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Abstract: Twenty-eight neoflavonoids have been prepared and evaluated in vitro against HIV-1.
Antiviral activity was assessed on MT-2 cells infected with viral clones carrying the luciferase reporter
gene. Inhibition of HIV transcription and Tat function were tested on cells stably transfected with the
HIV-LTR and Tat protein. Seven 4-phenylchromen-2-one derivatives showed HIV transcriptional
inhibitory activity but only the phenylchrome-2-one 10 inhibited NF-κB and displayed anti-Tat activity
simultaneously. Compounds 10, 14, and 25, inhibited HIV replication in both targets at concentrations
<25 µM. The assays of these synthetic 4-phenylchromen-2-ones may aid in the investigation of some
aspects of the anti-HIV activity of such compounds and could serve as a scaffold for designing better
anti-HIV compounds, which may lead to a potential anti-HIV therapeutic drug.
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1. Introduction

UNAIDS report in 2016 indicated that tuberculosis remains the leading cause of death among
people living with HIV, accounting for around one in three AIDS-related deaths. In 2014, the percentage
of identified HIV-positive tuberculosis patients who started or continued on ART reached 77% [1].
This relevant fact should promote further studies to take advantage of this therapeutic ambivalence
and to evaluate the possibility of using 4-phenylchromene-2-ones for treating patients suffering from
both AIDS and tuberculosis.

Human immunodeficiency virus (HIV) is the cause of acquired immunodeficiency syndrome
(AIDS) which is one of the leading causes of 2.9% of mortality in the world [2]. Although modern
antiretroviral therapy (ART) using a combination of anti-HIV drugs has been highly effective in
suppressing HIV load and decreasing mortality in AIDS patients, the emergence of drug resistances
in HIV and the toxicity of the therapies currently in use have made the continued search for novel
anti-HIV drugs necessary [3,4]. On the other hand, failures in efforts to develop an effective vaccine
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against HIV-1 infection [5] have emphasized the importance of ART in treating HIV-1-infected patients.
Therefore, medicinal chemists are interested in the development of novel anti-HIV agents that might
be particularly effective in controlling strains of HIV that are resistant to the current drugs [6].

The HIV viral cycle can be divided into early and late stages. Early stages comprise several steps,
from viral attachment on the cell surface to integration in the host genome. Late stages include the
processes of HIV mRNA synthesis, protein expression and morphogenesis. Once integrated, HIV can
remain in a latent state in resting lymphocytes or undergo active replication. Transition from latency
to HIV expression occurs mainly when cells are activated and requires the concerted action of cellular
transcription factors and regulatory HIV proteins [7,8]. Among the transcription factors involved in
LTR transactivation, the HIV proximal enhancer contains three binding sites for SP1 transcription
factor and two binding sites for NF-κB. The NF-κB/Rel family of transcription factors represents a
major inducible regulatory element involved in HIV transcription [9]. Located downstream of the
basal promoter TAR sequence is the RNA target for the viral protein Tat, which acts in concert with
other cellular factors [10], to generate full-length RNA transcripts [11]. Furthermore, NF-κB and Tat
cooperate in driving HIV replication from the state of latency. Therefore, inhibition of the activity of
these critical proteins should result in an effective blocking of viral replication [12–14].

The neoflavonoids with anti-HIV activity possessing 4-phenylcoumarin skeleton have been
obtained mainly from Calophyllaceae family that includes the genera: Calophyllum [15–21]; Mammea [21–26];
Mesua [27–33]; Kielmeyera [34–38]; and Marila [39], from which several 4-phenyl chromen-2-one
derivatives have been isolated.

The discovery, structural modification and structure-activity relationships studies of natural
neoflavonoids with anti-HIV activity:(+)-Inophyllum B [40], (+)-Inophyllum C [19], and Inophyllum
P [40], and a number of their synthetic derivatives have been successfully obtained in this work.
These 4-phenylcoumarins have been proposed as suppressors of LTR-dependent transcription,
but the mechanism of action has not been fully characterized [41]. In addition, isomesuol and
mesuol inhibit TNF-α-induced HIV-1-LTR transcriptional activity by targeting the nuclear factor-κB
(NF-κB) pathway. Mesuol inhibited the phosphorylation and the transcriptional activity of the NF-κB
p65 subunit in TNFα-stimulated cells [42]. Isodispar B and Disparinol A are HIV transcription
inhibitors, which inhibit both, NF-κB and Tat targets, affecting the HIV replication by synergistic
effect [43]. Synthetic 4-phenylchromen-2-ones have been also reported to show antimicrobial [30,44,45],
anti-mycobacterial [46] and anti-inflammatory activities [47].

In a previous paper we reported the anti-HIV activity of natural 4-phenylcoumarins isolated
from Marila pluricostata. They were structurally related to Inophyllum coumarins series, but with one
prenyl and other cyclized group across the hydroxyl group at position C-7 [43]. Furthermore, these
compounds showed moderate anti-mycobacterial activity. This relevant fact induced us to prepare new
similar, but simpler, derivatives with the idea in mind to obtain compounds with activity against both
HIV and tuberculosis, and also to increase the structural diversity. With that, a better structure-activity
relationship could be established. In this paper we reported the preparation and the anti-HIV activity
of several neoflavone derivatives that showed anti-mycobacterial activity [48].

2. Results and Discussion

2.1. Chemistry

The 4-phenylchromen-2-ones or neoflavones 1–7 have been obtained by the Peckman
condensation between ethyl benzoylacetate and different phenol derivatives that is, resorcinol for 1,
phloroglucinol for 2, hydroxyhydroquinone for 3, 3,4-methylenedioxyphenol for 4, 3-methoxycatechol
for 5, 2,3-dimethoxyphenol for 6 and β-naphthol for 7 in presence of concentred H2SO4 as condensing
agent (Scheme 1). Some differences in the yield of the different compounds can be appreciated
depending on the phenol derivative used (see the Experimental Section).
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Scheme 1. Preparation of 4-phenylcoumarins 1–7. 

Phloroglucinol, as the starting material (Scheme 1), was treated with ethyl benzoylacetate by the 
Pechmann-Duisberg reaction giving 5,7-dihydroxy-4-phenylcoumarin (2). Friedel-Craft acylation or 
benzoylation of compound 2, by refluxing the phenol derivative with the corresponding acylchloride 
in a carbon disulfide/nitrobenzene mixture, and in the presence of aluminum trichloride, followed 
by Fries rearrangement provided mixtures of the 6-, 8-monoacylated and benzoylated neoflavones 
and 6,8-diacylated or dibenzoylated neoflavones [49–52]. Workup of the crude reaction products led 
to the isolation of neoflavones 8–21 whose spectroscopic properties were consistent with the 
structures shown in the Scheme 2. On the basis of detailed analysis of the H–H COSY (Correlation 
SpectroscopY), H-C HMQC (Heteronuclear Single Quantum Correlation), and H-C HMBC 
(Heteronuclear Multiple-Bond Correlation) 2D-NMR spectra, all of the compounds described were 
correctly characterized and their 13C-NMR data will be introduced in NAPROC-13 RMN 
spectroscopic database [53], for posterior online identification of natural products and their analogs 
and derivatives. 
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Neoflavones 22–28 were obtained by the condensation of substituted cinnamic acids with the
corresponding phenols, that is, phenol for 22, resorcinol for 23 and 24, 3,5-dichlorophenol for 25,
3,4-methylenedioxyphenol for 26 and 27, and 3-methoxybenzene-1,2-diol for 28. The reaction occurred
in the presence of milder Friedel-Crafts catalyst BF3–Et2O and POCl3 in 54%–75% yields (Scheme 3).
Previous attempts towards condensation of substituted cinnamic acids with corresponding phenols
for the preparation of 4-phenylchromen-2-ones 22–28 in the presence of concentrated HCl and HCl
gas were unsuccessful. Additionally, some of these compounds were synthesized in low yields by
microwave irradiation.
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Some compounds prepared in this study have been described already in the literature (see the
Experimental Section) and their structures were verified from an iterative search by 13C-NMR chemical
shifts carried out within our NAPROC-13 RMN spectroscopic database [53], and later identified
unambiguously. The rest of the prepared 4-phenylcoumarins were established on the basis of 1H-
and 13C-NMR spectra. A combination of COSY, HMQC, and NOE experiments was utilized when
necessary for a correct assignment of 1H and 13C chemical shifts.

The synthesized neoflavonoids 1–8 were evaluated in vitro against HIV-1 with the results shown
in Table 1.

