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3 

Objetivos  

 

 

 El objetivo global de esta investigación fue desarrollar estrategias de 

análisis metabolómico global y orientado para la identificación y cuantificación 

de metabolitos con potencial como biomarcadores en análisis clínico, para lo que 

se utilizó una técnica de detección clave como es la espectrometría de masas —

que destaca por su gran versatilidad y excelentes niveles de sensibilidad, 

selectividad, precisión, exactitud y resolución. Se trata pues de un objetivo que 

engloba una disciplina en auge como es la metabolómica y un área de 

investigación como es la identificación de biomarcadores en análisis clínico. Este 

objetivo se dividió a su vez en tres objetivos generales en función de la temática 

del estudio en cuestión: Objetivo 1, desarrollar estrategias innovadoras en 

análisis metabolómico global con aplicación en clínica: (a) en una muestra 

escasamente estudiada como es el sudor, (b) en la preparación de la muestra y, 

(c) en la detección por espectrometría de masas para conseguir una mejora 

significativa en los métodos globales. Objetivo 2, identificar metabolitos con 

potencial como biomarcadores mediante el análisis global de biofluidos para su 

aplicación en estudios clínicos nutricionales o en el diagnóstico de enfermedades 

como la aterosclerosis y el cáncer de pulmón. Objetivo 3, optimizar métodos de 

análisis orientado confirmatorio y cuantitativo (absoluto y relativo) para la 

determinación de compuestos con potencial como marcadores en biofluidos y su 

aplicación en el diagnóstico de enfermedades. 

De estos tres objetivos generales derivaron los siguientes objetivos 

concretos: 

i) Realizar un estudio de optimización para la evaluación en análisis 

metabolómico de un biofluido obtenido de forma no invasiva como 

es el sudor. Se pudieron así comparar diferentes alternativas de 

preparación de muestra con las que proponer un método adecuado 

para la utilización analítica de este biofluido. Este estudio permitió la 

identificación mediante análisis por espectrometría de masas de 
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metabolitos presentes en sudor del que existe escasa información 

sobre su composición. Esta investigación ha dado como resultado un 

artículo (Capítulo 1) que recoge los aspectos derivados del análisis de 

esta muestra poco frecuente. 

ii) Evaluar la utilidad de una plataforma analítica totalmente automa-

tizada basada en el acoplamiento en línea de la extracción en fase 

sólida (SPE) y la cromatografía de líquidos con la espectrometría de 

masas en tándem (LC–MS/MS). Para ello se usó una gran diversidad 

de materiales sorbentes y la espectrometría de masas de alta 

resolución mediante un detector híbrido cuadrupolo–tiempo de 

vuelo (QTOF), para su aplicación al análisis global de suero humano, 

según recoge el Capítulo 2. 

iii) Demostrar una nueva faceta de la detección por espectrometría de 

masas mediante una modalidad conocida como Fraccionamiento en 

Fase Gaseosa (GPF) para su implementación en análisis global, tal 

como muestra el Capítulo 3. 

Un objetivo general y amplio como es la identificación de metabolitos 

biomarcadores mediante el análisis global de biofluidos se ha dividido en función 

del área de aplicación: Intervenciones dietéticas y diagnóstico de enfermedades 

como la aterosclerosis y el cáncer de pulmón, lo que ha dado lugar a una división 

en los siguientes objetivos concretos: 

iv) Estudiar mediante análisis metabolómico global basado en LC–

QTOF las diferencias existentes en el perfil metabólico del suero de 

individuos sometidos a cuatro intervenciones dietéticas basadas en 

diferente contenido energético y graso (Capítulo 4). De esta forma, se 

pretende establecer mediante análisis metabolómico diferencias me-

tabólicas asociadas a diferentes patrones dietéticos.  

v) Elucidar las diferencias metabólicas entre individuos con 

aterosclerosis diagnosticados con angina estable, infarto de 

miocardio sin elevación del segmento ST e infarto agudo de 
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Objetivos  

miocardio (Capítulo 5). El papel de la espectrometría de masas de 

alta resolución es clave para la identificación de metabolitos con 

contribución significativa a la discriminación.  

vi) Buscar un panel formado por metabolitos con potencial como bio-

marcadores para monitorizar individuos diagnosticados con ateros-

clerosis y predecir un episodio de infarto agudo de miocardio. La 

inclusión de factores clínicos en la búsqueda de los modelos 

predictivos mediante la combinación de marcadores estadísticos es 

clave en numerosos estudios, tal y como se detalla en el Capítulo 6. 

vii) Aplicar el protocolo derivado de i) a la discriminación de individuos 

diagnosticados con cáncer de pulmón frente a individuos sanos 

(incluyendo fumadores y no fumadores). La utilización de un 

biofluido no invasivo como el sudor y el desarrollo de un panel de 

metabolitos con potencial marcador son la base para la consecución 

de este objetivo planteado y resuelto en el Capítulo 7. 

El objetivo general 3, relacionado con el análisis orientado para el 

desarrollo de métodos de análisis confirmatorio y cuantitativo de compuestos con 

potencial como marcadores clínicos, tuvo como campo de aplicación el análisis de 

compuestos polares tales como ácidos tricarboxílicos y aminoácidos esenciales, 

compuestos lipídicos como fosfolípidos y un péptido de interés clínico como la 

catelicidina. Con estas premisas, los objetivos concretos fueron: 

viii) Utilizar el perfil de fosfolípidos en suero humano para la búsqueda 

de un panel con potencial predictivo para discriminar individuos 

diagnosticados con aterosclerosis. La selección de una etapa de SPE 

para la separación selectiva de los fosfolípidos y la espectrometría de 

masas de alta resolución constituyen dos herramientas claves de esta 

investigación junto al tratamiento de datos diseñado para configurar 

el panel de fosfolípidos marcadores, según se muestra en el Capítulo 

8. 
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ix) Establecer diferencias en concentración de aminoácidos esenciales 

en suero humano mediante SPE–LC–MS/MS en pacientes con 

aterosclerosis afectados por angina estable o por infarto agudo de 

miocardio. Para ello, la utilización de la configuración instrumental 

basada en un detector de triple cuadrupolo aporta una herramienta 

óptima en análisis cuantitativo orientado con posibilidad de analizar 

suero humano sin tratamiento previo (Capítulo 9). 

x) Determinar las diferencias metabólicas en pacientes con determi-

nados factores de riesgo cardiovascular respecto a la concentración 

en suero de metabolitos implicados en el ciclo de los ácidos 

tricarboxílicos. Identificar interacciones de factores de riesgo con la 

presencia de lesiones coronarias fue un objetivo adicional planteado, 

que también se recoge en el Capítulo 10. 

xi) Desarrollar un método basado en el análisis directo de suero humano 

para el análisis confirmatorio y cuantitativo de péptidos de interés 

clínico como es la catelicidina. La aplicación de este método al 

análisis de suero de pacientes de la unidad de cuidados intensivos 

puede ser de interés, tal como se describe en el Capítulo 11.  

La formación de la futura doctora, que constituye el objetivo último de 

toda tesis doctoral, ha incluido el máster en “Química Fina” con el número de 

créditos correspondientes, así como todas las etapas necesarias para cumplir los 

requi-sitos exigidos para optar a la mención de Doctorado Internacional. En 

paralelo con lo anterior y con la investigación recogida en la parte principal de la 

Memoria, se ha pretendido una formación más amplia de la doctoranda mediante 

la realización de otras actividades que se recogen como anexos, a saber: 

Anexo I: Investigación simultánea con la de la Tesis y supervisión de trabajos 

realizados por otros miembros del Grupo, que han dado lugar a 5 artículos 

publicados o en fase de publicación. 

Anexo II: Revisión bibliográfica sobre el interés y el potencial de la determinación 

de histatinas (péptidos antimicrobianos) en muestras biológicas. 
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Anexo III: Capítulos de libro sobre temas relacionados o no con la Tesis, como las 

aplicaciones de la metabolómica o las técnicas empleadas para determinar la 

acción de una bacteria sobre ciertos metabolitos en leche. 

Anexo IV: Patente de un panel de marcadores para el diagnóstico de cáncer de 

pulmón mediante análisis del sudor humano.  

Anexo V: Comunicaciones orales y en cartel en 8 conferencias nacionales o 

internacionales.  
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Objectives  

 

 

 The basic objective of the research in this book was to develop strategies 

based on targeted and untargeted metabolomics analysis for identification and 

qualitative/quantitative analysis of metabolites with biomarker capability in 

clinical analysis by using mass spectrometry as analytical technique —because of 

its versatility and excellent levels of sensitivity, selectivity, precision, accuracy 

and resolution. This is, therefore, an objective that encompasses the current 

impact of metabolomics and research on the search for clinical biomarkers. This 

objective was divided into three general objectives according to the different 

topics in this research: Objective 1, to develop innovative strategies in untargeted 

metabolomics analysis with clinical application: (a) by characterization of one 

sample scarcely studied as does human sweat, (b) in sample preparation and, (c) 

in detection by mass spectrometry in order to enhance the detection capability of 

untargeted methods. Objective 2, to identify metabolites with biomarker 

potential by global analysis of both a conventional biofluid such as serum and a 

unconventional biofluid such as sweat for application in dietetic clinical studies 

or in the diagnostic of diseases such as atherosclerosis or lung cancer. Objective 

3, to optimize confirmatory and quantitative (absolute and relative) methods for 

targeted analysis of metabolites with biomarker potential in biofluids and their 

application for diagnostic of pathological states. 

 From the general objectives derived the following concrete objectives: 

i) To perform an optimization study for assessment in metabolomics 

analysis of a non-invasive biofluid such as sweat. Thus, it was pos-

sible to compare different sample preparation alternatives to propose 

a suited method for analytical application of this biofluid. This study 

allowed identification of metabolites present in this biofluid by mass 

spectrometry, which provided an added value to this study supported 

on the lack of publications dealing with the characterization of 
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human sweat. The result was a research article containing results 

obtained by analysis of this sample (Chapter 1). 

ii) To evaluate the usefulness of an automated analytical platform based 

on on-line coupling of solid phase extraction (SPE) and liquid 

chromatography with mass spectrometry (LC–MS/MS) in untar-

geted analysis. For this purpose, a great diversity of sorbent 

materials and high resolution mass spectrometry by a hybrid 

quadrupole–time of flight (QTOF) detector were two crucial aspects 

in this research. The application area was the global analysis of 

human serum, as Chapter 2 details. 

iii) To demonstrate the potential of Gas-Phase Fractionation (GPF) as 

mass spectrometry detection mode in global metabolomics analysis 

(see Chapter 3). 

 A wide general objective as the identification of biomarker metabolites 

through global analysis of biofluids has been divided into the following concrete 

objectives according to the application field: dietetic interventions and diagnostic 

of diseases such as atherosclerosis and lung cancer: 

iv) To study, by untargeted metabolomics analysis based on LC–QTOF 

MS/MS, the differences in the metabolic profile of serum from 

individuals subjected to four dietetic interventions characterized by 

the energetic content and fatty composition (Chapter 4). The study 

was oriented to find metabolic differences associated to the different 

dietetic patterns through metabolomics analysis.  

v) To elucidate metabolic differences among atherosclerotic individuals 

diagnosed with: stable angina, non-ST elevation myocardial 

infarction (NSTEMI) and acute myocardial infarct (Chapter 5). The 

role of high resolution mass spectrometry is crucial for identification 

of metabolites with significant contribution to explain the observed 

discrimination.  
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vi) To find a panel formed by metabolites with biomarker potential to 

monitor individuals diagnosed with atherosclerosis and predict a 

possible episode of myocardial infarct. The inclusion of clinical 

factors in the search for predictive models by iterative combination 

of statistical biomarkers is key in this type of studies, as Chapter 6 

describes. 

vii) To apply the protocol optimized in i) to discriminate individuals 

diagnosed with lung cancer against healthy individuals (including 

smokers and non-smokers). The utilization of a non-invasive biofluid 

and development of a metabolites panel with biomarker potential are 

the basis to achieve this objective developed in Chapter 7. 

 General objective 3, related to targeted analysis and development of 

confirmatory and quantitative analytical methods for determination of meta-

bolites with clinical marker capability, was focused on the analysis of polar 

compounds such as carboxylic acids and essential amino acids, lipids such as 

phospholipids, and a peptide with clinical interest such as cathelicidin. With 

these premises, the concrete objectives were: 

viii) To use the phospholipids profile of human serum to find a panel of 

compounds with predictive capability to discriminate indi-viduals 

diagnosed with atherosclerosis. The selection of a SPE step for 

isolation of phospholipids and the selection of high-resolution mass 

spectrometry constitute two basic tools in this research, together 

with the data treatment designed to propose the panel of marker 

phospholipids, as can be seen in Chapter 8. 

ix) To differentiate the concentrations of essential amino acids in human 

serum by SPE–LC–MS/MS in patients with atherosclerosis also 

affected either by stable angina or acute myocardial infarction. The 

use of analytical equipment involving a triple quadrupole detector 

consti-tutes an optimal tool for quantitative targeted analysis, 
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capable of analyzing human serum without sample preparation 

(Chapter 9). 

x) To establish metabolic differences among patients with given 

cardiovascular risk factors related to serum concentration of 

metabolites involved in the tricarboxylic acids cycle. To identify 

interaction of risk factors with coronary lesions was an additional 

objective also included in Chapter 10. 

xi) To develop a method based on direct analysis of human serum for 

confirmatory and quantitative analysis of peptides of clinical interest 

as is the case with cathelicidin, as described in Chapter 11. 

 The formation of the future PhD, which is the final objective of a Doctoral 

Thesis, has also included the master on “Fine Chemistry”, in which the PhD 

student developed the mandatory courses. Also, the necessary steps to fulfill the 

requirements to achieve the mention to the Internacional Doctorate were 

developed by the PhD student. In parallel to the above mentioned tasks and to 

the research in the main part of the Book, a wider formation of the PhD student 

has been sought  by development of other activities summarized below as 

annexes: 

- Annex I: Research simultaneous with that of the Thesis and 

supervision of research carried out by other members of the Group, 

which have provide 5 articles published or in some step prior to 

publication. 

- Annex II:  Review about the interest of the determination of a certain 

group of antimicrobial peptides, called histatins, in biological 

samples. 

- Annex III: Book chapters on subjects related and non-related to the 

Thesis, such as the applications of metabolomics or the techniques 

employed to study the effect of a bacteria on certain metabolites in 

milk. 
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- Annex IV: A patent of a markers panel for the diagnosis of lung 

cancer by sweat analysis. 

- Annex V: Oral and poster communications in 8 national or 

international meetings. 
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Introduction  

 

 

 This introduction section is intending to offer an overview of the two 

main topics considered in this research that constitutes this PhD Book: 

Metabolomics and qualitative and quantitative analysis of biomarkers. 

 

1. Location, definition and characteristics of metabo-

lomics 

 From the Latin suffix “ome”, the term “omics” means mass or many and 

is used to differentiate studies which involve large number of measurements per 

endpoint. The measured parameters can be DNA, mRNA, proteins, and 

metabolites, giving place to primary omics (genomics, transcriptomics, 

proteomics and metabolomics, respectively), or they can be specific families such 

as lipids, glycans, toxics, foreign substances, or even interactions among them, 

providing the secondary omics (lipidomics, glycomics, toxicomics, xeno-

metabolomics, and interactomics, respectively), all them as parts of primary 

omics. The evolution and discovery of omics complementarity yielded the term 

systems biology, coined by Nicholson and Wilson [1], and also expressed as high-

dimensional biology, global systems biology or integrated systems biology. The 

term intended, in principle, to integrate multivariate biological information to 

better understand gene–environment interactions. Figure 1 schematizes both the 

traditional central dogma of molecular biology, where the flow of information 

goes from genes to transcripts to proteins, finishing with the site where enzymes 

act on metabolism (Figure 1.A), and also the omics organization, where the flow 

of biological information ends in the metabolites which finally is reflected in the 

phenotype (Figure 1.B).  
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Figure 1. A) Traditional central dogma of molecular biology. B) General scheme of 

systems biology. 

 Through the study of metabolomics it is possible to define the current 

status of the system, as a result of environmental conditions and genetic 

potential, that is more difficult to be predicted by genomic and/or proteomic 

characterizations. For this reason, regardless of the sequential relationship in 

which the omics are introduced, metabolomics provides information directly in 

line with the new approach of systems biology that considers living systems as 

dynamic and complex and assumes that their behavior originates from 

interactions; therefore, it is difficult to make predictions when exclusively 

considering the properties of individual parts [2–4]. 

 In any case, the subject of metabolomics is the metabolome, which 

includes all organic substances naturally occurring from the metabolism of the 

studied living organism, also including xenobiotics (i.e., chemicals that are 

present in an organism, but not produced by it) and their biotransformation 

products. Polymerized structures such as proteins and nucleic acids are excluded 

from the metabolome. Actually, one may consider that a metabolite correspond 

to any organic compound that does not directly come from gene expression. 

According to this view, small peptides —synthesized through an enzymatic 
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process and forming part of a metabolic pathway, as is the case of tripeptide 

glutathione— are considered metabolites.  

Endogenous metabolites can be classified into primary and secondary 

metabolites. The former are ubiquitous (i.e., they may occur in bacterial, plant, 

and animal kingdoms) and are directly involved in processes essential to life, 

such as growth, development, and reproduction. This is, for example, the case for 

amino acids or intermediates of glycolysis. At the opposite, secondary metabolites 

have a restricted distribution (often at the species level) and are synthesized for a 

particular biological function. This is, for example, the case with alkaloids in 

plants or hormones in mammals. At present, approximately 2.900 endogenous 

metabolites can be identified, but if we consider their total number, estimated at 

6.500 molecules, this is lower than the 25.000 genes, the 300.000 tRNAs and the 

more than 106 proteins present in the human organism [5,6].  

 Despite the term metabolomics has been traditionally attributed to 

Fiehn, who in 2002 defined this discipline as “an overall and exhaustive analysis 

by which all the metabolites in a biological system are identified and quantified” 

[7], a previous definition by Oliver (in 1998) established metabolomics as “the 

analysis of the metabolome under a given biological condition and referred to a 

high-scale detection and quantitation of metabolites in biological media” [8]. 

Presently, the definition of metabolomics as a more or less complex analysis is 

very poor and a wider and well documented definition as “the discipline that 

provides comprehensive and sistematic information on temporal changes in the 

profiles of metabolite levels in biofluids and tissues, which can arise from control 

by the host genome, extended genomes and effect of other enviromental or 

promoted factors” is better adjusted to metabolomics. Implicitely included in the 

definition, without expliciting their concourse are transcripts and proteins, thus 

involving the top-down pathways established by the central dogma of molecular 

biology, and the bottom-up positive and negative feedback control established by 

systems biology (Figure 1).  
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Distinction between metabolomics and metabonomics, the two terms 

used to design the discipline, has been differently interpreted by the authors 

working in this field. While some of them consider metabolomics as the complete 

analysis of plants metabolome, and metabonomics as the analysis of the 

metabolic reaction to medication, environment and/or diseases; others establish 

that the goal of metabolomics is holistic quantitative and qualitative analysis of 

all metabolites in a given biological system, whereas the goal of metabonomics is 

the comparison of metabolite levels in a given system in response to a particular 

stimulus of treatment [9,10]. Nevertheless, one or the other distinction is each 

time more infrequent and the term metabolomics tends to be used in all 

instances.  

 The present state of metabolomics endows this discipline with positive 

and negative technical characteristics that are in the way of being in depth 

studied by researchers in the field for even improving the former and, of course, 

overcoming the latter. Therefore, positive characteristics of metabolomics that 

promote its use and establish a difference with other omics are as follows:  

- The existence of robust and stable analytical platforms for a number of 

metabolites, as a result of the research on this area during the last two 

decades of the twenty century, before omics as such appeared. 

- The excellent analytical and biological precision of the existing platforms 

that allows their accurate use. 

- The analysis cost per sample and analyte, which is, in general, low as 

compared with genomics and transcriptomics analyses. This fact 

facilitates application to a high number of samples, and extensive studies 

in cohorts with a significant biological variability; thus providing wider 

and well-supported information. 

