

Some problems of the determination of best management practices to maintain the quality of agricultural soils

Gema Guzmán, Marta Sáenz de Rodrigáñez, Ana Laguna, Tom Vanwalleghem, Juan Vicente Giráldez, Karl Vanderlinden and Hein ten Berge

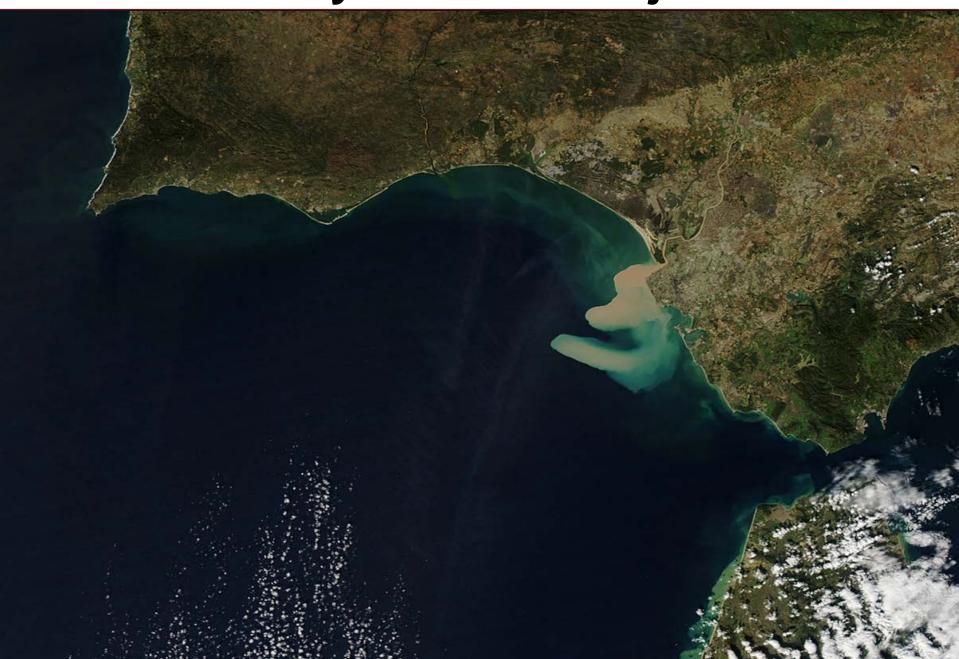
ELS03 Sustainable orchard management to face climatic changes

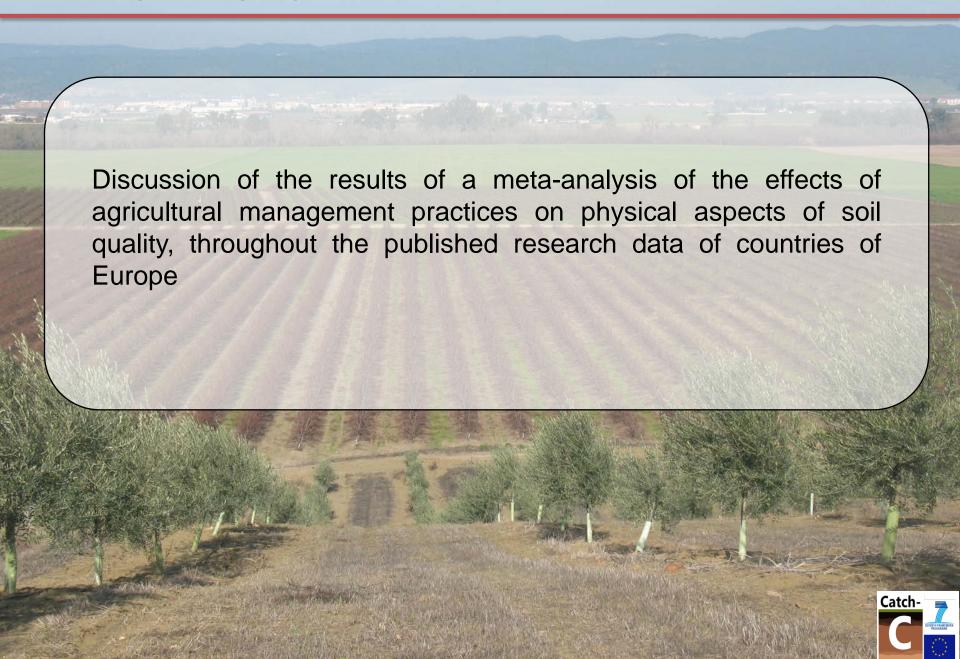
ELS 2014 - the Earth Living Skin: Soil, Life and Climate Changes

