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ABSTRACT

A new alternative method to approximate the Visibility Graph (VG) of a time series has been introduced here. It exploits the fact that most
of the nodes in the resulting network are not connected to those that are far away from them. This means that the adjacency matrix is almost
empty, and its nonzero values are close to the main diagonal. This new method is called Sliding Visibility Graph (SVG). Numerical tests have
been performed for several time series, showing a time e�ciency that scales linearly with the size of the series [O(N)], in contrast to the original
VG that does so quadratically [O(N2)]. This fact is noticeably convenient when dealing with very large time series. The results obtained from
the SVG of the studied time series have been compared to the exact values of the original VG. As expected, the SVG outcomes converge very
rapidly to the desired ones, especially for random and stochastic series. Also, this method can be extended to the analysis of time series that
evolve in real time, since it does not require the entire dataset to perform the analysis but a shorter segment of it. The length segment can
remain constant, making possible a simple analysis as the series evolves in time.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5112782

TheVisibility Graph is a tool used for the transformation of a time
series into a complex network that preserves the features of the
original.Nevertheless, as the time series gets larger, the traditional
method becomes too slow. In this work, the authors propose an
alternative way that exploits a property of the network to reduce
drastically the time required for very large datasets.

I. INTRODUCTION

In the current days, investigation on large time series or sig-
nals is needed to comprehend a lot of phenomena which appears
in many and various �elds, from nature to market researches or
technological applications. Some examined aspects refer to hidden
behaviors or trends and patterns, such as seasonality, which can be
expected or not.1–3 Forecasting, characterization of long-range corre-
lation, chaotic properties, and scale invariance are also supplemen-
tary spheres, where time series were widely studied and promising
results were obtained.4–8

Lately, a new point of view on the study of time series has been
born, thanks to the transformation of them into complex networks.
A recent method named as Visibility Graph algorithm (VG) has been
released for this purpose.9 It is demonstrated that the characteristics
of the time series remain in the corresponding complex networks,
adding the possibility of analyzing other parameters. Among them,
one can �nd those which measure the centrality of these resulting
networks such as the degree distribution,10,11which will be explained
below.

The computation of Visibility Graphs through the basic
algorithm requires a time complexity of quadratic order [O(N2)].12,13

Another technique which is based on the strategy of “divide and
conquer” has been developed in the last years and needs a time
computation of order {O[N log(n)]}.14

Additionally, in recent studies, some sliding window-based
algorithms have been released for very di�erent �elds.15–18 In some
cases, these methods have proven to be more e�cient in compu-
tation time and memory allocation than their respective competi-
tors, especially for large datasets and real-time data. Moreover, some
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information from datasets is mostly not fully employed, carrying to
unnecessary computations.

In this paper, the authors have developed a new method which
transforms time series into complex networks based on a slidingwin-
dow algorithm derived from the basic VG principles. It essentially
splits the signal into di�erent �xed-size portions, computes the vis-
ibility graph basic algorithm for the �rst window, and checks the
visibility criterion for each next point. This algorithm has been tested
for diverse sizes of windows and several time series as benchmarks.
In addition, it has been employed to analyze a real dataset from
tropospheric ozone pollution.

The main purpose of this study is to extent the variety of tech-
niques which can be used for converting signals into complex net-
works, based on the fact that all the information of the time series is
not required to build an associated complex network. This can save
super�uous computations and time for large datasets by approximat-
ing the main characteristics of the corresponding complex networks.
The idea is to retrieve acceptable results for small windows sizes com-
pared to the total size of the dataset, with a very narrow con�dence
interval.

II. MATERIALS AND METHODS

A. Visibility graphs

A graph is known to be a set of points (nodes) that are con-
nected by lines called edges. In the recent years, a tool that makes
possible the transformation from a time series to a graph has gain the
interest of the scienti�c community. This method was introduced by
Lacasa et al.9 and called Visibility Graph (VG), due to its resemblance
with the one used to connect points in an Euclidean plane taking into
account the possible obstacles.19 One of its main features is that it
inherits many properties from the original series.

