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Abstract: Let G be a nontrivial connected graph. For a set D ⊆ V(G), we define D = V(G) \ D. The
set D is a total outer-independent dominating set of G if |N(v) ∩ D| ≥ 1 for every vertex v ∈ V(G)

and D is an independent set of G. Moreover, D is a double outer-independent dominating set of
G if |N[v] ∩ D| ≥ 2 for every vertex v ∈ V(G) and D is an independent set of G. In addition, D is
a 2-outer-independent dominating set of G if |N(v) ∩ D| ≥ 2 for every vertex v ∈ D and D is an
independent set of G. The total, double or 2-outer-independent domination number of G, denoted by
γoi

t (G), γoi
×2(G) or γoi

2 (G), is the minimum cardinality among all total, double or 2-outer-independent
dominating sets of G, respectively. In this paper, we first show that for any cactus graph G of
order n(G) ≥ 4 with k(G) cycles, γoi

2 (G) ≤ n(G)+l(G)
2 + k(G), γoi

t (G) ≤ 2n(G)−l(G)+s(G)
3 + k(G) and

γoi
×2(G) ≤ 2n(G)+l(G)+s(G)

3 + k(G), where l(G) and s(G) represent the number of leaves and the
number of support vertices of G, respectively. These previous bounds extend three known results
given for trees. In addition, we characterize the trees T with γoi

×2(T) = γoi
t (T). Moreover, we

show that γoi
2 (T) ≥

n(T)+l(T)−s(T)+1
2 for any tree T with n(T) ≥ 3. Finally, we give a constructive

characterization of the trees T that satisfy the equality above.

Keywords: total outer-independent domination; double outer-independent domination;
2-outer-independent domination; cactus graphs; trees

MSC: 05C05, 05C69

1. Introduction

Let G(V(G), E(G)) be a finite simple graph of order n(G) = |V(G)| and size m(G) =
|E(G)|. For a set D ⊆ V(G), we define D = V(G) \ D and N(D) = ∪v∈D N(v). As
usual, G − D denotes the graph obtained from G by removing all the vertices in D and
all the edge incidents with a vertex in D. Analogously, the graph obtained from G by
removing all the edges in U ⊆ E(G) will be denoted by G − U . Given a vertex v of G,
N(v) and N[v] represent the open neighborhood and the closed neighborhood of vertex v; that
is, N(v) = {u ∈ V(G) : uv ∈ E(G)} and N[v] = N(v) ∪ {v}. The degree of a vertex
v, denoted by deg(v), is the cardinality of N(v). A vertex of degree one is called a leaf,
and its neighbor is called a support vertex. Let l(G) = |L(G)| and s(G) = |S(G)|, where
L(G) = {v ∈ V(G) : deg(v) = 1} and S(G) = N(L(G)) \ L(G). A strong leaf is a leaf at
distance two from another leaf. The set of strong leaves is denoted by Ls(G). A connected
graph G is a cactus graph if each edge of G is contained in at most one cycle. We will use
the notation Pn, Cn and K1,n−1 for the path graphs, cycle graphs and star graphs of order n,
respectively. For any other graph theory terminology, we follow the book [1].

Domination in graphs is one of the most popular and highly investigated topics in the
area of graph theory. A set D ⊆ V(G) is called a dominating set of G if N(x) ∩ D 6= ∅ for
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every x ∈ V(G) \ D. The domination number of G, denoted by γ(G), is defined as γ(G) =
min{|D| : D is a dominating set of G}. A compendium of the main results obtained on
domination theory in graphs until 1998 can be found in books [1,2].

In the last decades, one interesting research activity on domination in graphs has
been the study of the parameters associated with different variants of dominating sets in
graphs. These domination parameters will depend on conditions that can be imposed on the
dominating set D, on the set D or on the “method” by which vertices in D are dominated.