- The analysis time, much shorter than that required in genomics, 

transcriptomics and proteomics, especially for fingerprinting, footprint-

ing or qualitative metabolomics profiles, which are obtained in few min. 
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- The capability to integrate data from different techniques (integrated 

metabolomics) applied to samples from different body compartments. 

 Negative or non-resolved aspects of metabolomics are as follows: 

- The necessity for multiple analytical platforms as a result of the 

enormous variety of metabolites that ranges from non-polar lipids to 

ionic compounds; from relatively high molecules such as cholesterol to 

very small ions such as ammonium. 

- The wide range of concentrations within which metabolites appear in the 

organisms, which encompasses more than nine orders of magnitude 

(from pmol to mmol), and makes mandatory the use of dilution and 

preconcentration steps, as well as analytical equipment with different 

dynamic range. 

- The absence of enough standardized methods, as a consequence of being 

the last of the primary omics. 

- The number of metabolites constituting the metabolome, which in a 

vegetal system can reach 200.000 (in a human individual lower than 

10.000); and the diversity within a single family. 

 

2. Complementarity of omics 

 Despite metabolomic approaches have been trialing somewhat behind 

transcriptomics and proteomics approaches, key metabolomics contributions 

demonstrated more than a decade ago, and continue demonstrating, the 

complementary and sometimes decisive role of metabolomics in the omics-world. 

For example: 

- by demonstrating that metabolic pathways can be determined kinetically 

by monitoring correlative behaviors between only a handful of metabo-

lites [4], 
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- by proofs of functionality in the identification of signal transduction 

cascades [5], 

- by using the analysis of intracellular metabolites to reveal phenotypes for 

mutations of proteins active in metabolic regulation [6], 

- by quantifying the change of several metabolite concentrations relative to 

the concentration change of one selected metabolite to reveal the site of 

action, in the metabolic network, of silent genes [7], 

- by developing metabolite profiling studies to identify hyperbolically 

related pairs of metabolites that were consistent with known feedforward 

and feedback mechanisms of regulation [8]. 

 Metabolomics, as the complement to transcriptomic and proteomics, has 

its own advantages as compared with them, such as that there are fewer 

metabolites than genes and proteins (as example, the human genome contains 

25.000 genes, the expression and alternative splicing of the mRNAs indicate that 

human may be able to produce 106 different proteins, while a recent prediction in 

2013 suggests that there are only 40.000 metabolites (6.500 in humans) [9]); 

thus reducing processing complexities. Additionally, the technology involved in 

metabolomics is generic, as a given metabolite —unlike a transcript or protein— 

is the same in every organism that contain it. 

 One other benefit is that, although some environmental perturbations or 

genetic manipulations may not cause changes in transcriptomic and proteomic 

levels, they will have significant effects on the concentrations of numerous 

individual metabolites due to the “downstream” character of metabolomics. Even 

more, metabolomics lends itself readily to functional genomic and other analyses, 

as changes in the cell physiology as a result of gene deletion or over-expression 

are amplified, both in theory [10] and in practice [11], through the hierarchy of 

the transcriptome and the proteome and are, therefore, more easily measurable 

through the metabolome, even when changes in metabolic fluxes are negligible. 

Finally, the dynamic levels of metabolites in organisms must reflect the exact 
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metabolic phenotypes under different cultural and genetic conditions due to the 

direct interaction between metabolome and phenotype. 

 Nevertheless, there is in metabolomics a typical complexity derived from 

the chemical diversity of the metabolome due to the large number of different 

families of metabolites that hinders to obtain a complete view of the metabolome 

by using a unique analytical method. Therefore, the combination of orthogonal 

methods is practically mandatory. Additionally, there is a number of intrinsic and 

extrinsic factors affecting metabolic pathways, as Figure 2 shows. In addition, 

measurement of a complete set of metabolites not only requires rapid quenching 

of metabolism, in the case of intracellular metabolites, but also the development 

of a method suitable for detecting and quantifying large numbers of metabolites 

depending of the intrinsic and extrinsic factors of the given individual. It is worth 

emphasizing the rapid timescale for the turnover (the turnover times is 

approximately equal to the concentration of the metabolite divided by the flux 

through the pathway on which it is a member) of an intracellular metabolite, 

which in microbial systems can be under 1 s, even for metabolites at mM 

concentrations. 

  

Figure 2. Intrinsic and extrinsic factors that affect the human metabolic status and can 

be studied using metabolomics. 
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3. Analytical strategies in metabolomics and their main 

objectives 

 Metabolomics analysis encompasses different strategies which depend on 

the information required from the system under study [12], namely: (a) targeted 

analysis [13], which aims at qualitative and quantitative study of one or, more 

frequently, a small group of chemically similar metabolites; (b) global 

metabolomics profiling [14], which allows detection of a broad range of 

metabolites by using a single analytical platform or a combination of 

complementary analytical platforms —mainly based on nuclear magnetic 

resonance (NMR) or mass spectrometry (MS), coupled to gas chromatography 

(GC), liquid chromatography (LC) or capillary electrophoresis (CE)— to obtain a 

comprehensive profile of the metabolome; (c) metabolomics fingerprinting [15], a 

high throughput, fast methodology for analysis of biological samples that 

provides fingerprints for sample classification and screening; and, (d) 

metabolomics footprinting [16], which aims at the study of metabolites in 

extracellular fluids, also known as exometabolome or secretome. Obviously, the 

complexity of sample preparation for each strategy is different increasing from 

(c) to (a).  

 The most recent trend leans to simplification by establishing distinction 

only between targeted and untargeted analysis, including profiling, which require 

quite different sampling and sample preparation approaches [17]. Each of these 

strategies has its own inherent advantages and disadvantages, but they can be 

highly complementary when used in combination.  

 Untargeted metabolomics is the attempt to measure all the analytes in a 

sample, including chemical unknowns. Due to its comprehensive nature, analysis 

of untargeted metabolomic data must be conducted with advanced chemometric 

techniques, such as multivariate analysis, designed to reduce the extensive data 

sets generated into smaller and more manageable signals. These unidentified 

signals then require annotation using either available experimental libraries, 

structural elucidation by in silico fragmentation tools or experimental identi-
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fication with standards. From the perspective of biomarkers discovery, 

untargeted analysis offers the tantalizing opportunity for novel species discovery 

and, therefore, the identification of unique, specific, and accurate biomarkers. In 

untargeted analysis, coverage of the metabolome is unbiased and only restricted 

by the methodologies of sample preparation and the inherent sensitivity and 

selectivity of the analytical techniques employed. However, the untargeted 

approach does suffer from a number of limitations: the protocols and time 

constraints required to process the extensive raw data sets generated, the 

analytical chemistry challenges of identifying and characterizing unknown 

metabolites, the time demands for identifying unknown metabolites that can run 

weeks and months, the overreliance on the innate analytical coverage of the 

profiling technique utilized, and a strong bias toward detection of highly 

abundant small molecule species can all have detrimental effects. 

 Targeted metabolomics, on the other hand, is supported on the 

measurement of distinct sets of characterized and chemically annotated small 

molecules within a biological sample. Absolute quantification of metabolite levels 

using mass spectrometry can be performed via the standard addition method. 

Internal standards, typically isotopically labeled versions of the endogenous 

metabolites, are spiked into the matrix across a range of concentrations to 

generate a standard curve. The labeled standards, which often contain 13C or 2H 

isotopes, can be easily differentiated from the endogenous metabolite of interest 

due to the isotopic difference in mass. It is also imperative that the isotope-

labeled standard is pure to avoid interference with, and modulation of, the 

endogenous metabolite signal. The targeted approach exploits the extensive a 

priori knowledge of a vast array of metabolites and the metabolic pathways to 

which they belong in order to select specific species for analysis. By analyzing 

specific key metabolites across all characterized metabolic pathways, these 

metabolites can function as sentinels to identify perturbations in the pathways, 

highlighting them for further analysis. When performing targeted metabolomics 

on a mass spectrometer, the instrument is more sensitive since it is measuring 

fewer compounds. Furthermore, the sample preparation step can be modified to 
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reduce the overrepresentation of abundant molecules in the analyses. From a 

biomarker perspective, this can facilitate the association of low-abundance 

metabolites with disease states. While their unambiguous identification is known 

a priori, their association with a given phenotype may be novel. If a particular 

pathway appears to be highlighted in the analyses, additional metabolites in the 

pathway can be added to the mass spectrometric metabolomics assay for a more 

detailed interrogation. In addition, since all analyzed species are clearly defined, 

analytical artifacts are not carried through to downstream analyses, and 

laborious chemical classification steps are not required. 

 

4. Analytical tools in metabolomics 

 Regarding the general workflow of an analytical process (Figure 3) that 

starts from sampling and goes to sample preparation, to detection and, finally, to 

data treatment; different analytical tools can be used in each step of the process. 

As data treatment tools are described in the next point, this section is mainly 

focused on the analytical tools employed in the sample preparation and detection 

steps.  

 

Figure 3. General workflow of an analytical process. 

 

4.1. Analytical tools for sample preparation 

 Taking into account that sample preparation comprises in most of the 

cases extraction of the metabolites into a suitable solvent, preconcentration, clean 

up and, in some cases, derivatization, different methodologies for sample 

preparation can be used in this step of the analytical process. 
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 Metabolites extraction is a key step in the metabolomics analytical 

process and its effectiveness directly affects the quality of the final data. The 

required selectivity of the extraction step will depend on the aim of the study. 

Therefore, while targeted metabolomics calls for a highly selective extraction that 

provides clean and concentrated extracts, extraction is eminently non-selective in 

metabolic profiling; so, only salts and macromolecules are considered potential 

interferents to be removed in this step. The extraction protocol is mainly 

conditioned by the target biological sample, which, in the case of solids, is 

performed by solid–liquid extraction. On the other hand, metabolites from liquid 

samples are mainly extracted by liquid–liquid extraction (LLE), SPE or solid-

phase microextraction (SPME). 

 The necessity for additional sample preparation steps is marked by the 

analytical platform that follows this procedure. As an example, the low volatility 

of many metabolites makes necessary derivatization prior to GC–MS analyses, 

which is usually performed by silylation [12]. 

 The use of chromatographic techniques prior to detection is of great 

importance in metabolomics. Despite traditional GC, CE and LC separations have  

so far been extensively used in metabolomics, new chromatographic approaches 

have also been implemented with promising perspectives in metabolomics. This 

is the case of new chromatographic phases like monolithic capillary columns or 

phases with smaller particle size and higher pressures to increase resolution and 

sensitivity [18]. 

4.2.  Analytical tools employed in the detection step 

Concerning the detection step, as the large number of molecules that 

constitute the metabolome display a high diversity of chemical structures and 

abundances, it is impossible to cover the whole metabolome using a single 

analytical platform. The selection of the detection technique most adequate for 

each situation is directly dependent on the final purpose of the experiment. 

Concretely, in targeted metabolomics, where very selective sample treatment 

procedures must be employed, optical detection techniques such as UV/visible 
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absorption —using conventional or diode array detectors— or electrochemical 

techniques such as voltammetry, potentiometry or conductimetry can be used, as 

well as more selective alternatives such as MS, fluorescence spectrometry or 

Fourier transform infrared (FT-IR). On the other hand, the most recommended 

techniques for untargeted metabolomics are NMR spectroscopy and MS due to 

their sensitivity and resolution capabilities. The latter technique usually requires 

to be hyphenated to another technique such as GC or LC for separation of the 

metabolic components [19,20]. Whilst NMR spectroscopy is particularly 

appropriate for the analysis of bulk metabolites and GC–MS for the analysis of 

volatile organic compounds and derivatised primary metabolites, LC–MS is 

highly applicable to the analysis of a wide range of semi-polar compounds 

including many secondary metabolites of interest.  

 Benefits and downsides of NMR and MS with respect to their use in 

metabolomics are depicted in Table 1. These strengths and weaknesses justified 

that both techniques are needed for metabolome analysis. However, NMR is 

more suitable for fingerprinting analysis, being MS suitable for all targeted and 

untargeted metabolomics (profiling and fingerprinting).  

As can be seen in the table, one of the strongest points of MS as 

compared to NMR is its sensitivity. In fact, mass spectrometry-based meta-

bolomics offers quantitative analyses with high selectivity and sensitivity and the 

potential to identify metabolites with high mass accuracy, taking into account 

that sensitivity in MS is affected by both ionization and type of detector but, in 

general terms, it is much more sensitive than NMR.  

 On the other hand, quantification requires suitable internal standards 

with similar ionization and fragmentation efficiencies. Concretely, quantitative 

information on a metabolite peak can be obtained in one of three ways: (i) by 

integrating it against a reference sample of the same compound (this requires the 

identity of the metabolite to be known and compared between separate runs, 

which can introduce error); (ii) by comparing the relative ratios of a set of peaks 

across a series of spectra; and, (iii) by addition to the sample of a stable-isotope 
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version of the metabolite of interest. Concerning qualitative analysis, tandem MS 

fragmentation patterns can give clues as to the connectivity and the presence of 

specific functional groups in an unknown metabolite. Identification of meta-

bolites is often expedited by comparison to internal standards and searching 

against mass spectral libraries. Fragmentation of compounds under a certain 

applied voltage is very reproducible, thus MS/MS measurements are highly 

selective. 

 Although MS measurements are fast, the overall run time depends on the 

chromatographic step, that may vary from minutes to hours (but never to days, as 

in 2D-NMR). However, combination with chromatographic or electrophoretic 

equipment reduces the complexity of mass spectra due to metabolite separation 

in a time dimension, besides delivering additional information on the physico-

chemical properties of metabolites. 

 Among the weakest points, mass spectrometry-based techniques usually 

require sample preparation, which can cause metabolite losses. The complexity of 

sample preparation depends on the type of mass spectrometer but, in general, it 

is more tedious than in NMR. However, sample preparation can be automatized 

in the case of MS. 

  On the other hand, global profiling may be limited by the ionization type, 

due to the fact that specific metabolite classes may be discriminated based on the 

sample introduction system and the ionization efficiency. Despite of this fact, 

mass spectrometry is currently the most reliable platform for identification as 

there are a wide variety of libraries with MS and MS/MS information for known 

components of biological samples.  

All those strengths of mass spectrometry against NMR can be verified as 

mass spectrometry-based metabolomics is characterized by a number of annual 

publications exceeding those based on NMR.  
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Table 1. Strengths and weaknesses of NMR and MS in metabolomics. 

Nuclear Magnetic Resonance Spectroscopy Mass Spectrometry 

STRENGTHS WEAKNESSES STRENGTHS WEAKNESSES 

 Rapid and simple 
sample preparation 
protocols. 

 

  Possibility of 
coupling to sample 
preparation 
automated systems. 

 Laborious sample 
preparation 
protocols needed in 
some cases. 

  Difficult automatization 
despite robotized 
systems. 

 Easy automatization  

 No requirement for 
chromatographic 
separation. 

 Relatively poor 
resolution in complex 
samples. 

 Excellent resolution 
(improved by 
separation). 

 

 Useful for 
identification 
purposes. 

 Difficult to unequivo-
cally assign signals. 

 Accurate m/z 
measurements ideal 
for identification of 
metabolites. 

 Structural 
information 
throughout 
fragmentation 
patterns (MSn). 

 

 High 
reproducibility. 

 Poor sensitivity and 
selectivity. 

 Highly sensitive in its 
different modes. 

 Very selective 
(especially in MSn). 

 Detection depends 
on ionization 
efficiency. 

 Non-destructive.    Destructive, 
particularly 
complicated for 
analysis of valuable 
samples. 

 Versatility. 
Possibility of direct 
analysis of solids 
and in-vivo studies. 

 

  Low sample volume 
(0.5 to 500 µL). 

 Limited to liquid 
samples or extracts 
isolated from solid 
samples. 

  Useful for fingerprinting, 
less suitable for global 
profiling and targeted 
analyses. 

 Suitable for 
quantitative targeted 
analysis, global 
profiling and 
fingerprinting. 

 Quantification 
requires chemically-
related internal 
standard. 

 Relatively high 
throughput in 1D-
NMR experiments. 

 Very low throughput in 
2D-NMR experiments. 

 

 High throughput.  More efficient when 
coupled to 
separation 
techniques. 
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4.3. Mass spectrometry systems employed in metabolomics 

 Mass spectrometry is a detection technique based on the differential 

displacement of ionized molecules through vacuum by applying an electrical 

field. Simplistically, a mass spectrometer consists of an ion source, a mass 

analyzer, a detector and a data system. Sample molecules are inserted to the ion 

source, where they become ionized. The ions, which are in the gas phase, are 

separated according to their mass-to-charge ratio (m/z) in the mass analyzer and 

finally detected. 

 There are different types of ionization sources to generate the gas-phase 

ions: electron impact ionization and chemical ionization, commonly used in GC–

MS, and electrospray ionization and atmospheric pressure chemical ionization, 

frequently employed in LC–MS. For the purpose of this research, electrospray 

ionization analyzers have been used when coupling LC to MS, and electron 

impact ionization in the GC to MS coupling. Electrospray ionization (ESI) is 

particularly useful to be coupled to LC as ionization occurs at atmospheric 

pressure. Polar and ionic compounds are best suited for this type of ionization. In 

ESI, the chromatographic eluate is sprayed from a metal or fused silica capillary. 

An electrospray is achieved by raising the potential on the spray capillary to 4 kV 

in positive or negative ionization modes. The resulting spray of charged droplets 

is directed toward a counter-electrode at a lower electrical potential, where the 

droplets lose solvent leading to ionic species into the gas phase. The counter-

electrode contains an orifice through which ions are transmitted into the vacuum 

chamber of the mass spectrometer, traversing differentially pumped regions via 

skimmer lenses [21]. 

 On the other hand, electron impact ionization (EI) is produced by the 

interaction between energetic electrons and molecules in gas phase to induce 

ionization and fragmentation of the molecule, producing radical cations. 

 Once the sample has been ionized, it is transported to the mass analyzer 

via an electric or magnetic field. The most relevant to the research developed in 

this Thesis are here briefly described: 



   

34 

Mass spectrometry for the identification and  

quantitation of metabolomic biomarkers in clinical analysis 

 
i) Triple quadrupole mass spectrometer (QqQ) 

A diagram of the design of a triple quadrupole MS is shown in Figure 4 [22]. 

 

Figure 4. General scheme of a triple quadrupole mass spectrometer. 

 The triple quadrupole mass spectrometer consists of an ion source 

followed by ion optics that transfer the ions to the first quadrupole —this device is 

formed by four parallel rods to which specific direct current and radio frequency 

voltages are applied. The rods filter out all ions except those of one or more 

particular m/z values as determined by the voltages applied. The applied voltage 

is variable, so that ions with other m/z values are allowed to pass through. 

Afterwards, selected ions reach a collision cell where they are fragmented. The 

collision cell is typically called the second quadrupole, but it is actually a 

hexapole, filled with an inert gas such as nitrogen or argon. The fragment ions 

formed in the collision cell are then sent to the third quadrupole for a second 

filtering stage to enable a user to isolate and examine multiple precursor to 

product ion transitions. This is called selected reaction monitoring mode (SRM). 

Since the fragment ions are pieces of the precursor, they represent portions of the 

overall structure of the precursor molecule. 

 Due to the low-mass accuracy achieved with respect to other mass 

analyzers, triple quadrupole spectrometers are preferably used for targeted 

analyses, as they allow quantification with high sensitivity and selectivity in SRM 

mode, actually the most sensitive operational mode for the triple quadrupole MS 

instrument.  
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ii) Quadrupole-time of flight (QTOF) mass spectrometer 

 Figure 5 shows the diagram of the instrument used in the research in this 

Thesis [23].  

 
 

Figure 5. General scheme of a quadrupole time-of-flight mass spectrometer. 

 The QTOF mass analyzer is based on the same configuration as the QqQ 

but replacing the last quadrupole by an acceleration tube as mass analyzer 

(usually in orthogonal configuration) to filter out ions according to the equation 

of kinetic energy. The QTOF can operate in MS mode with the TOF as scanning 

tool by taking benefit from the high mass accuracy or in MS/MS mode for 

structural elucidation. 