2.2. Evaluation of Antiviral Activity

The neoflavonoids synthesized (1–28) belong to three groups: simple 4-phenylchromen-2-ones,
acyl-4-phenylchromen-2-ones and 3,4-dihydro-4-phenylchromen-2-ones, which have been evaluated
in the anti HIV bioassay. The analysis of the results of inhibitory activity of NF-κB indicates that
4-phenylchromenones 9, 10, 13, 14, and 15 show a fair inhibitory activity at 50 µM. Regarding the
specific HeLa-Tat-Luc assay results, compounds 9, 13, and 15 were nonspecific, whereas compounds
10 and 14 showed specificity. Furthermore compound 14 is only slightly toxic at 50 µM, but not
toxic at 25 µM, and their activity as NF-κB and tat inhibitors is still strong (83.06% for NF-κB and
41.87% for Tat). Compound 14 turned out to be identical to the natural neoflavonoid Isodispar B
previously isolated from Marila pluricostata [43]. Compound 10 NF-κB activity is also strong (70.53 at
25 µM) and it is nontoxic at 10 µM. Interestingly, the dichlorinated 3,4-dihydroflavonoid 25 showed
specific anti-Tat activity, whereas all other 3,4-dihydroanalogs resulted inactive in this assay. It must
be noted that simple structural differences within this series of 4-phenylchromen-2-ones and acyl
4-phenylchromen-2-ones, determine substantial changes in activity and selectivity. As an example, we
could compare the specific NF-κB inhibitor 8-isovaleroyl-4-phenylchromen-2-one 14 and the specific
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Tat inhibitor 3,4-dihydro-5,7-dichloro-4-phenyl-chroman-2-one 25, also a 4-phenylchromen related.
The drastic difference in bioactivity for these compounds should be due either to the presence of an
isovaleroyl or heptanoyl group in C-6 or C-8, which potentiates the activity in both targets. However,
regarding the comparison of compounds 7 and 14, it is worth noting that the presence of a benzene
ring fused to the chromenone moiety, increases the anti-Tat activity, but the introduction 8-isovaleroyl
or 6,8-diacetyl groups enhances the NF-κB inhibitory activity. Compound 10, when compared to
Disparinol A, showed higher anti-HIV potency than this natural neoflavonoid. The acyl derivatives of
4-phenylchromen-2-ones are the most potent dual-target inhibitors.

The assays of these 4-phenyl-chromen-2-one derivatives may aid in the investigation of some
aspects of the anti-HIV activity of this kind of compound that inhibited the transcription and could
serve as a scaffold for designing better anti-HIV compounds, which may lead to a potential HIV
therapeutic drug.

Table 1. Anti-HIV Activity of neoflavonoids.

Compound NF-κB (5.1 LTR) Hela-Tat-luc Specificity
(HeLa-Tet-On-Luc)

Toxicity
MT2 (%)

25 µM 50 µM 25 µM 50 µM 50 µM 50 µM
1 NT −11.28 NT 27.88 NT 18.40
2 NT −4.10 NT −7.43 NT 8.78
3 NT 34.27 NT 6.59 NT 2.22
4 7.30 21.66 5.58 34.64 S 3.55
5 22.98 23.83 −2.63 44.60 S 11.30
6 NT 19.12 NT 16.25 NT 2.88
7 NT 51.71 NT 94.69 U 4.00
8 NT 9.25 NT 21.74 NT 8.33
9 NT 68.74 NT 80.84 U NT
10 70.53 68.19 NT 83.32 S <10
11 NT 37.81 NT 26.63 S NT
12 NT 20.40 NT 5.81 S NT
13 NT 67.29 NT 66.72 U NT
14 83.06 86.60 41.87 69.32 S 17.02
15 NT 79.41 NT 80.37 U NT
16 NT −17.05 NT 20.87 S NT
17 NT 83.70 NT 44.93 U NT
18 NT 35.05 NT 30.20 S NT
19 59.86 66.04 NT 12.99 S NT
20 NT 10.70 NT 22.30 S NT
22 NT 15.20 NT 6.06 NT 1.61
23 NT 11.94 NT −34.54 NT 2.55
24 36.95 43.21 NT −18.03 NT 2.00
25 35.20 53.99 57.46 72.27 S 3.50
26 NT 13.37 NT −28.08 NT 2.59
27 NT 20.48 NT 15.08 NT 4.73
28 NT 5.67 NT −65.28 NT 6.13

Mesuol 71.00 77.90 NT 71.30 S >4 µM

S = Specific activity; U = Unspecific mode of action; NT = Not tested.

3. Experimental Section

3.1. General Information

All of the reagents for synthesis were commercially available and either used without further
purification or purified by standard methods prior to use. Melting points were determined on a Büchi
510-K melting point apparatus (Büchi Labortechnik AG, Flawil, Switzerland) and are uncorrected. IR
spectra were recorded (KBr 1%) in a Nicolet Impact 410 spectrophotometer. 1H-, 13C-NMR, COSY,
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HMQC, and HMBC were recorded on Brüker AC 200 (200 MHz) and Brüker DRX 400 (400 MHz)
instruments. Chemical shifts (δ) are expressed in parts per million (ppm) relative to the residual solvent
peak, and coupling constants are reported in Hertz (Hz). All signals assigned to hydroxyl groups were
exchangeable with D2O. Reaction progress was monitored using analytical thin-layer chromatography
(TLC) on precoated Merck silica gel Kiesegel 60 F254 plates, and the spots were detected under UV
light (254 nm). The flash chromatography was conducted using silica gel 230–400 mesh. For EIMS
and HRFABMS analysis, a VG-TS250 mass spectrometer (70 eV) was used. Elementary analyses were
obtained with a LECO CHNS-932 and were within ±0.4% of the theoretical values.

3.2. General Procedures I for the Synthesis of Compounds 1–7

To a mixture of appropriate phenol (2 mmol) and ethyl benzoyl acetate (2 mmol), concentrated
H2SO4, (1 mL) was added and stirred at room temperature for four days; after which the mixture
was poured over crushed ice and extracted with AcOEt, (50 mL × 5). Evaporation gave a brown
solid which, after chromatography (silica gel, hexane/AcOEt 10:1→1:1), afforded the corresponding
4-phenylcoumarin (1–7) as a white solid (yield, 25%–30%).

7-Hydroxy-4-phenyl-2H-chromen-2-one (1). Yield 85%; A white solid; m.p. 232–234 ◦C (MeOH).
The spectral data (1H-NMR) were quite comparable with the data reported in [54].

5,7-Dihydroxy-4-phenyl-2H-chromen-2-one (2). Yield 70%; A white solid; m.p. 227–229 ◦C (MeOH).
The spectral data (1H-NMR) were quite comparable with the data reported in [52].

6,7-Dihydroxy-4-phenyl-2H-chromen-2-one (3). Yield 68%; A white solid; m.p. 230–232 ◦C (CHCl3/MeOH);
IR (KBr): ν = 3437, 3414, 1686, 1617, 1562 cm−1; 1H-NMR (MeOD) δ 7.52 (m, 2H), 7.52 (m, 3H), 6.86 (s,
1H), 6.83 (s, 1H), 6.13 (s, 1H); 13C-NMR (MeOD) δ 104.0, 111.3, 111.9, 112.3, 129.4, 129.4, 129.9, 129.9,
130.6, 137.2, 144.4, 150.5, 152.0, 158.4, 164.1. MS (EI) m/z: 254 (M+ C15H10O4, 8), 252 (52), 224 (100),
152 (80), 139 (13).

8-Phenyl-6H-[1,3]dioxolo[4,5-g]chromen-6-one (4). Prepared from benzo[d][1,3]dioxol-5-ol (2 mol) as
described in the general procedure I. Yield 65%; A white solid; m.p. 190–192 ◦C (CDCl3/MeOH). IR
(KBr): ν = 1712, 1627, 1563, 1503 cm−1; 1H-NMR (CDCl3) δ 7.50 (m, 3H), 7.41 (m, 2H), 6.86 (s, 1H), 6.82
(s, 1H), 6.22 (s, 1H), 6.04 (s, 2H); 13C-NMR (CDCl3) δ 98.5, 102.3, 104.3, 112.1, 112.8, 128.2, 128.2, 128.8,
128.8, 129.6, 135.6, 144.8, 151.1, 151.2, 155.8, 161.1. MS (EI) m/z: 266 (M+ C16H10O4, 66), 265 (88), 238
(100), 152 (22).

8-Hydroxy-7-methoxy-4-phenyl-2H-chromen-2-one (5). Prepared as described in general procedure I from
3-methoxybenzene-1,2-diol (2 mmol), yield 65%; A white solid; m.p. 220–222 ◦C (CDCl3/MeOH);
IR (KBr): ν = 3342, 2937, 2838, 1697, 1562 cm–1; 1H-NMR (MeOD) δ 7.47 (m, 2H), 7.47 (m, 3H), 6.95
(d, J = 9.1 Hz, 1H), 6.87 (d, J = 9.1 Hz, 1H), 6.15 (s, 1H), 3.94 (s, 3H); 13C-NMR (MeOD) δ 56.7, 108.7,
112.1, 114.3, 118.4, 129.2, 129.2, 129.5, 129.5, 130.4, 136.5, 143.8, 151.7, 158.2, 162.7. MS (EI) m/z: 268
(M+ C16H12O4, 60), 265 (88), 225 (100), 152 (19), 141 (65).