In this article, we study three domination parameters in cactus graphs, which present
a certain symmetry due to the conditions that are imposed on each of them. In particular,
and as we will show below, these parameters are related to dominating sets whose com-
plements are independent sets, which are nowadays very common research topics in the
graph theory community. Next, we define our three domination parameters of interest:

• The total outer-independent domination number of G, denoted by γoi
t (G), is the

minimum cardinality among all total outer-independent dominating sets (TOIDSs) of
G. In this case, a set D ⊆ V(G) is a TOIDS of G if |N(v) ∩ D| ≥ 1 for every vertex
v ∈ V(G), and D is an independent set of G. A γoi

t (G)-set is a TOIDS of G of cardinality
γoi

t (G). This domination parameter was introduced by Soner et al. [3]. For recent
results on the total outer-independent domination in graphs, we cite [4–6].

• The double outer-independent domination number of G, denoted by γoi
×2(G), is the

minimum cardinality among all double outer-independent dominating sets (DOIDSs)
of G. In this case, a set D ⊆ V(G) is a DOIDS of G if |N[v] ∩ D| ≥ 2 for every
vertex v ∈ V(G), and D is an independent set of G. A γoi

×2(G)-set is a DOIDS of G of
cardinality γoi

×2(G). The study of this domination parameter was initiated in [7]. Some
recent and excellent results on this concept can be found, for example, in [6,8,9].

• The 2-outer-independent domination number of G, denoted by γoi
2 (G), is the minimum

cardinality among all 2-outer-independent dominating sets (2OIDSs) of G. In this case,
a set D ⊆ V(G) is a 2OIDS of G if |N(v) ∩ D| ≥ 2 for every vertex v ∈ D, and D
is an independent set of G. A γoi

2 (G)-set is a 2OIDS of G of cardinality γoi
2 (G). This

parameter was introduced in [10] and studied further in [11].

As a consequence of the definitions above, we deduce that if D is a γoi
×2(G)-set or a

γoi
2 (G)-set, then L(G) ⊆ D. In the same way, if W is a γoi

t (G)-set or a γoi
×2(G)-set, then

S(G) ⊆W. These facts will be very useful tools throughout the article. Figure 1 shows a
cactus graph G with γoi

t (G) = 3, γoi
×2(G) = 5 and γoi

2 (G) = 4.

(a) (b) (c)

Figure 1. A cactus graph G with γoi
t (G) = 3 (a), γoi

×2(G) = 5 (b) and γoi
2 (G) = 4 (c).

The following theorem, due to Krzywkowski, establishes lower and upper bounds on
the previous three outer-independent domination-related parameters for trees.

Theorem 1. The following bounds hold for any tree T of order n(T) ≥ 4.

(i) γoi
2 (T) ≤

n(T)+l(T)
2 (obtained in [11]).

(ii) 2n(T)−2l(T)+2
3 ≤ γoi

t (T) ≤
2n(T)−l(T)+s(T)

3 (obtained in [12] and [13], respectively).

(iii) 2n(T)+l(T)−s(T)+2
3 ≤ γoi

×2(T) ≤
2n(T)+l(T)+s(T)

3 (obtained in [14] and [8], respectively).
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In this paper, we first extend the upper bounds given in the previous theorem for the
case of the cactus graphs. We prove that for any cactus graph G of order at least four with
k(G) cycles,

• γoi
2 (G) ≤ n(G)+l(G)

2 + k(G);

• γoi
t (G) ≤ 2n(G)−l(G)+s(G)

3 + k(G);

• γoi
×2(G) ≤ 2n(G)+l(G)+s(G)

3 + k(G).

Moreover, we briefly address the particular case of trees. In particular, we characterize
the nontrivial trees T with γoi

×2(T) = γoi
t (T) and we show that γoi

2 (T) ≥
n(T)+l(T)−s(T)+1

2
for any tree T with n(T) ≥ 3. This previous lower bound covers an existing gap for the
2-outer-independent domination number of a tree, in relation to the other two parameters
of interest (see the lower bounds given in Theorem 1 for γoi

t (T) and γoi
×2(T)). Finally, we

give a constructive characterization of the trees that satisfy the equality above.