 This hybrid mass analyzer offers better selectivity than triple 

quadrupoles, meanwhile sensitivity is considerably lower. On the other hand, 

thanks to its great mass accuracy (below 2 ppm) highly reliable identification can 

be achieved, thus allowing its use for global metabolic profiling.  

iii) Ion trap (IT) 

 The ion trap is the three dimensional analogue of the linear quadrupole 

mass filter. In this device, ions are subjected to electrical and magnetical forces 
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not only in two dimensions as in the simple quadrupole, but also in the third 

dimension, trapping ions. This feature gives the ion trap the possibility of tandem 

mass spectrometry experiments and even of performing multiple stage mass 

spectrometry (MSn). 

 

Figure 6. General scheme of an ion trap mass spectrometer. 

 Figure 6 shows the diagram of the ion trap device [24]. It is composed by 

a ring electrode and two end-cap electrodes. As can be seen in the diagram, the 

ions trapped describe orbits inside the trap. The voltage applied in the end-caps 

(V cap) enables fragmentation of the ions by collisions with the helium damping 

gas rather than ejection. So, this voltage is used to induce resonance excitation 

and resonance ejection. On the other hand, the potential applied to the ring 

electrode determines the range of m/z values that can be trapped and the 

modification of this voltage produces the ejection of the ions for their detection. 

 

5. Data analysis in metabolomics  

 Statistical considerations play a vital role in the whole process of a 

metabolomics experiment affecting upon data output quality, analysis and 

subsequent biological interpretation. Statistical analysis strategies employed in 

metabolomics are designed according to the approach selected, being slightly 

different for targeted and untargeted analysis (Figure 7). 
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Figure 7. General statistical analysis workflow for targeted and untargeted analysis in 

metabolomics. 

 

5.1. Statistical analysis for targeted metabolomics 

 Targeted metabolomics analysis often requires statistical methods to be 

used during the development of the optimized analytical methodology for the 

determination of the compounds of interest. Thus, statistical procedures as 

response surface or screening design are employed to optimize experimental 

parameters to obtain the best conditions for the determination of the target 

compounds [25–27]. The rest of statistical analyses employed in the process of 

developing a new methodology for targeted metabolomics are based on simple 

statisticals such as simple regression, employed to obtain the calibration curves 

for metabolites quantitation, or simple calculations, used to characterize the 

analytical method (reproducibility and repeatability, mainly). 
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 After method application and data generation, common pre-processing 

strategies as normalization or scaling can be used before interpretation of the 

results or further statistical studies. These are: 

- Normalization: the main objective of this approach is to remove the 

unwanted systematic bias in ion intensities between measurements, 

while retaining biological variation. Different normalization techniques 

can be applied, from normalization using a single metabolite level or 

standard to logarithmic transformation and more complex alternatives 

such as probabilistic quotient normalization and quantile normalization 

[28].  

- Scaling: the scaling methods are data pre-treatment approaches that 

divide each variable by a different factor in order to treat all variables 

equally, regardless of their intensity. One of the most common factors 

employed is the mean of each variable, although Z-transform can also be 

used in case of combining data obtained from different platforms or 

methodologies [29]. 

 

5.2. Statistical analysis for untargeted metabolomics  

 This kind of metabolomics analysis is focused on covering the maximum 

number of metabolites using one or more analytical platforms. Thus, generic 

experimental conditions are mostly employed for sample analysis that is usually 

done by a separation technique prior to detection. Because of that, after data 

acquisition, two steps are required: alignment of the chromatograms and 

extraction of the potential metabolites (usually called potential molecular 

features) [30]. Owing to the complexity of steps in which many factors need to be 

considered (adducts, peak shape, noise removal, etc.), different bioinformatics 

tools have been designed for this purpose. 

 This type of metabolomics experiments generates large multivariate data 

sets that constitute a great challenge from a statistical point of view. Thus, 
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reliable and robust approaches to handle and extract the relevant information 

from the vast amount of data generated are needed. The outputs of a 

metabolomics data analysis may differ greatly depending on the purpose of the 

research. Current metabolomics untargeted studies can be placed into two 

general categories —those that aim at developing and discovering biomarkers and 

those that aim at understanding biological processes [31]. In the former case, 

very few highly dependable metabolites can be sufficient for diagnostic purposes; 

while in the second case, an extended set of compounds may be desirable when a 

biochemical network is under examination. Despite the differences between the 

two strategies, there are also some similarities between them, as in both cases the 

huge amount of available data requires some filters to facilitate further statistical 

analysis by reducing the number of potential molecular features. Thus, only 

potential entities with high intensity, high significance with respect to a factor of 

interest, or entities that appear with high frequency in the samples batch would 

pass the filter. As a result, different filters have been created to fulfill the different 

requirements:  

- Fold change analysis: this tool compares the level of each potential 

 molecular feature among the groups under study and retains only 

 the entities that show a minimum change.  

- Filter based on univariate hypothesis test: only entities with a p-value 

below 0.05 or 0.01 pass this filter. 

- Filter by Volcano plot: this approach is a combination of analysis of 

variance and fold change analysis.  

- Filter by abundance: this tool allows removing all potential molecular 

features below a certain abundance.  

- Filter by frequency: the application of this filter eliminates entities only 

present below a certain percentage of samples from each group. 
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i) Untargeted analysis to understand biological processes  

 Different strategies can be used to study the influence of a known factor 

(disease, diet, time, genotype, etc.) in a batch of samples and identify the most 

affected molecular features. 

 Common chemometric tools [32,33] such as principal component 

analysis (PCA) [34] are generally used for display and exploratory analysis 

purposes, whereas univariate statistical tests such as the Student’s t-test are used 

to identify the relevant variables after exploratory analysis. 

- Exploratory analysis by unsupervised learning: unsupervised methods 

attempt to analyze a set of observations without measuring or observing 

any related outcome. As there is not specified class label or response, the 

data set is considered as a collection of analogous objects. Unsupervised 

learning uses procedures that attempt to find the natural partitions of 

patterns to facilitate the understanding of the relationship between the 

samples and to highlight the variables that are responsible for these 

relationships. By providing means for visualization, unsupervised 

learning aids in the discovery of unknown but meaningful categories of 

samples or variables that naturally fall together. The success of such 

approaches is frequently subjectively evaluated by the interpretability 

and usefulness of the results with respect to a given problem. 

PCA is the most common unsupervised method, to the detriment of 

others such as hierarchical cluster analysis. PCA is an orthogonal 

transformation of multivariate data first formulated by Pearson [35] 

mostly used for exploratory analyses by extracting and displaying 

systematic variations. PCA attempts to uncover hidden internal 

structures by building principal components describing the maximal 

variance of the data [36]. This method represents a very useful tool for 

display purposes as it provides a low-dimension projection of the data 

(i.e., a window into the original K-dimensional space) by transformation 

into a new coordinate system. The basic concept relies on areas of signal 
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variance in the data where underlying phenomena can be observed. This 

principle leads to a focus on a small number of uncorrelated independent 

signals that explain a large part of the total variance in a compact and 

insightful manner. In practice, PCA builds hyperplanes in the original 

space that are linear combinations of the original variables and describes 

the data in a least squares view. The inspection of PCA scores and 

loadings plots highlights the relationships among the distribution of 

samples that may reveal grouping, trends or outliers and the 

corresponding variables. Moreover, more effective data analyses can be 

performed on the reduced dimensional space, such as clustering, pattern 

recognition or classification. The vast majority of metabolomics studies 

involves PCA as a first exploratory step [37–43]. 

- Classification by supervised multivariate analysis: supervised learning 

considers each object with respect to an observed response and includes 

regression and classification problems depending on the output type 

under consideration (i.e., a numerical value in the first case and a class 

label in the second). This classification aims at producing general 

hypotheses based on a training set of examples that are described by 

several variables and identified by known labels corresponding to the 

existing classes. The task is to learn the mapping from the first to the last. 

Numerous techniques, based either on statistics or on artificial 

intelligence, have been developed for that purpose. Within the variety of 

supervised statistical techniques, which includes decision trees, artificial 

neural networks and support vector machines, the most employed is 

partial least squares (PLS). This technique is particularly adapted to 

situations where less observations (N) than measured variables (e.g. 

detected features, K) are available. Its use has become very popular 

thanks to its ability to deal with many correlated and noisy variables 

forming megavariate data structures (K>>N) [44, 45]. PLS builds a low 

dimensional sub-space based on linear combinations of the original X-

variables and makes use of the additional Y information by adjusting the 
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model to capture the Y-related variation in X. A PLS-based classification 

therefore has the property that it builds data structures with an intrinsic 

prediction power, by maximizing the covariance between the data and 

the class assignment. The decomposition relies on latent variables that 

are computed sequentially to provide a good correlation with the 

remaining unexplained fraction of Y. In the context of classification, PLS 

discriminant analysis (PLS-DA) is performed to sharpen the partition 

between groups of observations, in such as way that a maximum sepa-

ration among classes is obtained. The model can then be analyzed to 

understand which variables carry the class-separating information [46]. 

PLS-DA was demonstrated to be a potent tool for classification of 

metabolomics data [47].  

- Univariate hypothesis testing: the Student’s t-test, the one-way analysis 

of variance or the non-parametric equivalents can be used to identify 

statistical differences between samples of distinct classes [48]. The 

predictive power of each variable is assessed by finding statistically 

significant differences between the mean intensity values of a given 

signal, of which the calculated p-value is a straightforward indicator. 

Such procedures are easily understandable but their use is rather limited 

in dealing with thousands of highly correlated variables. False positives 

(type I error) are likely to occur when performing multiple comparisons. 

Procedures such as the Bonferroni of the Benjamini correction have been 

introduced to address this issue [49]. The vast majority of metabolomics-

dedicated software provides statistical hypothesis testing [50,51]. 

ii) Untargeted analysis to discover biomarkers 

The statistical analyses described above are not sufficient to acquire 

detailed biological understanding, needed for biomarker discovery. In contrast to 

metabolomics studies focused on deciphering biological processes, where 

interesting metabolites are found post hoc, in biomarker studies metabolite 

selection should be performed a priori rather that post hoc. That is, biomarker 
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selection must be performed before deriving a definitive multivariate predictive 

model. Furthermore, whereas long lists of metabolites or large multivariate 

models are quite useful for understanding pathways and biological processes, 

they are not ideal for developing cost-effective biomarker tests. Rather, a short 

list of 1–10 biomarkers is mathematically much more robust and far more 

practical for clinical testing purposes. While pattern discovery methods such as 

unsupervised clustering or PCA are useful for discovering novel biological 

processes, they are not ideal for biomarker discovery. Instead, supervised 

machine learning algorithms (PLS), or multivariate regression models are used 

for modelling the discriminatory relationship between a binary dependent 

variable and one or more explanatory variables. 

 Regarding the selection of potential biomarkers, performing it by 

univariate statistical significance test is equally inappropriate, as often meta-

bolites that are not significant in isolation can, when combined into a single 

multivariate model, produce clear and reproducible discrimination. For this 

reason, iterative methodologies for biomarker panel development, like the 

employed in the PanelomiX bioinformatics tool or in the ROCCET on line tool, 

are recommended. 

 On the other hand, biomarker panels are designed to discriminate with 

an optimal sensitivity/specificity but in most of the cases the parameter em-

ployed for measuring the clinical utility of a panel developed by PLS, for example, 

is the R2 (multiple correlation coefficient). Despite R2 of the model and R2 of its 

cross-validation can certainly be used as part of the biomarker selection process, 

they provide very little transparency and are not a readily interpretable indication 

of the clinical utility of a given model. Additionally, most clinicians are not 

familiar with this style of model evaluation, being the ROC (receiver operating 

characteristic) curve analysis the standard method for describing and assessing 

the performance of medical diagnostic tests with binary classification [52].  

 ROC curves consider the frequency with which the test produces true 

positives, true negatives, false positives and false negatives. These values are 
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summarized into the proportion of actual positives that are correctly classified as 

positive (sensitivity) and the proportion of actual negatives that are correctly 

classified as negative (specificity). An example of ROC curve is shown in Figure 8. 

 

Figure 8. ROC curve representation including the curve described for an ideal test, and a 

test without predictive value. 

 For ease of interpretation, sensitivity can be considered as the probability 

of true positives (the positive result of the test from a subject that has an actual 

positive outcome), and specificity can be considered as the probability of false 

positives (the negative result of the test from a subject that has an actual negative 

outcome). As the sensitivity and specificity of a test can vary depending on the 

biomarker decision boundary, the best way to observe how this decision 

threshold affect sensitivity and specificity is through a ROC curve. Furthermore, 

the ROC curve is a non-parametric measure of biomarker utility, being widely 

considered the most objective and statistically valid method for biomarker 

performance evaluation [52,53]. 

 There are different informatics tools for ROC curve generation and the 

parameter that often summarized the curve is the area under the curve (AUC). 

This parameter can be interpreted as the probability that a diagnostic test or a 

classifier will rank a randomly chosen positive instance higher than a randomly 

chosen negative one. If all positive samples are ranked before negatives ones 

(example of a perfect classifier), the AUC is 1.0. An AUC of 0.5 is equivalent to 

randomly classifying subjects as either positive or negative (classifier without 
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utility). However, using the whole area under a ROC curve may not be 

appropriate in some cases and the partial AUC is most useful when only certain 

regions of the ROC space (high sensitivity or high specificity) are of particular 

interest [54]. 

 

6. Present role of metabolomics in clinical research: 

personalized medicine 

 Despite metabolomics is the most recent of the primary omics, its 

significant contribution to the clinical field deserves to be discussed as well as its 

key role in the incipient personalized medicine (PM). The secondary omics in 

which the most salient contributions have been developed are lipidomics and 

nutrimetabolomics.  

 In the omics world, lipids have long been in the shadows, while nucleic 

acids and proteins hogged the limelight. Recent improvements in LC and MS, 

together with the recognized role of lipids functions in most of the so-called 

“diseases of the industrialized societies”, have provided the rapid expansion of 

lipid research. Lipids fulfill a variety of vital functions, as they are central 

constituents of biological membranes, serve as energy storage compounds, and 

act as second messengers or as covalent modifiers governing the localization of 

proteins and favoring effectiveness of protein–protein and lipid–protein 

interactions. In addition, bioactive lipids generated during remodeling of 

membrane lipids by activated lipases serve as intra and extracellular mediators in 

cell signalling, in cell–cell communication, inflammation, host-defence mecha-

nisms and ischemia-reperfusion, apoptosis and response to stimulus [55]. 

 Lipidomics, defined as a comprehensive analysis of all lipids in a 

biological system (lipidome), is, through lipid profiling, a fast-growing area of 

research due to the involvements of lipids in human diseases such as obesity, 

atherosclerosis, high-pressure and diabetes (known as “metabolic syndrome”), 

Alzheimer’s disease, and as well as in drug discovery [56–62].  
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 Nutrimetabolomics or nutritional metabolomics is one of the most firm 

supports of the intended PM. The close relationship between nutrition and health 

—each time more defended by clinicians— is clearly demonstrated by meta-

bolomics studies.  

 Particularly important in this field is the role of metabolomics to decipher 

gut microbial metabolic influence on health and disease, as the consortium of 

symbiotic gut microorganisms can be viewed as a metabolically adaptable, 

rapidly renewable, and metabolically flexible ecosystem varying in addition with 

the host’s age, diet, and health status. Because metabolites are the products and 

by-products of the many intricate biosynthetic and catabolic pathways existing in 

all living systems, monitoring the resulting metabolic variations provides a 

unique insight into intra- and extra-cellular regulatory processes involved in our 

metabolic homeostasis. By the study of low molecular weight compounds in 

biofluids (blood and urine), stools, and tissues (intact biopsies or extracts), 

metabolomics assures the characterization of metabolic fingerprints that can be 

associated with individual phenotypes, which encompass dietary or disease 

status. 

 The intestinal tract is one of the most important interfaces between 

mammalian metabolism and the environment along which the varying metabolic 

activities of the gut microbiota not only determine absorption, digestion, 

metabolism, and excretion of dietary nutrients but also shape regio-specifically 

the surrounding and distant host cell biochemical processes [63]. Advances in 

metabolomics applications are providing novel insights into the molecular 

foundations of these host–microbial relationships and their influence onto health 

and disease risks [64, 65]. In particular, a series of investigations in humans [66], 

rats [67], and gnotobiotic mice [68] have provided a set of reference metabolic 

profiles of gut intestinal biopsies that can be used not only to assess compartment 

structure and function but also the gut microbial impact at the tissue level [69]. 

Therefore, these studies indicated that the type of gut microbiota may be a key 

factor in the determination of the intestinal homeostasis, osmo-protection, 

motility, and calorie recovery from the diet. 
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 Food products are nowadays more and more commonly employed to 

modulate the composition of the gut microbiota with the main objective to 

prevent disease development and contribute to the health status’ maintenance. 

The effects of consuming live microbial supplements (probiotics) on the 

microbial ecology, and on human health and nutritional status have been 

extensively investigated over the past years [70]. Probiotic supplementation aims 

at replacing or reducing the number of potentially pathogenic bacteria in the 

intestine by enriching the populations of beneficial strains that ferment carbo-

hydrates and have little proteolytic activity. As an alternative, prebiotics, non-

digestible food ingredients, generally oligosaccharides, modify the balance of the 

intestinal microbiota by stimulating the activity of health beneficial bacteria, such 

as lactobacilli and bifidobacteria. Eventually, the combined use of prebiotics and 

probiotics, also called “synbiotics”, may offer superior effects in health main-

tenance through modulating the microbial functional ecology [70]. 

  The influence of the gut microorganisms on the progression of human 

diseases is nowadays a main concern in the etiology and/or maintenance of gut 

dysfunctions, such as irritable bowel syndrome (IBS) [71] or inflammatory bowel 

disease (IBD) [72]. The incidence and prevalence of these diseases make 

mandatory more research on the gut–metabolomics binomial [73].  

 Metabolomics was also proven to be a valuable diagnostic tool to 

differentiate Crohn’s disease (CD) from ulcerative colitis (UC), but also active and 

quiescent UC, as per the analysis of intact gut biopsies and colonocytes [74].  

 A recent study associates consumption of black tea with reduced 

cardiovascular risk. Black tea polyphenols (BTPs), high-molecular-weight species 

that predominantly persist in the colon, can undergo a wide range of 

bioconversions by the resident colonic microbiota and can in turn also modulate 

gut microbial diversity. Novel metabolomics platforms, coupled to de novo 

identification currently available, have been used to cover the large diversity of 

BTP bioconversions by the gut microbiota. Evidence for cardiovascular benefits 

of BTPs points toward anti-inflammatory and blood pressure-lowering properties 
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and improvement in platelet and endothelial function for specific microbial 

bioconversion products. It has also been of interest to assess how phenotypic 

variation in gut microbial BTP bioconversion capacity relates to gut and 

cardiovascular health predisposition [75]. 

 A salient comment deserves an in development study that, under the 

acronym NU–AGE (from “new dietary strategies addressing the specific needs of 

elderly population for a healthy aging in Europe) involved a number of European 

researchers. The NU-AGE rationale is that a one-year Mediterranean whole diet 

(considered by UNESCO a heritage of humanity), newly designed to meet the 

nutritional needs of the elderly, will reduce “inflammaging” in about 3.000 fully 

characterized subjects aged 65–79 years of age, and will have systemic beneficial 

effects on health status (physical and cognitive). Within the comprehensive set of 

analyses that will be performed to identify the underpinning molecular 

mechanisms metabolomics profiling and targeted analyses play a key role [76].  

 Clinical metabolomics has different purposes, including disease diagnosis 

and follow-up, therapeutic drug monitoring and PM development. Within the 

different applications for disease diagnosis, the most common medical areas in 

metabolomics are cardiology, human reproduction, diabetes, central nervous 

system diseases and oncology. Studies for disease diagnosis involve mainly the 

discovery of new biomarkers and their characterization. The search for and use of 

biomarkers in metabolomics is described in deep in the next section. However, 

there are also metabolomics clinical studies, the objective of which is to 

understand or find which metabolic pathways are perturbed by the presence of a 

given disease. This research has allowed to know, as an example, how lipid 

metabolism is highly perturbed by Alzheimer’s disease [77]. 

