be factorized into input and output delays, and 

therefore, it cannot be used in presence of internal coupling delays. The main drawback of 

these methods is the use of the full model of the process to predict the non-delayed output. 

Therefore, they cannot be used to control unstable plants because the disturbance rejection 

response is governed by the open-loop dynamics. In addition, for stable processes, it is not 

possible to speed-up the disturbance rejection response to be faster than the open-loop 

dynamics. In (García & Albertos, 2010), a control design procedure to deal with a particular 

case of unstable MIMO processes was presented. Recently, (Flesch, Torrico, Normey-Rico, & 

Cavalcante, 2011) proposed a unified dead-time compensator for MIMO systems with 

multiple time delays. It is a generalization of the SISO filtered SP controller and it can be 

used to control stable or unstable dead-time processes and improve the disturbance rejection 

response. Later, in (Santos, Flesch, & Normey-Rico, 2014), the ideas of the MIMO-FSP were 



extended to different delay-free models to understand the effect of the fast model in the 

closed-loop scheme. 

 From the SP scheme in Figure 1, the matrix expressions of the closed-loop transfer 

matrix T(s) from the references r to the outputs y, and the transfer matrix Q(s) from the load 

disturbances d to the outputs y can be obtained as follows: 

( ) 1
( ) ( )· ( )· ( ) ( ) ( ) · ( )n oT s G s C s I G s G s G s C s

−
= + − +     (1) 

( ) 1
( ) ( ) ( )· ( ) ( ) ( ) ( ) · ( )· ( )n oQ s G s G s I C s G s G s G s C s G s

−
= − + − +    (2) 

where G(s), Gn(s), Go(s) and C(s) are n×n transfer matrixes. When the nominal model of the 

process is perfect, i.e. Gn(s)=G(s), the previous closed-loop transfer matrixes are simplified to 

(3) and (4). 

[ ] 1( ) ( )· ( )· ( )· ( )oT s G s C s I G s C s −= +  (3) 

[ ] 1( ) ( ) ( )· ( )· ( ) · ( )· ( )oQ s G s G s I C s G s C s G s−= − +  (4) 

Then, the main controller C(s) can be calculated in order to obtain the desired 

performance in the closed-loop transfer matrix T(s) in (3). Its characteristic equation would be 

the determinant of [I+Go(s)·C(s)], which only includes the fast model of the plant Go(s). In 

order to simplify this design, several methodologies design C(s) to obtain a diagonal matrix 

Go(s)·C(s). Most of them use a transfer matrix C(s) in which the process inputs u are derived 

by a time-weighted combination of the error signals e. If decoupling is required in T(s), the 

main problem of such methods is the increase of the design complication when the size of the 

system is large, because the calculations become more complex and important approximations 

are usually required. 



This work proposes a new tuning methodology of the main controller of a 

multivariable SP scheme for directly decoupling and stabilizing square multivariable 

processes with multiple time delays. It is based on the structure of centralized inverted 

decoupling (Garrido, Vázquez, & Morilla, 2013) that allows obtaining very simple 

expressions for controller elements independently of the system size. However, as 

disadvantage, it cannot be applied to processes with multivariable zeros in the right half plane 

(RHP) since it results unstable. An initial version of this methodology was introduced only for 

stable 2×2 processes in (Garrido, Vázquez, & Morilla, 2014c). In this work, further research 

was performed extending the method for n×n processes. The development is similar to that 

performed in (Garrido et al., 2014a), where the IMC approach and the inverted decoupling are 

applied to sable processes. This work gives some results that were not analyzed in previous 

work since it considers stable and unstable plants with multiple delays and studies the tuning 

of the primary controller of the proposed structure with has an important practical appeal. The 

paper is structured as follows. In Section 2, the proposed method is completely developed for 

n×n processes. Several aspects as realizability are discussed. The expressions for the 

particular case of stable processes in which all elements are first order plus time delay 

(FOPTD) systems are detailed. In order to improve disturbance rejection and apply the SP 

structure in unstable plants, a diagonal filter in the feedback loop is proposed. Section 3 

illustrates the methodology with several simulation examples. Finally, conclusions are 

summarized in Section 4. 

2. Smith predictor with inverted decoupling 

2.1. General expressions for n×n processes 

Assuming a square process G(s) with n inputs and n outputs and multiple time delays, the first 

step in order to apply the SP scheme in Figure 1 is defining the fast model of the plant Go(s). 

In this work, this fast model is proposed as the output fast model of Gn(s) according to (5), 



where Θ(s) is a diagonal matrix that contains the minimal common time delays by outputs, 

that is, the minimal common time delays by row [6]. Then, Go(s) is calculated from (6). 

Notice that Go(s) may still contain multiple time delays; however, at least, one element by 

each row of Go(s) does not have time delay. Therefore, Go(s) is equal to G(s) after extracting 

the minimal common time delays of each row. 

( ) ( )· ( )n oG s s G s= Θ  (5) 

1( ) ( )· ( )o nG s s G s−= Θ  (6) 

As Θ(s) is a diagonal matrix, if C(s) is designed to decouple Go(s), then, it also 

decouples Gn(s), and diagonal matrixes of open-loop processes Ln(s) and Lo(s) are obtained, 

respectively. Ln(s) is equal to Θ(s)·Lo(s). Ln(s) corresponds to the nominal open-loop process 

(with the time delays in Θ(s)), and Lo(s) corresponds to the nominal delay free open-loop 

process. Therefore, equations (3) and (4) would be reduced to (7) and (8) for the nominal case 

(Gn(s)=G(s)). 