2. New Upper Bounds

We begin this section by extending the upper bound given in Theorem 1-(i) for the
case of the cactus graphs. Before, let us recall that γoi

2 (Cn) = d n
2 e for any cycle Cn of order

n ≥ 3.

Theorem 2. If G is a nontrivial cactus graph with k(G) cycles, then

γoi
2 (G) ≤ n(G) + l(G)

2
+ k(G).

Proof. Let G be a nontrivial cactus graph. The proof is by induction on the size m(G) ≥ 1.
If m(G) ∈ {1, 2}, then it is straightforward that the result follows. These establish the base
cases. Let us assume that m(G) ≥ 3 and that γoi

2 (G
∗) ≤ (n(G∗) + l(G∗))/2 + k(G∗) for

each nontrivial cactus graph G∗ with m(G∗) < m(G). If G is a tree of order at least four,
then the result follows by Theorem 1-(i). On the other hand, if G is a cycle of order n ≥ 3,
then the result follows by the fact that γoi

2 (Cn) = d n
2 e. Henceforth, we will assume that

G is a cactus graph other than a cycle or a tree. Hence, G contains at least one cycle as
a proper subgraph. Let C be any cycle of G. Also, let u ∈ V(C) such that deg(u) ≥ 3
and v ∈ N(u) ∩ V(C). Let G′ = G − {uv}. Observe that G′ is a cactus graph with
n(G′) = n(G), k(G′) = k(G)− 1 and m(G′) < m(G). By the induction hypothesis, we
have the inequality γoi

2 (G
′) ≤ (n(G′) + l(G′))/2 + k(G′). In addition, we observe that

l(G′) = l(G) or l(G′) = l(G) + 1. Now, we can distinguish two cases as follows:

Case 1: l(G′) = l(G) + 1. It is easy to see that v ∈ L(G′). Let D′ be a γoi
2 (G

′)-set. Since
L(G′) ⊆ D′, it follows that v ∈ D′. As a consequence, we deduce that D′ is also a 2OIDS of
G. Hence, γoi

2 (G) ≤ |D′| = γoi
2 (G

′). Therefore, by the inequality above and the induction
hypothesis, we obtain the following desired result:

γoi
2 (G) ≤ γoi

2 (G
′)

≤ n(G′) + l(G′)
2

+ k(G′)

≤ n(G) + (l(G) + 1)
2

+ k(G)− 1

<
n(G) + l(G)

2
+ k(G).
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Case 2: l(G′) = l(G). Let D′ be a γoi
2 (G

′)-set. Observe that D = D′ ∪ {u} is a 2OIDS of G,
which implies that γoi

2 (G) ≤ |D| ≤ |D′|+ 1 ≤ γoi
2 (G

′) + 1. Thus, by the inequality above
and the induction hypothesis, we obtain the following desired result:

γoi
2 (G) ≤ γoi

2 (G
′) + 1

≤ n(G′) + l(G′)
2

+ k(G′) + 1

=
n(G) + l(G)

2
+ k(G).

From the two cases above, the proof follows.

The bound given in the theorem above is tight. For instance, it is achieved for the
nontrivial trees attaining the upper bound given in Theorem 1-(i) (see [11]).

In the following result, we extend the upper bound given in Theorem 1-(ii) for the
case of the cactus graphs. Before, let us recall that γoi

×2(Cn) = γoi
t (Cn) = d 2n

3 e for any cycle
Cn of order n ≥ 3.

Theorem 3. If G is a cactus graph of order at least four with k(G) cycles, then

γoi
t (G) ≤ 2n(G)− l(G) + s(G)

3
+ k(G).