 As mentioned before, diabetes and cardiovascular diseases are two of the 

most studied diseases by metabolomics. The worldwide pandemic rise of obesity 

prevalence is strongly linked to incidence of type2 diabetes (T2D) and 

cardiovascular disorders. Recently, a branched chain amino acids (BCAAs) 

related metabolic signature contributing to insulin resistance in obese human 
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subjects has been described [78]. Furthermore, metabolomic analyses have been 

applied to the study of an epidemiological cohort in which diabetes-related 

complications could be detected already under sub-clinical conditions [79]. In 

addition to previously reported T2D biomarkers, including sugar metabolites, 

ketone bodies, and BCAA, metabolites resulting from perturbations of metabolic 

pathways linked to kidney dysfunction (3-indoxyl sulfate), lipid metabolism 

(glycerophospholipids, free fatty acids), and bile acid metabolism have been 

considered.  

 Moreover, metabolomics was employed to decipher indicators of early 

onsets of pre-diabetes status, marked by alterations in fatty acid, tryptophan, uric 

acid, bile acid, and gut microbial metabolism [80]. This information can be easily 

obtained by using the sampling in the oral glucose tolerance test (OGTT) that, as 

it is well known, only provides the evolution of glucose and insuline along the 

test. In addition to the evolution of these parameters, monitoring the metabolic 

evolution of the OGTT provides information on the lactate, hyppurate and 

glycerol, and, more interesting, on the changes of levels of three bile acids —

glycocholic acid, glycochenodeoxycholic acid, and taurochenodeoxycholic acid— 

which provides information on key parameters related to cholesterol levels [81, 

82]. Increases in lysophosphatidylcholine [80] and decreases in amino acids 

[83], acylcarnitines [80] and fatty acids [80,83] have also been reported. 

Although the levels of fatty acids declined during an OGTT, the levels of saturated 

(SFA) and monounsaturated fatty acids (MUFA) were more significantly 

decreased than those of polyunsaturated fatty acids (PUFA). Moreover, a 

substantial reduction in the SFA/MUFA ratio was observed, consisting of a shift 

from MUFA towards SFA. These findings indicate a change in fatty acid 

composition following an OGTT [83].  

 Metabolomics studied related to respiratory disorders have been 

increased in the last few years through the study of organic volatile compounds 

contained in the exhaled breath. As an example, comparison of exhaled air 

profiles from individuals with impaired respiratory function revealed differences 

between participants with and without chronic obstructive pulmonary disease 
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[84]. However, the identification of the compounds responsible of these 

differences has not been done.   

 In dealing with PM, it may be said that the current revolution in 

metabolomics will at term offers new opportunities for preventive medicine, 

prognostic strategies and provides a new step towards PM. The importance of any 

branch of metabolomics in the search for PM is demonstrated by the presence of 

this omics in all present definitions of PM [85]:  

- Personalized Medicine seeks to improve tailoring and timing of 

preventive and therapeutic measures by utilizing biological information 

and biomarkers on the level of molecular disease pathways, genetics, 

proteomics as well as metabolomics. 

- Personalized Medicine seeks to improve stratification and timing of 

health care by utilizing biological information and biomarkers on the 

level of molecular disease pathways, genetics, proteomics as well as 

metabolomics. 

 Some recent contributions also deserve to be commented just to show the 

wide variety of clinical (or close to clinical) aspects where metabolomics can be a 

useful tool. Complementary and alternative medicine has also taken advantage 

from metabolomics. As an example, aromatherapy that uses essential oils 

through inhalation had not evidenced its efficacy in treating medical conditions 

owing to a particular lack of studies employing rigorous analytical methods that 

capture its identifiable impact on human biology. Recently, a comprehensive 

metabolomics study has revealed changes in people, after exposed to aroma 

inhalation for 10 continuous days, consisting of metabolic alterations in urine 

from people with anxiety symptoms. The samples, analyzed by GC–TOF and ultra 

performance liquid chromatography (UPLC) coupled to QTOF, showed a 

significant change of the metabolic profile of the individuals before and after 

subjected to aromatherapy. The change was characterized by the increased levels 

of arginine, homocysteine, and betaine, as well as decreased levels of alcohols, 

carbohydrates, and organic acids in urine. Notably, the metabolites from 



                                                                                                                         

51 

Introduction  

tricarboxylic acids cycle and gut microbial metabolism were significantly altered. 

This study demonstrates that the metabolomics approach can capture the subtle 

metabolic changes resulting from exposure to essential oils, which may lead to an 

improved mechanistic understanding of aromatherapy [86]. 

 

7. The search for and use of metabolomic biomarkers 

7.1. Definition and features of biomarkers 

 Cells, either directly or indirectly (via extracellular fluid), communicate 

with body fluids. Cell metabolites, peptides and proteins are released from cells 

or are taken up from body fluids via normal excretion, trans-membrane diffusion 

or transport, and throughout the death process during which cells release all of 

their contents. Thus, at least to a certain extent, biochemical and protein changes 

in cells and organs are reflected in body fluids. While tissue samples, biopsies, 

and certain fluids such as urine (kidney), bile (liver), and cerebrospinal fluid 

mainly reflect changes in specific organs and thus are considered “proximal 

matrices”; plasma samples reflect systemic changes that often cannot be traced 

back to a certain organ [87]. Such changes of metabolites, peptides and proteins 

in body fluids, if mechanistically linked to disease processes and drug effects in 

tissues and organs, have the potential to serve as surrogate markers or 

biomarkers. 

 In 2001, a consensus panel at the National Institute of Health defined the 

term biomarker as “a characteristic that is objectively measured and evaluated as 

an indicator of normal biological processes, pathogenesis processes, or 

pharmacologic responses to a therapeutic intervention” [88]. Despite biomarkers 

are not new in the field of medicine [89], they have gained immense scientific 

and clinical interest in recent years thanks, in many aspects, to omics disciplines. 

 Biomarkers are useful along several points of a disease continuum. Thus, 

they are useful in the context of primary prevention, for preventing disease itself. 

Also, they can facilitate secondary prevention for the early detection of disease via 
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screening, detection of subclinical disease and by aiding the monitoring of 

disease progression. Finally, biomarkers are also useful for the purpose of tertiary 

prevention, helping guide treatment to avoid morbidity owing to established 

disease [90]. 

 One avenue for the identification of novel risk markers is being opened 

by the global analysis of the human metabolome. While decades of research in 

biochemistry, nutrition, and physiology have revealed specific metabolic 

pathways, systematic surveys of pathways altered in human disease states are 

now possible. An emerging set of metabolite profiling capabilities, based on 

techniques such as MS and NMR spectroscopy, enable the monitoring of 

hundreds of analytes from biological samples. These technologies promise to 

transform our ability to profile samples, with the goal of illuminating biology and 

discovering valuable clinical biomarkers.  

 Today’s clinical diagnostics is typically based on a limited set of 

biomarkers, often only one parameter that is associated with the functional 

aspect of an organ or a specific disease process (for example creatinine in serum 

as a marker of kidney function). However, there are no single molecular entity 

markers, and there will never be one that captures the function of organs such as 

the kidney, liver or vascular endothelium in all its complexity. 

 Biomarkers are useful as research and clinical tools in most major 

medical fields, as shown in Table 2. 

The characteristics of an ideal biomarker are the following:  

1) Safe and easy to measure, in such a way that the measurement could be 

repeated, if required, without danger for the patient and be performed by 

not very specialized personnel. 

2) Low cost to measure, not only that of the test, but also the cost of follow-

up testing should be low to monitor future levels of the biomarker and 

treatment efficacy. 
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3) The occurrence of a moderate proportion of the disease in the 

community should be explained by the biomarker. 

4) High predictive accuracy for detecting a disease. The sensitivity (the 

detection of a disease when that disease is truly present) and specificity 

(recognition of true absence of disease) of the biomarker should be 

relatively high, thus reducing false-positive and false-negative rates.  

5) Consistent across sexes and ethnic groups. 

 

Table 2. Examples of biomarkers currently used in different fields of medicine. 

 

Specialization Disease 

Screening to 

identify at-risk 

patients 

(primary 

prevention) 

Diagnostic for 

existing disease 

states 

(secondary 

prevention) 

Prognostic for 

treatment and 

outcomes (tertiary 

prevention) 

Cardiovascular 
Cardiovascular 

disease 

Serum LDL 

cholesterol 

Coronary artery 

computed 

tomography 

screening 

Echocardiographic 

left ventricular 

ejection fraction as a 

prognosticator for 

sudden cardiac death 

Endocrinology 
Diabetes 

mellitus 

Fasting blood 

glucose 

Microalbuminuria 

screening for 

diabetic 

nephropathy 

Hemoglobin A1c% and 

long-term glucose 

control 

Gastroenterology Colon cancer 

Family history of 

premature colon 

cancer 

Colonoscopy 

Carcinoembryonic 

antigen for 

postsurgical colon 

cancer recurrence 

Rheumatology 
Systemic lupus 

erythematous 
- 

Anti-Smith 

antibody specific 

for detecting lupus 

Andi-dsDNA for 

diagnosis of lupus 

nephritis 

Oncology Breast cancer 
BRCA-1 gene 

BRCA-2 gene 
Mammography 

Tumor estrogen 

receptor, 

progesterone receptor 

and HER2-neu 

receptor status for 

decisions about 

tamoxifen therapy 
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 It should be noted that a biomarker may be very useful even if it does not 

meet all the criteria of an ideal biomarker. For example, high density lipoprotein 

(HDL) cholesterol protects against cardiovascular disease (CVD); however, 

raising HDL cholesterol has not been proven to decrease CVD risk. On the other 

hand, positive and negative predictive values are dependent on the prevalence of 

disease in a given population: as the prevalence of disease within a given 

population declines, the positive predictive value gets smaller and the negative 

predictive values gets larger for the same test. Predictive values of biomarkers 

with regards to specific outcomes are also important to consider. For instance, 

troponin is a highly sensitive biomarker of early acute myocardial infarction 

mortality [91]; therefore, both the diagnostic and predictive aspects of troponin 

make it an ideal biomarker for detecting this disease.  

 Even if a biomarker meets several criteria that make it “ideal”, this does 

not imply that the biomarker will necessarily be useful in a clinical setting. 

Specifically, if a novel biomarker cannot add a value in clinical settings, then it 

may never pass the sizeable hurdle that separates clinical practice from clinical 

research. 

7.2.  The analytical platforms for biomarkers implementation 

 Multiplexing analytical technologies, including but not limited to, arrays, 

bead immunoassays and mass spectrometry, allow for the assessment of 

molecular marker panels ideally in a single run. Among these technologies MS is 

attractive due to its sensitivity, specificity and flexibility, and it allows for 

absolute quantification. Whereas antibodies are derived from biological sources, 

MS-based multiplexing assays lack the manufacturing and batch-to-batch 

reproducibility challenges of many antibody-based assays. While in antibody-

based assays the type and number of compounds detected is always limited by 

the antibodies included in the assay, mass spectrometry provides the basis for 

non-targeted approaches and, therefore, the means for detection of an open 

number of previously undefined signals [92]. Non-targeted assays constitute the 

extreme of multiplexing assays and, in an ideal world, would capture the 
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complete human metabolome or proteome. The major difference between an 

untargeted and targeted assay is that in a truly untargeted analysis, the 

compounds underlying the signals are not known. Thus, such assays are semi-

quantitative at best and can only be validated to a limited extent. In contrast to 

untargeted assays, targeted multiplexing assays simultaneously measure several 

well-defined compounds, which are validated and are quantitative. Targeted 

multiplexing assays avoid some of the analytical and statistical uncertainties 

associated with completely untargeted data sets in terms of the quality of data, 

quantification, interferences as well as false negatives and positives. 

 Both the platform used to obtain the raw analytical data and the 

chemometric tools used for data treatment, together with the corresponding data 

bases are keys to success in the search for biomarkers [93].   

7.3.  The process for biomarker development 

 Regulatory agencies have established review structures as well as 

guidelines that outline the biomarker qualification process [94]. Based on these 

guidelines, the biomarker development process can be divided into three stages: 

discovery, verification and qualification.  

 Discovery, as the first stage, can be divided into two sub-stages, as Fig. 9 

shows: identification of the candidate biomarker, and analytical validation. The 

former is an untargeted analysis to identify the potential biomarkers. This 

procedure is commonly carried out by high resolution mass spectrometry as 

QTOF. After extraction and identification of the potential markers, analytical 

validation involves a targeted step in which the predictive behavior of the 

markers is properly established by using more sensitive methods generally 

involving the use of QqQ. 

 Verification mechanistically links the molecular marker to the 

biochemical process underlying a disease or drug effect. The qualification process 

bridges the results of molecular marker measurements, symptomatic drug effects 

and disease outcomes.  
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Figure 9. Analytical platform for identification/validation of biomarkers. 

 

 Qualification has been defined as “a graded, fit-for purpose evidentiary 

process linking a biomarker with biology and clinical endpoints” [95]. 

Qualification has been differentiated from validation, which focuses on the 

reliability and performance characteristics of the analytical assay used to measure 

molecular markers [94,96]. Translation of a molecular marker from the discovery 

stage into pre-clinical testing and clinical development greatly depends on the 

availability of robust, precise and sensitive assays for the measurement of a larger 

number of samples [97]. While during the discovery phase a partial validation 

following “fit-for-purpose” principles will be sufficient, the validation must 

become more stringent if drug development strategies, regulatory approval and 

clinical decisions will depend on such a molecular marker. During later clinical 

development, and especially when developed as a clinical diagnostic tool, which 

typically involves comparison of individual results with normal values, absolute 

quantification of the analytes and complete validation following applicable 

regulatory guidelines is critical. If appropriately qualified and based on 

adequately validated assays, molecular markers can support primary outcomes, 

they may help to understand and monitor mechanisms of toxicity, drug 
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interactions, disease-drug interactions and the effects of genotypes, sex and age. 

They can be used to stratify patient populations, guide subgroup analyses to 

bridge safety and efficacy data between different populations such as adults to 

pediatric patients, and among different ethnic groups. Molecular markers may 

also be developed into clinical diagnostic tests and, finally, they must comply with 

a set of rules and regulations for premarketing clearance or premarket approval 

oversight by the corresponding organism in the application country [98–101].  

7.4.  Metabolomics biomarkers  

 Because the vast number of diseases and the number of biomarkers 

reported for each, two (viz., CVD and cancer) have been the diseases selected to 

comment metabolomic biomarkers reported either for them or for related risk 

factors. 

 Metabolomics has been used to study various forms of cardiovascular 

risk factors such as diabetes mellitus, obesity, and metabolic syndrome [102–

104]. There is no doubt that the growing prevalence of obesity has skyrocketed 

the interest in identifying biomarkers of this disease, as obesity is considered a 

major risk factor for CVD [105]. A large number of potential obesity biomarkers 

that correlate with traditional cardiovascular risk factors or predict subsequent 

cardiovascular events have been reported (usually involving in vitro and in vivo 

studies in animals, then in humans), but they require an in-depth validation in 

humans [106].  

 The also growing prevalence of type 2 diabetes mellitus (T2DM) is a 

consequence of obesity and sedentary life habits, which correlate with CVD. 

Plasma fatty acids metabolic profile coupled to uncorrelated linear discriminant 

analysis has been reported as biomarker screening of T2DM and type 2 diabetic 

coronary hearts diseases [107].  

 Present research on biomarkers associated with common pathologies in 

CVD [108] ranges from markers for myocardial ischemia [109–111] and 

cardiogenic shock [112], risk of developing atherosclerosis or future 

cardiovascular events [113–115], chemotherapy-induced cardiotoxicity [116], and 
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pulmonary hypertension related to advanced heart failure [117]. Nevertheless, at 

present, only biomarkers for the consequences of ischemia (i.e., myocardial 

necrosis) are available. Abnormal levels were found for -aminobutyric acid, uric 

acid, citric acid, and several yet to be identified metabolites [111]. To extend 

beyond ischemia, the plasma signature of aconitic acid, hypoxanthine, 

trimethylamine-N-oxide, and threonine differentiated with high diagnostic 

accuracy between infarcted subjects and patients undergoing coronary 

angiography [110]. Despite the studies on the role of NO in the pathogenesis of 

cardiogenic shock [118], the metabolomic insights of disregulated NO metabolism 

links to cardiogenic shock has not been demonstrated. No conclusive meta-

bolomics studies to identify risk in patients with atherosclerosis and its 

associated adverse events have involved from phosphatidylcholine and choline 

metabolism to disregulation of the arginine-NO metabolic pathways [114].  

 On the other hand, lung cancer is the leading cause of cancer-related 

death in most developed countries [119], as a consequence of the fact that 60% of 

patients are diagnosed at advanced stages when a cure is unlikely [120]. The 

annual mortality rate for lung cancer exceeds the annual rate for breast, prostate, 

and colon cancer combined, all of which have successful clinical screening tools 

for the detection of early-stage disease [121]. Therefore, the search for diagnostic 

strategies for early lung cancer detection has intensified in the last decade. Early 

detection involves a high-risk population, a screening test, and a testing schedule. 

 Within this context, one must distinguish populations of individuals at-

risk before or after the disease becomes measurable (Figure 10).  

 

Figure 10. Clinical contexts for biomarker development in early detection of lung cancer. 
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 The search for early detection of lung cancer biomarkers has involved the 

following candidate samples–omics:  

(i) Tissues, and genomics —hypermethylation of a number of tumor sup-

pressor genes [122–124)—, transcriptomics —regions of chromosomal 

amplification [125], mRNA expression variation [126,127], the dif-

ferential expression of several microRNAs [128]—, proteomics —the 

proteomic signature of invasive [129] and pre-invasive lesions in lung 

tissues [130]— and, of course, metabolites, which are considered in more 

detail.  

Metabolomic profiles of lung and prostate tissues, obtained by CE–

TOF/MS, comprised 114 and 86 metabolites, respectively, and the 

profiles not only well distinguished tumor from normal tissues, but also 

squamous cell carcinoma from the other tumor types in lung cancer and 

poorly differentiated tumors from moderately differentiated tumors in 

prostate cancer. Concentrations of most amino acids, especially 

branched-chain amino acids, were significantly higher in tumor tissues, 

independent of organ type, but of essential amino acids were particularly 

higher in poorly differentiated than in moderately differentiated prostate 

cancers. Organ-dependent differences were prominent at the levels of 

glycolytic and tricarboxylic acids cycle intermediates and associated 

energy status. Significantly high lactate concentrations and elevated 

activating phosphorylation levels of phospho-fructokinase and pyruvate 

kinase in lung tumors confirmed hyperactive glycolysis [131].  

(ii) Biofluids including peripheral blood and its components (circulating 

cells, plasma, and serum), exhaled breath condensate, urine, and sputum 

offer non-invasive access to large quantities of samples available for 

analysis. Alterations can lead to the generation of disease-specific 

molecular species such as altered or methylated DNA, overexpressed 

mRNA, miRNA, or proteins that can potentially be released into the 

extracellular microenvironment. Therefore, molecular analyses of early 
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stage lung cancer-related biofluids represent an attractive choice for the 

discovery and validation of diagnostic biomarkers [132,133].  

Exhaled breath condensate (EBC) is the cooling of exhaled gas to gain 

insight into the composition of extracellular lining fluid and soluble 

exhaled gases. Compounds that have so far been measured include, in 

addition to proteins and DNA [134], lipid peroxidation products, 

products of nitrogen oxide metabolism, hydrogen ions, hydrogen 

peroxide, and cytokines. EBC represents the non-invasive sampling for 

diagnosing lung cancer, which offers a wider potential on metabolomics 

research. The analysis of volatile organic compounds (VOC) that 

underlying rationale of this sampling approach is based on the 

observation that tumor cell growth is accompanied by the alteration of 

protein expression pattern that may lead to peroxidation of the cell 

membrane and thus to the emission of VOCs [135]. Several recent studies 

have used GC–MS analysis  of VOCs as both discovery and validation 

platforms [136–138]. Other groups made use of the analytical power of 

GC–MS and the sensitivity of custom designed nanosensors in which 

changes in electrical resistance from organic compounds contained in 

exhaled breath of patients can be detected by these sensors and recorded. 