Catch-C

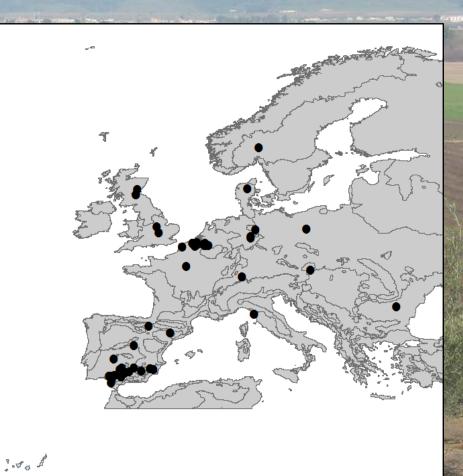
Assessment of compatibility of agricultural MPs and types of farming in the EU to enhance climate change mitigation, productivity and soil health

Is there a set of MPs to enhance soil physical quality across the EU?

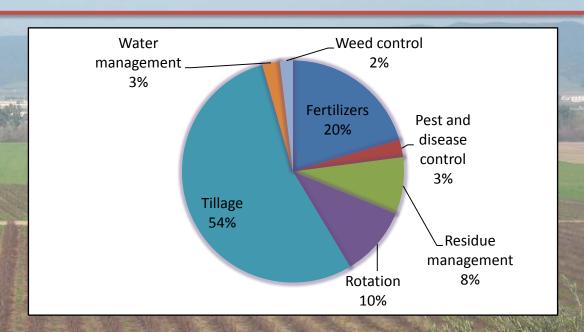

Overview: why SPQ is a major concern?


Overview: why SPQ is a major concern?

Overview: why SPQ is a major concern?


Aim of the talk

3059 records with data on physical soil quality


Indicators	Acronyms	No. of records	No. of LTEs
Bulk density	bd	930	44
Penetration resistance	pr	978	20
Permeability	pe	209	24
Aggregates stability	as	356	26
Runoff yield	ry	198	23
Sediment yield	sy	191	24

Long term experiments (LTEs) (n=66)

Distribution of the bibliography search regarding **SPQ**

Base line treatment

Monoculture Chemical control Residue removal

Conventional tillage

MPs

Crop rotation
Mechanical control
Residue incorporation
Minimum tillage
Cover crops
Deep ploughing
Direct drilling

$$RR = \frac{I_{mp}}{I_{bt}}$$

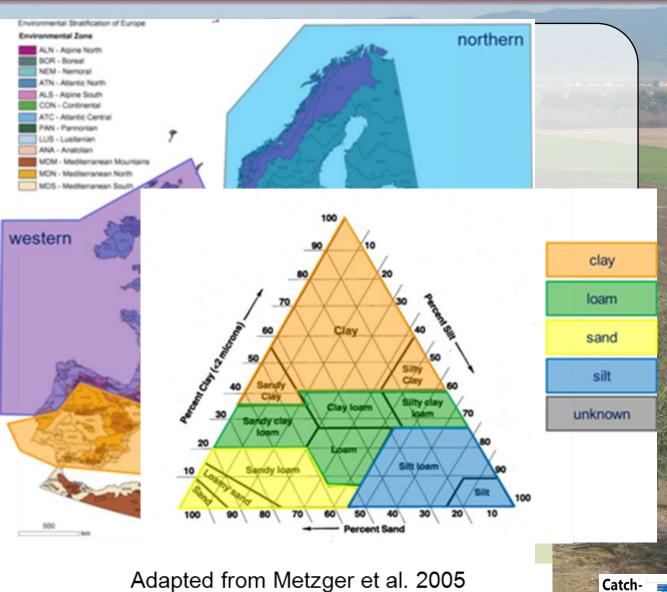
One-sample t-test (p < 0.05)

Histograms

Analysis of variance to evalua practice, separately.