Proof. Let G be a cactus graph of order at least four. We proceed by induction on the
size m(G) ≥ 3. If m(G) = 3, then G is either the path P4 or the star K1,3. In both cases,
the inequality holds by using the upper bound given in Theorem 1-(ii). This establishes the
base case. Let us assume that m(G) ≥ 4 and that γoi

t (G
∗) ≤ (2n(G∗)− l(G∗) + s(G∗))/3 +

k(G∗) for each cactus graph G∗ of order at least four such that 3 ≤ m(G∗) < m(G).
If G is a tree or a cycle, then the result follows by Theorem 1-(ii) or by the fact that

γoi
t (Cn) = d 2n

3 e, respectively. Henceforth, we will assume that G is a cactus graph other
than a cycle or a tree. Hence, G contains at least one cycle as a proper subgraph. Let C
be any cycle of G. Also, let u ∈ V(C) such that deg(u) ≥ 3 and v ∈ N(u) ∩ V(C). Let
G′ = G− {uv}. Observe that G′ is a cactus graph with n(G′) = n(G), k(G′) = k(G)− 1
and m(G′) < m(G). By the induction hypothesis, we have the inequality γoi

t (G
′) ≤

(2n(G′)− l(G′) + s(G′))/3 + k(G′). Now, we proceed to show that γoi
t (G) ≤ γoi

t (G
′) + 1.

For this purpose, we consider a γoi
t (G

′)-set D′. Observe that D = D′ ∪ {u} is a TOIDS
of G, which implies that γoi

t (G) ≤ |D| ≤ |D′|+ 1 = γoi
t (G

′) + 1, as desired. In addition,
we observe that l(G′) = l(G) or l(G′) = l(G) + 1. Now, we can distinguish two cases
as follows:

Case 1: l(G′) = l(G) + 1. It is easy to check that s(G′) ≤ s(G) + 1. Therefore, by the
previous inequalities and the induction hypothesis, we obtain the following desired result:

γoi
t (G) ≤ γoi

t (G
′) + 1 ≤ 2n(G′)− l(G′) + s(G′)

3
+ k(G′) + 1

≤ 2n(G)− (l(G) + 1) + (s(G) + 1)
3

+ k(G)

=
2n(G)− l(G) + s(G)

3
+ k(G).
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Case 2: l(G′) = l(G). In this case, it follows that s(G′) = s(G). Thus, by the inequality
above and the induction hypothesis, we obtain the following desired result:

γoi
t (G) ≤ γoi

t (G
′) + 1 ≤ 2n(G′)− l(G′) + s(G′)

3
+ k(G′) + 1

=
2n(G)− l(G) + s(G)

3
+ k(G).

From the two cases above, the proof follows.

The bound given in the theorem above is tight. For instance, it is achieved for the
nontrivial trees attaining the upper bound given in Theorem 1-(ii) (see [13]).

Next, we extend the upper bound given in Theorem 1-(iii) for the case of the cac-
tus graphs.

Theorem 4. If G is a cactus graph of order at least three with k(G) cycles, then

γoi
×2(G) ≤ 2n(G) + l(G) + s(G)

3
+ k(G).

Proof. Let G be a cactus graph with n(G) ≥ 3. We proceed by induction on the size m(G) ≥ 2.
If m(G) ∈ {2, 3}, then it is easy to check that the result follows. These establish the base
cases. We assume that m(G) ≥ 4 and that γoi

×2(G
∗) ≤ (2n(G∗) + l(G∗) + s(G∗))/3 + k(G∗)

for each cactus graph G∗ of order n(G∗) ≥ 3 such that m(G∗) < m(G).
If G is a tree or a cycle, then the result follows by Theorem 1-(iii) or by the fact that

γoi
×2(Cn) = d 2n

3 e, respectively. Henceforth, we will assume that G is a cactus graph other
than a cycle or a tree. Hence, G contains at least one cycle as a proper subgraph. Let C
be any cycle of G. Also, let u ∈ V(C) such that deg(u) ≥ 3 and v ∈ N(u) ∩ V(C). Let
G′ = G−{uv}. Observe that G′ is a cactus graph with n(G′) = n(G), k(G′) = k(G)− 1 and
m(G′) < m(G). By the induction hypothesis, we have the inequality γoi