For example, in a study by Peng and colleagues, a VOC signature that 

distinguished patients with lung, colorectal, and breast cancers from 

healthy individuals was recently identified from exhaled alveolar breath 

[139–141]. Other studies attempted to identify volatile proteins and 

peptides present in EBC and used them as potential markers for the early 

detection of lung cancer [140, 141]. The results of these studies provide 

evidence for feasibility of this strategy to isolate and identify proteins 

useful for early detection of lung cancer. Further studies are still needed 

to standardize a collection device, to further show specificity of any test, 

and to determine the use of this approach in clinical practice. Some 

achievements of metabolomics in the search for lung cancer biomarkers 

are as follows: 
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- Decreased concentrations of alkanes in the breath of patients with lung 

cancer as compared to samples obtained from controls have been 

detected [142]. The explanation for this finding has been that, during 

carcinogenesis, cytochrome P450 enzymes (CYP) are induced resulting in 

the enhanced catabolism of several VOCs. The test for these biomarkers 

has a sensitivity of 85% and a specificity of 80% in selecting patients.  

- Inhibition of proliferation of human lung, colon and pancreatic cancer 

cells by prostaglandin E3 (PGE3) —derived from cyclooxygenase 2 (COX-

2) metabolism of the omega-3 fatty acid eicosapentaenoic acid (EPA)— 

has also been reported [143]. However, how PGE3 metabolism is 

regulated in cancer cells, particularly in human non-small cell lung 

cancer (NSCLC) cells, had not been fully understood, until identification, 

using MALDI, of differences in lipid metabolism between two human 

NSCLC cell lines, A549 and H596. This identification could contribute to 

their differential response to EPA treatment, which showed that the level 

of EPA incorporated into phospholipids in H596 cells was 4-fold higher 

than A549 cells. Intriguingly, H596 cells produced much less PGE3 than 

A549 cells even though the expression of COX-2 was similar in these two 

cell lines.  

- Lipids peroxidation, a well-known index of free radical activity, occurs as 

a result of auto-oxidation of polyunsaturated fatty acids and it has been 

implicated in the pathogenesis of lung cancer [144]. Khyshiktyev et al. 

have reported that, without stating the actual marker, levels of lipid 

peroxidation were lower in EBC of patients with lung cancer than in 

controls [145]. 

- Significant differences in EBC hydrogen peroxide levels were 

demonstrated between groups: lung cancer subjects (23.68±9.15 µM); 

smokers (5.21±0.69 µM); ex-smokers (14.35±3.79 µM); and non-smokers 

(17.59±6.53 µM) [146]. 
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- Different samples such as serum (from 29 healthy volunteers and 33 lung 

cancer patients with adenocarcinoma, n = 12; squamous cell carcinoma, 

n = 11; or small cell carcinoma, n = 10 ranging from stage I to stage IV 

disease), and lung tissue (from 7 lung cancer patients including the 

tumor tissue and its surrounding normal tissue) were analyzed and a 

total of 58 metabolites (57 individual metabolites) were detected in 

serum, and 71 metabolites were detected in the lung tissue. The levels of 

23 of the 58 serum metabolites were significantly changed in all lung 

cancer patients compared with healthy volunteers, and the levels of 48 of 

the 71 metabolites were significantly changed in the tumor tissue 

compared with the non-tumor tissue. Partial least squares discriminant 

analysis, applied to the serum sample data, showed characteristic 

alterations in each histological subtype and disease stage [147].  

 Special mention deserves the recent use of sweat as sample to search for 

lung cancer biomarkers, as discussed in Chapters 1 and 7 of this PhD book [148–

150].  

  Finally, two general aspects in dealing with present research on bio-

markers deserve to be emphasized:  

(i) The general mandate for orthogonal (i.e., uncorrelated) disease bio-

markers that provide additional clinical information along new biological 

axes. A robust set of predictors for identifying at risk individuals is of 

particular importance because of the delay or prevention of diseases such 

as atherosclerosis. Therefore, existing biomarkers can be combined with 

present ones to offer higher sensitivity and/or selectivity and, in short, 

more accuracy in the resulting biomarker.  

(ii) The indubitable certainty that systems biology may provide the best and 

closest to ideal biomarkers. Attempts in this sense by combining pro-

teomics and metabolomics enable to link alterations of cellular proteins 

to metabolism and function [151]. 
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 En este apartado de la Memoria se describen sucintamente los diferentes 

instrumentos y aparatos usados durante el desarrollo experimental de la Tesis. 

En los capítulos se incluye una explicación más detallada de los que se han 

utilizado en cada uno de ellos. 

 

1. Sistemas automáticos y/o continuos de preparación de 

muestra 

 En el Capítulo 2 de la Memoria se ha tratado de enfatizar la aplicabilidad 

de los sistemas continuos al tratamiento de muestra en el análisis no orientado 

(untargeted analysis) para aumentar el número de metabolitos detectados. Por 

otro lado, en el bloque 3 de la Memoria se recoge el uso de un sistema automático 

para la preparación de muestra en análisis orientado (targeted analysis). Estos 

sistemas automáticos permiten llevar a cabo de manera reproducible, parcial o 

totalmente automatizada —y a veces con drástica reducción del volumen de 

muestra y reactivos— esta etapa crucial del proceso analítico, que es una de las 

principales fuentes de error de los métodos de análisis cuantitativo. 

  Se emplearon dos sistemas comerciales similares para llevar a cabo la 

SPE de forma automatizada: el Prospekt-2, que se usó para el pretratamiento de 

muestra en el análisis de catelicidina, como se recoge en el Capítulo 11; y el 

Symbiosis, que se usó para el pretratamiento de muestra en el análisis de 

aminoácidos (Capítulo 9) y para maximizar el número de metabolitos detectados 

en análisis no orientado (Capítulo 2). Ambos sistemas, además de trabajar en 

modo dinámico, permiten la elución directa con la fase móvil cromatográfica o 

con un pequeño volumen de disolvente que se incorpora a la fase móvil. Trabajar 

a alta presión posibilita la conexión en línea de este sistema con el conjunto 

cromatográfo/detector, consiguiéndose así la automatización completa del 

método analítico. El sistema Prospekt-2 está compuesto por tres módulos: Un 
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muestreador (MIDAS), una unidad de extracción en fase sólida (ACE) y una 

bomba de alta presión dispensadora de disolventes de 2 mL de capacidad (HPD). 

Por su parte, el sistema Symbiosis cuenta con 5 módulos: Un muestreador 

refrigerado (AS), de enorme interés para muestras termoinestables;  una unidad 

de extracción en fase sólida (ACE), dos bombas de alta presión dispensadoras de 

disolventes (HPD1 y HPD2), de 2 mL de capacidad,  y una bomba de HPLC.   

 

2. Sistemas discontinuos de preparación de muestra 

 Al igual que los del apartado anterior, los sistemas discontinuos se han 

empleado tanto en análisis orientado como no orientado.  

 Dada la naturaleza no selectiva, semi- o no cuantitativa de las 

plataformas analíticas empleadas a lo largo de la Tesis para análisis metabólico 

global, se hizo especial hincapié en el desarrollo de métodos con mínima o nula 

preparación de muestra, evitándose, por tanto, los sistemas continuos de 

pretratamiento de muestra (salvo en el estudio recogido en el Capítulo 2). En 

general, el pretratamiento de muestra se basó en etapas de extracción, 

centrifugación, hidrólisis o extracción en fase sólida usando µ-SpinColumn (un 

sistema de SPE diseñado para pequeños volúmenes de muestra y en el que se 

utiliza la fuerza centrífuga para hacer pasar los disolventes a través del cartucho). 

Por otro lado, para la extracción y preconcentración de fosfolípidos se usaron 

cartuchos de SPE convencionales, empaquetados con un sorbente específico para 

esta familia de compuestos (HybridSPE), según se recoge en el Capítulo 8.  

 La determinación de los compuestos implicados en el ciclo de los ácidos 

tricarboxílicos mediante GC-IT/MS requirió un pretratamiento de muestra 

basado en la precipitación de las proteínas del suero, la extracción y la 

derivatización por sililación de estos metabolitos (ver Capítulo 10). 
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3. Detección con o sin separación cromatográfica previa 

 Los métodos desarrollados en la parte experimental de esta Tesis 

Doctoral abarcan tanto los que requieren separación cromatográfica (LC o GC)  

previa a la detección mediante espectrometría de masas, como los que la 

detección se lleva a cabo sin separación. 

 En los Capítulos 9 y 11, dedicados al análisis orientado de aminoácidos y 

catelicidina, la separación mediante LC y posterior detección por MS en tándem 

por triple cuadrupolo se llevó a cabo con un cromatógrafo Agilent 1200 Series LC 

equipado con una bomba binaria, un desgasificador, un automuestreador y un 

compartimento de columna termostatizados, y un espectrómetro de masas 

Agilent 6410 de triple cuadrupolo con una fuente de ionización por electrospray 

(ESI). El software Agilent MassHunter Workstation se usó para la toma de datos 

y el análisis cuali- y cuantitativo. El Capítulo 9 recoge el uso de una fase 

estacionaria de interacción hidrófila –HILIC–, especialmente diseñada para 

compuestos polares o iónicos que tienen poca o ninguna retención en columnas 

de fase reversa, tal como requiere la separación de aminoácidos.  

 En las plataformas dedicadas a la obtención del perfil metabolómico 

(metabolomics profiling) de muestras de sudor (Capítulos 1 y 7) y suero 

(Capítulos del 2 al 6), y en las desarrolladas para la identificación y cuantificación 

de fosfolípidos en suero (Capítulo 8), se utilizó un equipo HPLC Agilent 1200 

Series acoplado a un detector de masas de tiempo de vuelo de alta resolución, 

Agilent 6540. Las columnas para la separación cromatográfica fueron en su 

mayoría C18 (fase reversa), salvo en el caso de las plataformas de los Capítulos 1 y 

2 en los que también se ensayaron columnas con fase estacionaria HILIC. En 

todos los casos se usó el software MassHunter para la adquisición de espectros y 

el análisis cualitativo. 

 Para el análisis de los compuestos implicados en el ciclo de los ácidos 

tricarboxílicos se empleó un cromatógrafo de gases Varian CP-3800 acoplado a 

un detector de masas de trampa iónica (Varian Saturn 2200), que consta de un 

automuestreador (Varian 8400).  Se utilizó el software de Varian de control de 
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sistema e integración de señales (Star Chromatography Workstation 6.0) para la 

obtención y el tratamiento de los datos. 

 

4. Técnicas quimiométricas 

 De acuerdo con la importancia que ha adquirido la quimiometría en los 

métodos usados en metabolómica, en la Tesis Doctoral que se recoge en esta 

Memoria se han utilizado extensamente herramientas quimiométricas, tanto para 

el desarrollo y optimización de métodos analíticos como para el tratamiento de 

datos multivariantes. La metodología del diseño de experimentos se ha utilizado, 

cuando ha sido posible, en la optimización de algunas condiciones 

experimentales como las implicadas en la ionización de analitos previa a su 

detección por espectrometría de masas. La precisión de los métodos propuestos 

para el análisis cuantitativo (targeted analysis) de familias de compuestos se 

estudió como reproducibilidad dentro del laboratorio y repetibilidad mediante 

series de experimentos por triplicado usando análisis de varianza (ANOVA) a 

diferentes niveles de concentración de los analitos.  

 El tratamiento de datos se realizó con distintos programas informáticos 

según el objetivo: 

a) Alineamiento de entidades moleculares en análisis no orientado 

(profiling):  

- Por un lado se usó la combinación de dos paquetes del lenguaje de 

programación R de uso libre: XCMS y CAMERA. El primero permite 

extraer y alinear las entidades moleculares potenciales de un análisis 

no orientado, y el segundo reconoce aductos e isótopos y los agrupa 

para eliminar falsos positivos y crear la lista definitiva de entidades. 

- Por otro lado se empleó la combinación de dos softwares de Agilent: 

Qualitative Workstation y MassProfiler Professional (Agilent). El 

primero permite extraer las entidades teniendo en cuenta aductos e 
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isótopos, mientras que el segundo posibilita el alineamiento de las 

entidades potenciales. 

- Finalmente, se usó el software MassProfinder, de Agilent, que permi-

te realizar las etapas de extracción de entidades (teniendo en cuenta 

aductos e isótopos) y el alineamiento en un único paso.  

b) Análisis estadístico:  

- El paquete estadístico “stats” del lenguaje de programación R, que 

permite realizar una amplia gama de análisis estadísticos tanto 

paramétricos como no paramétricos, así como la representación de 

los datos.  

- Statgraphics y Unscrambler: Ambos softwares también permiten 

realizar distintos análisis estadísticos univariantes y multivariantes, 

así como el diseño y evaluación de modelos de screening y superficies 

de respuesta. 

- MassProfiler Professional: Permite la aplicación de diferentes 

algoritmos de análisis estadístico especialmente adecuados para el 

análisis metabolómico. 

c) Evaluación de la capacidad de predicción de metabolitos o paneles con 

potencial marcador: Esta evaluación se ha realizado a través de las curvas 

ROC, que representan especificidad frente a sensibilidad. Para su 

obtención se ha usado tanto la herramienta gratuita de acceso online 

ROCCET (http://www.roccet.ca/ROCCET/), como el paquete “pROC” 

del lenguaje de programación R. 

d) Diseño de modelos de predicción y creación de paneles de marcadores: 

En este caso se han empleado tanto el MassProfiler Professional que 

permite la creación de modelos por PLS-DA, como la herramienta en 

línea ROCCET o el software PanelomiX, que permiten crear paneles de 

marcadores y evaluar su capacidad de predicción/discriminación. 
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5. Bases de datos 

 Aunque queda un gran camino por recorrer, existen varias bases de datos 

de metabolitos a disposición del usuario que contienen información para la 

identificación y caracterización de muchos de los compuestos presentes en 

diversas matrices biológicas. Entre ellas, las bases de datos ‘Metabolites and 

Tandem MS Database’ (METLIN), ‘Human Metabolome Database’ (HMDB) y 

‘MassBank’ se han empleado para la identificación de compuestos presentes en 

biofluidos (suero y sudor) a partir de los datos espectrales obtenidos mediante 

espectrometría de masas en las partes 1, 2 y 5 de esta Memoria. Además, la 

información biológica disponible en la HMDB y las rutas biosintéticas de la base 

de datos ‘Kyoto Encyclopedia of Genes and Genomes’ (KEGG) se han utilizado 

para la interpretación de resultados obtenidos en los capítulos 4, 5 y 6.   

 Para la identificación de lípidos existen otras bases de datos que, si bien 

no están constituidas por datos espectrales experimentales, contienen 

información útil sobre la rotura in silico de las distintas familias, como es el caso 

de LipidMaps. Esta base de datos se empleó, en las partes 3 y 5 de esta Memoria, 

para la identificación de fosfolípidos en base a los datos espectrales obtenidos por 

espectrometría de masas. 
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 Section I of this PhD Book is devoted to methodological development and 

innovation on metabolomics with the main aim of helping to overcome some of 

the weak aspects of profiling analysis in clinical metabolomis. The target aspects 

are related both with clinical sample preparation of different biofluids involving 

different tools, and with coverage  enhancement of metabolomics profiling.  

Chapter 1 is devoted to the development of a method to analyze human 

sweat, an odd clinical sample, with clear potential in metabolomics. The method, 

based on LC–QTOF MS/MS, provided identification of 41 metabolites after 

sample preparation either by only dilution or clean-up by SPE to increase 

sensitivity and reduce interferents. The pathways in which most of the identified 

metabolites are involved open a door to the use of this sample to searching for 

biomarkers. 

 The limited detection coverage of the approaches for global meta-

bolomics profiling of serum has intended to be overcome in Chapter 2, in which 

an automated approach was configured by online coupling of SPE involving 

sorbents with different retention mechanisms to LC–QTOF. The SPE protocols 

allowed 3445 molecular entities to be detected by serial configurations of the 

automated SPE system. 

 One other limitation of metabolomics profiling is the necessity for 

MS/MS information to achieve unequivocal metabolite identification. The 

general procedure in most analytical platforms requires a first injection of the 

sample batch to know the potential metabolites to be identified, and a second 

injection to obtain the MS/MS information of the ion precursors. To avoid dual 

injection, Chapter 3 deals with the study of the GPF strategy advantages in 

profiling metabolomics analysis. 
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Optimization study for metabolomics analysis of 

human sweat by liquid chromatography–tandem 

mass spectrometry in high resolution mode 

M. Calderón-Santiago, F. Priego-Capote*, B. Jurado-Gámez, M. D. Luque de 

Castro* 

 

Abstract 

 Sweat has recently gained popularity as a potential tool for diagnostics 

and biomarker monitoring as it is a non-invasive biofluid the composition of 

which could be modified by certain pathologies, as is the case with cystic fibrosis, 

which increases chloride levels in sweat. The aim of the present study was to 

develop an analytical method for analysis of human sweat by liquid chroma-

tography–mass spectrometry (LC–QTOF MS/MS) in high resolution mode. Thus, 

different sample preparation strategies and different chromatographic modes 

(HILIC and C18 reverse modes) were compared to check their effect on the 

profile of sweat metabolites. Forty one compounds were identified by the MS/MS 

information obtained with a mass tolerance window below 4 ppm. Amino acids, 

dicarboxylic acids and other interesting metabolites such as inosine, choline, uric 

acid and tyramine were identified. Among the tested protocols, direct analysis 

after dilution was a suited option to obtain a representative snapshot of sweat 

metabolome. In addition, sample clean up by C18 SpinColumn SPE cartridges 

improved the sensitivity of most identified compounds and reduced the number 

of interferents. As most of the identified metabolites are involved in key 

biochemical pathways, this study opens new possibilities to the use of sweat as a 

source of metabolite biomarkers of specific disorders. 
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1.  Introduction 

  Sweat is an aqueous electrolyte solution excreted by the eccrine and 

apocrine sweat glands originated in the skin dermis of mammals and terminated 

in the secretory canals that flow into the skin surface and hair follicles. The 

primary function of sweating is thermoregulation to control body temperature by 

evaporative cooling. In addition, sweat is a defence mechanism of skin, the 

excretion fluid of chemosignals such as androstadienone —which acts as 

hormonal stimuli in females—, and waste of metabolites such as uric acid [1]. 

Sweat is mainly composed by water, but it contains several minor components 

including electrolytes, ammonia, urea, small molecules such as carboxylic acids 

and amino acids as well as more complex biomolecules such as proteolytic 

enzymes and antimicrobial peptides, among others [2]. Therefore, the varied 

composition of sweat supports its clinical interest to be potentially exploited for 

diagnostic.  

 The scant application of sweat in clinical analysis is explained by the lack 

of studies to relate sweat composition and pathological states. In fact, few clinical 

tests use sweat samples. One of these tests is for diagnosis of cystic fibrosis in 

new-borns based on determination of chloride in sweat [3–5]. However, the 

advances both in sweat collection devices and sensitive analytical techniques 

increased the interest on sweat testing of drugs over the past few years [6–10]. 

Sweat may offer a non-invasive alternative to present sampling for continuous 

monitoring of drugs exposure as sweat can be collected for a programmed period 

with minimal disturbance for the sampled individual. Sweat sampling can be 

performed with the aid of sweat wipes as liquid perspiration or over time using 

sweat patches [11]. The experience gained in sweat collection procedures for the 

analysis of xenobiotics could be used to implement this biofluid in clinical 

diagnostics [12,13].  

 Major limitations in the analysis of sweat are the low volume of sweat 

secreted and the variability in secretion among individuals [14,15]. Also, sampling 

is a complex process since the collected sweat should be representative and 
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unaffected by interferents. Non-invasiveness and the absence of requirements in 

terms of health personnel care are the main benefits from sweat as clinical 

sample. 

 Despite the scant studies on the clinical perspectives of sweat, the 

potential of this biofluid in omics disciplines has been pointed out. In proteomics, 

a current research developed by Raiszadeh et al. revealed that sweat proteome is 

rather different from serum proteome [16]. Therefore, human sweat could be 

considered an additional source of unique disease-associated biomolecules. In 

fact, Raiszadeh et al. found differential abundances of selected proteins between 

schizophrenia patients and control individuals. This preliminary test should be 

validated to prove the applicability of human sweat in the diagnostic of 

schizophrenia. In the metabolomics field, a recent study of sweat by high-

resolution NMR spectroscopy has revealed that some of the components present 

in human sweat are involved in primary and secondary biological functions [17]. 

Among them, amino acids, sugars, lactate, glycerol, and compounds involved in 

the citric acid cycle (e.g. pyruvate, fumarate or aconitate) have been detected. 