A pairwise Bonferroni test to

Climate


Northern

Western

Eastern

Southern

Other (non-European LTEs)

Catch

MPs/indicators		bd	pr	pe	as	ry	sy	Overall SPQ
Rotation	Monoculture							
ROLATION	Crop rotation	+	++	+	+	++	NA	++
Crop protection	Chemical control							
Crop protection	Mechanical control	+	++	-	++	NA	NA	+
Residue	Residue removal							
management	Residue incorporation	-		NA	++	NA	NA	0
	Conventional tillage							
	No tillage	-	+	-				
Tillaga	Minimum tillage	0			++	-	-	-
Tillage	Cover crops		+	+	++	++	++	++
	Deep ploughing		+	+	++	-	++	+
	Direct drilling	-			++	+	++	++

Why some contradictions?

Limitations

 There are agricultural practices which could be classified as convenient, although their possible advantages are not always evident

Table 1 Some key benefits and limitations or problems observed from	om a change to no-till cultivation practices.
Benefits	Potential problems/limitations
Soil properties, crop growth and environmental impacts	
Additional organic C in surface layer—beneficial for soil structure, soil biological activity and seedling emergence	Only small additional total organic C stock in whole soil profile—limited benefit for climate change mitigation
More continuous pores allowing increased rainfall infiltration — beneficial for water availability for crops and climate change adaptation	
Increased crop yields in some situations—probably owing to improved soil conditions and/or water availability	Crop yields decreased or unchanged in some situations, or increases only emerge after several years. Possibly associated with uneven seedling emergence or increased soil density causing inhibited root growth in some environments
Increased soil biological activity-especially if combined with crop residue retention	
Decreased risk of soil erosion—particularly if combined with crop residue retention	
	Nitrous oxide emissions may either increase or decrease—with negative or positive impacts on climate change mitigation
Farm operations	
Labour/time saved through elimination of tillage operations	May need extra labour or use of herbicides for weed control
Earlier sowing of crop often facilitated, leading to possibility of improved growth and yield in some environments	In wet climates delayed planting may occur owing to slower soil drying after rainfall events
Fuel saved through elimination of tillage operations—decreased costs and CO₂ emissions	
	Suitable machinery for planting may not be available, a particular issue for resource-poor farmers in less developed countries
Long-term increases in crop yields and farm incomes—especially if combined	May be little or no increase in farm income in the short-term, a major

limitation for small-holder farmers in less developed countries

H FRAMEWORN DGRAMME

with crop residue retention and crop diversification

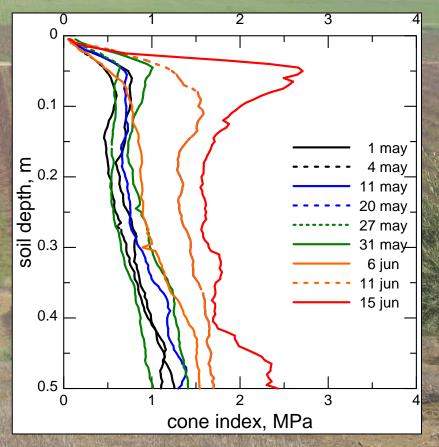
Limitations

Lack of data for certain evaluations (SPQ indicators, LTEs characteristics, etc.)