[ ] 1( ) ( )· ( )· ( ) ( )· ( )o o oT s s L s I L s s T s−= Θ + = Θ   (7) 

[ ] 1( ) ( ) ( )· ( ) · ( )· ( )oQ s G s G s I L s C s G s−= − +   (8) 

According to (7), the closed-loop transfer matrix T(s) would be diagonal, which 

implies a decoupled response from the references to the outputs. Each closed-loop transfer 

function ti(s) would be given by (9). Consequently, it is possible to achieve the desired 

closed-loop performance defining the proper open-loop process loi(s); and thanks to the SP 

structure, this transfer function loi(s) is free of time delay, as it will be explained with details 

in section 2.2. Thus, the specification of performance requirements can be carried out easily. 



However, it is important to note that the closed-loop response is delayed by the corresponding 

time delay θi of Θ(s). 

· ·( )
 ( ) ( )·e ·e

1 ( )
s i s ii

i i
i

lo s
t s to s

lo s
θ θ− −= =

+   (9) 

The proposed methodology uses a centralized inverted decoupling control to design 

the control matrix C(s) obtaining a decoupled response in T(s), which is achieved if the fast-

open-loop transfer matrix Lo(s)=Go(s)·C(s) is diagonal. Therefore, after specifying the 

desired delay-free elements of this diagonal fast open-loop transfer matrix Lo(s) from the 

closed-loop specifications, the controller matrix C(s) must fulfils 

1( ) ( )· ( )o oC s G s L s−=  (10) 

However, as it is shown in Figure 3, C(s) is split into two blocks: a matrix Cd(s) in the 

direct path (between the error signals e and the control signals u) and a matrix Co(s) in a 

feedback loop (in the opposite direction). According to the inverted decoupling structure, 

Cd(s) must have only n elements different from zero which connect the error signals e with 

the control signals u. In order to decouple the system, Co(s) feeds back the control signals u 

toward the controller inputs. Co(s) must have only n zero elements, which correspond with 

the transpose non-zero elements of Cd(s). For example, in a 4×4 process, if element Cd(2,4) is 

selected as a direct connection between u2 and e4, there will not be feedback from u2 to e4 

and consequently, Co(4,2) must be zero. 



 

Figure 3. SP scheme with inverted decoupling. 

From the representation in Figure 3, the expression of the whole controller matrix C(s) 

is calculated as follows: 

( ) 1( ) ( )· ( )· ( )C s Cd s I Co s Cd s −= −  (11) 

Combining the inverse of (10) with the inverse of (11), the simple expression in (12) is 

achieved, and it can be used to calculate Cd(s) and Co(s). 

1 1( ) ( ) ( )· ( )o oCd s Co s L s G s− −− =  (12) 

Assuming that the desired closed-loop response is a decoupled response from the 

references to the outputs, the matrix T(s) must be diagonal and consequently,  matrix Lo(s) as 

well. Then, the main advantage of (12) is its simplicity, regardless process size, because the 

resulting subtraction of Cd-1(s) and Co(s) is a transfer matrix with only one element to be 

calculated for each position. 

Note that Cd(s) has to be non-singular since it is inverted, and therefore, when its non-

zero elements are chosen, only one element in each row and column can be selected. As a 

result, for n×n systems there are n! possible configurations of Cd(s). To name them, the 

authors propose a notation in which the indicated number corresponds to the column with the 

chosen element (Garrido, Vázquez, & Morilla, 2011). For instance, in a 2×2 system there are 

two configurations: 1-2 when elements Cd(1,1) and Cd(2,2) are selected to be non-zero; 2-1 



when elements Cd(1,2) and Cd(2,1) are chosen. The expression of the controller elements for 

each configuration is different, which is interesting because some choices can result in non-

realizable elements. Therefore, the configuration can be selected depending on the 

realizability, which will be discussed later. 

The general expressions for 2×2 processes can be derived from (12) easily. For 

instance, assuming configuration 1-2, the following matrix equation is achieved: 

1
11 12

22 21

11 12
12

11 1 1

21 22
21

22 2 2

( ) 0 0 ( )
0 ( ) ( ) 0

( ) ( )1 - ( )
( ) ( ) ( )

1 ( ) ( )- ( )
( ) ( ) ( )

lo lo

lo lo

cd s co s
cd s co s

go s go sco s
cd s s s

go s go sco s
cd s s s

-
   

- =   
   

  
  
  =   
        

=

 (13) 

Then, the general expressions for the non-zero controller elements selecting 

configuration 1-2 are given by (14). 

1 12
11 12

11 1

21 2
21 22

2 22

( ) ( )( ) ( )
( ) ( )

( ) ( )( ) ( )
( ) ( )

lo s go scd s co s
go s lo s
go s lo sco s cd s
lo s go s

−
= =

−
= =

 (14) 

In the same way, assuming configuration 2-1, the matrix equation in (10) is achieved 

and from it, the general expressions for the non-zero controller elements are given by (16). 

11 12
11

21 1 1

21 22
22

12 2 2

( ) ( )1- ( )
( ) ( ) ( )

1 ( ) ( )- ( )
( ) ( ) ( )

lo lo

lo lo

go s go sco s
cd s s s

go s go sco s
cd s s s

  
  
  
  
        

=

 (15) 

11 2
11 12

1 21

1 22
21 22

12 2

( ) ( )( ) ( )
( ) ( )
( ) ( )( ) ( )
( ) ( )

go s lo sco s cd s
lo s go s
lo s go scd s co s
go s lo s

−
= =

−
= =

 (16) 



In case of 3×3 processes, the procedure is the same: obtaining the expressions from 

(12) after choosing the configuration. In this case, there are six possible configurations 

according to the three elements selected in Cd(s) to be non-zero. For instance, choosing 

configuration 1-2-3 (diagonal elements of Cd(s) to be non-zero) in (12), the equation (17) is 

obtained. From this, the general expressions for the non-zero elements of Cd(s) and Co(s) in 

(18) are easily derived. 