NMR is especially suited to metabolomics profiling of human sweat as this is a 

relatively non-complex biofluid. Nevertheless, more research on sweat 

composition is demanded to assess the potential of this biofluid for clinical 

diagnostic. The aim of the present study was to develop a method for analysis of 

human sweat by LC–QTOF MS/MS. Different sample preparation strategies such 

as sample dilution, acid/alkaline hydrolysis and solid-phase extraction (SPE) 

were compared to check their influence on the profile of the detected metabolites. 

Taking into account the polar character of human sweat, two analytical 

chromatographic columns, C18 and HILIC, were tested to study their suitability 

to analyze human sweat. Identification of metabolites by LC–QTOF MS/MS in 

high resolution mode was carried out to obtain a snapshot of the composition of 

sweat metabolome. 
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2. Experimental 

2.1. Reagents 

 MS-grade formic acid, ammonium formate and acetonitrile (ACN) to 

prepare the chromatographic mobile phases and sodium hydroxide and 

hydrochloric acid were purchased from Scharlab (Barcelona, Spain). Deionized 

water (18 mΩ • cm) from a Millipore Milli-Q water purification system was used. 

2.2. Instruments and apparatus 

 An Agilent 1200 Series LC system (consisting of a binary pump, a vacuum 

degasser, an autosampler and a thermostated column compartment) coupled to 

an Agilent 6540 UHD Accurate-Mass QTOF hybrid mass spectrometer equipped 

with dual electrospray ionization (ESI) source (Santa Clara, CA, USA) was used. 

The chromatographic eluate was thus monitored in high resolution mode. 

2.3. Cohort selected for the study 

 A cohort of 96 individuals with an average age of 59±11 years and a 

proportion of 75% male individuals participated in this study. All steps from 

sweat sampling to analysis were performed in compliance with the guidelines 

dictated by the World Medical Association Declaration of Helsinki of 2004. The 

study was approved by the ethics committee of the Reina Sofia University 

Hospital. The individuals selected for this study were previously informed to 

obtain consent.  

2.4.     Sweat producer and collector: procedure 

 All samples were collected from 9 to 11 am after breakfast ingestion to fix 

the most common conditions of clinical practice. A Macroduct® Sweat Analysis 

System (Wescor, Utah, USA), consisting of a Webster sweat inducer and a 

Macroduct sweat collector (US Patent 4,542,751), was used. Pilogel® 

iontophoretic discs (US Patent 4,383,529) (Wescor, Utah, USA), a gel reservoir of 

pilocarpinium ions, were used in the iontophoretic stimulation of sweat.   
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 The sweat inducer provided a current intensity of 1.5 mA for 5 min 

through two pilogel discs as electrodes located on the forearm. After removing 

the discs the skin where the positive disc had been located was cleaned with 

distilled water and the Macroduct collector covered this skin to collect sweat for 

15 min. The collected sweat was transferred to a micro Eppendorf and stored at –

80 ºC until use. 

 One individual was randomly selected to collect seven sweat samples in 

different days which were used to study sample variability and methodological 

reproducibility.  

2.5. Sample treatment 

 A pool was prepared taking 5 µL of samples from all participants. Then, 

different experimental protocols were compared to select that providing 

maximum metabolite coverage. Firstly, 10 µL of sample was diluted with 20 µL of 

0.1% v/v formic acid in water to analyze directly sweat without treatment. Then, 

two different strategies were tested.  

 (i) Sweat hydrolysis under acid or alkaline conditions to release 

 metabolites conjugated to proteins or peptides. With this aim, 100 µL 

 aliquots were 1:1 mixed with 0.1 M either NaOH or HCl in water and 

 vortexed at room temperature for 30 min, then evaporated to dryness 

 and reconstituted by 100 µL of chromatographic mobile phase A.  

 (ii) Sweat clean up and preconcentration by solid phase extraction using 

 C18 and hydrophilic centrifugal Micro SpinColumnTM systems (Harvard 

 Apparatus, MA, USA) and following the protocol recommended by the 

 manufacturer depending on the sorbent material.  

 The protocol for C18 Micro SpinColumnTM was as follows: 150 µL of 

water for solvation, 150 µL of 50% (v/v) acetonitrile for sorbent conditioning, 150 

µL of 5% (v/v) acetonitrile for sorbent equilibration, 25 µL of sample, 150 µL of 

5% (v/v) acetonitrile to obtain thesample free from the undesirable retained 
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compounds, which were subsequently eluted by 150 µL of 50% (v/v) acetonitrile. 

Centrifugation for 25 s at 1000 × g was used for each step.  

 The protocol for hydrophilic Micro SpinColumnTM system was: 150 µL of 

water for solvatation, 150 µL of 50% (v/v) acetonitrile for sorbent conditioning, 

150 µL of 5% (v/v) acetonitrile for sorbent equilibration, 25 µL of sample, 150 µL 

of acetonitrile to remove undesired non retained compounds, and 150 µL of 50% 

(v/v) acetonitrile to elute the retained target compounds. The centrifugation 

conditions were as those used for the C18 sorbent.  

 Both the eluate and the nonretained fraction (collected after sample 

application) obtained in each SPE protocol were analyzed separately after 

evaporation and reconstitution by 20 µL of water acidified with 0.1% formic acid. 

2.6. LC–QTOF MS/MS analysis  

 Two chromatographic columns were tested for separation. A C18 reverse-

phase analytical column (Mediterranean, 50 mm×0.46 mm i.d., 3 μm particle 

size) from Teknokroma (Barcelona, Spain) was used at constant temperature of 

25 °C. The mobile phases were water (phase A) and ACN (phase B) both with 

0.1% formic acid as ionization agent. The LC pump was programmed with a flow 

rate of 0.8 mLmin–1 and the following gradient elution was developed: 3% phase 

B was kept constant from min 0 to 1; from 3 to 80% of phase B from min 1 to 10.5 

and from 80 to 100% of phase B from min 10.5 to 11.5. A post-time of 5 min was 

set to stabilize the initial conditions.  

 A Luna hydrophilic interaction chromatography column (HILIC)  

(100 mm × 0.46 mm i.d., 3 μm particle size) from Phenomenex (Torrance, CA, 

USA) was used in the other method. In this case, the mobile phases were 5% (v/v) 

of ACN (phase A) and 95% (v/v) of ACN (phase B), both with 5 mM of 

ammonium formate (pH 6) as ionization agent. The LC pump was programmed 

with a flow rate of 0.6 mLmin–1 and the following gradient elution was developed: 

90% phase B was kept constant for 5 min; then, the percentage of phase B 

decreased to 70% since min 5 to 17 and finally decreased to 50% from min 17 to 

20. A post-time of 5 min was set to stabilize the initial conditions. 
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 In both cases the injection volume was 3 µL and the injector needle was 

washed for 10 times between injections with 70% methanol. Furthermore, the 

needle seat back was flushed for 15 s at a flow rate of 4 mLmin–1 with 70% 

methanol to avoid cross contamination. 

 The parameters of the electrospray ionization source, operating in 

negative and positive ionization mode, were as follows: the capillary and 

fragmentor voltage were set at ±3.5 kV and 175 V, respectively; N2 in the 

nebulizer was flowed at 40 psi; the flow rate and temperature of the N2 as drying 

gas were 8 L min–1 and 350 °C, respectively. The instrument was calibrated and 

tuned according to the procedures recommended by the manufacturer. Data were 

collected in both centroid mode at a rate of 1 spectrum per second in the 

extended dynamic range mode (2 GHz).Accurate mass spectra in MS scan and 

MS/MS mode were acquired in the m/z range 60–1100. The instrument gave 

typical resolution 15000 FWHM (Full Width at Half Maximum) at m/z 118.0862 

and 30000 FWHM at m/z 922.0098. To assure the desired mass resolution, 

continuous internal calibration was performed during analyses by using the 

signals at m/z 121.0509 (protonated purine) and m/z 922.0098 [protonated 

hexakis (1H, 1H, 3H-tetrafluoropropoxy) phosphazine or HP-921] in the positive 

ion mode; while in the negative ion mode, ions with m/z 119.0362 (proton 

abstracted purine) and m/z 966.0007 (formate adduct of HP-921) were used. 

 The samples were first injected in full scan acquisition mode and then in 

auto MS/MS acquisition mode to obtain information on the product ion of the 

most relevant compounds. The maximum number of precursors selected per 

cycle was set at 2 with an exclusion window of 0.3 min after 2 consecutive 

selections of the same precursor. Three collision energies (10, 20 or 40 eV) were 

used to obtain the maximum information from fragmentation. At least three 

replicates of each sample preparation test were analyzed to improve the quality of 

the results. Blanks were inserted in the analysis sequences between sets of 5 

samples. 
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2.7. Data processing and statistical analysis 

 MassHunter Workstation software (version B5.00 Qualitative Analysis, 

Agilent Technologies, Santa Clara, CA, USA) was used to process all data 

obtained by LC–QTOF in full scan MS mode. Treatment of raw data file was 

initiated by extraction of potential molecular features (MFs) with the suited 

algorithm included in the software. For this purpose, the extraction algorithm 

considered all ions exceeding 500 and 1000 counts with a single charge state for 

chromatograms obtained with C18 and HILIC column, respectively, as the 

background noise was different for the two cases. Additionally, the isotopic 

distribution to consider a molecular feature as valid should be defined by two or 

more ions (with a peak spacing tolerance of 0.0025 m/z, plus 10.0 ppm in mass 

accuracy). Adducts formation in the positive (+H, +Na, +NH4) and negative 

ionization (-H, +HCOO) modes, as well as neutral loss by dehydration were 

included to identify features corresponding to the same potential metabolite. 

Thus, ions with identical elution profiles and related m/z values (representing 

different adducts or isotopes of the same compound) were extracted as entities 

characterized by their retention time (RT), intensity in the apex of the 

chromatographic peaks and accurate mass. Background contribution was 

removed by subtraction of MFs linked to plasticizers, solvent impurities and 

other contaminants after analysis of a blank (0.1% formic acid) under identical 

operational conditions for each sample treatment procedure tested. In this way, 

raw data files were created in compound exchange format files (.cef files) for each 

sample and exported into the Mass Profiler Professional (MPP) software package 

(version 12.1, Agilent Technologies, Santa Clara, CA, USA) for further processing.  

 In the next step, the data were processed by alignment of retention times 

and m/z values across the data matrix using a tolerance window of 0.6 min and 

10 ppm mass accuracy, respectively. Data pretreatment was based on baselining 

to remove background noise and normalization by logarithmic transformation to 

reduce relatively large differences among the respective MF abundances. The 

molecular features extracted from the analysis of blanks were removed from the 

data set formed by molecular features extracted from sweat samples. The 
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extraction algorithm confirmed the efficiency of this filtering step. This correction 

was applied to all the sample treatments tested. Stepwise reduction of the MFs 

number was performed based on frequency of occurrence by comparing 

repetitions of the same fraction or hydrolysis procedure. A filter by frequency was 

set at 100%, which ensured the detection of each molecular feature in all the 

injected replicates . 

 Identification of the most relevant entities was based on MS and MS/MS 

information and searching in the METLIN MS and MS/MS database 

(http://metlin.scripps.edu) and Human Metabolome Database (HMDB, 3.5 

version).  

 

3. Results and discussion 

 As mentioned before, sweat should be considered a potential biofluid for 

clinical diagnostic of great interest because its non-invasive sampling. With this 

aim, development of methods for analysis of sweat by LC–QTOF MS/MS are 

demanded to define suited protocols for characterization of this biofluid by 

coverage of as much as possible sweat metabolome. 

3.1. Comparison of the two chromatographic modes for direct analysis of 

human sweat 

 Most metabolites present in sweat are polar because of the aqueous 

nature of this excreted biofluid. For this reason, the separation capability of two 

chromatographic modes, HILIC and C18 reverse mode, were compared. In both 

cases the sweat pool was 1:1 diluted with 0.1% (v/v) formic acid and directly 

analyzed by LC–TOF MS in positive and negative ionization modes. Molecular 

features were extracted from raw data files obtained by the four chromatographic 

methods (C18 and HILIC methods in positive and negative ionization modes). 

For this purpose, an extraction algorithm was used by setting the minimum peak 

abundance at 500 counts for C18 reverse mode analyses and 1000 counts for 

HILIC analyses. These cut-off values were established taking into account the 
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chromatographic background noise, which was higher in the HILIC chroma-

tograms. Supplementary Fig. 1 shows the distribution of the retention times for 

the molecular features detected by each chromatographic method and ionization 

mode. As can be seen, most of the molecular features detected in the methods 

based on the C18 analytical column were associated to retention times in the first 

part of the chromatogram, while resolution in the case of HILIC allowed a more 

homogeneous elution of potential metabolites. Therefore, the polar character of 

the metabolite composition of sweat is confirmed. Fig. 1 shows the base peak 

chromatograms (BPCs), which included the intensity of the highest ion per scan, 

obtained by the HILIC (Fig. 1a) and C18 (Fig. 1b) analytical columns in both 

ionization modes. As can be seen, the two chromatograms reporting wider 

information in terms of number of peaks were obtained with the method based 

on the HILIC column in the negative ionization mode and with that on C18 

column in the positive ionization mode. On the other hand, the chromatograms 

provided by HILIC in the positive ionization mode and C18 in the negative mode 

were not characterized by high resolution. It is worth emphasizing that BPCs 

were influenced by the presence of components of the gel discs. Among gel discs 

components to stimulate sweat secretion, the contaminant giving the highest 

peak in sweat samples was pilocarpine, which is mostly detected in the positive 

ionization mode. Other components of the gel formulation such as methyl-

paraben and propylparaben were also detected in the analysis of sweat by both 

ionization modes.  

 Direct analysis of sweat enabled detection of 67 and 57 molecular 

features in positive ionization mode for the C18 and HILIC analytical methods, 

respectively; meanwhile, 29 and 37 molecular features, respectively, were 

detected in negative ionization mode for both columns. Although C18 reverse 

mode seems not to be appropriate for separation of sweat polar metabolites 

according to the chromatographic profile, this mode should not be discarded at 

least in positive ionization mode due to the number of molecular entities 

detected. 
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 Despite the high number of potential entities detected in positive 

ionization mode, sample preparation could improve metabolite coverage. With 

this aim, different steps encompassing hydrolysis or cleaning by centrifugal SPE 

were tested after a quality control study to assess the performance of the analysis 

equipment. 

 

Fig. 1. Base peak chromatograms (BPCs) obtained for sweat analysis in positive and 

negative ionization using two chromatographic modes: (a) HILIC, (b) RP-C18. 
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3.2. Quality control (QC) study 

 A quality control (QC) test was carried out by analysis of sweat as an 

attempt to assess the instrumental precision of the detection step and the 

stability of the samples. The QC test was performed by repetitive injection  

(n = 14) of the human sweat pool prepared in this research, by inserting a blank 

each 5 injections to evaluate carry-over effects. The autosampler temperature was 

set at 6 ºC to minimize potential degradation and methylparaben was used as 

internal standard as a normalization strategy to minimize intra-individual 

variability. Methylparaben is always present in sweat and its concentration would 

depend on the sweat volume collected. Due to the number of molecular features 

found in the samples (67 in the positive ionization mode), a multivariate analysis 

based on Principal Component Analysis (PCA) was used to assess variability 

associated to instrumental precision and sample integrity. Supplementary Fig. 2 

shows the PCA resulting from normalization in which significant variations were 

observed after 4 h at 6 ºC (sample number 9 of the programmed sequence in the 

QC test). Therefore, sequences of analysis included only 8 samples to minimize 

variability sources associated to sample stability. The normalization procedure 

was considered for programming sequences in further experiments. Under these 

conditions, instrumental precision estimated as RSD percentage ranged from 3 to 

11%. 

 Additionally, the intra-individual variability was assessed by analysis of 7 

samples collected from the same individual in different days, which were 

analyzed in duplicate within a five days interval. This study also allowed 

evaluating the methodological reproducibility since the variability estimated as 

RSD ranged from 2 to 21%. These values indicated that the collection system was 

reproducible enough for metabolomics research. 

3.3. Comparison of acidic and basic hydrolysis 

 Sweat hydrolysis protocols under acidic and alkaline conditions were 

tested to maximize metabolite identification in sweat as some metabolites could 

thus be released from proteins or other conjugates. For this purpose, sweat was 
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incubated with NaOH or HCl aqueous solutions as described in the Experimental 

section. Fig. 2a and 2b shows the chromatograms from sweat without hydrolysis 

and after basic and acid hydrolysis in positive and negative ionization modes, 

respectively, using the C18 analytical column. As can be seen, the number of 

chromatographic peaks increased significantly by analysis of hydrolyzed samples 

as compared to direct analysis of sweat. Fig. 2c and 2d compares the number of 

features detected in all the repetitions in each analysis in negative and positive 

ionization modes, in which the number of features increased significantly in the 

negative ionization mode for sweat hydrolyzed under alkaline conditions, while in 

the positive mode the features increased under acidic conditions. Thus, the 

analysis of sweat subjected to alkaline hydrolysis allowed detection of 155 

potential entities in negative ionization mode, while direct analysis of sweat led to 

29 entities. On the other hand, acidic hydrolysis enabled detection of 83 entities 

in positive ionization mode, while direct analysis led to detection of 67 entities. 

One fact to be emphasized is that 79 and 76% of the molecular features detected 

by direct analysis of sweat were also detected in the hydrolyzed samples in 

negative and positive ionization modes, respectively. Despite the high number of 

potential metabolites detected in hydrolyzed sweat, many of them were identified 

as pilocarpine adducts (sodium, dimers and fragments), the main contaminant 

interferent detected in human sweat, which is used to stimulate sweat secretion 

by the Macroduct® system. In fact, 8 out of 11 molecular features exclusively 

detected in the analysis of sweat subjected to alkaline hydrolysis in positive 

ionization mode were identified as pilocarpine adducts, and 15 out of 26 entities 

exclusively detected in sweat subjected to acid hydrolysis in positive ionization 

mode were identified as pilocarpic acid adducts or fragments. However, only 7 

out of 122 molecular features exclusively detected in sweat after alkaline 

hydrolysis were identified as pilocarpine adducts in negative ionization mode. In 

this case, peptide fragments and artifacts were among the numerous molecular 

features detected in sweat hydrolyzed under alkaline conditions. Attending to 

these results, sweat hydrolysis would not be recommended since the sample 
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integrity is altered by detection of numerous artifacts associated to metabolites 

and peptides. 

  

Fig. 2. BPCs obtained by analysis of human sweat without hydrolysis and after alkaline 

and acid hydrolysis in positive (a) and negative (b) ionization modes. Venn diagrams 

comparing the molecular features detected in the three analyses in negative (a) and 

positive (b) ionization modes. 

3.4.  Sample cleaning by centrifugal solid phase extraction 

 The Macroduct® sweat collection system is commercialized for the 

determination of chloride in sweat as a diagnostic tool for cystic fibrosis. It is easy 

to use, reproducible, and sample collection does not require an additional 

extraction procedure. However, this system is based on stimulation of sweat by 

pilocarpine iontophoresis and collection of the sweat in a disposable plastic 

device containing a water soluble colorant. Consequently, the gel components 

employed for sweat stimulation were identified in human sweat either by direct 

analysis or after sample hydrolysis. Therefore, it would be interesting to reduce 

the presence of these interferents in collected sweat by implementation of sample 

hydrolysis 
hydrolysis 

hydrolysis 
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preparation steps. For this reason, the possibility of including centrifugal SPE 

using C18 or hydrophilic Micro SpinColumnTM was studied. The protocol based 

on hydrophilic SpinColumnTM was proved by analysis of both the non-retained 

fraction and the eluate using the HILIC chromatographic mode in both polarities. 

The resulting chromatograms, shown in Supplementary Fig. 3, were quite similar 

to those obtained by direct analysis in the case of the eluate and gave no 

information in the case of the non-retained fraction. Thus, no improvement in 

terms of metabolite coverage was observed using this SPE protocol. 