In order to build the resulting complex network, it is necessary
�rst to stablish a criterion to determine whether two points in the
time series will become connected or not. That condition reads as
follows: two arbitrary points from the time series (ta, ya) and (tb, yb)
will have visibility (and will be connected in the graph) if any given
point (tc, yc) that is located between them (ta < tc < tb) ful�lls

yc < ya + (yb − ya)
tc − ta

tb − ta
. (1)

In Fig. 1, an illustrative time series is depicted in order to show
how the points would become connected after applying the VG
method. Therefore, the time series is then transformed into a com-
plex network for a posterior analysis. The new network, as it has been
said, inherits the complexity of the original signal, meaning that, for
instance, a periodic series would result on a regular graph.9,20

The resulting complex network has several properties, which all
the transformed signals have in common, that can be used in order
to simplify the algorithm:

• Every node does not have visibility with itself (there are no self-
loops in the complex network).

• The resulting graph is undirected, meaning that the visibility
between two points is reciprocal and the edges have no direction.

• Every point always has visibility with at least two other points:
its closest neighbors, because there are no intermediate nodes to
prevent them from ful�lling the condition for visibility.

It can be easily seen in the adjacency matrix Aij, which is a repre-
sentation of the complex network where the elements are aij = 1 if
nodes i and j have visibility and 0 if the opposite is true. Taking the
previous considerations into account, a VG adjacency matrix has the

FIG. 1. Example time series transformed into a complex
network by means of the VG method.
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general form,

Aij =













0 1 · · · a1,N

1 0 1
...

... 1
. . . 1

aN,1 · · · 1 0













. (2)

As a simpli�cation to theVG, another techniquewas introduced
by Luque et al. in 200921 to obtain a complex network from a time
series with a more restrictive criterion. It was called Horizontal Vis-
ibility Graph (HVG). The only di�erence in the implementation of
this method is that the visibility criterion that needs to be ful�lled is

yc < min(ya, yb). (3)

B. Sliding visibility graph

One of the main problems when it comes to the computation
of Visibility Graphs is the time complexity of the basic algorithm
[O(N2)], which is quadraticwith the size of the time series,N.12,13This
is due to the fact that the condition needs to be checked N(N − 1)/2
times at least in order to evaluate the visibility of every pair of points.
When the size of the time series becomes substantially large, the time
required to compute the VG rises considerably. Some examples of
applications where one can �nd such great sizes of temporal series
are, for instance, datasets that could be studied with a much higher
resolution in order to give more light on searched behaviors, such
as �nancial or meteorological time series that are usually regarded
from a daily point of view, although much higher resolutions are
available.5,22 Also, there are time series which have a huge amount of
points that need to be split for the convenience of the computation.
One example can be found in time series of musical compositions,
where only a small piece is usually taken, while it would be of interest
to analyze the whole series.23,24

Here, the authors propose an alternative to the original VG that
has a time complexity ofO(N), which ends up being very convenient
for the computation of very large time series. The name given to this
new algorithm is Sliding Visibility Graph (SVG), and the idea behind
lies in the fact that most of the adjacencymatrix of such complex net-
works are almost empty as one goes further from the main diagonal.
This means that the vast majority of the iterations are considering
pairs of nodes that will not have visibility.

The basic principle of this method is to take a set of points of
length W (which we will refer to as “window” in the text) to check
the visibility criterion inside of it and then start moving that window
toward the end of the series. In practice, it is desirable to initialize
the routine with a regular VG for the �rstW points, in order to have
all the information from those �rstW points. The main advantage of
this technique is that each time that the window is displaced, it is not
necessary to compute again the visibility of all the points included
within. Since most of them were already computed in the previous
iteration, only the new point needs to check the criterion with the
priorW ones (W times). It is easy to check that the number of total
iterations ni needed will be as shown in Eq. (1),

ni = (N − W)W + W(W − 1)/2. (4)

The last term of the sum comes from the initial iterations
required for the computation of the �rst VG with the length of the
chosen window. It is derived from the number of iterations needed
for the basic VG algorithm, as explained before. This term will be
negligible for W � N, while it will be responsible for most of the
iterations asW → N.

In Fig. 2, the exposed procedure can be graphically observed,
for the sake of clarity. Figure 2(a) illustrates the cited initial iteration
that requires a regular VG.