×2(G
′) ≤ (2n(G′) +

l(G′) + s(G′))/3 + k(G′). In addition, we observe that l(G′) = l(G) or l(G′) = l(G) + 1.
Now, we can distinguish two cases as follows:

Case 1: l(G′) = l(G) + 1. It is easy to check that s(G′) ≤ s(G) + 1 and that v ∈ L(G′).
Let D′ be a γoi

×2(G
′)-set. Since L(G′) ⊆ D′, it follows that v ∈ D′. As a consequence, we

deduce that D′ is also a DOIDS of G. Hence, γoi
×2(G) ≤ |D′| = γoi

×2(G
′). Therefore, by the

induction hypothesis and the previous inequalities, we obtain the following desired result:

γoi
×2(G) ≤ γoi

×2(G
′)

≤ 2n(G′) + l(G′) + s(G′)
3

+ k(G′)

≤ 2n(G) + (l(G) + 1) + (s(G) + 1)
3

+ k(G)− 1

<
2n(G) + l(G) + s(G)

3
+ k(G).

Case 2: l(G′) = l(G). Observe that s(G′) = s(G). Now, let D′ be a γoi
×2(G

′)-set. Observe
that D = D′ ∪ {u} is a DOIDS of G, which implies that γoi

×2(G) ≤ |D| ≤ |D′| + 1 =

γoi
×2(G

′) + 1. Hence, by the inequalities above and the induction hypothesis, we obtain the
following desired result:

γoi
×2(G) ≤ γoi

×2(G
′) + 1

≤ 2n(G′) + l(G′) + s(G′)
3

+ k(G′) + 1
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=
2n(G) + l(G) + s(G)

3
+ k(G).

From the two cases above, the proof follows.

The bound given in the theorem above is tight. For instance, it is achieved for the
nontrivial trees attaining the upper bound given in Theorem 1-(iii) (see [8]).

The Particular Case of Trees

In this subsection, we first address that gap for the 2-outer-independent domination
number of a tree of order at least three.

Theorem 5. For any tree T of order n(T) ≥ 3,

γoi
2 (T) ≥

n(T) + l(T)− s(T) + 1
2

.

Proof. Let T be a tree of order at least three. We proceed by induction on the order
n(T) ≥ 3. If n(T) ∈ {3, 4}, then the result follows. These establish the base cases. We
assume that n(T) ≥ 5 and that γoi

2 (T
∗) ≥ (n(T∗) + l(T∗)− s(T∗) + 1)/2 for each tree T∗

with 3 ≤ n(T∗) < n(T). Let v1 · · · vdvd+1 be a diametral path in T, and we consider the
following three cases:

Case 1: deg(vd) ≥ 3. Let us consider the subtree T′ = T−{vd+1}. It is straightforward that
n(T′) = n(T)− 1, l(T′) = l(T)− 1 and s(T′) = s(T). Let D be a γoi

2 (T)-set. As L(T) ⊆ D
and D is an independent set of T, we have that vd+1, vd−1 ∈ D, vd ∈ D and |(N(vd) ∩ D) \
{vd+1}| ≥ 2. By the previous conditions, it is easy to deduce that D \ {vd+1} is a 2OIDS
of T′, which implies that γoi

2 (T
′) ≤ |D \ {vd+1}| = γoi

2 (T)− 1. Therefore, by the induction
hypothesis and the previous inequalities, we deduce the required result:

γoi
2 (T) ≥ γoi

2 (T
′) + 1

≥ n(T′) + l(T′)− s(T′) + 1
2

+ 1

=
(n(T)− 1) + (l(T)− 1)− s(T) + 1

2
+ 1

=
n(T) + l(T)− s(T) + 1

2
.

