
 
 

 

  
Abstract— This paper describes how the combination of 

neuro-fuzzy techniques with geometric analysis offers a good 
trade-off between purely heuristics and purely physical 
approaches when solving the problem of car-like robot 
navigation. The controller described, which follows a reactive 
technique, generates trajectories of near-minimal lengths 
when no obstacles are detected and, in presence of obstacles, 
generates minimum deviations from them. All these reference 
paths meet the kinematic constraints of car-like robots and 
take into account dynamic issues. Besides its efficiency, the 
proposed controller is very simple and linguistically 
interpretable. The whole controller has been designed and 
verified by using the CAD tools of the Xfuzzy environment. 

I. INTRODUCTION 
basic task to be performed by an autonomous robot 

is to navigate safely among possible obstacles towards 
a goal destination. A large number of methods for solving 
this motion planning problem have been reported in the 
literature. In particular, local methods are widely used for 
implementing real-time navigation thanks to their 
simplicity and suitability for sensor-based navigation 
through partially unknown environments. Several local 
methods based on neuro and fuzzy paradigms have been 
reported recently [1]-[8]. Many of them employ fuzzy rules 
extracted from heuristic knowledge [4]-[5]. They are 
usually simple but often require a tedious and unreliable 
trial-error adjustment which does not obtain optimal 
results. The other approach is to combine neuro and fuzzy 
techniques to learn the trajectories provided by an expert 
[6]-[8]. However, these trajectories are not usually as 
optimal as a geometrical analysis of the problem could 
provide and the resulting controllers are not usually simple 
and may lose linguistic meaning. 

The coarse structure of the controller described in this 
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paper has been designed by using heuristic knowledge. The 
fine structure of its constituent modules has been obtained 
by applying supervised learning with numerical data 
resulting from a geometric analysis of the problem (which 
considers the kinematic and dynamic constraints of the 
robot). As a result, the trajectories provided by our 
controller satisfy the nonholonomic constraints of car-like 
robots, which are that speed direction must always be 
tangent to the trajectory and that the robot curvature is 
upper bounded. These trajectories are of near-minimal 
lengths, when no obstacles are detected, and, in presence of 
obstacles, the deviation from these paths is as small as 
possible. The controller consists of several neuro-fuzzy 
modules which have been optimized to be very simple and 
maintain linguistic meaning. 

The paper is organized as follows. Section II describes 
the navigation problem and the modules of the reactive 
controller employed to solve it.  Its subsections summarize 
the geometrical considerations that should be taken into 
account to meet car-like robot constraints and the 
advantages of using hierarchical neuro-fuzzy modules to 
obtain a very simple controller that requires a very low 
computational cost. The whole controller has been 
designed and verified by using the CAD tools of Xfuzzy 3, 
an environment to design neuro-fuzzy controllers 
developed at IMSE [9]. 

II. THE NAVIGATION ALGORITHM 
The configuration of a car-like robot can be given by the 

position of the back wheel axle midpoint with regards to a 
global coordinate system, (x, y); its orientation, φ; the 
curvature defined by the front wheels, γ; and its speed, v 
(Figure 1). In our case, no model about the environment is 
used for navigation but only the information provided by 
the robot sensors. In particular, we consider a 2-D laser 
placed at the front of the robot that performs a scan of up to 
180 degrees. The laser identifies the points of possible 
obstacles by their distance, h, and sweeping angle, ϕ. The 
navigation problem consists of generating a collision-free 
trajectory from an initial configuration (x, y, φ, v, γ) to a 
goal one, which is (0, 0, 180º, 0, 0) in the global coordinate 
system we have selected. 

Since our objective is to obtain a low-cost and real-time 
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controller, only a small area near the robot is explored to 
detect obstacles; such area should be large enough to allow 
an avoidance maneuver. The analysis of a greater area 
would involve a higher computational cost and would 
increase unnecessarily the occurrence of avoidance 
maneuvers. The heuristic knowledge to design the coarse 
structure of our controller is the following: 
- If there is an obstacle very close to the robot, the robot 
should stop to avoid collision. 
- If there is an obstacle close to the robot, a maneuver to 
avoid it should be carried out. 
- If the obstacles are far from the robot, there is no need to 
avoid them (by the moment) and the robot should navigate 
towards the goal configuration. 

Many reactive controllers reported in the literature use 
fuzzy logic to deal with the concepts of ‘very close’, ‘close’ 
and ‘far’ and define membership functions for them that are 
based on heuristics as well as trial and error approach. Our 
proposal is to consider the dynamic and kinematic 
constraints of the robot so as to better define them. 