7,8-Dimethoxy-4-phenyl-2H-chromen-2-one (6). This was prepared from 2,3-dimethoxyphenol (2 mol)
as described in the general procedure I, yield 70%; A white solid; m.p. 175–177 ◦C (CDCl3); IR (KBr):
ν = 2968, 2933, 2844, 1718, 1602, 1557 cm−1; 1H-NMR (CDCl3) δ 7.51 (m, 3H), 7.43 (m, 2H), 7.18 (d,
J = 9.2 Hz, 1H), 6.83 (d, J = 9.2 Hz, 1H), 6.22 (s, 1H), 4.02 (s, 3H), 3.95 (s, 3H); 13C-NMR (CDCl3) δ 56.4,
61.5, 108.1, 112.3, 113.8, 122.2, 128.4, 128.4, 128.8, 128.8, 129.6, 135.6, 136.5, 148.4, 155.5, 155.9, 160.6. MS
(EI) m/z: 282 (M+ C17H14O4, 100), 267 (8), 254 (19), 239 (42), 152 (24), 139 (53).

4-Phenyl-2H-benzo[g]chromen-2-one (7). Prepared as described in general procedure II from naphthalen-2-ol
(2 mmol), yield 60%; A white solid; m.p. 211–213 (CDCl3); IR (KBr): ν = 3054, 1722, 1633, 1593,
1553 cm–1; 1H-NMR (CDCl3) δ 8.57 (m, 1H), 7.83 (m, 1H), 7.52–7,62 (m, 9H), 6.44 (s, 1H); 13C-NMR
(CDCl3) δ 114.1, 114.5, 122.3, 122.7, 123.3, 123.9, 127.1, 127.6, 128.5, 128.5, 128.9, 128.9, 128.9, 129.6, 134.8,
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135.6, 151.4, 156.5, 160.8. MS (EI) m/z: 272 (M+ C19H12O2, 52), 245 (18), 244 (100), 215 (64), 189 (10),
139 (7).

3.3. General Procedures II: Synthesis of Compounds 8–22

Anhydrous aluminum trichloride (0.4 mmol) was added to a stirred suspension of compound
2 (0.1 mmol) in carbon disulfide (6 mL). Nitrobenzene (2 mL) was then added over 40 min, forming
a homogeneous solution with evolution of HCl. The solution was heated under reflux for 30 min,
appropriate acyl chloride (0.1 mmol) in nitrobenzene (1 mL) was added over 40 min before allowing it
to cool with stirring. The mixture was poured onto ice/water and aqueous HCl and was extracted
with ethyl acetate (25 mL, twice). Workup of the crude product by chromatography on silica gel led to
the isolation of the different acyl derivatives products.

Following the general procedure II using allyl bromide and benzyl bromide the crude reaction
product was chromatographed and eluted with hexane/EtOAc, to yield 8 and 21.

6-Allyl-5,7-dihydroxy-4-phenyl-2H-chromen-2-one (8). Yield 41%; A white solid; m.p. 196–198 ◦C
(CHCl3/MeOH); IR (KBr): ν = 3217, 1686, 1626, 1591 cm–1; 1H-NMR (CDCl3) δ 7.24 (m, 2H), 7.22 (m,
3H), 6.55 (s, 1H), 6.36 (s, 1H), 5.70 (m, 1H), 4.82 (t, J = 1.8 Hz, 1H) 4.76 (dd, J = 1.2 Hz, 1H), 3.16 (d,
J = 6.2 Hz, 2H); 13C-NMR (CDCl3) δ 26.7, 95.8, 110.8, 110.9, 114.5, 114.6, 127.2, 128.9, 129.4, 135.9, 137.3,
154.3, 154.4, 155.3, 160.1, 161.8. (EI) m/z: 294 (M+ C18H14O4, 88), 281 (100), 268 (24), 253(46), 139 (15).

5,7-Dibenzyloxy-4-phenyl-2H-chromen-2-one (21). Yield 45%; A white solid; m.p. 175–177 ◦C (CH2Cl2).
IR (KBr): ν = 3089, 3059, 3031, 2927, 2865, 1720, 1611, 1597, 1432, 1337, 1159, 1111, 1064, 726 cm–1.
1H-NMR (CDCl3) δ 7.38 (m, 3H), 7.20 (m, 5H), 7.18 (m, 10 H), 5.99 (s, 1H), 6.61 (d, J = 2.4 Hz, 1H),
6.41 (d, J = 2.4 Hz, 1H), 5.10 (s, 1 H), 4.72 (s, 1H). 13C-NMR (CDCl3) δ 70.5, 70.8, 94.37, 94.87, 103.8,
113.10, 127.03, 127.11, 127.51, 127.62, 127.73, 127.99, 128.25, 128.40, 128.80, 135.08, 135.78, 139.71, 156.74,
157.21, 157.35, 160.74, 162.32. (EI) m/z: 434 (M+ C29H22O4, 17), 343 (12), 181 (14), 139 (6), 114 (6), 92 (52),
91 (100).

Following the general procedure II using acetyl chloride, the crude reaction product was
chromatographed and eluted with hexane/EtOAc, to yield 12 and 17.

8-Acetyl-5,7-dihydroxy-4-phenyl-2H-chromen-2-one (12). Yield 25%; A white solid; m.p. 206–208 ◦C
(Hex:AcOEt); IR (KBr): ν = 3224, 3083, 1689, 1627, 1592 cm–1; 1H-NMR (CDCl3) δ 14.01 (s, 1H), 7.57
(m, 3H), 7.42 (m, 2H), 6.25 (s, 1H), 6.02 (s, 1H), 5.85 (s, 1H), 2.93 (s, 3H); 13C-NMR (CDCl3) δ 32.9,
99.3, 101.8, 103.7, 110.9, 126.8, 127.2, 127.9, 139.0, 157.9, 158.0, 159.9, 162.0, 167.8, 202.7. (EI) m/z, 272
(M+ C19H12O2, 52), 245 (18), 244 (100), 215(64), 189 (10). (EI) m/z: 296 (M+ C17H12O5, 18), 295 (100),
277 (22), 221(16), 165 (20), 139 (43).

6,8-Diacetyl-5,7-dihydroxy-4-phenyl-2H-chromen-2-one or (1,1’-(5,7-dihydroxy-2-oxo-4-phenyl-2H-chromene-
6,8-diyl-diethanone) (17). Yield 52%; A white solid; m.p. 162–164 ◦C (Hex/AcOEt); IR (KBr): ν = 3467,
1733, 1717, 1593 cm–1; 1H-NMR (CDCl3) δ 16.53 (s, 1H), 15.92 (s, 1H), 7.40 (m, 3H), 7.28 (m, 2H), 6.04
(s, 1H), 2.95 (s, 3H), 2.75 (s, 3H); 13C-NMR (CDCl3) δ 33.4, 33.5, 102.8, 106.3, 112.4, 126.9, 127.8, 128.5,
138.9, 156.5, 158.0, 161.5, 170.2, 172.2, 203.9, 205.5. (EI) m/z: 338 (M+ C19H14O6, 100), 323 (94), 313 (48),
295(90), 277 (26), 139 (29).

Following the general procedure II using propionyl chloride, the crude reaction product was
chromatographed and eluted with hexane/EtOAc, to yield 13 and 18.

5,7-Dihydroxy-4-phenyl-8-propionyl-2H-chromen-2-one (13). Yield 28%; A white solid; m.p. 216–218 ◦C
(Hex:AcOEt); IR (KBr): ν = 3218, 3067, 1693, 1616, 1592 cm−1; 1H-NMR (MeOD) δ 7.37 (m, 2H), 7.37 (m,
3H), 6.18 (s, 1H), 5.99 (s, 1H), 3.36 (c, J = 7.3 Hz, 2H), 1.26 (t, J = 7.3 Hz, 3H); 13C-NMR (MeOD) δ 8.6,
38.5, 100.2, 111.5, 127.6, 127.9, 128.6, 140.1, 158.3, 160.9, 162.6, 168.7, 206.7. (EI) m/z: 310 (M+ C18H14O5,
36), 282 (18), 281 (100), 252 (8), 171 (7), 139 (8).
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5,7-Dihydroxy-4-phenyl-6,8-dipropionyl-2H-chromen-2-one (18). Yield 49%; A white solid; m.p. 152–154 ◦C
(Hex:AcOEt); IR (KBr): ν = 3468, 3437, 3067, 2978, 2937, 2876 cm–1; 1H-NMR (CDCl3) δ 16.64 (s, 1H),
15.97 (s, 1H), 7.40 (m, 3H), 7.28 (m, 2H), 6.03 (s, 1H), 3.41 (q, J = 7.3 Hz, 2H), 3.19 (q, J = 6.7 Hz, 2H),
1.28 (t, J = 7.3 Hz, 3H), 1.15 (t, J = 6.7 Hz, 3H); 13C-NMR (CDCl3) δ 8.2, 8.5, 38.2, 38.2, 101.4, 102.4, 106.1,
112.2, 126.9, 127.8, 128.5, 139.0, 156.7, 161.2, 169.9, 170.0, 172.0, 207.3, 208.7. (EI) m/z: 366 (M+ C21H18O6,
36), 338 (44), 337 (100), 319 (27), 308 (28), 281 (40), 178 (9), 138 (14).