1311 12
12 13

1 1 111

2321 22
21 23

22 2 2 2

31 32 3
31 32

33 3 3

( )( ) ( )1 - ( ) - ( )
( ) ( ) ( )( )

( )( ) ( )1- ( ) - ( )
( ) ( ) ( ) ( )

1 ( ) ( )- ( ) - ( )
( ) ( ) ( )

go sgo s go sco s co s
lo s lo s lo scd s

go sgo s go sco s co s
cd s lo s lo s lo s

go s go s goco s co s
cd s lo s lo s

 
 
 
 

= 
 
 
  
 

3

3

( )
( )

s
lo s

 
 
 
 
 
 
 
  
   (17) 

131 12
11 12 13

11 1 1

2321 2
21 22 23

2 22 2

31 32 3
31 32 33

3 3 33

- ( )( ) - ( )( ) ( ) ( )
( ) ( ) ( )

- ( )- ( ) ( )( ) ( ) ( )
( ) ( ) ( )

- ( ) - ( ) ( )( ) ( ) ( )
( ) ( ) ( )

go slo s go scd s co s co s
go s lo s lo s

go sgo s lo sco s cd s co s
lo s go s lo s
go s go s lo sco s co s cd s
lo s lo s go s

= = =

= = =

= = =

 (18) 

For higher dimensional systems, the procedure is similar. Therefore, from (12) it is 

possible to achieve the general expressions of the SP with inverted decoupling for n×n 

processes. If the configuration p1-p2-…-pi-…-pn-1-pn is chosen, the non-zero elements of the 

Cd(s) and Co(s) matrices are provided in (19) and (20), respectively. The transfer functions of 

the desired fast open-loop processes loi(s) can be specified in any way that assures the 

realizability of these controller elements, as discussed in section 2.2 

( )
( )

( )
;j

ij i
ji

lo s
s

s
cd i j p

go
= ∀ =

 (19) 

( )
( )

( )
, ;ij

ij j
i

s
s

lo s
go

co i j i p
−

= ∀ ≠  (20) 



From these general expressions, it can be concluded that the complexity of the 

controller elements in Cd(s) and Co(s) is always the same, independent of the system size. 

With conventional schemes in C(s), these elements become more complex as the size of the 

process increases. However, it is necessary to indicate that the proposed methodology has the 

same disadvantage as inverted decoupling: it cannot be applied to processes with 

multivariable RHP zeros, that is, RHP zeros in its determinant (Garrido et al., 2011, 2013). If 

a RHP zero is specified in some loi(s) transfer function, it will appear as unstable pole in 

some coij(s) elements. The case of RHP zeros associated to a single output is an exception. In 

this case, although the RHP zero is specified in the corresponding fast open-loop transfer 

function loi(s), it will be canceled in the controller elements (Garrido et al., 2011). 

2.2. Realizability 

The realizability requirement for Cd(s) and Co(s) is that all of their elements must be stable, 

causal and proper. For processes with time delays, RHP zeros or RHP poles, direct 

calculations can lead to elements with prediction or unstable poles. In the proposed 

methodology, there are two issues regarding controller realizability that have to be analyzed: 

firstly, it is necessary to check if it is possible to achieve realizability using the selected 

configuration; and secondly, after confirming the previous condition, it is essential to 

determine how to specify the desired fast open-loop transfer functions loi(s). Next, the 

conditions that a configuration needs to fulfill to be realizable are provided. In addition, the 

constraints on the open-loop processes to achieve such realizability are indicated as well. 

In the controller expressions (19) and (20), each desired fast open-loop transfer 

function loi(s) appears associated to the fast process transfer functions goij(s) of the same row 

i. Thus, there are four aspects to take into consideration and to be inspected for each row of 

the fast model of the plant Go(s): 



• Non-causal time delays must be avoided in controller elements. As Go(s) is the output 

fast model of the plant, at least, one element by row of Go(s) does not have any time 

delay. If goik(s) is the transfer function of the row i without delay, the element cdki(s) 

of Cd(s) should be chosen to be in the direct path between the error signals and the 

control signals (it should be non-zero). This transfer function goik(s) will appear in the 

denominator of the corresponding controller element cdki(s) according to (19). The 

numerator of this controller element is given by the desired fast open-loop transfer 

function loi(s) which must have no delay. In contrast, according to (20), loi(s) appears 

in the denominator of the corresponding controller elements coij(s). Although, the 

other goij(s) elements different from goik(s) in the row i can have time delay, this 

delay will appear in the numerator avoiding non-causal time delays in coij(s). If the 

only elements by row of Go(s) without time delay are necessarily in the same column 

(that is, the minimal output time delays are in the same column), then, the nominal 

process Gn(s) should be modified adding some extra time delay, as discussed later. 

• Controller elements must be proper, that is, their relative degree must be greater or 

equal than zero. If goik(s) is the transfer function of the row i with the smallest relative 

degree rik, the element cdki(s) should be different from zero to avoid improper 

controller elements. In addition, the relative degree ri of the fast open-loop process 

loi(s) must fulfill: 

min( )ik i ijj k
r r r

≠
≤ ≤

. (21) 

• Controller elements must be stable. When an individual RHP zero appears in a transfer 

function goim(s), the element cdmi(s) of Cd(s) should not be selected in the direct path, 

in order to avoid this zero becomes an unstable pole in this element. When the RHP 

zero appears in all elements of the same row, it is necessary to check its multiplicity in 



each element of the row. Once more, if goik(s) is the process transfer function of the 

row i with the smallest RHP zero multiplicity ηik, the element cdki(s) should be chosen 

to be in the direct path (it should be non-zero). This RHP zero must appear in the 

open-loop process loi(s) with a multiplicity ηi that fulfills (22). This condition must be 

fulfilled for each different RHP zero zx of the row i. 

min( )ik i ijj k
η η η

≠
≤ ≤

 (22) 