Obviously, this method constitutes an approximation to the
original VG as long as the size of the window is smaller than the
total one of the time series. Nevertheless, due to the di�culty for two
points to become connected nodes as the distances between them get
higher, the results derived converge very rapidly to the original ones,
as will be shown in the later sections. When the size of the window
and the time series are equal, it is trivial that both SVG and VG are
equivalent.

C. Degree centrality

When trying to retrieve information from a given complex
network, one of the most commonly used approaches is discern-
ing which of them are the most important nodes in the system. To
this purpose, centrality measures come usually in handy. This con-
cept was initially applied to the study of social networks and later
transferred to other �elds of knowledge.25–27 This work has been
focused on one of them: the degree centrality measure, which will
be explained next.

The degree of a node (ki) in a graph is the number of other

nodes which are connected to it

(

ki =
∑

j

aij

)

and in this case, the

one that it has visibility with. For instance, in Fig. 1, the degree of
the three �rst nodes are k = 3, k = 2, and k = 3, respectively. After
computing the degree of the whole network, it is possible to obtain
the probability that corresponds to each value, by simply counting
howmany times each possible one is repeated. From there, the degree
probability distribution of the sample P(k) can be obtained.

One possible way to describe the nature of the time series is to
analyze the degree distribution that is built from the VG as previ-
ous works have shown,9,10,28 being able to distinguish between fractal,
random, or periodic signals, for instance. As some former studies
explain,13,20 time series which have VGs whose degree distributions
can be �tted to a power law P(k) ∝ k−γ correspond to scale free ones,
which can be explained due to the e�ect known as “hub” repulsion.29

The term hub refers to a node with an unlikely high number of links
with respect to the rest of the network (the hubs have the highest
degrees). The right tail of each degree distribution, governed by those
hubs, can be represented in a log-log plot and �tted by a simple lin-
ear regression when the series obeys a power law. The slope obtained
by this regression provides an interesting parameter, the so-called γ

exponent, which has already been used in some works20,28 to retrieve
some useful information about the signal.

D. Complementary centrality parameters

There are several other centrality measurements that have been
considered to check the correct suitability of the proposed method
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FIG. 2. Illustration of some example iterations of the SVG method. The plot (a) shows the first basic VG that is performed, while (b)–(d) are the posterior three iterations.

in order to describe the same complex network. One of them is
the so-called shortest path (SP), which can be understood as the
minimum number of edges that connects two arbitrary points. More
precisely, two distant nodes (i, j)will have di�erent numbers of edges
and paths (distinct con�gurations of edges that link both) between
them, but there will be some of these paths where the number of
edges will be minimum (minimal path is degenerated); this quantity
is named as the SP.

After introducing this parameter, one can de�ne the closeness
centrality. If all pairs of nodes are considered, it is possible to obtain a
matrix, which is called distancematrixD. In thismatrix, each element
di,j refers to the SP from node i to j. Diagonal elements are set to zero.
For an undirected graph, thismatrix is symmetric, as in the adjacency
matrix case. It is possible to de�ne the named closeness centrality of
a node i as the inverse of the sum of distances from this node to the

others, i.e.,

ci =
1

N
∑

j=1
di,j

, (5)

where di,j is the element (i, j) from the corresponding distancematrix
of the graph.

Finally, the betweenness parameter has been added to these,
which is a measurement of how a node is between many others. That
is, howmuch a node is passed through by shortest paths of other pairs
of nodes. Therefore, this quantity can be de�ned for a node i as

bi =

N
∑

j=1

j6=i

N
∑

k=1
k 6=i,j

njk(i)

njk
, (6)
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where njk is the number of SP’s from j to k (remember that these
paths can be degenerated), whereas njk(i) is the number of SP’s that
contains the node i.

III. RESULTS AND DISCUSSION

A. Performance tests

In this section, the proposed algorithm is tested by using sev-
eral time series with di�erent natures. All the studies in this work
have been performedusingMATLAB2018b on an Intel(R)Core(TM)
i7-8700CPU@3.20GHz, with a RAMof 8GB and theO.S.Windows
10 Education x64.