Following the general procedure II using 3-methylbutanoyl chloride, the crude reaction product
was chromatographed and eluted with hexane/EtOAc, to yield 9, 14, and 19.

5,7-Dihydroxy-6-(3-methylbutanoyl)-4-phenyl-2H-chromen-2-one (9). Yield 12%; A white solid; m.p.
206–208 ◦C (Hex:AcOEt); IR (KBr): ν = 3139, 3111, 2956, 2928, 2870, 1689, 1617, 1580 cm–1; 1H-NMR
(CDCl3) δ 15.79 (s, 1H), 11.39 (s, 1H), 7.52 (m, 3H), 7.39 (m, 2H), 6.63 (s, 1H), 5.98 (s, 1H), 2.90 (d,
J = 6.3 Hz, 2H), 2.23 (m, 1H), 0.92 (d, J = 6.3 Hz, 3H), 0.92 (d, J = 6.3 Hz, 3H); 13C-NMR (CDCl3) δ 22.5,
22.5, 25.0, 53.0, 94.8, 101.4, 106.9, 111.3, 127.1, 127.4, 128.1, 139.0, 157.2, 159.6, 161.1, 163.7, 164.9, 207.3.
(EI) m/z: 338 (M+ C20H18O5, 10), 282 (18), 281(100), 253 (3), 225(1), 171 (6), 139 (4).

5,7-Dihydroxy-8-(3-methylbutanoyl)-4-phenyl-2H-chromen-2-one (14). Yield 13%; A white solid; m.p.
210–212 ◦C (Hex:AcOEt); IR (KBr): ν = 3293, 2959, 2934, 2874, 2454, 1745, 1685, 1620, 1592 cm–1;
1H-NMR (CDCl3) δ 14.14 (s, 1H), 7.55 (m, 3H), 7.43 (m, 2H), 6.25 (s, 1H), 6.01 (s, 1H), 6.00 (s, 1H), 3.17
(d, J = 6.3 Hz, 2H), 2.28 (m, 1H), 1.05 (d, J = 6.3 Hz, 3H), 1.05 (d, J = 6.3 Hz, 3H); 13C-NMR (CDCl3) δ
22.7, 22.7, 25.5, 53.6, 101.6, 101.8, 104.9, 112.0, 127.5, 129.6, 130.3, 136.5, 154.1, 155.7, 158.7, 159.7, 168.8,
205.9. (EI) m/z: 338 (M+ C20H18O5, 20), 323 (12), 281 (100), 254 (9), 171(6), 141 (6).

5,7-Dihydroxy-6,8-bis(3-methylbutanoyl)-4-phenyl-2H-chromen-2-one or 1,1′-(5,7-dihydroxy-2-oxo-4-phenyl-
2H-chromene-6,8-diyl)bis(3-methylbutan-1-one) (19). Yield 50%; A white solid; m.p. 148–150 ◦C (Hex:AcOEt);
IR (KBr): ν = 3469, 3435, 2959, 2931, 2871, 1756, 1618, 1597 cm–1; 1H-NMR (CDCl3) δ 16.77 (s, 1H), 16.09
(s, 1H), 7.40 (m, 3H), 7.28 (m, 2H), 6.02 (s, 1H), 3.18 (d, J = 6.7 Hz, 2H), 3.02 (d, J = 6.6 Hz, 2H), 2.27
(m, 1H), 2.27 (m, 1H), 1.06 (d, J = 6.7 Hz, 3H), 1.06 (d, J = 6.7 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.95 (d,
J = 6.6 Hz, 3H); 13C-NMR (CDCl3) δ 22.7, 22.7, 22.7, 22.7, 24.9, 25.8, 53.3, 53.3, 101.5, 102.6, 106.4, 112.2,
126.9, 127.8, 128.4, 139.1, 156.6, 158.0, 161.8, 170.3, 172.4, 206.6, 207.9. (EI) m/z: 422 (M+ C25H26O6, 34),
418 (25), 394 (36), 381 (43), 365 (100), 347 (36), 337(32), 281 (49), 171 (25), 139 (36).

Following the general procedure II using heptanoyl chloride, the crude reaction product was
chromatographed and eluted with hexane/EtOAc, to yield 10, 15, and 20.

6-Heptanoyl-5,7-dihydroxy-4-phenyl-2H-chromen-2-one (10). Yield 12%; A white solid; m.p. 210–212 ◦C
(Hex:AcOEt); IR (KBr): ν = 3596, 3254, 3058, 2954, 2928, 2856, 1774, 1688, 1717, 1593 cm–1; 1H-NMR
(CDCl3) δ 14.03 (s, 1H), 10.11 (s, 1H), 7.44 (m, 3H), 7.35 (m, 2H), 6.99 (s, 1H), 5.99 (s, 1H), 3.10 (t,
J = 6.7 Hz, 2H), 1.64 (m, 4H), 1.24 (m, 4H), 0.87 (t, J = 6.7 Hz, 3H); 13C-NMR (CDCl3) δ 14.1, 22.6, 24.4,
29.0, 31.7, 44.7, 95.9, 101.9, 107.1, 111.6, 127.4, 128.4, 128.9, 138.3, 157.7, 159.3, 161.8, 164.0, 164.8, 207.8.
(EI) m/z: 366 (M+ C22H22O5, 32), 351 (14), 310 (30), (309 (100), 281 (82), 253(11), 171 (18), 139 (20).

8-Heptanoyl-5,7-dihydroxy-4-phenyl-2H-chromen-2-one (15). Yield 27%; A white solid; m.p. 212–214 ◦C
(Hex:AcOEt); IR (KBr): ν = 3246, 2951, 2928, 2868, 2844 cm−1, 1685, 1637, 1591; 1H-NMR (CDCl3)
δ 14.11 (s, 1H), 7.54 (m, 3H), 7.43 (m, 2H), 6.25 (s, 1H), 6.11 (s, 1H), 6.00 (s, 1H), 3.30 (t, J = 6.7 Hz,
2H), 1.73 (m, 4H), 1.33 (m, 4H), 0.89 (t, J = 6.7 Hz, 3H); 13C-NMR (CDCl3) δ 14.1, 22.6, 24.6, 29.0, 31.8,
44.9, 101.5, 105.0, 111.9, 127.5, 129.7, 130.2, 136.4, 154.0, 158.3, 158.6, 159.6, 168.7, 206.2. (EI) m/z: 366
(M+ C22H22O5, 44), 351 (31), 309 (91), 281 (100), 267 (3), 253 (18), 171 (23), 139 (39).

6,8-Diheptanoyl-5,7-dihydroxy-4-phenyl-2H-chromen-2-one or 1,1’-(5,7-dihydroxy-2-oxo-4-phenyl-2H-chromene-
6,8-diyl)diheptan-1-one (20). Yield 50%; A white solid; m.p. 164–166 ◦C (Hex:AcOEt); IR (KBr): ν = 3458,
34240, 2958, 2930, 2855, 1744, 1620, 1582 cm–1; 1H-NMR (CDCl3) δ 16.69 (s, 1H), 16.02 (s, 1H), 7.40 (m,
3H), 7.28 (m, 2H), 6.02 (s, 1H), 3.33 (t, J = 7.3 Hz, 2H), 3.14 (t, J = 7.3 Hz, 2H), 1.76 (m, 4H), 1.64 (m, 4H),
1.32 (m, 4H), 1.32 (m, 4H), 0.90 (m, 3H), 0.90 (m, 3H); 13C-NMR (CDCl3) δ 14.0, 14.0, 22.6, 22.6, 24.3,
24.8, 29.0, 29.0, 31.6, 31.8, 44.8, 44.8, 101.4, 102.5, 106.2, 112.3, 127.0, 127.8, 128.5, 139.1, 156.6, 158.0,
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161.2, 170.1, 172.2, 207.0, 208.4. (EI) m/z: 478 (M+ C29H34O6, 24), 421 (34), 393 (100), 323 (38), 293(52),
171 (20), 139 (14).

Following the general procedure II using benzoyl chloride, the crude reaction product was
chromatographed and eluted with hexane/EtOAc, to 11 and 16.