• In line with the previous case, when an individual RHP pole appears in a transfer 

function goim(s), the element cdmi(s) of Cd(s) should be selected in the direct path and 

this unstable pole must be specified in the corresponding transfer function loi(s), in 

order to avoid an unstable controller element. When the pole appears in several 

elements of the same row, it is necessary to check its multiplicity in each element of 

the row. In this case, if goik(s) is the process transfer function of the row i with the 

largest RHP pole multiplicity ψik, the element cdki(s) should be chosen to be in the 

direct path (it should be non-zero). This RHP pole must appear in the open-loop 

process loi(s) with a multiplicity ψi that fulfills (23). This condition must be fulfilled 

for each different RHP pole px of the row i. 

max( )ik i ijj k
ψ ψ ψ

≠
≥ ≥

  (23) 

It is important to realize that the SP scheme of Figure 3 cannot be directly apply in 

unstable plants. The blocks Gn(s) and Go(s) would contain unstable elements and 

consequently, they will be internally unstable. As it is discussed later in section 2.5, another 

implementation scheme is proposed with an additional filter that allows obtaining a stable 

output prediction for reject step disturbance and achieving internally stability. 



When two or more elements of Cd(s) have to be selected necessarily in the same 

column to satisfy the previous conditions in all rows, there is no realizable configuration. 

Then, it is necessary to insert an additional block N(s) between the system G(s) and the 

inverted decoupling controller in order to modify the process and to force the non-realizable 

elements into realizability. Then, the proposed method of SP with inverted decoupling would 

be applied to the new process GN(s)=G(s)·N(s). 

N(s) is a diagonal transfer matrix with the necessary extra dynamics. If there are no 

realizability problems in the row i, the nii(s) element is equal to the unity. Otherwise, the 

required extra dynamics (time delay, pole or RHP zero) is added with the proper multiplicity 

to fulfill the corresponding realizability condition. In general, nii(s) is defined according to 

(24). Generally, it is preferable to add the minimum extra dynamics. Therefore, after checking 

the required additional dynamics of each configuration, it is selected that one with fewer RHP 

zeros, poles or time delays in N(s). More detailed information about this issue is provided in 

(Garrido et al., 2011). However, note that RHP poles have not been included in this 

expression in order to avoid an unstable transfer function. Therefore, if condition (23) cannot 

be initially fulfilled in all rows, there are no realizable configurations. 

1

1(s)
( 1)

ii

ii

ii

ηxNz
θ s x

ii r
x x

s z
n e · ·

s zτs
−

=
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2.3. How to specify the desired delay free open-loop processes loi(s) 

For a given configuration, the four previous conditions must be fulfilled for realizability when 

loi(s) is specified. Nevertheless, for best performance of the control system, it is undesirable 

to include any RHP zero or RHP pole in loi(s) more than necessary. Therefore, loi(s) is 

defined with the minimum RHP pole multiplicity and minimum RHP zero multiplicity which 



fulfill the realizability conditions (22) and (23), that is, the minimum values by row i. In 

addition, since the closed-loop response must be stable and without steady-state errors due to 

set point or load changes, loi(s) must contain an integrator. The following form of loi(s) is 

suggested: 

1
1 1

1 1(s)
( 1)

i i

i

ηx ψxNpNz
x x

i r
x xi x x i

s z s p
lo · ·

λ s s z s p τ s −
= =

   − + +
=    + − +   

∏ ∏
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where the time constant λi determines the bandwidth of the closed-loop i and acts as a tuning 

parameter for performance and robustness, Nz is the total number of individual RHP zeros of 

the row i, and ηxi is the proper multiplicity of the zero zx according to condition (22). Np is 

the total number of individual RHP poles of the row i, and ψxi is the proper multiplicity of the 

pole px according to condition (23). The multiplicity ri of the associated pole is specified to 

provide the necessary high frequency roll-off rate being limited by the realizability condition 

(21). When loi(s) must have zero relative degree according to (21), a zero can be included and 

used as an extra tuning parameter. 

Next, three particular cases of loi(s) transfer functions are shown. They are collected 

in Table 1. The first case arises when loi(s) can be defined as an integrator with a constant 

according to the previous realizability conditions. The closed-loop transfer function has the 

typical shape of a first order system with time constant λi plus the corresponding output time 

delay of G(s). 

Table 1. Three common cases to define the delay free open-loop transfer functions. 

Case loi(s) ti(s) 
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Second, when a relative degree equal to two must be specified in loi(s) without any 

RHP zero, it is necessary to include a pole in s=-1/τi according to (25). Then, the closed-loop 

transfer function is obtained as a second order system plus time delay. The poles of this ti(s) 

are characterized by the undamped natural frequency ωn and the damping factor ξ given by 

(26). 

1 0 5n i i i iω / τ λ ξ . λ / τ= =   (26) 

The third row of Table 1 shows the case in which a RHP pole s=pi must be specified 

in loi(s) and relative degree one is required. The corresponding closed-loop transfer function 

is a second order system plus time delay and zero at s= -pi. The poles of this ti(s) are 

characterized by the undamped natural frequency ωn and the damping factor ξ given by (27). 

In order to obtain a stable closed-loop transfer function, the condition λi<1/ pi must be 

fulfilled. From the second expression in (27), the λi value for a desired damping factor is 

given by (28). In order to avoid the effect of the cero at s=-1/pi in the reference tracking 

response ti(s), a reference filter can be used containing this zero as a pole with a unitary 

stationary gain. 
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2.4. Application to stable MIMO systems with FOPTD elements 

Since almost all industry processes are open-loop stable and exhibit non oscillatory response 

for step inputs, higher order transfer functions can be simplified to a first order plus time 



delay (FOPDT) model before the control design. Thus, the process elements gij(s) are given 

by a stable transfer function as follows: 

( )
1

ij s ij
ij

ij

K
g s e

T s
θ−=

+  (29) 

Assuming a realizable configuration p1-p2-…-pi-…-pn-1-pn in a n×n process, 

realizability conditions point out that each open-loop transfer function loi(s) has a relative 

degree equal to the unity, no RHP zeros and no RHP poles. Consequently, loi(s) can be 

specified as the case 1 of Table 1. 