	MPs/indicators		bd RR	pr RR	pe RR	as RR	ry RR	sy RR
	Rotation	CR	1	1	2	1	1	-
	Crop protection	MCW	5	3	4	3	-	-
	Residue management	IR	4	3	-	2	-	-
LTEs		NT	3	2	2	1	5	4
		MT	28	8	16	17	11	12
	Tillage	CC	4	2	5	5	6	5
		DP	4	1	2	2	1	1
and commenced to	Daniel Control	DD	18	14	5	12	1	2

	MPs/indica	tors	bd RR	pr RR	pe RR	as RR	ry RR	sy RR
	Rotation	CR	2	8	8	20	8	-
	Crop protection	MCW	42	85	12	43	-	-
	Residue management	IR	60	105	-	51	-	-
Nº. of		NT	15	7	5	4	25	23
records		MT	287	299	63	50	34	31
	Tillage	CC	34	13	12	38	39	33
		DP	38	6	10	10	2	2
		DD	110	248	24	76	3	5

Limitations


 There is a strong influence of environmental conditions such as, time scale on physical quality

Tomejil LTE

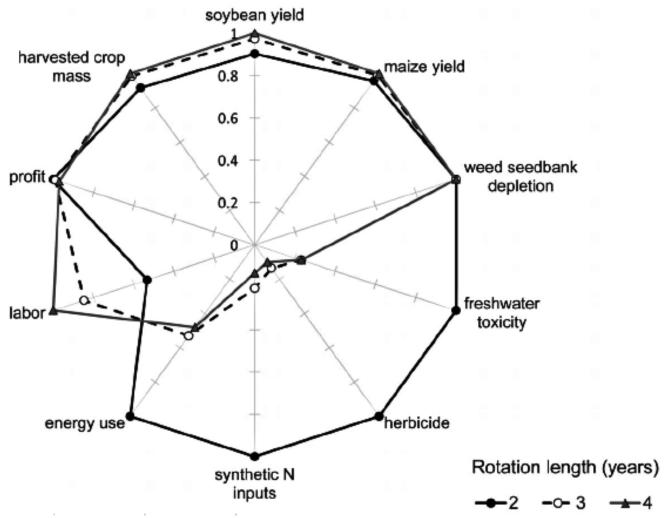
Annual precipitation: 535 mm

Clay content: 70 %

Cereals-sunflower-legumes

Conclusions

- The followed methodology does not guarantee that all indicators correspond to the same field conditions (soil type, crop, etc...).
- Explanations for certain contradictions among indicators or strange effects of certain management systems, cannot be given.
- The apparently contradictory results are probably due to different numbers of observations for each indicator, made under different field conditions.


Thank you for your attention

http://www.catch-c.eu/

ELS03 Sustainable orchard management to face climatic changes

ELS 2014 - the Earth Living Skin: Soil, Life and Climate Changes

the crop rotation management still presents advantages (Davis et al. 2012): it is possible to keep similar yields reducing inputs

why do farmers adopt conservation tillage (Andrews et al. 2013. J. Soil Water Conserv. 68:501-511.)

Table 7Importance of considerations in farmers' decision to use no-till/strip till or conservation tillage. The corresponding question wording follows: "Please indicate how important the following considerations were in your decision to use no-till / strip till or conservation tillage in 2009 OR 2010 for any acres listed in question 3 (figure 1)."

Considerations	Not important 1 2		Somewhat important 3 4		Very important 5	Mean (standard deviation)
Concern about water quality	5.6	6.8	28.4	26.2	32.9	3.74 (1.15)
Concern about soil erosion	8.0	1.8	9.0	26.7	61.7	4.47 (0.80)
Concern about improving soil productivity	0.6	1.5	8.2	29.1	60.5	4.47 (0.76)
Lower labor/fuel costs	0.8	2.7	16.5	27.5	52.5	4.28 (.89)
Lower equipment/capital costs	1.4	5.8	21.0	27.1	44.7	4.08 (1.01)
Concern about carbon (C) storage to address climate change	23.3	23.5	30.0	14.7	8.5	2.62 (1.23)
Carbon offset payments for conservation tillage	39.5	20.9	22.5	10.7	6.3	2.23 (1.25)
Hearing about other farmers' success with conservation tillage	14.1	15.5	34.3	23.2	12.9	3.05 (1.21)
Personal or family history of using conservation tillage	12.5	12.3	26.1	27.5	21.6	3.33 (1.29)

Note: Table entries are percentages. n = 1,301.

there is a great numbers of farmers reluctant to adopt 'best management practices' at the global scale