6-Benzoyl-5,7-dihydroxy-4-phenyl-2H-chromen-2-one (11). Yield 18%; A white solid; m.p. 245–247 ◦C
(AcOEt). The spectral data (IR, 1H-NMR and 13C-NMR) were quite comparable with the data reported
in [46,48].

8-Benzoyl-5,7-dihydroxy-4-phenyl-2H-chromen-2-one (16). Yield 34%; A white solid; m.p. 253–256 ◦C
(AcOEt). The spectral data (IR, 1H-NMR and 13C-NMR) were quite comparable with the data reported
in [50,51].

3.4. General Procedures III: Synthesis of Compounds 22–28

To a mixture of POCl3 (10 mmol) and BF3–Et2O (20 mmol) at 0 ◦C, appropriated cinnamic acid
(5 mmol) was added and the reaction mixture stirred for 15 min at 0 ◦C. Phenol (5 mmol) was added to
the above reaction mixture in small portions and stirring continued at 25–28 ◦C for 4–12 h. The reaction
mixture was poured on to ice-water; sodium acetate (1 g) was added and the mixture was warmed
on a water bath for 2 min. It was cooled, extracted with ethyl acetate (2 × 150 mL), washed with
water (150 mL), dried, and the solvent removed under reduced pressure to obtain the crude product,
which was purified by column chromatography using acetone–chloroform as eluent to afford pure
4-phenyldihydro-coumarins 22–28 in 60%–75% yields.

4-(4-Methoxyphenyl)chroman-2-one (22). This was prepared from p-methoxycinnamic acid and phenol
using the general procedure III. Yield 62%; A white solid; m.p. 160–162 ◦C (CH2Cl2/MeOH); IR (KBr):
ν = 2943, 2927, 2907, 2833, 1832, 1717, 1701, 1608 cm–1; 1H-NMR (CDCl3) δ 7.31 (br d, J = 8.1 Hz,
1H), 7.12 (d, J = 8.2 Hz, 2H), 7.07 (br d, J = 8.2 Hz, 1H), 6.97 (m, 2H), 6.87 (d, J = 8.2 Hz, 3H), 4.30 (t,
J = 7.3 Hz, 1H), 3.79 (s, 3H), 3.08 (dd, J = 7.3 Hz, 15.7 Hz, 1H), 2.96 (dd, J = 7.3, 15.7 Hz, 2H); 13C-NMR
(CDCl3) δ 37.2, 40.0, 55.3, 114.5 (2C), 117.1, 124.7, 126.3, 128.3, 128.6 (3C), 132.2, 151.7, 159.0, 167.8. (EI)
m/z: 254 (M+ C16H14O3, 65), 226 (14), 212 (15), 211 (72), 197 (22), 182 (15), 181 (100), 168 (13), 139 (12).

4-(3,4-Dimethoxyphenyl)-7-hydroxychroman-2-one (23). This was prepared from 3,4-dimethoxycinnamic
acid and resorcinol as described in the general procedure III. Yield 67%; A white solid; m.p. 167–169 ◦C
(CHCl3/MeOH); IR (KBr): ν = 3434, 2960, 2936, 1762, 1624, 1595 cm–1; 1H-NMR (CDCl3) δ 6.83 (d,
J = 7.7 Hz, 1H), 6.68 (dd, J = 7.7, 2.4 Hz, 1H), 6.68 (d, J = 2.4 Hz, 1H), 6.67 (d, J = 7.7 Hz, 1H), 6.66
(s, 1H), 6.59 (dd, J = 8.2, 2.4 Hz, 1H), 6.46 (br s, 1H), 4.21 (t, J =7.3 Hz, 1H), 3.85 (s, 3H), 3.81 (s, 3H),
3.06 (dd, J = 7.3 Hz, 14.9 Hz, 1H), 2.95 (dd, J = 7.3, 14.9 Hz, 1H); 13C-NMR (CDCl3) δ 37.5, 39.6, 55.9,
55.9, 104.2, 110.6, 111.6, 112.1, 117.5, 119.8, 129.1, 133.2, 148.3, 149.3, 152.1, 156.5, 168.7. (EI) m/z: 300
(M+ C17H16O5, 100), 269 (14), 257 (36), 243 (26), 227 (81), 190 (14), 139 (8).

4-(4-Hydroxyphenyl)-7-methoxychroman-2-one (24). This was prepared from p-coumaric acid and resorcinol
as described in the general procedure III. Yield 68%; A white solid; m.p. 169–171 ◦C (CHCl3/MeOH);
IR (KBr): ν = 3436, 2938, 2904, 2840, 1762, 1615 cm–1; 1H-NMR (CDCl3) δ 6.98 (d, J = 8.3 Hz, 2H), 6.89
(d, J = 8.3 Hz, 1H), 6.77 (d, J = 8.3 Hz, 2H), 6.66 (d, J = 2.4 Hz, 1H), 6.64 (dd, J = 8.3, 2.4 Hz, 1H), 5.54 (br
s, 1H), 4.22 (t, J = 6.8 Hz, 1H), 3.80 (s, 3H), 3.05 (dd, J = 6.8, 15.1Hz, 1H), 2.93 (dd, J = 6.8, 15.1 Hz, 1H);
13C-NMR (CDCl3) δ 37.4, 39.3, 55.6, 102.4, 110.7, 115.6, 115.6, 118.0, 128.7, 128.7, 128.8, 132.6, 152.3,
155.0, 159.9, 168.1. (EI) m/z: 270 (M+ C16H14O4, 38), 242 (17), 228 (10), 227 (100), 211 (40), 184 (15),
128 (18).

5,7-Dichloro-4-phenylchroman-2-one (25). This was prepared from cinnamic acid and 3,5-dichorophenol
as described in the general procedure III. Yield 70%; A white solid; m.p. 230–232 ◦C (CHCl3); IR
(KBr): ν = 3077, 1713, 1599, 1567 cm–1; 1H-NMR (CDCl3) δ 7.27 (m, 3H), 7.22 (d, J = 1.9 Hz, 1H), 7.11
(d, J = 1.9 Hz, 1H), 7.06 (m, 2H), 4.64 (dd, J = 5.4, 3.4 Hz, 1H), 3.10 (dd, J = 3.4, 12.2 Hz, 1H), 3.04 (dd,
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J = 5.4, 12.2 Hz, 1H); 13C-NMR (CDCl3) δ 36.7, 38.5, 116.5, 122.2, 125.6, 126.7, 126.7, 127.9, 129.2, 129.2,
134.5, 138.9, 152.9, 165.7. (EI) m/z: 293 (M+ C15H10O2Cl2, 36), 291 (59), 276 (23), 274 (36), 256 (13), 251
(64), 249 (100), 215 (19), 152 (33).

8-(4-Hydroxy-3,5-dimethoxyphenyl)-7,8-dihydro-[1,3]dioxolo[4,5-g]chromen-6-one (26). This was prepared
from 4-hydroxy-3,5-dimethoxycinnamic acid and sesamol as described in the general procedure III.
Yield 69%; A white solid; m.p. 162–164 ◦C (eter); IR (KBr): ν = 3458, 3023, 3007, 2956, 2930, 2913, 2836,
1742, 1627, 1609 cm–1; 1H-NMR (CDCl3) δ 6.65 (s, 1H), 6.41 (s, 1H), 6.36 (s, 2H), 5.96 (s, 2H), 5.52 (br s,
1H), 4.13 (t, J =7.3 Hz, 1H), 3.84 (s, 3H), 3.84 (s, 3H), 3.09 (dd, J = 7.3, 15.8 Hz, 1H), 2.92 (dd, J = 7.3,
15.8 Hz, 1H); 13C-NMR (CDCl3) δ 37.2, 40.8, 56.4, 56.4, 99.1, 101.7, 104.2, 104.2, 107.2, 118.2, 131.5, 134.2,
144.5, 146.1, 147.5, 147.5, 147.5, 167.8. (EI) m/z: 344 (M+ C18H16O7, 100), 326 (13), 295 (14), 271 (82), 256
(21), 167 (37), 133 (12).

8-(3,4,5-Trimethoxyphenyl)-7,8-dihydro-[1,3]dioxolo[4,5-g]chromen-6-one (27). This was prepared from
3,4,5-trimethoxycinnamic acid and sesamol as described in the general procedure III. Yield 61%; A
white solid; m.p. 162–164 ◦C (diethyl ether); IR (KBr): ν = 3023, 3007, 2956, 2930, 2913, 2836, 1742,
1627, 1609, 1584 cm–1; 1H-NMR (CDCl3) δ 6.66 (s, 1H), 6.43 (s, 1H), 6.35 (s, 2H), 5.96 (s, 2H), 4.15 (t,
J = 6.8 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 6H), 3.05 (dd, J = 6.8, 16.1 Hz, 1H), 2.92 (dd, J = 6.8, 16.1 Hz, 1H);
13C-NMR (CDCl3) δ 37.1, 41.0, 56.1, 56.1, 60.8, 99.2, 101.8, 104.4, 104.5, 107.2, 117.8, 136.1, 136.1, 137.5,
144.5, 146.1, 147.6, 153.7, 167.6. (EI) m/z: 358 (M+ C19H18O7, 100), 325 (29), 315 (21), 285 (83), 241 (27),
215 (35), 181 (81), 133 (38).