 Concerning sweat preparation by C18 SpinColumnTM, analysis of the non-

retained metabolites and those in the eluate was independently carried out by 

both chromatographic columns (C18 and HILIC). Fig. 3 shows the 

chromatograms obtained in both ionization modes from the non-retained 

fraction (non-retained metabolites and those washed out in the cleaning step) 

analyzed using the C18 (Fig. 3a) or HILIC analytical column (Fig. 3b). The 

chromatograms reveal the degree of efficiency of this SPE step for pilocarpine 

removal, while methylparaben and propylparaben were completely removed from 

the sample. The metabolites in the eluate —use of 50% (v/v) acetonitrile for 

elution—, with a higher non polar character, were analyzed by the 

chromatographic C18 column for optimum retention. Supplementary Fig. 4 

illustrates the chromatograms provided by both ionization modes, in which 

intense peaks identified as pilocarpine, methylparaben and propylparaben 

appear. Other exogenous metabolites such as caffeine and theophylline were also 

identified in the eluate by positive ionization mode. Therefore, this strategy could 

add interest for sweat cleaning by removal of undesired exogenous metabolites.  

 Fig. 4a and 4b shows the Venn diagrams comparing the detection 

coverage in sweat analysis by the C18 analytical column using two different 

approaches: direct analysis with only dilution, and centrifugal SPE with C18 

SpinColumnTM (non-retained and eluted fractions). In negative ionization mode, 

the most remarkable aspect is the detection of 78 molecular entities in the non 

retained fraction after SPE versus 29 entities detected by direct analysis. 

Pilocarpine, methylparaben and propylparaben were only detected in the analysis 
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after sweat dilution and in the SPE eluate. This effect was similarly observed in 

positive mode since detection of 69 molecular entities by centrifugal SPE (which 

included 91% of the entities detected in diluted human sweat) was possible. 

 

Fig. 3. BPCs obtained in positive and negative ionization modes for the non-retained 

fraction after centrifugal SPE of human sweat with C18 SpinColumnTM using both 

chromatographic modes: RP-C18 (a) and HILIC (b). 

 Fig. 4c and 4d shows the Venn diagrams that compare the detection 

coverage in the analysis of human sweat by the HILIC analytical column with 

sample dilution and after centrifugal SPE with the C18 SpinColumnTM (eluate). In 

this case, more differences were observed between direct analysis and after SPE 

by the hydrophilic sorbent both in positive and negative ionization modes. In 
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fact, approximately 40% molecular features detected by analysis of diluted sweat 

were exclusive of this approach. 

 

 

Fig. 4. Venn diagrams comparing the detection coverage in direct sweat analysis and after 

centrigual SPE using C18 SpinColumnTM (retained and non-retained fractions) using  

RP-C18 chromatographic mode in negative (a) and positive (b) ionization modes, and 

using HILIC mode in negative (c) and positive (d) ionization modes. 

 Attending to these results, the C18 centrifugal SPE approach is 

appropriate as cleaning strategy by analysis of the non retained fraction since the 

main interferents associated to the sampling device and exogenous metabolites 

are retained and subsequently eluted after collection of the non retained target 

analytes. 

3.5. Identification of potential entities detected by MS/MS 

 Few studies on metabolic composition of sweat have been carried out 

since the systematic investigations of sweat composition started in the last part of 

the past century [17]. A recent research by Kutyshenko et al. provided a list of 43 

compounds identified by NMR in human sweat including amino acids, sugars 

and carboxylic acids, among others [12]. However, NMR offers limited sensitivity 

as compared to MS; therefore, identification of sweat metabolites by MS could 

increase the metabolomics coverage. 
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 In this research, 41 sweat compounds were identified and confirmed 

including amino acids, sugars, dicarboxilic acids, fatty acids and derivatives as 

well as exogenous compounds. Only compounds with high quality of MS/MS 

spectra at different collision energies were considered in this step. Identification 

was supported on mass accuracy of precursor ions and that of the most 

representative fragments, searching for them in the METLIN database. Table 1 

lists the 43 identified metabolites, which are classified by families. Information 

on identification in terms of MS precursor ion and the two most representative 

product ions is also included. As most of the compounds are detected in both 

positive and negative ionization polarities, only the ionization mode with the 

highest sensitivity is included. In all cases, the mass accuracy error, expressed as 

ppm for precursor ions, ranged from 0 to 4 ppm. The retention time for each 

compound in both tested chromatographic systems is also included. As exposed 

above, chromatographic resolution by HILIC methods is better than that by C18 

methods as the latter led to coelution of many metabolites in the first part of the 

chromatogram. 

 Comparison of the relative intensities for the identified metabolites by 

the different sample treatments revealed that sample clean up by C18 

SpinColumnTM provided the best results in terms of efficiency for most families. 

Furthermore, most exogenous compounds are almost completely removed from 

the sample when this strategy is adopted. On the other hand, fatty acids and 

derivatives were better detected after sample preparation by the hydrophilic 

SpinColumnTM.  

 The variety of metabolites identified in sweat emphasizes the interest of 

sweat to be assessed for clinical analysis. Most of the identified metabolites were 

amino acids and dicarboxylic acids, which are representative of crucial 

biochemical pathways that could be related to pathologies or dysfunctions. Thus, 

19 amino acids, including essential and non essential amino acids, were identified 

in sweat by combining positive and negative ionization modes. Two amino acids 

derivatives such as tyramine (tyrosine derivative) and pyroglutamic acid 
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(glutamic acid derivative) and a dipeptide such as prolylhydroxyproline were 

unequivocally identified in sweat. 

Table 1. List of metabolites identified in human sweat classified by families. Retention 

time in both chromatographic modes are included as well as the MS identification 

information (precursor and product ions) and the error (expressed in ppm) of the 

precursor ion detected. 

Family Metabolite 
MS spectra 

(m/z) 
[adduct] 

MSMS 
spectra 
(m/z) 

RT (min) 

C18 HILIC 

Amino acids 

Arginine 
175.1188 
[M+H]+ 

130.0969 
116.0709 

0.67 - 

Aspartic acid 
132.0302 

[M-H]- 
88.0434 
71.0134 

0.70 17.64 

Carnitine 
116.1124 
[M+H]+ 

103.0391 
60.0804 

0.67 13.62 

Citrulline 
176.1029 
[M+H]+ 

159.0767 
113.0702 

0.72 15.93 

Glutamate 
148.0601 
[M+H]+ 

130.0485 
84.0454 

0.72 17.26 

Glutamine 
147.0759 
[M+H]+ 

130.0504 
84.0454 

0.69 - 

Histidine 
156.0764 
[M+H]+ 

110.0712 0.68 19.19 

Leucine/Isoleucine 
132.1017 
[M+H]+ 

86.0966 
44.0499 

1.43 7.00 

1.61 6.45 

Methionine 
150.0581 
[M+H]+ 

133.0310 
104.0527 

1.14 - 

Ornithine 
131.0826 
[M-H]- 

83.0606 0.72 15.91 

Phenylalanine 
166.0860 
[M+H]+ 

120.0806 
103.0541 

3.55 5.92 

Proline 
116.0706 
[M+H]+ 

70.0655 0.78 9.25 

Serine 
104.0353 

[M-H]- 
74.0248 0.67 14.32 

Taurine 
124.0074 

[M-H]- 
79.9565 0.71 7.93 

Threonine 
120.0655 
[M+H]+ 

102.0548 
74.0606 

0.70 17.76 

Tryptophan 
205.0971 
[M+H]+ 

188.0705 
159.0915 

4.67 6.34 

Tyrosine 
180.0666 

[M-H]- 
163.0404 
72.0097 

1.80 8.34 

Valine 
118.0862 
[M+H]+ 

72.0812 0.92 7.56 
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Amino acid 
derivatives 

Pyroglutamic acid 
128.0353 
[M-H]- 

82.0292 1.56 10.25 

Tyramine 
120.0806 

[M+H-H2O]+ 
103.0542 
77.0393 

3.53 6.10 

Prolyl 
hydroxyproline 

227.1041 
[M-H]- 

112.0398 4.68 6.42 

Amino acid 
breakdown product 

Urocanic acid 
137.0357 
[M-H]- 

93.0459 
66.0342 

1.16 7.76 

Metabolites 
involved in purine 
nucleosides 
degradation 

Inosine 
267.0728 

[M-H]- 
135.0310 - 4.99 

Uric acid 
167.0211 
[M-H]- 

124.0157 1.54 10.32 

Dicarboxylic acids 

Azelaic acid 
187.0976 
[M-H]- 

125.0970 
97.4887 

6.96 4.22 

Butanedioic acid 

117.0191 
[M-H]- 

163.0250 
[M+FA-H]- 

71.0139 
101.0246 
73.0302 

0.91 6.52 

Sebacic acid 
201.1134 
[M-H]- 

183.1038 
139.1131 

7.62 - 

Suberic acid 
173.0824 
[M-H]- 

111.0809 

83.0503 
6.21 - 

Exogenous 
compounds 

Caffeine 
195.0879 
[M+H]+ 

138.0655 
110.0708 

5.31 2.87 

Methylparaben 
151.0413 
[M-H]- 

136.0172 
92.0278 

7.56 2.50 

Pilocarpic acid 
225.1246 
[M-H]- 

163.1218 
 

2.93 10.63 

Pilocarpine 
209.1279 
[M+H]+ 

163.1227 
95.0608 

3.35 3.01 

Propylparaben 
179.0714 
[M-H]- 

136.0153 
92.0262 

9.33 2.51 

Theophylline 
181.0712 
[M+H]+ 

124.0498 
69.0444 

4.76 3.18 

Nutrients 
Choline 

104.1070 
[M+H]+ 

60.0819 
45.0340 

0.64 6.36 

Coumaric acid 
165.0554 
[M+H]+ 

119.0499 1.79 8.32 

Fatty acids 
derivatives 

MG (18:0) 
359.3148 
[M+H]+ 

341.3042 
85.1008 

- 2.48 

MG (16:0) 
331.2831 
[M+H]+ 

313.2711 
123.1155 

10.44 2.50 

MG (22:2) 
431.3127 

[M+Na-2H]- 
89.0247 10.12 2.60 

Sphingolipids C16 Sphinganine 
274.2742 
[M+H]+ 

257.2480 8.76 - 

Sugars 
Maltotriose 

503.1636 
[M-H]- 

161.0463 
341.1094 

0.79 16.58 

Tetrasaccharide 
689.2113 
[M+Na]+ 

325.1123 
487.1625 

0.81 18.78 
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 Concerning dicarboxylic acids, azelaic acid, butanedioic acid, sebacic acid 

and suberic acid were confirmed in negative ionization mode. The identification 

of four dicarboxylic acids reveals the importance of this group of endogenous 

metabolites in human sweat. 

 Two metabolites involved in the degradation of purine nucleosides such 

as inosine and uric acid were also detected in human sweat. Therefore, the 

activity of this pathway is also reflected in this non invasive sample. Urocanic 

acid, a breakdown product of histidine, was identified as excreted metabolite in 

human sweat. This compound is accumulated in the epidermis where it acts as a 

UV protector and as immunoregulator. One other low molecular weight 

metabolite identified in sweat was choline, which can be either ingested as free 

form in the diet or produced by degradation of glycerophosphocholines. Previous 

studies have described the presence of this metabolite in sweat [12,13]. 

 Finally, it is worth mentioning the identification of one sphingolipid and 

three fatty acid derivatives with non polar character —viz. C16 sphinganine and 

three monoacylglycerols such as MG(18:0), MG(16:0) and MG(22:2)—, which 

emphasize the presence of non polar metabolites in sweat, despite the aqueous 

nature of this biofluid. 

 Among the 43 compounds identified in this research using LC–QTOF  

some of them (viz. coumaric acid, uric acid, dicarboxylic acids, carnitine, taurine, 

tyramine, tyrosine and fatty acid related compounds) were not identified by a 

previous study based on NMR [12]. In addition, some of the identified 

metabolites had been evaluated as potential biomarkers in other biofluids [18-

20]; aspect that may be of interest to study sweat as potential biofluid for 

biomarker searching. 

 

4. Conclusions 

 Different sample preparation protocols as well as different chroma-

tographic modes have been compared for global metabolomics profiling analysis 
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of sweat. Although sweat is scarcely used in metabolomics studies, its potential 

for discrimination of metabolic profiles correlated with different pathologies 

would make this biofluid interesting to explore. Among the tested protocols, 

sweat hydrolysis would not be recommended for metabolite profiling since the 

sample integrity is altered by detection of numerous artifacts. Direct analysis 

after dilution was a suited option to obtain a representative snapshot of sweat 

metabolome. On the other hand, the clean up step with C18 SpinColumn SPE 

cartridges improves sensitivity and reduces the number of exogenous 

compounds. Only for fatty acids the clean up step should be developed by 

hydrophilic SpinColumn SPE cartridges. 

 Identification of a high number of sweat components from a wide variety 

of families demonstrated that LC–QTOF MS/MS is a good strategy to analyze this 

biofluid. It should be mentioned that almost 50% of the identified compounds 

were amino acids, being the compounds more abundant in sweat. 
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Supplementary material 

 

Supplementary Fig. 1. Distribution of the retention times for the molecular features 

detected by LC–MS/MS analysis of human sweat with each chromatographic mode and 

ionization mode. 

 

 

Supplementary Fig. 2. Principal Component Analysis (PCA) as quality control study to 

evaluate instrumental precision by analysis of human sweat pool using the signal of 

methylparaben as normalization strategy. 
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Supplementary Fig. 3. BPCs obtained after centrigugal SPE of human sweat with 

hydrophilic SpinColumnTM by analysis of the retained fraction (a) and non-retained 

fraction (b). 

 

Supplementary Fig. 4. BPCs obtained by analysis of the retained fraction in 

centrifugal SPE of human sweat with C18 SpinColumnTM in positive (a) and negative 

(b) ionization modes. 
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Enhancing detection coverage in global 

metabolomics profiling by automated solid-phase 

extraction on-line coupled to LC–MS/MS 

M. Calderón-Santiago, F. Priego-Capote*,  M. D. Luque de Castro 

Abstract 

 One of the main shortcomings of global metabolomic profiling is a 

limited detection coverage that, however, can be improved by a combination of 

analytical techniques such as NMR spectroscopy, LC–MS or GC–MS. An 

automated approach was configured by on-line coupling of solid-phase extraction 

(SPE) to LC–MS. The approach was applied to the metabolomic analysis of 

human serum based on sample fractionation by this SPE–LC–MS coupling. With 

this purpose, sorbents acting either via non-mixed or mixed retention 

mechanisms were assessed for their ability to provide selective fractions of serum 

metabolites. A combination of the results provided by the SPE protocols for the 

different sorbents allowed 3445 molecular entities to be detected —more than 

73% in the fractions eluted from at least two sorbents. Also, more than 81% of 

this detection coverage was obtained by a combination of analyses carried out in 

the eluates from four sorbents: polydivinylbenzene resin, C18 sorbent, and 

anionic and cationic mixed-mode polymeric sorbents. Also, pairs of SPE 

protocols were serially conducted in automated SPE–SPE–LC–MS confi-

gurations to boost their selectivity in single analyses and hence maximize 

throughput, which can be especially useful with scarce or highly valuable 

samples. The serial configurations afforded single-analysis detection coverages of 

79.5–99.7% for molecular features via two separate analyses with the same 

sorbents.  
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1.  Introduction 

 The primary purpose of metabolomics is to analyze the complement of 

low-molecular weight compounds present in a biological fluid, cell or organism 

under a given set of physiological conditions or different perturbations. 

Metabolomics essentially relies on three major strategies depending on whether 

analyses are to be comprehensive, qualitative and/or quantitative [1]. So-called 

“targeted analyses” involve the qualitative and quantitative study of one or, more 

frequently, a small group of chemically similar metabolites. On the other hand, 

metabolomics fingerprinting uses a global screening approach to classify samples 

in terms of metabolite patterns (fingerprints) that change in response to a 

specific factor. Finally, global metabolomics profiling or “untargeted analysis” 

involves the detection of a broad range of metabolites by using a single analytical 

platform or a combination of complementary analytical platforms to obtain a 

comprehensive profile of the metabolome. The greatest challenge of 

metabolomics is maximizing detection and accurate identification of thousands 

of metabolites, which is currently a utopian goal in dealing with complex 

organisms. For instance, viral and bacterial metabolomes contain around a 

thousand or even fewer metabolites [2,3], whereas the human metabolome 

consists of approximately 7900 metabolites [4] and plant metabolomes can easily 

contain up to 100 000–200 000 metabolites [5,6]. The determination ability of 

platforms for metabolomics analysis can be measured in terms of “metabolomics 

coverage”, that is, the number of metabolites an individual platform such as GC–

MS/MS, LC–MS/MS, CE–MS/MS or NMR spectroscopy, or a combination 

thereof, can detect. 

 The main limitation of existing metabolomics profiling methodologies is 

a result of the high complexity of the metabolome, which includes a wide range of 

compounds with different physico–chemical properties at concentrations 

spanning several orders of magnitude [7,8]. Specifically, metabolite levels can 

range from a few picomoles to a few millimoles per litre, which complicates the 

detection of low-concentrated metabolites in the presence of metabolites existing 

at high concentration levels.  
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 The most effective strategy for the comprehensive analysis of 

metabolomes currently available involves integrating information obtained with 

different analytical platforms (mainly NMR spectroscopy [9,10] and MS coupled 

to a separation technique such as GC, LC or CE [11–13]) or using direct infusion 

[14,15]. One other way of maximizing metabolomic coverage is by optimizing 

existing fractionation protocols for sample preparation [16,17]. These protocols 

are intended to enable the analysis of metabolites according to physico-chemical 

properties such as polarity, acid–base character, affinity or molecular size. 

Sample preparation in metabolomics usually includes liquid–liquid extraction 

(LLE) [18–20] or solid–liquid extraction with different solvents with special 

emphasis on solid-phase extraction (SPE) with selective sorbents [21,22]. 

However, the poor automatability of these strategies makes protocols time-

consuming. For example, the metabolomics profiling of Escherichia coli has been 

addressed by integrating the analysis of extracts obtained with different solvent 

compositions [23]. This strategy, however, cannot be automated, so it is 

impractical for analyzing large numbers of samples. Unlike liquid–liquid 

extraction and solid–liquid extraction, SPE can be easily automated to extract 

metabolites from biological fluids with a wide variety of sorbents capable of 

retaining compounds with different properties [24-26]. Integrative SPE with 

selective sorbents for subsequent LC–MS analysis can be expected to improve 

metabolomics coverage.  

 In this work, an automated platform was used for integrative SPE 

coupled on-line to LC–MS/MS analysis of human serum in high resolution mode 

with a view to enhancing metabolomics coverage in relation to conventional 

protocols currently used to characterize the serum metabolome. In addition, the 

proposed platform allows complementary SPE protocols to be combined in 

purposely constructed SPE–SPE–LC–MS configurations for more compre-

hensive analysis of biofluids. The ultimate aim was to increase the number of 

metabolites detected in order to acquire more biological information for 

subsequent processing. 
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2. Experimental section 

2.1. Chemicals 

 MS-grade acetonitrile (ACN), formic acid, ammonia and ammonium 

formate were purchased from Scharlab (Barcelona, Spain) and used to prepare 

chromatographic mobile phases and the solutions used in the SPE protocol. 

Deionized water (18 m · cm) from a Millipore Milli-Q water purification system 

was used throughout. 

2.2. Instruments and apparatus 

 An Agilent 1200 Series LC system coupled to an Agilent Accurate-Mass 

QTOF hybrid mass spectrometer equipped with a dual source for electrospray 

ionization (ESI) (Santa Clara, CA, USA) was used to construct the analytical 

platform (Fig. 1). The chromatographic eluate was monitored in the accurate 

mass mode. 