A. Very close obstacles 
Taking into account that the robot curvature is limited to 

γmax and that 2m at both sides of the robot should be free of 
obstacles for safety purposes (the robot considered in our 
analysis has a width of 1m and the maximum speed 
considered is 1m/s), a geometric analysis of the problem 
gives that, approximately, those obstacles which enter the 
shadowed area in Figure 2 are ‘very close’ and, hence, they 

are unavoidable. The equations that define this area are as 
follows: 
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where (xo, yo) are the coordinates of the obstacle with 
regards to the global reference system. 

If the coordinates of the obstacle are referred to a system 
attached to the robot whose origin coordinates are placed at 
the back wheel axle midpoint, the area of ‘very close’ or 
unavoidable obstacles is defined by: 
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where d is the distance of the laser to the back wheel axle. 

Equation (2) is preferred to (1) not only for its simplicity 
but also for using the variables h and ϕ, which are provided 
directly by the laser (the variables xo and yo in (1) require 
processing the laser data). The shadowed area in Figure 3a 
illustrates the points satisfying (2).  

A fuzzy classifier with two inputs, h and ϕ, and one 
output (Figure 4a) has been designed and tuned with the 
numerical data corresponding to (2). The environment 
Xfuzzy with their CAD tools xfdm, xfsp, and xfsl (for, 
respectively, extracting rule bases from numerical data, 
simplifying and tuning them) has been employed [10]. The 
system obtained contains the following 5 rules: 
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Figure 3.  (a) Area of ‘very close’ obstacles according to (2). (b) Result 
provided by the monolithic system. (c) Fuzzy concepts employed. 

 

 
Figure 1. Parameters defining the robot configuration. 
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Figure 2.  Area of unavoidable obstacles. 



 
 

 

1.- If h is very short then obstacle is very close. 
2.- If h is short and ϕ is quite left, quite right, or in front of 
the robot then obstacle is very close. 
3.- If h is medium and ϕ is very much in front of the robot 
then obstacle is very close. 
4.- If h is large and ϕ is quite in front of the robot then 
obstacle is very close. 
5.- In other case, obstacle is not very close. 
 

The output provided by this neuro-fuzzy system is 
shown in Figure 3b (dark area represents ‘not very close’ 
obstacles), and the fuzzy concepts employed for the h and 
ϕ inputs are illustrated in Figure 3c. 

Another approach to design this neuro-fuzzy system is to 
employ the hierarchical structure shown in Figure 4b. A 
fuzzy rule base, named ‘interpolation’ in Figure 4b, 
interpolates, for each angle ϕ, the minimum value of h, 
hmin, that an obstacle should have to be considered as ‘not 
very close’. This rule base has been trained by the 
numerical data (ϕ, hmin) that verify (2) when condition ‘<’ 
is substituted by ‘=’. Again using the CAD tools of Xfuzzy, 
the neuro-fuzzy system obtained contains the following 
rules: 

 
1.- If ϕ is quite left or right then hmin is 1.7m. 
2.- If ϕ is right or left then hmin is 1.5m. 
3.- If ϕ is in front of the robot then hmin is 2.1m. 

 
The shadowed area in Figure 5a illustrates the points that 

this system classifies as unavoidable. The fuzzy concepts 
employed in the rules are shown in Figure 5b. 

Performance of monolithic and hierarchical neuro-fuzzy 
systems is similar, but the hierarchical one has been 
selected for being slightly simpler. 

B. Close obstacles 
Let us now consider the obstacles that are ‘close’ to the 

robot and should be avoided. Taking into account the 
current robot curvature, γ, that 2m at both sides and ahead 
in the driving direction should be free of obstacles for 
safety purposes (considering the robot size and an speed of 
1m/s), those obstacles which approximately enter the dark 
shadowed area in Figure 6a are ‘close’ and, hence, they 
should be avoided (the robot is assuming to be turning to 

the right in this figure). Considering a relative coordinate 
system attached to the robot, the equations that define this 
area are as follows: 
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where (xr, yr) are the coordinates of the obstacle with 
regards to the relative reference system and (xR, yR) are the 
coordinates of the obstacle with regards to a reference 
system displaced 2m in the driving direction: 
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The function f() in (3) corresponds to expressions (1) or 