8-Hydroxy-7-methoxy-4-(3,4,5-trimethoxyphenyl)chroman-2-one (28). This was prepared from
3,4,5-trimethoxycinnamic acid and 3-methoxybenzene-1,2-diol as described in the general procedure
III. Yield 60%; A white solid; m.p. 164–166 ◦C (CHCl3/MeOH); IR (KBr): ν = 3309, 3001, 2951, 2841,
1759, 1629, 1588 cm–1; 1H-NMR (CDCl3) δ 6.64 (d, J = 8.5 Hz, 1H), 6.48 (d, J = 8.5 Hz, 1H), 6.37 (s, 2H),
5.73 (s, 1H), 4.24 (t, J = 7.3 Hz, 1H), 3.90 (s, 3H), 3.83 (s, 3H), 3.80 (s, 6H), 3.09 (dd, J = 7.3, 14.1 Hz, 1H),
2.97 (dd, J = 7.3, 14.1 Hz, 1H); 13C-NMR (CDCl3) δ 37.2, 40.8, 56.4, 56.4, 56.4, 60.8, 104.6, 104.6, 107.0,
117.9, 119.2, 133.8, 136.2, 137.4, 139.4, 147.2, 153.6, 153.6, 166.8. (EI) m/z: 360 (M+ C19H20O7, 100), 345
(22), 327 (35), 317 (19), 287 (99), 272 (24), 217 (17), 181 (31), 173 (22).

3.5. Antiviral Activity Assays

The anti-HIV activity of these neoflavonoids on Tat and NF-κB functions has been evaluated.
To this aim, we have used two stably transfected cell lines. The previously described 5.1 cell line [55]
is a Jurkat-derived clone stably transfected with a plasmid containing the luciferase gene under the
control of HIV-LTR. In this cell clone, activation with TNFα induces NF-κB activation and subsequent
HIV-1 expression. We have also analysed the anti-HIV activity in HeLa-Tat-Luc cells, in which the
HIV-1 LTR is directly activated by the HIV-1 Tat protein. A compound was considered active in
one assay if it inhibited the target function by more than 50% (NF-κB) or 30% (Tat) at either 25
or 50 µM concentration. The active compounds were submitted for further evaluation through a
HeLa-Tet-ON assay, as previously described [56]. In the Hela-Tet-ON cells the luciferase expression is
under control of an artificial promoter that can be activated by tetracycline. Therefore, compounds
that inhibit tetracycline-induced luciferase activity were considered non-specific for luciferase-based
anti-HIV assays.

Cell viability was evaluated in non-infected treated cultures following the same protocol as in the
recombinant virus assay and measuring cell toxicity with a classical MTT assay. IC50 were calculated
using GraphPad Prism software (non-linear regression, log (inhibitor) vs. response).

4. Conclusions

A series of twenty-eight neoflavonoids have been synthesized and evaluated against HIV-1
in vitro. Ten 4-phenylchromen-2-one derivatives displayed HIV specific transcriptional inhibition and
five displayed nonspecific mechanisms of action. The heptanoylchromen-one 10 was the more potent
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Tat antagonist, while compound 14 showed high inhibition of the NF-κB pathway. A preliminary SAR
analysis established that the presence of the acyl group is essential for the anti HIV in both targets.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/22/2/321/s1,
Figure S1: Spectroscopic data of neoflavonoid derivatives 3–10, 12–15, 17–28.

Acknowledgments: This research is part of the following projects funded by the Spanish Ministry of Economy
and Competitiveness and Instituto de Salud Carlos III (PI16/CIII/034); the Spanish AIDS Research Network
(RD16CIII/0002/0001) that is included in the Spanish I+D+I Plan and is co-financed by ISCIII-Subdirección
General de Evaluacion and European Funding for Regional Development (FEDER), Acknowledgements are
also due to the University of Panama, and to the National Secretariat of Science, Technology and Innovation
(SENACYT) of Panama for SNI distinguished scientist stimulus award to MPG.

Author Contributions: The authors of these research have participated as follows: “José Luis López-Pérez,
Esther Del Olmo and Arturo San Feliciano” conceived and designed structures and synthesis project;
“Dionisio A. Olmedo” performed all the synthetic experiments; “José Luis López-Pérez and Dionisio A. Olmedo”
interpreted the results, discussed the experimental data and prepared the manuscript; “Rocío Sancho,
Eduardo Muñoz, Luis M. Bedoya and José Alcamí” conducted the biological assay and provided the experimental
procedure and results; “Dionisio A. Olmedo, José Luis López-Pérez, Arturo San Feliciano, Luis M. Bedoya and
Mahabir P. Gupta contributed in overall redaction and revision of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. UNAIDS. The Joint United Nations Programme on HIV/AIDS. Report on the World Statistic the People
Living with HIV. 2015. Available online: http://aidsinfo.unaids.org/ (accessed on 21 August 2016).

2. Piot, P.; Bartos, M.; Ghys, P.D.; Walker, N.; Schwartlander, B. The global impact of HIV/AIDS. Nature 2001,
410, 968–973. [CrossRef]

3. McNicholl, I.R.; McNicholl, J.J. On the horizon: Promising investigational antiretroviral agents. Curr. Pharm.
Des. 2006, 12, 1091–1103. [CrossRef] [PubMed]

4. Wainberg, M.A.; Jeang, K.T. 25 years of HIV-1 research—Progress and perspectives. BMC Med. 2008, 6.
[CrossRef] [PubMed]

5. Barouch, D.H. Challenges in the development of an HIV-1 vaccine. Nature 2008, 455, 613–619. [CrossRef]
[PubMed]

6. Adamson, C.S.; Freed, E.O. Recent progress in antiretrovirals—Lessons from resistance. Drug Discov. Today
2008, 13, 424–432. [CrossRef] [PubMed]

7. Rabson, A.B.; Lin, H.C. NF-κB and HIV: Linking viral and immune activation. Adv. Pharmacol. 2000, 48,
161–207. [PubMed]

8. Gatignol, A.; Duarte, M.; Daviet, L.; Chang, Y.N.; Jeang, K.T. Sequential steps in Tat trans-activation of HIV-1
mediated through cellular DNA, RNA, and protein binding factors. Gene Expr. 1996, 5, 217–228. [PubMed]

9. Chen, B.K.; Feinberg, M.B.; Baltimore, D. The κB sites in the human immunodeficiency virus type 1 long
terminal repeat enhance virus replication yet are not absolutely required for viral growth. J. Virol. 1997, 71,
5495–5504.

10. Greene, W.C. The molecular biology of human immunodeficiency virus type 1 infection. N. Engl. J. Med.
1991, 324, 308–317. [PubMed]

11. Alcamí, J.; Lain de Lera, T.; Folgueira, L.; Pedraza, M.A.; Jacque, J.M.; Bachelerie, F.; Noriega, A.R.;
Hay, R.T.; Harrich, D.; Gaynor, R.B. Absolute dependence on kappa B responsive elements for initiation and
Tat-mediated amplification of HIV transcription in blood CD4 T lymphocytes. EMBO J. 1995, 14, 1552–1560.
[PubMed]

12. Stevenson, M. Tat’s seductive side. Nat. Med. 2003, 9, 163–164. [CrossRef] [PubMed]
13. Yeni, P.G.; Hammer, S.M.; Carpenter, C.C.; Cooper, D.A.; Fischl, M.A.; Gatell, J.M.; Gazzard, B.G.; Hirsch, M.S.;

Jacobsen, D.M.; Katzenstein, D.A.; et al. Antiretroviral treatment for adult HIV infection in 2002: Updated
recommendations of the International AIDS Society-USA Panel. JAMA 2002, 288, 222–235. [CrossRef] [PubMed]

14. Karin, M.; Yamamoto, Y.; Wang, Q.M. The IKK NF-κB system: A treasure trove for drug development.
Nat. Rev. Drug Discov. 2004, 3, 17–26. [CrossRef] [PubMed]