In Fig. 3, the time series used for testing the algorithm are
shown in the upper part. The �rst one (a.1.) corresponds to a ran-
dom series (from 0 to 1) with N = 5 · 105; the second one (b.1.), to a
Brownian motion time series with a Hurst exponent of H = 0.5 and
N = 2 · 104; while the last one (c.1.) is a stochastic one of hourly
ozone concentrations recorded in the southern part of the Iberian
Peninsula in 2013 (nearlyN ≈ 8500). On the other hand, the bottom

plots show the algorithm computation times on each time series, for
both SVG and original VG. It must be noted the fact that the window
size (W) in the x axis of the last mentioned plots are normalized to
the total size (N) of each example series. It has been done in order
to compare the di�erent tests, since all the chosen values of N are
unequal.

As it can be regarded in the lower part of Fig. 3, the behavior
of the computation time with W is parabolic, having its maximum
when N = W. To check that quadratic trend, a second-degree poly-
nomial �twas performed to the curves and in all the cases the Pearson
coe�cient was greater than 0.9999. At the maximum of the curve,
the computation times of both methods are the same since they are
equivalent when those two quantities are equal (as explained before).
Before that maximum is reached, the computation times of the SVG
are always lower than those of the original VG. That is because, as
it can be seen in Eq. (1), the number of iterations of SVG can never
be greater than the amount needed for the VG, since by de�nition
W ≤ N.

In the case of the ozone concentrations, the measured computa-
tion times have a bigger noise due to the lower size of the time series,

FIG. 3. Time series used for the analysis (up) and computation times vs window size (down). Dashed line indicates the time required for the basic VG method. In a.1., only
a portion of the total series is shown, for clarity reasons.
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FIG. 4. Computation time vs the size of the time series for several values of window size.

forwhich the computation times are considerably reduced, compared
to the other two.

Once the scaling with the size of the window W has been dis-
cussed, the equivalent analysis with N is necessary as well. Indeed, it
is where one of the main advantages of SVG with respect to the orig-
inal can be observed, since the scaling changes from O(N2) in VG to
O(N) in the newly proposed one.

In Fig. 4, the computation time required to perform the SVG
method is plotted against the size of the analyzed time series. The
same series as in the previous case were used but in this case vary-
ing their size from 10 to the original one. The result for all of them is
the same: the original VG has a time e�ciency that scales quadrati-
cally with the size of the time series [O(N2)], while the SVG behavior
with respect to N is always linear [O(N)]. In these plots, the abso-
lute values of W have been used instead of the ones relative to the
value of N as in Fig. 3 because its value is now variable and it could
be misleading. Instead, three di�erent lengths of window have been
shown (10, 500, and 1000). As it is clearly seen, the larger is the win-
dow size, the greater the slope of the computation time over N. The
same tests were performed for higher values ofW, obtaining the same
linear behaviors, despite having a shorter curve (because N can only
be evaluated from aW size onwards). These results are in accordance
to what was expected from Eq. (1).

B. Degree distribution results

After the computation e�ciency of this method has been tested,
the next step is to check whether the results of the SVG merge the
ones of the VG and when this approximation is valid. To see this, in
Fig. 5, the degree probability distributions of the three series used
before are shown. There, the distribution of each series is computed
using the regular VG, the HVG, and then with the SVG, with sev-
eral increasing sizes of window. The same relative values of W/N
are used in the three cases for clarity reasons. The series sizes N
in all of them is �xed to the original values used for discussion in
Fig. 3, hence the study conditions remain the same as in Sec. III A.
A log-log plot is used because one of the main uses of this degree

probability distribution is the acquisition of the γ exponent. That is
done by �tting the linear tail in the last part for scale free networks
using the logarithmic scale, as explained. Some works have already
shown that those series degree distributions can be �tted to a power
law P(k) ∝ k−γ .10,20 Therefore, in Figs. 5(b) and 5(c), it was interest-
ing to check whether this linear behavior of the tail is hold with the
SVG as well.

For the three series, it can be observed that the degree distri-
bution di�ers evidently from the original for very low values of W,
especially for the Brownianmotion case and the ozone time series. In
those cases, it is seen that the largest degrees of the distribution (hubs)
are always sensibly lower than the actual hubs degrees in the original
VG. That is due to the fact that the chosen window (W = N/500 in
the plots) is still too narrow to allow hubs to check the visibility with
most of the nodes they are connected to. Thus, the biggest values of k
for those windows will have a limit given by twice the size of the win-
dow (2W), since a node iwill check its visibility with others only from
i − W to i + W. This is in accordance with the results in Fig. 5(b),
where for W = 40 (N = 2 · 104), there are no values of k higher
than 80 (2W), for instance. Hence, this can be used as criterion for
choosing a minimum value ofW that allows the convergence P(k).