(2) but replacing ‘<’ by ‘=’. 
As in the case of ‘very close’ obstacles, we can follow 

two approaches to define a fuzzy classifier that decides if 
an obstacle is ‘close’ or not: a monolithic system or a 
hierarchical one. A monolithic system would have now 
three inputs, h, ϕ, and γ, and one output. Hence, the 
difference between the monolithic and hierarchical 
approaches is now higher than in the case of very close 
obstacles, where the monolithic system had two inputs. As 
a consequence, the hierarchical approach has been selected 
directly. In particular, we have explored the highest (and, 
hence, simplest) hierarchical scheme, shown in Figure 6b, 
where rule bases with only one input are employed. This 
scheme maintains the linguistic meaning that a fuzzy 
system should have. The fuzzy rule base named ‘rotation’ 
in Figure 6b allows estimating approximately the position 
with regards to the robot that a possible obstacle would 
have in the future. The rule base named ‘distance’ 
interpolates the maximum value of h, hmax, that an obstacle 
should have to be considered as ‘close’. These rule bases 
have been trained by the numerical data (ϕ, γ, hmax) that 
verify (3) when condition ‘<’ is substituted by ‘=’. Using 
the CAD tools of Xfuzzy, two rules have been extracted for 
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Figure 4. Neuro-fuzzy system to detect very close obstacles: (a) 
Monolithic structure. (b) Hierarchical structure. 
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Figure 5.  (a) Result provided by the hierarchical neuro-fuzzy system. (b) 
Fuzzy concepts employed. 
  



 
 

 

the rule base ‘rotation’ and three ones for the rule base 
‘distance’. The latter ones can be expressed linguistically as 
follows: 
 
1.- If the obstacle will be in front of the robot in future 
configurations then hmax is 4.0m. 
2.- If the obstacle will be on the right or left of the robot in 
future configurations then hmax is 2.0m. 
3.- If the obstacle will be quite on the right or left of the 
robot in future configurations then hmax is 1.6m. 

 
According to (3) and (4), the surface in Figure 7a 

illustrates the maximum values of h, hmax, that have the 
obstacles considered as ‘close’ depending on its angular 
positions, ϕ, and curvature of the robot, γ. The surface in 
Figure 7b illustrates how the hierarchical fuzzy system 
designed approximates the already approximated 
geometrical analysis. 

C. Obstacle avoidance 
Once a ‘close’ obstacle is detected, the controller 

evaluates the angular aperture (ϕL - ϕR) seen by the laser 
from the obstacle (Figure 6c) and determines the sign of the 
curvature to avoid the obstacle by applying the following 
heuristic rules: 
 
1.- If the obstacle is on the right then turn to the left (and 
vice versa). 
2.- If the obstacle is in front of the robot then: 
a) turn to the same side as in the previous control cycle 

(provided the obstacle was already detected). 
b) If this is the first time the obstacle is detected, apply the 
sign as no obstacle was detected. 

 
The minimum magnitude of the curvature to avoid the 

obstacle is determined by the closest point of the obstacle 
(hM and ϕM in Figure 6c). Maintaining a free 2-m width 
corridor and, taking into account that a reference curvature 
is not adopted instantaneously by the robot but has a delay, 
a geometrical analysis provides that the minimum value of 
the curvature is given by the following formula: 
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In order to approximate the already approximated 

analysis in (5) by a fuzzy system, a monolithic and a 
hierarchical approach have been again explored with the 
aid of Xfuzzy. Exploiting the symmetry of the problem 
(γ=f(ϕM,hM), when turning to right and γ=f(180-ϕM,hM), 
when turning to left), the turning to right problem has been 
only analyzed. Figure 8a shows these γ values (when 
turning to right) versus ϕM and hM. In this case, the 
monolithic system has been selected because its complexity 
is somewhat lower (5 instead of the 9 rules extracted in the 
hierarchical system) achieving a better approximation. The 
obtained system, which decides how much turning to right 
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Figure 6.  (a) Area of ‘close’ obstacles. (b) Hierarchical system to classify obstacles as ‘close’ or not. (c) Parameters to calculate the new curvature.   
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Figure 7.  (a) Maximum distance of obstacles considering as ‘close’ 
according to (3). (b) Result provided by the hierarchical system. 
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Figure 8.  (a) Curvature to avoid obstacles according to (5). (b) Result 
provided by the neuro-fuzzy system. 