15. Ferchichi, L.; Derbre, S.; Mahmood, K.; Toure, K.; Guilet, D.; Litaudon, M.; Awang, K.; Hadi, A.H.A.;
Le Ray, A.M.; Richomme, P. Bioguided fractionation and isolation of natural inhibitors of advanced glycation
end-products (AGEs) from Calophyllum flavoramulum. Phytochemistry 2012, 78, 98–106. [CrossRef] [PubMed]

http://www.mdpi.com/1420-3049/22/2/321/s1
http://aidsinfo.unaids.org/
http://dx.doi.org/10.1038/35073639
http://dx.doi.org/10.2174/138161206776055804
http://www.ncbi.nlm.nih.gov/pubmed/16515488
http://dx.doi.org/10.1186/1741-7015-6-31
http://www.ncbi.nlm.nih.gov/pubmed/18976462
http://dx.doi.org/10.1038/nature07352
http://www.ncbi.nlm.nih.gov/pubmed/18833271
http://dx.doi.org/10.1016/j.drudis.2008.02.003
http://www.ncbi.nlm.nih.gov/pubmed/18468560
http://www.ncbi.nlm.nih.gov/pubmed/10987091
http://www.ncbi.nlm.nih.gov/pubmed/8723388
http://www.ncbi.nlm.nih.gov/pubmed/1986289
http://www.ncbi.nlm.nih.gov/pubmed/7729429
http://dx.doi.org/10.1038/nm0203-163
http://www.ncbi.nlm.nih.gov/pubmed/12563332
http://dx.doi.org/10.1001/jama.288.2.222
http://www.ncbi.nlm.nih.gov/pubmed/12095387
http://dx.doi.org/10.1038/nrd1279
http://www.ncbi.nlm.nih.gov/pubmed/14708018
http://dx.doi.org/10.1016/j.phytochem.2012.02.006
http://www.ncbi.nlm.nih.gov/pubmed/22445651


Molecules 2017, 22, 321 12 of 13

16. Brenzan, M.A.; Nakamura, C.V.; Dias Filho, B.P.; Ueda-Nakamura, T.; Young, M.C.M.; García Cortez, D.A.
Antileishmanial activity of crude extract and coumarin from Calophyllum brasiliense leaves against
Leishmania amazonensis. Parasitol. Res. 2007, 101, 715–722. [CrossRef] [PubMed]

17. Guilet, D.; Helesbeux, J.-J.; Seraphin, D.; Sevenet, T.; Richomme, P.; Bruneton, J. Novel cytotoxic
4-phenylfuranocoumarins from Calophyllum dispar. J. Nat. Prod. 2001, 64, 563–568. [CrossRef] [PubMed]

18. Guilet, D.; Seraphin, D.; Rondeau, D.; Richomme, P.; Bruneton, J. Cytotoxic coumarins from Calophyllum dispar.
Phytochemistry 2001, 58, 571–575. [CrossRef]

19. Kashman, Y.; Gustafson, K.R.; Fuller, R.W.; Cardellina, J.H.; McMahon, J.B.; Currens, M.J.; Buckheit, R.W.;
Hughes, S.H.; Cragg, G.M.; Boyd, M.R. HIV inhibitory natural products. Part 7. The calanolides, a
novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum.
J. Med. Chem. 1992, 35, 2735–2743. [CrossRef] [PubMed]

20. Patil, A.D.; Freyer, A.J.; Eggleston, D.S.; Haltiwanger, R.C.; Bean, M.F.; Taylor, P.B.; Caranfa, M.J.; Breen, A.L.;
Bartus, H.R. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian
tree, Calophyllum inophyllum Linn. J. Med. Chem. 1993, 36, 4131–4138. [CrossRef] [PubMed]

21. Games, D.E. Identification of 4-phenyl and 4-alkylcoumarins in Mammea americana L., Mammea africana G.
Don and Calophyllum inophyllum by gas chromatography. Mass Spectrometry. Tetrahedron Lett. 1972, 13,
3187–3190. [CrossRef]

22. Reutrakul, V.; Leewanich, P.; Tuchinda, P.; Pohmakotr, M.; Jaipetch, T.; Sophasan, S.; Santisuk, T. Cytotoxic
coumarins from Mammea harmandii. Planta Med. 2003, 69, 1048–1051. [PubMed]

23. Prachyawarakorn, V.; Mahidol, C.; Ruchirawat, S. NMR study of seven coumarins from Mammea siamensis.
Pharm. Biol. 2000, 38, 58–62. [CrossRef] [PubMed]

24. Crombie, L.; Jones, R.C.F.; Palmer, C.J. Synthesis of the mammea coumarins. Part 1. The coumarins of the
mammea A, B, and C series. J. Chem. Soc. Perkin Trans. 1 1987, 317–331. [CrossRef]

25. Carpenter, I.; McGarry, E.J.; Scheinmann, F. Extractives from Guttiferae. Part XXI: The isolation and structure
of nine coumarins from the bark of Mammea africana G. Don. J. Chem. Soc. C. 1971, 3783–3790. [CrossRef]

26. Crombie, L.; Games, D.E.; McCormick, A. Extractives of Mammea americana L. Part II. The 4-phenylcoumarins
isolation and structure of Mammea A/AA, A/A cyclo D, A/BA, A/AB, and A/BB. J. Chem. Soc. C. 1967,
2255–2260. [CrossRef]

27. Rouger, C.; Derbré, S.; Charreau, B.; Pabois, A.; Cauchy, T.; Litaudon, M.; Awang, K.; Richomme, P. Lepidotol
A from Mesua lepidota Inhibits Inflammatory and Immune Mediators in Human Endothelial Cells. J. Nat. Prod.
2015, 78, 2187–2197. [CrossRef] [PubMed]

28. Cheng Lian, G.; Sin The, S.; Hui Mah, S.; Rahmani, M.; Taufiq-Yap, Y.H.; Awang, K. A Novel Cyclodione
Coumarin from the Stem Bark of Mesua beccariana. Molecules 2011, 16, 7249–7255.

29. Awang, K.; Chan, G.; Litaudon, M.; Ismail, N.H.; Martin, M.-T.; Gueritte, F.O. 4-Phenylcoumarins from
Mesua elegans with acetylcholinesterase inhibitory activity. Bioorg. Med. Chem. 2010, 18, 7873–7877. [CrossRef]
[PubMed]

30. Verotta, L.; Lovaglio, E.; Vidari, G.; Finzi, P.V.; Neri, M.G.; Raimondi, A.; Parapini, S.; Taramelli, D.;
Riva, A.; Bombardelli, E. 4-Alkyl- and 4-phenylcoumarins from Mesua ferrea as promising multidrug resistant
antibacterials. Phytochemistry 2004, 65, 2867–2879. [CrossRef] [PubMed]

31. Morel, C.; Dartiguelongue, C.; Youhana, T.; Oger, J.M.; Seraphin, D.; Duval, O.; Richomme, P.; Bruneton, J.
New coumarins from Mesua racemosa: Isolation and synthesis. Heterocycles 1999, 51, 2183–2191.

32. Morel, C.; Guilet, D.; Oger, J.M.; Seraphin, D.; Sevenet, T.; Wiart, C.; Hadi, A.H.A.; Richomme, P.; Bruneton, J.
6-Acylcoumarins from Mesua racemosa. Phytochemistry 1999, 50, 1243–1247. [CrossRef]

33. Bala, K.R.; Seshadri, T.R. Isolation and synthesis of some coumarin components of Mesua ferrea seed oil.
Phytochemistry 1971, 10, 1131–1134. [CrossRef]

34. Cruz, F.G.; Moreira, L.d.M.; Santos, N.A.S.; Guedes, M.L.S. Additional Coumarins from Kielmeyera reticulate.
J. Braz. Chem. Soc. 2002, 13, 704–707. [CrossRef]

35. Cruz, F.G.; da Silva-Neto, J.T.; Guedes, M.L.S. Xanthones and Coumarins from Kielmeyera lathrophyton. J. Braz.
Chem. Soc. 2001, 12, 117–122. [CrossRef]

36. Gramacho, R.d.S.; Nagem, T.J.; de Oliveira, T.T.; de Queiroz, M.E.L.R.; Neves, A.A.; Saddi, N.
Phenylcoumarins from Kielmeyera elata. Phytochemistry 1999, 51, 579–581. [CrossRef]