Assuming G(s)=Gn(s), the controller elements of Cd(s) and Co(s) are obtained as 

shown in (30) and (31) according to (19) and (20), respectively. The elements of Cd(s) result 

PI controllers, and those of Co(s) are filtered-derivative compensators plus time delay. 
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From (30) and (31), it can be found that the controller parameters are given by 
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When it is possible to approximate the transfer functions of the process by stable 

FOPTD systems, authors propose to do it and to use the simple equations (32) to calculate the 

controller parameters.  

2.5. Additional filter 

According to (2), the disturbance rejection performance is governed by the open-loop 



dynamics of the process G(s). In order to improve the disturbance rejection response of the 

closed-loop system, a stable diagonal filter F(s) is proposed as shown in the scheme of Figure 

4. A similar filter is proposed in the multivariable filtered Smith predictor in (Flesch et al., 

2011). Then, the following closed-loop transfer matrixes T(s) and Q(s) are obtained (where 

Laplace variable s has been omitted): 

( ) 11· · ·n oT G C I F G G F G C
−

− = + − +   (33) 

( ) 11· · · · ·n oQ G G I C F G G F G C F G
−

− = − + − +   (34) 

 

Figure 4. Smith predictor with inverted decoupling plus filter (for analysis). 

For the nominal case (G(s)=Gn(s)), the reference tracking response remains the same 

as the one obtained without the filter, independent of F(s). Nevertheless, the load disturbance 

response is modified by the filter as follows: 

( )1·[ ] · · · ·oQ G G I L C F G I T F G−= − + = −  (35) 

Since T(s) and F(s) are diagonal matrixes, matrix [I-T(s)·F(s)] is diagonal as well. In 

order to cancel the undesired poles of each row i of a stable process G(s), the filter element 

fi(s) must be designed in such a way that these slow poles appear as zeros in (1-ti(s)·fi(s)). 

This is satisfied if the following condition is fulfilled: 



( )1 (s)· ( ) 0 0,1,..., 1; 1,...,
s zk

r

i i kr

d t f s r m k p
ds =

− = = − =
 (36) 

where zk is an undesired pole, mk is its maximum multiplicity in the row i of G(s), and p is the 

total number of undesired poles in the row i. In general, the filter element fi(s) is defined as 

follows: 

( )
( )
( )· 1

( )
1

r
i

i
i

N s s
f s

s
α

η

λ

β

+
=

+  (37) 

where the term (λis+1)r cancels in qi(s) the specified closed-loop pole or poles for reference 

tracking. The pole in s=-1/βi is used to define the desired time constant of the disturbance 

rejection response and its degree must be chosen to obtain a proper filter element. Note also 

that, according to (35), the stationary gain of fi(s) must be equal to the unity in order to obtain 

zero steady state error for step disturbance rejection. Then, Nα(s)=[ αvsv+…+ α1s+1] is a 

polynomial of the proper degree v and coefficients αk which must be calculated in such a way 

that [1-ti(s)·fi(s)] has the undesired poles of the original disturbance rejection response as 

zeros. 

If ti(s) is given by a stable FOPTD system with an only undesired pole at s=-z1 in 

qi(s), the filter is usually defined by (38) and α1 is calculated according to (39). 
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( ) 1
2

1 1 11 1 · · /i z
i z e zθα β − = − −   (39) 

As it is shown in (Flesch et al., 2011; Normey-Rico & Camacho, 2009), the filter can 

also be used to improve the robustness of the system. However, it is shown that there is a 

trade-off between robustness and disturbance rejection performance. When βi decreases, the 



disturbance rejection becomes faster and the robustness deteriorates, and vice versa. This 

compromise must be studied for each case. In addition, the filter element fi(s) can be specified 

with more poles than zeros to provide low pass behaviour. This reduces the high frequency 

noise and can increase the robustness.  

Another important use of the diagonal filter F(s) is related to unstable processes 

(Flesch et al., 2011). Note that the SP structure in Figure 4 must be used just for analysis or 

stable processes. If it is used for implementation in unstable cases, the controller will be 

internally unstable since the blocks Gn(s) or Go(s) will be unstable. In (Flesch et al., 2011), 

the scheme of Figure 5 is proposed for implementation in these cases, where block S(s) is 

stable and given by 

( )( ) ( )· ( ) · ( )oS s I F s s G s= − Θ   (40) 

 

Figure 5. Smith predictor with inverted decoupling plus filter (for implementation). 

The stable diagonal filter must be designed to eliminate any unstable pole of Go(s) 

from the elements of S(s). In this way, the filter design allows to obtain an open-loop-stable 

prediction of the output. Therefore, the unstable poles of row i of Go(s) must appear as zeros 

in (1-e-θi·s·fi(s)). This is satisfied if the following condition is fulfilled (Flesch et al., 2011): 

( )1 · ( ) 0 0,1,..., 1; 1,...,i

s pk

r
s

i kr

d e f s r n k p
ds

θ

=

−− = = − =
 (41) 



where pk is an unstable pole, nk is its maximum multiplicity in the row i of Go(s), and p is the 

total number of undesired poles in  row i. In general, this design is performed projecting the 

controller in the discrete domain, since the time delays have a polynomial representation in z. 

In any case, the block S is easier to implement in the discrete domain.  

The proposed SP scheme with inverted decoupling of Figure 5 can be transformed into 

a centralized inverted decoupling scheme, which can be interesting for an alternative 

implementation point of view. To do so, the block S(s) and Co(s) are combined into an only 

matrix Ko(s)=Co(s)-S(s) in the same position of Co(s). For a particular configuration p1-p2-

…-pi-…-pn-1-pn and assuming Gn(s)=G(s), the elements of Ko(s) would be given by (42) and 

(43). The elements in (42) correspond to the zero elements of Co(s). The implementation is 

also easier in the discrete domain. 
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3. Examples 

In this section, three simulation examples are presented to demonstrate the effectiveness of 

the proposed methodology. Two examples are stable systems, and the third one is a 2×2 

unstable case. 