On the other hand, when W increases, the degree distribu-
tions of SVGs start to resemble the original ones. So that at a value
of W = N/100, they are almost overlapped and big changes on the
length of the window (for instance W = N/10) give almost equiv-
alent results on the random and ozone series. In the case of the
Brownian motion, this convergence is slower, being necessary larger
sizes of window. The reason behind this phenomenon is the rough-
ness of the series that depends on theHurst exponent.30Nevertheless,
it must be pointed out that the computation time remains lower than
in the original case nomatter the value ofW, as discussed previously.
This saturation can be seen more in detail in Fig. 6. In every case,
networks from the HVG in Fig. 5 give distributions that are very dif-
ferent from the original VG, having SVG a better approximation of
the distribution for all the selected windows.

To test the convergence of some actual numerical values rather
than the shape of the curves, the average degree k̄ of each distribution
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FIG. 5. Degree probability distributions of the networks obtained by the VG and SVG are shown here. Three window sizes fromW = N/1000 to N/10 are used for comparison
in the SVG.

FIG. 6. Average degree obtained through
VG and SVG vs the window size (up) and vs
the total series size (down).
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has been computed (Fig. 6) as well as the γ exponent from the linear
regression (Fig. 7) and other parameters described before. Now, it is
only shown for the case of the Brownian motion and ozone concen-
tration time series, since the random series does not have a power-law
behavior and for the value of k̄will convergemuch faster than the oth-
ers, as can be deducted from Fig. 5. Hence, the two series that �t the
original case worse are looked at in more detail.

Regarding the top part of Fig. 6, the value of k̄ obtained through
the SVG against the VG and HVG can be seen. As it was expected
from the previous commented �gure, the merging in the case of the
Brownian series is slower than that in the case of the stochastic ozone
one. Nonetheless, its shape converges faster than the number of iter-
ations (quadratic) even in the Brownian case, as discussed in relation
to the time performance of the method (see Fig. 3).

On the other hand, when the size of the series itself is increased,
k̄ obtained with the SVG and a �xed value of W converges as well.
This is shown in the lower part of Fig. 6. In this case, for the
ozone time series a window of W = 0.1 · Nmax is enough for the
convergence in all the sizes tested, while for the case of the Brow-
nian motion, it is necessary to reach a value ofW = 0.25 · Nmax. On
the contrary, it is seen in this same �gure how the values of the HVG

TABLE I. Results obtained from the optimal window criterion for three time series.

Time series WOpt/N (%) tSVG/tVG (%) εk (%)

Random 0.8 1.7 0.03
Brownian (H = 0.5) 27.3 45.3 1.08
Annual ozone concentration 5.5 10.2 1.28

are always lower than those of VG, being the SVG ones greater even
for very small windows. This fact could be anticipated by looking at
Fig. 5.

To provide an adequate criterion to decide a proper opti-
mal window, the authors propose a technique that will be further
explained. After several test with time series of di�erent natures and
lengths, it has been determined that the SVG results always saturate
when they approach the value of the originalVG.This leads to the dif-
ference between results from consecutive windows decaying to zero.
This can be used to determine a saturation point by computing the
slope of the curve for each window. When this slope is considered to
be close enough to zero, the optimal window is taken. The criterion

FIG. 7. γ -exponent (up) and average SP (bot-
tom) computed by using the original VG method
(dashed line), the HVG (dashed-dotted line) and
the SVG for different values of window length.
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for this consideration is that the slope between the two last points
(Wi and Wi−1) falls below a percentage of a characteristic value
automatically set for a given time series (ki/N). The authors have
detected that a 5% of this value is suitable to an optimal window.
The results for the average degree computed can be seen in Table
I, where the ratio between the optimal window and the total size
(WOpt/N) is shown in the second column, the ratio of the required
times in the third one (tSVG/tVG), and the relative error (εk) from the
computation of the average degree in the last one. Since all of them
are relative values, they are expressed as percentages for the sake of
clarity.