37. Cruz, F.G.; Santos, N.A.S.; David, J.M.; Guedes, M.L.S.; Chávez, J.P. Coumarins from Kielmeyera argentea.
Phytochemistry 1998, 48, 703–706. [CrossRef]

http://dx.doi.org/10.1007/s00436-007-0542-7
http://www.ncbi.nlm.nih.gov/pubmed/17483964
http://dx.doi.org/10.1021/np000517o
http://www.ncbi.nlm.nih.gov/pubmed/11374944
http://dx.doi.org/10.1016/S0031-9422(01)00285-0
http://dx.doi.org/10.1021/jm00093a004
http://www.ncbi.nlm.nih.gov/pubmed/1379639
http://dx.doi.org/10.1021/jm00078a001
http://www.ncbi.nlm.nih.gov/pubmed/7506311
http://dx.doi.org/10.1016/S0040-4039(01)93999-1
http://www.ncbi.nlm.nih.gov/pubmed/14735445
http://dx.doi.org/10.1076/phbi.38.6.58.5962
http://www.ncbi.nlm.nih.gov/pubmed/23531139
http://dx.doi.org/10.1039/p19870000317
http://dx.doi.org/10.1039/j39710003783
http://dx.doi.org/10.1039/j39670002553
http://dx.doi.org/10.1021/acs.jnatprod.5b00222
http://www.ncbi.nlm.nih.gov/pubmed/26301802
http://dx.doi.org/10.1016/j.bmc.2010.09.044
http://www.ncbi.nlm.nih.gov/pubmed/20943395
http://dx.doi.org/10.1016/j.phytochem.2004.07.001
http://www.ncbi.nlm.nih.gov/pubmed/15501254
http://dx.doi.org/10.1016/S0031-9422(98)00688-8
http://dx.doi.org/10.1016/S0031-9422(00)89951-3
http://dx.doi.org/10.1590/S0103-50532002000500029
http://dx.doi.org/10.1590/S0103-50532001000100016
http://dx.doi.org/10.1016/S0031-9422(99)00057-6
http://dx.doi.org/10.1016/S0031-9422(98)00128-9


Molecules 2017, 22, 321 13 of 13

38. Cruz, F.G.; Moreira, L.M.; David, J.M.; Guedes, M.L.S.; Chávez, J.P. Coumarins from Kielmeyera reticulata.
Phytochemistry 1998, 47, 1363–1366.

39. López-Pérez, J.L.; Olmedo, D.A.; del Olmo, E.; Vásquez, Y.; Solís, P.N.; Gupta, M.P.; San Feliciano, A.
Cytotoxic 4-phenylcoumarins from the leaves of Marila pluricostata. J. Nat. Prod. 2005, 68, 369–373. [CrossRef]
[PubMed]

40. Ishikawa, T. Chemistry of Anti HIV-1 Active Calophyllum Coumarins. J. Synth. Org. Chem. Jpn. 1998, 56,
116–124. [CrossRef]

41. Chiang, C.C.; Mouscadet, J.F.; Tsai, H.J.; Liu, C.T.; Hsu, L.Y. Synthesis and HIV-1 integrase inhibition of novel
bis- or tetra-coumarin analogues. Chem. Pharm. Bull. 2007, 55, 1740–1743. [CrossRef] [PubMed]

42. Márquez, N.; Sancho, R.; Bedoya, L.M.; Alcamí, J.; López-Pérez, J.L.; San Feliciano, A.; Fiebich, B.L.; Muñoz, E.
Mesuol, a natural occurring 4-phenylcoumarin, inhibits HIV-1 replication by targeting the NF-κB pathway.
Antivir. Res. 2005, 66, 137–145. [CrossRef] [PubMed]

43. Bedoya, L.M.; Beltrán, M.; Sancho, R.; Olmedo, D.A.; Sánchez-Palomino, S.; Olmo, E.; López-Pérez, J.L.;
Muñoz, E.; San Feliciano, A.; Alcamí, J. 4-Phenylcoumarins as HIV transcription inhibitors. Bioorg. Med.
Chem. Lett. 2005, 15, 4447–4450. [CrossRef] [PubMed]

44. Krishna, C.; Bhargavi, M.V.; Rao, C.P.; Krupadanama, D. Synthesis and antimicrobial assessment of novel
coumarins featuring 1,2,4-oxadiazole. Med. Chem. Res. 2015, 24, 3743–3751. [CrossRef]

45. Chin, Y.P.; Huang, W.J.; Hsu, F.L.; Lin, Y.L.; Lin, M.H. Synthesis and evaluation of antibacterial activities of
5,7-Dihydroxycoumarin derivatives. Arch. Pharm. 2011, 344, 386–393. [CrossRef] [PubMed]

46. Hwang, C.H.; Jaki, B.U.; Klein, L.L.; Lankin, D.C.; McAlpine, J.B.; Napolitano, J.G.; Fryling, N.A.;
Franzblau, S.G.; Cho, S.H.; Stamets, P.E.; et al. Chlorinated Coumarins from the Polypore Mushroom
Fomitopsis officinalis and Their Activity against Mycobacterium tuberculosis. J. Nat. Prod. 2013, 76, 1916–1922.
[CrossRef] [PubMed]

47. Lin, C.M.; Huang, S.T.; Lee, F.W.; Kuo, H.S.; Lin, M.H. 6-Acyl-4-aryl/alkyl-5,7-dihydroxycoumarins as
anti-inflammatory agents. Bioorg. Med. Chem. 2006, 14, 4402–4409. [CrossRef] [PubMed]

48. Del Olmo, E. Final Report Project X.11. Iberoamerican Program of Science and Technology for Development:
Madrid, Spain, 2004; (unpublished results).

49. Cao, S.G.; Wu, X.H.; Sim, K.Y.; Tan, B.H.K.; Vittal, J.J.; Pereira, J.T.; Goh, S.H. Minor coumarins from
Calophyllum teysmannii var. inophylloide and synthesis of cytotoxic calanone derivatives. Helv. Chim. Acta
1998, 81, 1404–1416. [CrossRef]

50. Cao, S.G.; Sim, K.Y.; Goh, S.H. Three new coumarins from Calophyllum teysmannii var. inophylloide (Guttiferae).
Heterocycles 1997, 45, 2045–2052.

51. Kulkarni, M.V.; Kulkarni, G.M.; Lin, C.H.; Sun, C.M. Recent advances in coumarins and 1-azacoumarins as
versatile biodynamic agents. Curr. Med. Chem. 2006, 13, 2795–2818. [CrossRef] [PubMed]

52. Palmer, C.J.; Josephs, J.L. Synthesis of the Calophyllum coumarins. Part 2. J. Chem. Soc. Perkin Trans 1 1995,
3135–3152. [CrossRef]

53. NAPROC-13 RMN Spectroscopic Database USAL. Available online: http://c13.usal.es (accessed on
17 February 2017).

54. Gaurav Taneja, A.G.; Raghuvanshi, A.; Kant, R.; Maulik, P.R. Diversity-oriented general protocol for the
synthesis of privileged oxygen scaffolds: Pyrones, coumarins, benzocoumarins and naphthocoumarins.
Org. Biomol. Chem. 2013, 11, 5239–5253.

55. Kamat, S.P.; D’Souza, A.M.; Paknikar, S.K.; Beauchamp, P.S. A convenient one-pot synthesis of
4-methyl-3-phenyl-, 3-aryl- and 3-aryl-4-phenylcoumarins. J. Chem. Res. Synop. 2002, 242–246. [CrossRef]

56. Sancho, R.; Medarde, M.; Sánchez-Palomino, S.; Madrigal, B.M.; Alcamí, J.; Muñoz, E.; San Feliciano, A.
Anti-HIV activity of some synthetic lignanolides and intermediates. Bioorg. Med. Chem. Lett. 2004, 14,
4483–4486. [CrossRef] [PubMed]

Sample Availability: Samples of the compounds are available from José Luis López-Pérez, E-Mail: lopez@usal.es.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/np049642g
http://www.ncbi.nlm.nih.gov/pubmed/15787438
http://dx.doi.org/10.5059/yukigoseikyokaishi.56.116
http://dx.doi.org/10.1248/cpb.55.1740
http://www.ncbi.nlm.nih.gov/pubmed/18057750
http://dx.doi.org/10.1016/j.antiviral.2005.02.006
http://www.ncbi.nlm.nih.gov/pubmed/15911030
http://dx.doi.org/10.1016/j.bmcl.2005.07.041
http://www.ncbi.nlm.nih.gov/pubmed/16137881
http://dx.doi.org/10.1007/s00044-015-1399-4
http://dx.doi.org/10.1002/ardp.201000233
http://www.ncbi.nlm.nih.gov/pubmed/21433055
http://dx.doi.org/10.1021/np400497f
http://www.ncbi.nlm.nih.gov/pubmed/24087924
http://dx.doi.org/10.1016/j.bmc.2006.02.042
http://www.ncbi.nlm.nih.gov/pubmed/16540334
http://dx.doi.org/10.1002/hlca.19980810549
http://dx.doi.org/10.2174/092986706778521968
http://www.ncbi.nlm.nih.gov/pubmed/17073630
http://dx.doi.org/10.1039/p19950003135
http://c13.usal.es
http://dx.doi.org/10.3184/030823402103171834
http://dx.doi.org/10.1016/j.bmcl.2004.06.047
http://www.ncbi.nlm.nih.gov/pubmed/15357976
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Chemistry 
	Evaluation of Antiviral Activity 

	Experimental Section 
	General Information 
	General Procedures I for the Synthesis of Compounds 1–7 
	General Procedures II: Synthesis of Compounds 8–22 
	General Procedures III: Synthesis of Compounds 22–28 
	Antiviral Activity Assays 

	Conclusions 