3.1. Example 1: Wardle and Wood distillation column 

The transfer function matrix of this 2×2 process is given by (44) in (Rao, Rao, & 

Chidambaram, 2007). The time constants and delays are expressed in minutes. The process 

does not have multivariable RHP zeros. 



-6s -12s

WW -8s -8s 

0.126·e -0.101·e
60s 1 (48s 1)(45s+1)G (s)

0.094·e -0.12·e
38s 1 35s 1

 
 + + =
 
 

+ +   (44) 

According to the conditions about time delays and relative degrees of section 2.2, 

configuration 1-2 must be chosen for realizability without adding extra dynamics. The 

common output delays are obtained as θ1=6 min and θ2=8 min. Therefore, the fast model 

Go(s) is given by: 

 

-6s

o

0.126 -0.101·e
60s 1 (48s 1)(45s+1)G (s)
0.094 -0.12
38s 1 35s 1

 
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 

+ +   (45) 

The two desired open-loop process loi(s) can be specified as 1/(λis) according to case 

1 of Table 1, and consequently, the closed-loop transfer functions ti(s) are given by FOPTD 

systems. After chosen the closed-loop time constants λ1=λ2=15 min, the controller elements 

are calculated by means of expressions (14). The resultant elements are: 
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The closed-loop system response of the proposed control using the scheme of Figure 3 

(SPID) is shown in Figure 6. There is unit step changes at t=0 min in the first set point, and at 

t=500 min, in the second one. There are also a -20 step change at t=1000 min in both inputs as 



load disturbances. For comparison, the decentralized Smith Predictor (D-SP) control proposed 

in (Rao et al., 2007) is also shown. 

The proposed controller achieves perfect decoupling. The proposed controller and the 

D-SP control obtains similar performance and IAE values in the first loop; however, the 

proposed control improves the response of the second loop with smaller settling time and IAE 

value (see Table 2), and better disturbance rejection. 

The disturbance rejection in the first loop is a bit slow compared to that of the second 

loop. Therefore, a filter f1(s) is designed in order to speed up this rejection. The slowest pole 

associated to the first output in q11(s) and q12(s) is s=-1/60. The filter is calculated according 

to (38) and (39) to cancel this pole. The time constant of the disturbance rejection response β1 

is fixed equal to λ1. The diagonal filter F(s) is given by  

29.46 1 0
F(s) 15s 1

0 1

s + 
 = +  
   (48) 

The closed-loop response of the proposed control with filter (SPID-F) is also shown in 

Figure 6. The reference tracking response remains the same, and the disturbance rejection in 

the first loop is improved obtaining a smaller IAE value, similar to that of the second loop. 

 



Figure 6. Outputs and control signals of the step response in example 1. 

Table 2. Performance and robustness indices for each method in example 1. 

 
SPID SPID-F D-SP 

loop 1 loop 2 loop 1 loop 2 loop 1 loop 2 

IAE 48.5 35.1 36.5 35.1 46.4 76.8 

TV 56.9 50.1 61.7 52.4 63.1 65.1 

µRS 0.20 0.26 0.22 

µRP 0.83 1.01 1.03 

 

In order to evaluate the robustness of the controllers, a μ-analysis is performed in 

presence of diagonal multiplicative input uncertainty. Multiplicative input uncertainty is 

represented as illustrated in Figure 7, where ΔI(s) is the disturbance and WI(s) and WP(s) are 

the diagonal weights for uncertainty and performance, respectively.  

 

Figure 7. System with multiplicative input uncertainty and performance measured at the 

output. 

To achieve robust stability the necessary and sufficient condition in a classical 

feedback system (Skogestad & Postlethwaite, 2005) is  

[ ]RS I I-W (s)T (s) 1= < ∀µ µ ω    (49) 

where μ is the structured singular value (SSV) and TI(s)=K(s)G(s)(I+K(s)G(s))-1 is the input 

complementary sensitivity function. To evaluate if the closed-loop system will respect the 

desired performance even in presence of diagonal multiplicative input uncertainty, the 

necessary and sufficient condition (Skogestad & Postlethwaite, 2005) is 



I I I
RP

P P

-W (s)T (s) -W (s)K(s)S(s)
1

W (s)S(s)G(s) W (s)S(s)
 

= < ∀ 
 

µ µ ω
 (50) 

where S(s)= (I+G(s)K(s))-1 is the sensitivity function and T(s)=G(s)K(s)(I+G(s)K(s))-1 is the 

complementary sensitivity function. 

To carry out this analysis, it is necessary to calculate the equivalent conventional 

centralized feedback controller K(s) according to the structure of Figure 7, and to define the 

weights. In this example, the chosen weights are 

I I

P P

(1.5·s+0.2)W (s)=w (s)·I= ·I
s+1

(s/2+0.01)W (s)=w (s)·I= ·I
s    (51) 

The weight wI(s) can be loosely interpreted as the process inputs increase by up to 

150% uncertainty at high frequencies and by almost 20% uncertainty in the low frequency 

range. The performance weight wP(s) specifies integral action, a maximum peak for the 

singular value of the sensitivity transfer matrix of Ms=2 and a bandwidth of about 0.01 

rad/min. 

The SSV for robust stability (RS) and robust performance (RP) for the different 

controllers are shown in Figure 8. The proposed SPID control obtains the best robust stability 

and robust performance. They fulfill conditions (49) and (50) for all frequencies, indicating 

that the system will remain stable in spite of an uncertainty of 20% on each process input. The 

peak values are shown in Table 2. For the proposed SPID-F control, the RS and RP will 

deteriorate at middle frequencies, where the peaks appear, because there is a trade-off 

between robustness and disturbance rejection, as it was mentioned at the end of section 2 

(Flesch et al., 2011). These peak values are also collected in Table 2. 