Case 2: deg(vd) = 2 and deg(vd−1) ≥ 3. Let us consider the subtree T′′ = T − {vd, vd+1}.
Let D be a γoi

2 (T)-set such that |D ∩ {vd, vd+1}| is minimum. As L(T) ⊆ D and D is
an independent set of T, we have that vd+1, vd−1 ∈ D and vd ∈ D. By the previous
conditions, it is easy to deduce that D \ {vd+1} is a 2OIDS of T′′, which implies that
γoi

2 (T
′′) ≤ |D \ {vd+1}| = γoi

2 (T)− 1. Therefore, by the previous inequality, the induction
hypothesis and the fact that n(T′′) = n(T)− 2, l(T′′) = l(T)− 1 and s(T′′) = s(T)− 1, we
deduce the desired result:

γoi
2 (T) ≥ γoi

2 (T
′′) + 1

≥ n(T′′) + l(T′′)− s(T′′) + 1
2

+ 1

=
(n(T)− 2) + (l(T)− 1)− (s(T)− 1) + 1

2
+ 1

=
n(T) + l(T)− s(T) + 1

2
.
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Case 3: deg(vd) = deg(vd−1) = 2. Let us consider the subtree T′′ = T− {vd, vd+1}. As in
the previous case, it can be deduced that γoi

2 (T
′′) ≤ γoi

2 (T)− 1. Therefore, by the previous
inequality, the induction hypothesis and the fact that n(T′′) = n(T)− 2, l(T′′) = l(T) and
s(T′′) ≤ s(T), we deduce the required result:

γoi
2 (T) ≥ γoi

2 (T
′′) + 1

≥ n(T′′) + l(T′′)− s(T′′) + 1
2

+ 1

≥ n(T)− 2 + l(T)− s(T) + 1
2

+ 1

=
n(T) + l(T)− s(T) + 1

2
.

From the three cases above, the proof follows.

Let T be the family of trees T that can be obtained from a sequence of trees T0, . . . , Tk =
T, with k ≥ 0 and T0 = P5. If k ≥ 1, then for each subscript i ∈ {1, . . . , k}, the tree Ti can be
obtained from T′ = Ti−1 by one of the next two operations:

• Operation O1: Add a path P1 and join it to a vertex v ∈ S(T′).
• Operation O2: Add a path P2 and join one of its leaves to a vertex v ∈ V(T′) \ Ls(T′)

which is in some γoi
2 (T

′)-set.

Now, we proceed to prove that every tree in T achieves equality in the lower bound
given in Theorem 5.

Lemma 1. Let T be a tree of order n(T) ≥ 3. If T ∈ T , then γoi
2 (T) =

n(T)+l(T)−s(T)+1
2 .

Proof. Let T be a tree of order at least three. We proceed by induction on the number
r(T) of operations required to construct the tree T. If r(T) = 0, then T = P5 and γoi

2 (T) =
3 = (n(T) + l(T) − s(T) + 1)/2, as required. This establishes the base case. We now
assume that k ≥ 1 is an integer and that each tree T∗ ∈ T with r(T∗) < k satisfies that
γoi

2 (T
∗) = (n(T∗) + l(T∗)− s(T∗) + 1)/2. Since T ∈ T , it follows that T can be obtained

from a tree T′ ∈ T with r(T′) = k− 1 by one of the Operations O1 or O2. Next, we consider
the next two cases.

Case 1: T is obtained from T′ by Operation O1. In this case, T is obtained from T′ by adding
a vertex u1 and the edge u1v, where v ∈ S(T′). Observe that for any γoi

2 (T
′)-set D′, the set

D′ ∪ {u1} is a 2OIDS of T. This implies that γoi
2 (T) ≤ |D′|+ 1 = γoi

2 (T
′) + 1. By using

the lower bound given in Theorem 5, the induction hypothesis and the fact that n(T) =
n(T′) + 1, l(T) = l(T′) + 1 and s(T) = s(T′), it follows that (n(T) + l(T)− s(T) + 1)/2 ≤
γoi

2 (T) ≤ γoi
2 (T

′) + 1 = (n(T′) + l(T′)− s(T′) + 1)/2 + 1 = (n(T) + l(T)− s(T) + 1)/2.
Hence, γoi

2 (T) = (n(T) + l(T)− s(T) + 1)/2, as desired.