In order to test the applicability of the SVG, four more di�erent
parameters (γ exponent, SP, betweenness, and closeness) will be
described in the following part of the presented document. Those
have been previously employed to study both visibility graphs and
complex networks.22,31 The results in Figs. 7 and 8 show the values of
these quantities after applying the SVG for several windows (as it was
done before with the degree) and their comparison with the VG and
HVGmethods.

The results depicted in Fig. 7 show a similar behavior to those
in the upper part of Fig. 6 but this time with the slope of the distri-
bution tail (γ exponent) and the SP. The γ exponent of both time
series (upper part) tends to the value obtained through the basic
VG as the size of the window increases. Again, the Brownian series
needs a larger size of window to have a negligible error from the SVG,
due to its greater roughness, as discussed. Nevertheless, a good �t is
already achieved for windows of around 25% of the entire size of the
series, meaning that the information of the hubs in the system can
be retrieved by using this method. Regarding the SP (bottom part of
the same �gure), a fast convergence is as well observed. For very low
values ofW, the SP is higher in comparison toVG, because such small
window does not allow fast connections between distant time points
that would lead to the real SP, and therefore the distances are greater.
As this window is increased, those fast links are possible, and the SP
is decreased.

Finally, Fig. 8 shows now the two next computed parameters:
betweenness (up) and closeness (bottom). Both are in accordance
with the results discussed previously. The reason for the convergence

FIG. 8. Average betweenness (up) and
closeness (bottom) computed by using
the original VG method (dashed line), the
HVG (dashed-dotted line) and the SVG for
different values of window length.
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can be understood in the same way as what was explained above for
the case of SP.

Once again, outcomes from HVG di�er substantially from the
VG ones, being the SVG results closer to them. This fact is even
more pronounced in the case of the Brownian motion time series
(in both last �gures). The authors attribute this e�ect to its higher
irregularity that leads to a worse overall performance of the HVG
algorithm. Since the HVG algorithm excludes nodes once a higher
value than the initial one is found, it can omit important nodes that
VG and SVG (with a proper window) would not. This, in the sense of
connections between very distant points in the time series, is very
important for the computation of the three last parameters men-
tioned. For this reason, the approximation of the HVG can even
di�er several orders of magnitude from both VG and SVG ones [see
Fig. 8(b.1)].

IV. CONCLUSIONS

Throughout this work, a new method to compute the Visibility
Graph out of a time series has been introduced and tested. This new
approach, the Sliding Visibility Graph, approximates the original VG
and has its basis on the fact that the adjacency matrix of the network
built is almost empty and all the values tend to be as close as possible
from the main diagonal.

The performance was tested on several time series with di�er-
ent natures (random, fractional Brownianmotion, and real stochastic
measurements) and the results show that the time e�ciency has a
parabolic trend with respect to the window size W and linear with
the size of the seriesN. By de�nition, the number of iterations needed
by the SVG is going to be always lower than those of the original VG,
leading to a faster performance for every time series. In the limit case
ofW = N, SVG converges to the basic VG, bringing obviously to the
same time performance.

When it comes to the results obtained from this alternative
method, as expected from the properties of the adjacency matrix, the
SVG outcomes rapidly converge to the ones obtained by the VG for
low sizes of the window. This has been demonstrated for several dis-
tinct parameters. The main advantage of this is that once a proper
window is chosen for a kind of time series, the correctness of the
approximation appears to hold for larger sizes of the series, making
it very convenient for great data series. The authors propose a tech-
nique that can be automatized in order to �nd the optimal windows
and has been tested to provide satisfactory results. It has been com-
pared to HVG results as well, showing that SVG outperforms it for
almost every chosen window.

To conclude, it must be pointed out that SVG constitutes an
alternative approximation to the widely used VG and HVG that
could have a big potential for several cases. In particular, authors
would like to mark two main scenarios: (i) very large time series,
where the computation times would be huge and (ii) real-time
analysis, where the size of the system gets larger with every mea-
surement. This will be studied in future works, in order to check
whether the parameters derived from these complex networks can
be used to predict changes in the behavior of a temporal variable, for
instance.
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