 

Figure 8. SSV for robust stability and robust performance in example 1. 

3.2. Example 2: 3×3 Tyreus distillation column 

The transfer matrix of this process is given by (52) in (Tyreus, 1979). Due to time delays, 

there are no realizable configurations according to section 2. Therefore, it is necessary to add 

an additional block N(s) with delays. To obtain realizability by adding the minimum quantity 

of delays, the only choice is configuration 1-2-3 with n11(s)=e-0.09s, n22(s)=1 and n33(s)=e-0.26s. 

Then, the proposed methodology is applied to the new augmented process G(s)·N(s) given by 

(53). 
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The common output delays are obtained as θ1=0.8 min, θ2=0.68 min and θ3=1.85 min. 

Then, the fast model Go(s) is given by: 
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( ) ( ) ( )
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 (54) 

The process elements of the first and third rows are FOPTD systems, and 

consequently, the controller parameters can be obtained using the expressions in (32) after 

specifying the desired closed-loop time constants λ1=17 min and λ3=21 min. These values 

have been selected to achieve similar settling times than other authors. On the other hand, the 

system elements of the second row have relative degree equal to two and therefore, the case 2 

of Table 1 can be applied. According to (26), λ2=24 min and τ=6 min are selected in order to 

achieve a critical damping response (ξ=1) with a settling time similar to that of the other 

loops. The free-delay-open-loop transfer functions are as follows: 

1 2 3
1 1 1( ) ( ) ( )

17 24 (6 1) 21
lo s lo s lo s

s s s s
= = =

+  (55) 

Assuming Gn(s)=GT
N(s) and after selecting the configuration 1-2-3, the controller 

elements of Cd(s) and Co(s) are obtained according to (18) without approximations, as 

follows: 



( )

( )

( )

2

66.7 1
0 0

33.76

2.38· 1
0 0

7.92·(6

11.36 1
0 0

206

( )
1)·

s

s

s

s

s

s

Cd s
s

+

+

+

 
 
 
 =  + 
 
 
    (56) 

( ) ( )
( )

( )
( )

( )

( )

59.2 1.7

2 2

5.99 1.94

2

89.08· · 101.7·
0

400 1 14.29 1

6 1 6 1
0

7.14 1 1.43 1

7.854· 237.3·
0

22.22 1 21.74 1

0.4896· · 57.12· ·( )

s s

s s

s e se

s s

s s

s s

se se

s s

s sCo s

− −

− −

+ +

+ +

+ +

−

+ +

 
 
 
 
 =
 
 
 
 
 

 (57) 

Although the process is a 3×3 system, the complexity of the elements of (56) and (57) 

is as simple as that of the elements obtained for 2×2 processes. The closed-loop system 

response is shown in Figure 9. There are unit step changes at t=1 min in the first reference, at 

t=333 min in the second one, and at t=666 min in the third one. For comparison, other control 

methodologies are also shown: the pure centralized control of Wang in (Wang, 2003) and the 

analytical decoupling control of Liu in (Liu et al., 2007).  

The proposed design achieves perfect decoupling performance without overshoot or 

inverse response in the outputs. It achieves similar IAE values than those of Liu’s controller 

with a similar response. The Wang’s controller obtains the worst IAE values, although it has 

the smaller TV values. These values are listed in Table 3. In this example the objective is to 

show that the proposed controller achieves a good compromise between complexity and 

performance. Note that it obtains similar response as Liu’s controller but with simpler 

controller elements. Liu’s controller elements are of high order, transfer functions of fourth, 

five or six order plus dead-time, while proposed controller uses only first or second order 

models, as shown in equations (56) and (57). In addition, the design procedures used in Liu’s 

approach are more complex than that of the proposed one. 



 

Figure 9. Outputs and control signals of the step response in example 2. 

Table 3. Performance indices for each method in example 2. 

Method IAE1 IAE2 IAE3 TV1 TV2 TV3 µRS µRP 

Proposed 17.8 24.7 22.8 22.2 12.5 1.1 0.52 1.04 

Liu 17.5 25.1 22.9 9.7 3.2 0.6 0.23 0.76 

Wang 37.8 31 37.5 9.5 1.7 0.5 0.22 1.23 

 

Using the weights in (60), a µ-analysis similar to that of the previous example is 

carried out to investigate the robustness. It shows that the proposed control and the Liu’s 

controller have similar RS and RP around all frequencies; nevertheless, the proposed control 

shows some peaks at frequencies around 1 rad/min where the RP will deteriorate. The peak 

values are listed in Table 3. On the other hand, the Wang’s controller does not fulfill RP 

condition (50) at low frequencies, where it has an important peak value. 

I I

P P

(2s+0.2)W (s)=w (s)·I= ·I
s+1

(s/2.75+0.012)W (s)=w (s)·I= ·I
s    (58) 



 

Figure 10. SSV for robust stability and robust performance in example 2. 

3.3. Example 3: Unstable process 

The transfer matrix of this 2×2 process is given by (59). It has important time delays and no 

multivariable RHP zeros. Nevertheless, its diagonal elements are unstable (Flesch et al., 

2011). 