Case 2: T is obtained from T′ by Operation O2. In this case, T is obtained from T′ by adding
the path u1u2 and the edge u1v, where v ∈ D′ \ Ls(T′) for some γoi

2 (T
′)-set D′. Observe

that D′ ∪ {u2} is a 2OIDS of T. This implies that γoi
2 (T) ≤ γoi

2 (T
′) + 1. By using the lower

bound given in Theorem 5, the induction hypothesis and the fact that n(T) = n(T′) + 2
and l(T) − s(T) = l(T′) − s(T′), we have that (n(T) + l(T) − s(T) + 1)/2 ≤ γoi

2 (T) ≤
γoi

2 (T
′) + 1 = (n(T′) + l(T′)− s(T′) + 1)/2 + 1 = (n(T) + l(T)− s(T) + 1)/2. Hence, we

have that γoi
2 (T) = (n(T) + l(T)− s(T) + 1)/2, as desired.

We next show that every tree T of order at least three satisfying equality γoi
2 (T) =

n(T)+l(T)−s(T)+1
2 belongs to the family T .

Lemma 2. Let T be a tree of order n(T) ≥ 3. If γoi
2 (T) =

n(T)+l(T)−s(T)+1
2 , then T ∈ T .
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Proof. We proceed by induction on the order of a tree T, which satisfies that γoi
2 (T) =

(n(T) + l(T)− s(T) + 1)/2. If n(T) ≤ 5 then T = P5, which belongs to T . We assume
that n(T) > 5 and that every tree T∗ with γoi

2 (T
∗) = (n(T∗) + l(T∗)− s(T∗) + 1)/2 and

3 ≤ n(T∗) < n(T) satisfies that T∗ ∈ T . Now, we prove that T ∈ T . For this, we
root the tree T at a leaf v1 belonging to a diametral path v1 · · · vdvd+1. We consider the
following cases:

Case 1: deg(vd) ≥ 3. Let us consider the subtree T′ = T − {vd+1}. Let D be a γoi
2 (T)-set.

As L(T) ⊆ D and D is an independent set of T, we have that vd+1, vd−1 ∈ D, vd ∈ D
and |(N(vd) ∩ D) \ {vd+1}| ≥ 2. By the previous conditions, it is easy to deduce that
D \ {vd+1} is a 2OIDS of T′, which implies that γoi

2 (T
′) ≤ |D \ {vd+1}| = γoi

2 (T) − 1.
By using the lower bound given in Theorem 5 for the tree T′, the hypothesis γoi

2 (T) =
(n(T) + l(T) − s(T) + 1)/2 and the fact that n(T′) = n(T) − 1, l(T′) = l(T) − 1 and
s(T′) = s(T), it follows that

n(T′) + l(T′)− s(T′) + 1
2

≤ γoi
2 (T

′) ≤ γoi
2 (T)− 1 =

n(T′) + l(T′)− s(T′) + 1
2

.

Hence, we have that γoi
2 (T

′) = (n(T′) + l(T′)− s(T′) + 1)/2, and by the induction hypoth-
esis, it follows that T′ ∈ T . Since vd ∈ S(T′), we have that T can be obtained from T′ by
Operation O1, which implies that T ∈ T , as desired.

Case 2: deg(vd) = 2. Let us consider the subtree T′′ = T−{vd, vd+1}. Let D be a γoi
2 (T)-set

such that vd−1 ∈ D and vd ∈ D (such a set D exists because L(T) ⊆ D, D is an independent
set of T and deg(vd) = 2). Observe that D′′ = D \ {vd+1} is a 2OIDS of T′′. This implies
that γoi

2 (T
′′) ≤ |D′′| = γoi

2 (T) − 1. If vd−1 ∈ Ls(T′′), then l(T′′) = l(T) and s(T′′) =
s(T)− 1, which implies that γoi