 
 

 

(once turning to right has been decided), forces the robot to 
turn more as more dangerous the obstacle is for the way the 
robot is going to take immediately. The more dangerous the 
obstacle is, the more the robot will turn to right. This can 
be understood from the rules this module applies (imagine 
the robot is going ahead or to its right): 

 
1.- If hM is very short then turn right at maximum. 
2.- If hM is short and ϕM is not quite on the left then turn 
right at maximum. 
3.- If hM is medium and ϕM is in front of or on the right 
then turn right at maximum. 
4.- If hM is large and ϕM is right then turn right at 
maximum. 
5.- In other case, keep straight ahead. 

 
Since these rules employ fuzzy concepts, the γ values 

provided by this system do not switch abruptly but vary 
smoothly between maximum turning to right and zero, as 
shown in Figure 8b. 

D. Navigation toward the goal 
If there are no obstacles, the robot should navigate 

toward the goal (0, 0, 180º, 0, 0) by the shortest path. The 
shortest paths for a car-like vehicle consist of a finite 
sequence of two elementary components: arcs of circle 
(with minimum turning radius) and straight line segments, 
as was proved by Dubins [11]. Analyzing the shortest paths 
geometrically, it can be found that there is an angle, α, 
which defines the orientation of the straight segment which 
contains the (x, y) point of the current robot configuration 
and is tangent to the arc of circle that defines the end of the 
path (Figure 9). Depending on the difference between this 
angle and the current robot orientation the robot will turn to 
right or left or will not turn (if the difference is zero). The 
value of the angle α depends on x and y as follows: 
   

⎪
⎩

⎪
⎨

⎧

≤+−−⋅

>+−ψ⋅
=α

2R2y2)Rx(if)
R
x

1cos(ar)x(sign

2R2y2)Rx(if)cos(ar)x(sign   (6) 

 
where R is the minimum turning radius and the value of ψ 
is given by: 
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A monolithic or a hierarchical fuzzy system can be 

employed to approximate this behavior, as in the previous 
steps. In this case, the hierarchical approach has been 
directly explored since the monolithic system is more 
complex for having three inputs (x, y, φ). The hierarchical 
scheme selected is shown in Figure 10. As in the previous 
cases, it consists of two rule bases connected in series. The 
first one (with 9 rules) provides approximately the value of 
the angle α, depending on the input variables x and y. 
Figure 11 illustrates how this module approximates the 
already approximated analysis summarized in (6) and (7). 
The second rule base (with 2 rules, exploiting symmetry) 
provides the curvature value depending on the difference 
between φ and α. These two rules are the following: 

 
1.- If (φ – α) is somewhat smaller than 180º then turn right 
a bit. 
2.- If (φ – α) is much smaller than 180º then turn right at 
maximum. 

III. RESULTS 
The whole neuro-fuzzy-based controller has been 

described with the tool xfedit of Xfuzzy 3, which allows 
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Figure 10. Hierarchical system to navigate without obstacles. 
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Figure 9. Minimal-length paths of car-like robots. 
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Figure 11.  (a) Alpha value according to (6) and (7). (b) Result provided 
by the neuro-fuzzy system. 



 
 

 

connecting fuzzy and non fuzzy rule bases as well as 
arithmetic modules. Figure 12 shows a capture of the main 
window of this tool illustrating part of this controller. 

Simulations have been carried out with the tool xfsim. It 
simulates the controller working in a closed loop with a 
model of the robot. The robot model (which contains the 
models of its sensors) provides the new configuration of 
the robot and the new information given by the laser. This 
model is introduced in xfsim as a Java class. 

Figure 13 shows several examples of how the robot is 
controlled to reach the goal configuration (x, y, φ, γ, v) = 
(0, 0, 180º, 0, 0) without colliding with obstacles. As 
illustrated, if no obstacles are detected, the robot goes to 
the goal by a near-minimal length path made up of arcs of 
circles with minimum turning radius and straight line 
segments, and, if obstacles are close, they are avoided by 
minimum deviations from the quasi-optimal path. 

IV. CONCLUSION 
A very simple controller to allow safe navigation of a 

car-like robot among possible obstacles has been described. 
The use of numerical data obtained from an approximated 
geometrical analysis of the problem has allowed this 
controller to provide quasi-optimal reference paths that 

meet the kinematic and dynamic constraints of the car-like 
robot considered. The CAD tools of the Xfuzzy 
environment have been employed to automate all the 
process of extracting rules from numerical data and 
heuristic knowledge, simplify, adjust them, and verify the 
whole system. The resulting controller contains 26 rules 
which are linguistically interpretable so that its 
performance can be understood and tested by any human.  
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Figure 12.  Description of the whole controller with Xfuzzy. 
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Figure 13.  Simulation results obtained with Xfuzzy. 