4 6

5 3

1.6 0.6
2.6 1 2.5 1( )
0.7 1.7
3 1 2.2 1

s s

U s s

e e
s sG s
e e

s s

− −

− −

 −
 − + =
 −
 + −   (59) 

As it was commented in section 2.5, in case of unstable poles, the implementation 

scheme in Figure 5 must be used to achieve internal stability. In addition, it is necessary to 

design a filter F(s) in order to cancel the unstable poles in S(s). This design is easier 

performed using a discrete representation of the plant. Using a sample time of 0.2 s, the 

discrete plant model is given by 



20 30

25 15

0.1279 0.04797
1.08 0.92( )

0.04515 0.1618
0.9355 1.095

U

z z
z zG z

z z
z z

− −

− −

 −
 − − =
 −
 − −   (60) 

According to the conditions about time delays and unstable poles of section 2.2, 

configuration 1-2 must be selected for realizability. The common output delays are θ1=4 s and 

θ2=3 s (or 20 and 15 samples times, respectively). Therefore, the fast model Go(s) is given by: 

10

10

0.1279 0.04797
1.08 0.92( )

0.04515 0.1618
0.9355 1.095

o

z
z zG z

z
z z

−

−

 −
 − − =
 −
 − −   (61) 

The two desired open-loop process loi(s) can be specified according to the third case 

of Table 1. Using (28) and a critical damping factor as specification, parameters λ1=0.4461 s 

and λ2=0.3775 s are obtained. Then, the desired fast-open-loop processes are given by (62) 

and their discrete models by (63). 

1 2
1/ 2.6 1/ 2.2( ) ( )

0.4461· ·( 1/ 2.6) 0.3775· ·( 1/ 2.2)
s slo s lo s

s s s s
+ +

= =
− −  (62) 

1 2
0.48372( 0.9259) 0.57946( 0.913)( ) ( )

( 1.08)·( 1) ( 1.095)·( 1)
z zlo z lo z

z z z z
− −

= =
− − − −  (63) 

The controller elements are calculated by means of (14) using the continuous or 

discrete representation. The resultant discrete elements are: 

3.643( 0.9231) 0
1( )

3.4281( 0.909)0
1

z
zCd z

z
z

− − 
 −=  

− −  
 −  (64) 
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0.0881·( 1.081)·( 1)·0
( 0.9355)·( 0.9131)

( )
0.1071·( 1.068)·( 1)· 0

( 0.926)·( 0.9231)

z z z
z z

Co z
z z z

z z

−

−

 − − −
 − − =  − − −
  − − 

 (65) 

Since each closed-loop process has a dominant zero at s=-1/pi, a reference filter is 

used to avoid peaks in the responses. It is given by 

0.07404 0
( 0.9259)

( )
0.08690

( 0.9131)

z
Ff z

z

 
 − =
 
 −   (66) 

In order to implement the scheme of Figure 5, block S(z) in (40) must be calculated 

and a stable diagonal filter F(z) must be designed to eliminate the unstable poles in S(z) and 

achieve internal stability. Using (41), the elements of F(z) are designed to cancel the unstable 

pole at z=1.08 in the first element of S(s), and at z=1.095, in the last one, respectively. 

Moreover, a closed-loop pole in z=0.9 and z=0.95 are respectively used to define the closed-

loop disturbance rejection response.  The filter matrix is given by  

9.232·( 0.9892) 0
( 0.9)

( )
5.439·( 0.9908)0

( 0.95)

z
z

F z
z

z

− 
 − =
 −
 −    (67) 

The closed-loop system response of the proposed method is shown in Figure 11. There 

are unit step changes at t= 5 s in the first reference, at t= 40 s in the second one, and a 0.05 

step in both process inputs as load disturbances at t=80 s. For comparison, the multivariable 

filtered Smith Predictor (MIMO-FSP) in (Flesch et al., 2011) is also presented. The IAE 

values are listed in Table 4. The proposed design achieves similar performance than that in 

(Flesch et al., 2011), with a decoupling response, bit smaller settling times and smaller IAE 

and TV values. These results are expected as the proposed strategy has improved the primary 



controller tuning of the dead-time compensator structure. It is important to emphasize here 

that in the MIMO-FSP, the focus was the predictor structure and not the primary controller 

tuning. Therefore, the interesting result of this example is that using a more elaborated 

primary controller design with decoupling objectives, it is possible to improve the responses 

of the MIMO-FSP. From Table 4, it can be noticed that the TV and IAE values of the MIMO-

FSP are respectively 50% and 10% higher than the ones in the proposed controller. 

Table 4. Performance indices for each method in example 3. 

 
Proposed F-SP 

loop 1 loop 2 loop 1 loop 2 

IAE 7.6 6.7 8.4 8.2 

TV 0.02 0.02 0.03 0.03 

 

Figure 11. Outputs and control signals of the step response in example 3. 

4. Conclusions 

In this work, a new methodology of decoupling Smith predictor for multivariable square 

processes with multiple time delays has been proposed. It is based on the structure of 

centralized inverted decoupling control, which is combined with the SP structure. From a 



compact matrix formulation, the generalized expressions for n×n processes have been 

obtained. The realizability conditions for applying the method were provided, even for 

unstable processes. Furthermore, for processes with all of its elements as stable FOPTD 

systems, PID controllers and filtered derivative compensators plus time delays are obtained, 

which can be easily implemented in commercial distributed control systems. Expressions for 

direct calculations in this case have been provided. The method has been illustrated through 

three simulation examples, and comparisons with other works have demonstrated that the 

proposed methodology achieves similar or better performance. 

The main advantages of the proposed method over other methodologies are the 

following: 

• The simplicity of the controller elements. They do not contain sum of transfer 

functions and have similar or smaller order than that of the process transfer functions. 

Using other methods (conventional decoupling schemes or more advanced 

techniques), in some cases it is possible to have non-rational or complicated controller 

elements which are difficult to implement.  

•  Easiness for specifying closed-loop performance requirements as simple time 

response specifications.  

• The complexity of the controller elements is independent of the system size, which is 

a great advantage over other multivariable methodologies. 

• Using the proposed diagonal filter, the disturbance rejection response can be 

improved without modifying the nominal reference tracking response. 

• This filter can also be used to obtain a stable implementation of the controller in the 

case of unstable systems. 



On the other hand, the main drawback of the proposed methodology is that it cannot 

be applied to some processes with multivariable RHP zeros because the inverted decoupling 

structure results internally unstable. Consequently, further work must be performed to extend 

this method to these cases. Another future work is the application of the proposed strategy in 

an experimental setup. 
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