2 (T
′′) ≤ γoi

2 (T)− 1 = (n(T) + l(T)− s(T) + 1)/2− 1 <
(n(T′′) + l(T′′)− s(T′′) + 1)/2, which contradicts the bound given in Theorem 5. Hence,
vd−1 /∈ Ls(T′′), and as a consequence, it follows that l(T′′) = l(T)− 1 and s(T′′) = s(T)− 1.
Therefore, by using the lower bound given in Theorem 5 for the tree T′′, the hypothesis
γoi

2 (T) = (n(T) + l(T)− s(T) + 1)/2 and the previous equalities, we have that

n(T′′) + l(T′′)− s(T′′) + 1
2

≤ γoi
2 (T

′′) ≤ γoi
2 (T)− 1 =

n(T′′) + l(T′′)− s(T′′) + 1
2

.

Hence, we have that γoi
2 (T

′′) = (n(T′′) + l(T′′) − s(T′′) + 1)/2, and by the induction
hypothesis, it follows that T′′ ∈ T . Moreover, it follows that γoi

2 (T
′′) = γoi

2 (T)− 1, which
implies that D′′ is a γoi

2 (T
′′)-set containing vertex vd−1. Since vd−1 /∈ Ls(T′′), we have that

T can be obtained from tree T′′ by Operation O2, which implies that T ∈ T , as desired.

As an immediate consequence of Lemmas 1 and 2, we have the following characterization:

Theorem 6. Let T be a tree of order at least three. Then, γoi
2 (T) =

n(T)+l(T)−s(T)+1
2 if and only if

T ∈ T .

Let T∗ be a tree obtained by subdividing the central edge of a double star exactly once.
It is easy to see that the tree T∗ ∈ T can only be obtained from the path P5 by applying
Operation O1. On the other hand, observe that the path P7 ∈ T can only be obtained from
path P5 by applying Operation O2. Therefore, Operations O1 and O2 are required in the
characterization above.

Finally, we show an interesting result, which is a consequence of Theorem 1. Observe
that, by definition, it is easy to deduce that if G is a graph with δ(G) ≥ 2, then γoi

×2(G) =

γoi
t (G). However, characterizing the graphs G with δ(G) = 1 that satisfy the above

equality remains a problem to be solved. Next, we give a solution to this previous problem
considering that G is a nontrivial tree.

Theorem 7. Let T be a nontrivial tree. Then, γoi
×2(T) = γoi

t (T) if and only if T ∼= P2.
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Proof. If T ∼= P2, then the equality γoi
×2(T) = γoi

t (T) holds. From now on, we suppose that
T 6∼= P2. We only need to prove that γoi

t (T) < γoi
×2(T) (recall that γoi

t (T) ≤ γoi
×2(T)). If T ∼=

P3, then we are done. Let us consider that n(T) ≥ 4. From Theorem 1, and considering
the upper bound given in (ii) and the lower bound given in (iii), we obtain the following
inequality chain:

γoi
t (T) ≤

2n(T)− l(T) + s(T)
3

<
2n(T) + l(T)− s(T) + 2

3
≤ γoi

×2(T).

In particular, it follows that γoi
t (T) < γoi

×2(T), as desired. Therefore, the proof is complete.

3. Conclusions and Open Problems

This article is a contribution to the theory of domination in graphs. In particular, we
studied three domination parameters in cactus graphs. Among the main contributions
given in this article we emphasize the following.

• For each of the three domination parameters, we extended a well-known upper bound
given for trees to the cactus graphs.

• We give a new lower bound for the 2-outer-independent domination number of a tree
(in function on the order, the number of support vertices and the number of leaves),
and we provide a constructive characterization of the trees that satisfy equality in
that bound.

• We show that the double outer-independent domination number is greater than the
total outer-independent domination number for any tree of order at least three.

To continue with this line of research, we propose some open problems, which we
consider to be interesting:

1. Characterize the cactus graphs that satisfy the equalities in the upper bounds given in
Theorems 2–4.

2. For each of the three outer-independent domination parameters, try to extend the
lower bound given for trees to the cactus graphs.
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