 SPE was done in a Symbiosis Pharma automated workstation from Spark 

Holland (Emmen, The Netherlands) equipped with a Reliance autosampler, also 

from Spark Holland, and a refrigerated stacker sample compartment. The 

autosampler was furnished with a 0.2 mL sample loop. The workstation 

contained two high-pressure syringe dispensers (HPD) for solvent delivery and 

four 6-port valves connected with Peek tube of 0.25 mm i.d. (VICI, Houston, 

Texas, USA), which was used for all system connections. The SPE workstation 

was equipped with a unit for cartridge exchange —automatic cartridge exchanger 

(ACE)— holding up to 100 cartridges which were clamped in the loop of two of 

the valves (Clamp I and Clamp II) for each analysis. A 1 mL × 1.0 mm i.d. 

stainless tube from Análisis Vínicos (Tomelloso, Spain) was used to connect the 

two valves of the SPE workstation (viz. Valve 2 and Clamp II). This configuration 

allowed the eluate from the first cartridge (Clamp I) to be conditioned for a 

second SPE step (Clamp II), if required, by mixing with other solution prior to 

loading in a complementary second cartridge. Cartridges (10 × 2 mm) packed 

with the following sorbents were tested: Hysphere C2 (silica-based ethyl phase), 
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Hysphere C8 (EC) (end-capped silica-based octyl phase), Hysphere C18 (silica-

based octadecyl phase), Hysphere Resin GP (polymeric polydivinylbenzene 

phase), Hysphere Resin SH (strong hydrophobic-modified polystyrene–

divinylbenzene), Hysphere MM anion (mixed-mode anionic), Hysphere MM 

cation (mixed-mode cationic, Spark Holland) and Oasis HLB (hydrophilic–

lipophilic balance, Waters, Milford, MA, USA). The fourth valve, located behind 

the column compartment, was used to select the chromatographic fraction to be 

monitored in LC–MS/MS.. 

2.3. Blood collection and serum isolation 

 Venous blood was collected in evacuated sterile serum tubes (Vacutainer, 

Becton Dickinson, Franklin Lakes, NJ, USA) containing no additives and 

incubated at room temperature for 10 min to facilitate coagulation. Then, the 

tubes were centrifuged at 2000 g at 4 °C for 15 min to isolate the serum fraction 

(processing within 2 h after collection). A serum pool prepared by mixing 

different serum samples and stored at –80 °C until analysis was used in all 

optimization tests.  

2.4.     LC–TOF/MS analysis 

 Chromatographic separation was performed at 25 °C, using a C18 

reversed phase analytical column (Mediterranean, 100 mm × 4.6 mm i.d., 3 m 

particle size) from Teknokroma (Barcelona, Spain). The mobile phases used were 

water (phase A) and ACN (phase B), both containing 0.1% formic acid as 

ionization agent or 5 mM ammonium formate (pH 6.1) when using cationic 

cartridges. The LC pump was programmed to operate at a flow rate of 0.8 

mL/min in accordance with the following gradient elution sequence: 3% phase B 

for 1 min; phase B ramp from 3 to 100% from min 1 to min 25; and hold at 100% 

for 3 min. 

 The electrospray ionization source was operated in the positive and 

negative ionization modes, using the following settings: capillary and fragmentor 

voltage ±3.5 kV and ±175 V, respectively; N2 nebulizer gas pressure 40 psi; and 

N2 drying gas flow rate and temperature 10 L/min and 325 °C, respectively. The 
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instrument was calibrated and tuned as recommended by the manufacturer. Data 

were collected in the centroid mode, using a rate of 1.0 spectrum per second in 

the extended dynamic range mode (2 GHz). Accurate mass spectra were acquired 

over the m/z range 100–1100. The instrument gave typical resolution 15 000 

FWHM (Full Width at Half Maximum) at m/z 118.086255 and 30 000 FWHM at 

m/z 922.009798. Mass accuracy in recorded ions was assured by continuous 

internal calibration via the signals at m/z 121.0509 (protonated purine) and m/z 

922.0098 [protonated hexakis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine or 

HP-921] in the positive ionization mode; and those at m/z 112.9856 

(trifluoroacetate anion) and m/z 1033.9881 (HP-921) in the negative mode.  

2.5. Single cartridge automatic SPE configuration and protocol 

 The retention capabilities of the different cartridges were assessed 

separately, using a single cartridge configuration (Fig. 1). For this purpose, four 

standard SPE protocols (see Table 1) were programmed for application in terms 

of the characteristics of each sorbent, namely: two reversed phase protocols 

differing only in the loading solution, a cationic protocol and an anionic protocol. 

In all cases, retained metabolites were eluted by using a suitable mobile phase in 

the programmed gradient of the chromatographic method. Variability in the 

process was assessed by using three replicates per sorbent (see Supplementary 

Fig. 1). 

Table 1. Solid phase extraction protocols used with the different sorbents. 

Step 
Reversed phase 

protocol 1 
Reversed phase 

protocol 2 

Cationic 

protocol 

Anionic 
protocol 

Solvation 1 mL ACN 1 mL ACN 1 mL ACN 1 mL ACN 

Equilibration 1 mL water 
1 mL 

20% ACN 

1 mL 

20% ACN  
1% formic acid 

1 mL 

20% ACN  
2% ammonia 

Sample 
loading 

1 mL water 
1 mL 

40% ACN 

1 mL 

20% ACN  
1% formic acid 

1 mL 

20% ACN  
2% ammonia 

Elution 
Mobile phase with 

formic acid 
Mobile phase with 

formic acid 

Mobile phase 
with ammonium 

formate 

Mobile phase 
with formic 

acid 

 



                                                                                                                         

137 

Sent to J. Chromatogr. A Section I. Chapter 2 

 

 

Figure 1. Instrumental configurations for single- and double-cartridge SPE on-line 

coupled to LC–TOF/MS including an autosampler (AS), two high-pressure dispensers 

(HPDs), two clamps and five two-position valves (one with a T-rotor). 

 

2.6. Double cartridge automatic SPE configuration and protocol  

 The double cartridge configuration used to combine complementary 

cartridges is also shown in Fig 1. The SPE protocols were similar (see Table 1) and 

differed only in equilibration or in the solution loaded into the second cartridge. 

HPD 2 was used to directly pump an appropriate solution to equilibrate the 

second cartridge or for mixing with the eluate from the first cartridge. The eluates 

from both cartridges were sequentially led to the chromatographic column for 

independent, consecutive analysis. 
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2.7.  Data processing and statistical analysis 

 MassHunter Workstation software (version 3.01 Qualitative Analysis, 

Agilent Technologies, Santa Clara, CA, USA) was used to process all data 

obtained by LC–TOF/MS in the full scan MS mode. Processing of raw data files 

started by extracting potential molecular features (MFs) with the applicable 

algorithm included in the software. The extraction algorithm considered all ions 

exceeding 5000 counts (above background noise) with a single charge state. In 

addition, the isotopic distribution for a valid feature had to be defined by two or 

more ions (with peak spacing tolerance of 0.0025 m/z, plus ±7.0 ppm). Adduct 

formation in the positive (+Na, +K, +NH4) and negative ionization mode (+Cl, 

+HCOO), and neutral losses by dehydration and the loss of phosphate, 

glucuronide or methyl groups, were also included to identify features of the same 

metabolite. Thus, ions with identical elution profiles and related m/z values 

(representing different adducts or isotopes of the same compound) were 

extracted as entities characterized by their retention time (RT), intensity at the 

apex of each chromatographic peak and accurate mass. In this way, raw data files 

were created in compound exchange format (.cef files) for each sample and 

exported into the Mass Profiler Professional (MPP) software package (version 

2.0, Agilent Technologies, Santa Clara, CA, USA) for further processing. In a 

subsequent step, the data were preprocessed by aligning retention times and m/z 

values across the data matrix, using a tolerance window for retention time and 

mass accuracy of 0.5 min and 7 ppm, respectively. Venn diagrams were then 

constructed to compare the number of entities found with each cartridge or 

configuration. 

 

3. Results and discussion 

 As stated before, the selectivity of the retention mechanisms for SPE 

sorbents can provide an interesting analytical tool for assisting fractionation of 

complex metabolomes. 
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 This research was entirely conducted with a pool serum prepared from 

several healthy donors to ensure comparability of tests, all of which were 

performed in triplicate. Also, all chromatographic separations were done by using 

a C18 phase column in the reversed gradient mode. HILIC chromatographic 

columns were not included in this study since the elution step was carried out in 

gradient mode for all tested sorbents. Thus, HILIC-gradient methods were not 

compatible with this elution mode. Retention capabilities were optimized for 

comparison of the sorbents based on non-mixed retention mechanisms first and 

those relying on mixed mechanisms then. Sorbents providing wider coverage 

were also assayed, using the above-described serial configurations 

3.1. Retention capabilities of SPE reversed phase sorbents based on non-

mixed mechanisms 

 The materials acting via non-mixed retention mechanisms studied here 

included C18, C8 and C2, in increasing polarity —a function of the hydrocarbon 

chain length. The retention ability of each material was assessed by inserting on-

line the eluted fraction from the column into the LC–TOF/MS system to 

determine the number of metabolites retained in the sorbent. The results are 

shown as a Venn diagram in Fig. 2.A. As can be seen, the C2, C8 and C18 sorbents 

allowed a quite similar number of molecular features to be determined (viz. 1421, 

1524 and 1593, respectively; and up to 2178 entities in combination). Also, a 

minimum of 1459 common molecular features, which represented 67.0% of the 

total detection potential, were detected in at least two of the tests. Based on these 

results, the C18 sorbent was seemingly the best for obtaining a representative 

view of the metabolome of human serum judging by its detection capabilities. 

However, C8 and C2 should not be discarded as they enabled the detection of a 

substantial number of molecular entities not covered by C18. Supplementary Fig. 

2.A shows the base peak chromatograms (BPCs) in the positive ionization mode 

obtained by LC–TOF/MS analysis of the eluates from the three SPE sorbents. 

The analysis of the fractions extracted with C18, C8 and C2 gave BPCs with wide 

common chromatographic zones and a few different zones. The differences 

between the results obtained in the negative and positive ionization modes were 
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quite similar (see BPCs in Supplementary Fig. 2.B); also, the eluates from the C8 

and C2 sorbents exhibited decreased retention efficiency relative to C18. Figure 

2.B shows the extracted ion chromatograms (EICs) for m/z 518.3217 

corresponding to LysoPC(18:3), which represents to a characteristic family of 

serum metabolites detected in the eluted fraction of the three sorbents. As can be 

seen, the retention efficiency of LysoPC(18:3) in C18 sorbent was clearly higher 

than that observed for the other two tested materials. 

 

Figure 2. A) Venn diagram comparing molecular features (MFs) determined with a 

single-cartridge SPE–LC–TOF/MS configuration and sorbents based on non-mixed 

retention mechanisms (C18, C8 and C2) in the positive ionization mode.  B) Extracted ion 

chromatogram (EIC) for precursor ion at m/z 518.3217 corresponding to lysoPC (18:3). 

 

3.2. Retention capabilities of SPE sorbents based on mixed mechanisms 

 Materials simultaneously acting via mixed retention mechanisms are 

frequently used to expand the applicability of SPE. In this work, we used five 

types of sorbents based on different retention mechanisms, namely: polymeric 

resins GP (polymeric polydivinylbenzene phase) and SH (strong hydrophobic-

modified polystyrene-divinylbenzene); Oasis HLB (a sorbent with balanced 

hydrophilic and lipophilic interactions); and two sorbents exhibiting ionic 

interactions (an anionic and a cationic MM sorbent). These sorbents were tested 

with the reversed phase protocol previously used for sorbents involving non-

mixed retention mechanisms. As can be seen in Fig. 3.A, the eluate from resin GP 

provided greater coverage of metabolites in human serum than the other 
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sorbents acting via a combined retention mechanism (viz. 1596 entities versus 

1215 with resin SH and 1119 with HLB). In fact, 78% of the entities detected in the 

eluate from resin GP were also detected with HLB and SH. Based on these results 

resin GP is seemingly especially suitable for obtaining a representative profile of 

metabolites in human serum under the tested conditions. Supplementary Fig. 2.C 

shows the BPCs obtained by analyzing the eluates from the resing GP, resin SH 

and Oasis HLB; as can be seen, there were critical differences consistent with the 

Venn diagrams. Figure 3.B and C illustrate EICs for m/z 203.0526  

corresponding to a sodium adduct of a hexose such as glucose, fructose or 

mannose and m/z 132.1019 associated to leucine. Both metabolites are 

representative examples of high and low concentrated metabolites in serum, 

detected in the eluted fraction of the three sorbents. The retention efficiency of 

these compounds in resin GP sorbent was clearly higher than that observed in the 

other two polymeric materials.   

 

Figure 3. A) Venn diagram comparing molecular features (MFs) determined with a 

single cartridge SPE–LC–TOF/MS configuration and sorbents based on mixed retention 

mechanisms (resin GP, resin SH and HLB Oasis). B) EIC for precursor ion at m/z 

203.0526 associated to a sodium adduct of a hexose. C) EIC for a precursor ion at m/z 

132.1019 corresponding to leucine. 

 

 Ionic MM sorbents were studied by using a protocol similar to that for 

the reversed SPE procedures but at a different pH in two key steps: sample 

loading and elution. In this way, ionic interactions were enhanced via the 
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formation of formic acid and ammonium formate, which facilitated retention of 

cationic and anionic compounds in both cartridges (see Table 1). The two car-

tridges contained the same polymeric support and differed only in their cationic 

or anionic nature; therefore, their differences in retention capabilities can be 

exclusively ascribed to ionic interactions and the influence of an acid or base on 

the loading and elution steps. As can be seen from Fig. 4, a high proportion of 

molecular features (60% with the anionic MM sorbent and 80% with the cationic 

MM sorbent) were detected in the eluates from both cartridges. Also, the 

sorbents proved quite selective: independent experiments with the ionic MM 

sorbents allowed 316 and 122 features to be uniquely detected. These differences, 

resulting from the selectivity of the sorbents, reflected in marked overlap between 

the BPCs for the two sorbents (see Supplementary Fig. 2.D). Figure 4 also shows 

EICs of two metabolites, thromboxane A2 (m/z 353.2322) and 1-

methyladenosine (m/z 282.1196), which were preferably retained in one of the 

ionic MM sorbents. Thus, thromboxane A2 was well-retained in the anionic 

polymeric sorbent while 1-methyladenosine was properly retained in the cationic 

polymeric sorbent. These examples support the complementary behavior of both 

SPE cartridges. 

 

 

 

Figure 4. A) Venn diagram comparing molecular features (MFs) determined with a single 

cartridge SPE–LC–TOF/MS configuration and sorbents based on mixed retention 

mechanisms (anionic and cationic MM sorbents). B) EICs for precursor ions at m/z 

353.2322 and 282.1196 corresponding to thromboxane A2 and 1-methyladenosine, 

respectively. 
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3.3. Detection coverage of SPE–LC–TOF/MS with the studied sorbents 

 Once assessed for retention, the sorbents were compared in terms of the 

number of molecular features detected in their eluates. Table 2 lists the number 

of entities detected by SPE–LC–TOF/MS in each fraction. Aligning the TOF 

chromatograms via the retention time and mass accuracy afforded the detection 

of 3445 molecular entities in combination —more than 73% in the eluates from at 

least two sorbents. Supplementary Fig. 3 shows the extracted ion chromatograms 

obtained in the analysis of different eluates for three of the metabolites present in 

human serum. In view of these results, sample fractionation by SPE could be an 

approach for maximizing the detection capabilities of some analytical 

methodologies.  

Table 2. Molecular features detected in the SPE–LC–TOF/MS analysis of the fractions 

eluted from each sorbent in the single-cartridge configuration. The total number of unique 

molecular features detected, and the proportion detected with each individual sorbent, are 

also shown. 

Sorbent Number of MFs Detection coverage (%) 

C18 1593 46.2 

C8 1524 44.2 

C2 1421 41.2 

Resin GP 1596 (801)* 46.3 

Resin SH 1215 (603)* 35.3 

Oasis HLB 1119 (403)* 32.5 

MM anion 795 23.1 

MM cation 601 17.4 

Total 3445  
* The number of entities detected with the nonpolar protocol is given in brackets. 

 

 Psychogios et al. in the framework of the Human Metabolome Database 

Consortium [27] succeeded in detecting and identifying 3564 metabolites by 

using a combination of five different methodologies based on LC–MS/MS, NMR, 

GC–MS, direct infusion–MS and TLC prior to GC–FID. In the research proposed 

here no overall identification was carried out by tandem mass spectrometry since 



   

144 

Enhancing detection coverage in global metabolomics 

profiling by automated SPE on-line coupled to LC–MS/MS  

the main objective was to show that the selectivity of these sorbents can be 

exploited jointly in on-line SPE–LC–MS analysis of biological samples to 

substantially increase the metabolite coverage of this detection technique. 

The detection capability of the SPE–LC–TOF/MS approach with 

combination of sorbents was also assessed by comparison with the analyses of 

fractions obtained by serum liquid–liquid extraction with a methanol–

chloroform system. To this end, a 300 μL aliquot of the serum pool was mixed 

with an identical volume of a 1:2 chloroform–methanol solution to precipitate 

proteins. The methanolic and chloroform fractions were separated by 

centrifugation and analyzed by LC–TOF/MS. As can be seen, the combined 

analysis of the two fractions enabled detection of 1444 entities, which is below the 

detection capability of the automated SPE approach. Figure 5 compares the 

results obtained by the SPE–LC–TOF/MS approach and the precipitation 

method involving a binary mixture of methanol and chloroform.  

 

 

Figure 5. Venn diagram comparing molecular features (MFs) determined by SPE–LC–

TOF/MS combining all sorbents tested in comparison with a method based on liquid–

liquid extraction with methanol–chloroform mixture and independent analysis of the two 

fractions. 
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 The potential of sorbents individually exhibiting the highest detection 

coverage in SPE–LC–TOF/MS was assessed with a view to their joint, 

complementary use. The target sorbents were C18 and resin GP, which were used 

with conventional reversed phase protocols, as well as cationic and anionic MM 

sorbents, which were used with pH-modified protocols. Supplementary Fig. 4 

shows a Venn diagram comparing the metabolite coverage achieved by analyzing 

the respective eluates. As can be seen, only 10 molecular features were shared by 

the four eluates; this underlines the fractionation capabilities of the selected 

materials. Using the four eluates in combination allowed the detection of a total 

of 2812 molecular entities —a much higher figure than that provided by 

independent analyses with the individual sorbents. Many of the features (62%) 

were detected in the eluates from at least two sorbents. In addition, the results of 

these joint analyses were complementary. Thus, 881 unique features were 

detected in the eluates from the ionic MM sorbents, with 459 common entities 

detected with the anionic and cationic protocols. On the other hand, 1895 

molecular features were exclusively detected with the protocols based on SPE in 

the reversed mode (C18 and resin GP). Finally, the analyses with C18 and resin 

GP as sorbents allowed the detection of 1240 common features. 

3.4.  Serial configurations for improved metabolomics coverage (double 

cartridge) 

 Once the complementarity of the fractions obtained with different 

cartridges was demonstrated, technical configurations based on two serially 

arranged SPE cartridges were designed to exploit the benefits of orthogonal SPE 

protocols. This allowed metabolites not retained in the first cartridge to be 

trapped in the second. As shown earlier, cationic and anionic MM sorbents 

provided highly selective metabolite profiles by virtue of their ionic interactions. 

Therefore, the most suitable combinations for the intended purpose should be 

those using a reversed mode sorbent such as C18 or GP resin with an ionic MM 

sorbent in order to maximize metabolomic coverage. Figure 6 shows Venn 

diagrams illustrating the detection capabilities of the double cartridge approach 

with a single serum aliquot. As can be seen, the number of molecular features 
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detected in the eluates from the ionic MM sorbents used in the second cartridges 

was much smaller than that afforded by separate analysis with ionic sorbents in a 

single cartridge configuration. The orthogonal protocols allowed detection of a 

substantial number of molecular entities (1884 to 2176). Such high detection 

ability arises from the supplemental selectivity provided by these compatible SPE 

protocols. Supplementary Fig. 5 shows one of the orthogonal BPCs obtained by 

sequential elution from the two cartridges used in one of the configurations. 

Table 3 compares the detection capabilities of the serial configurations in a single 

analysis with those of a combination of two separate analyses with the same two 

sorbents. As can be seen, the detection coverage with the serial SPE system 

ranged from 79.5 to 99.7% of the molecular features detected with a combination 

of the two separate analyses.  

 

 

 

Figure 6. Venn diagram comparing molecular features (MFs) determined with a  

double cartridge SPE–SPE–LC–TOF/MS configuration with discrimination between  

the first and second cartridge for C18–anionic MM, C18–MM cationic, resin 

 GP–anionic MM and resin GP–cationic MM. 
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Table 3. Molecular features detected in the SPE–SPE–LC–TOF/MS analysis with the 

serial configurations. The number of molecular features detected in each cartridge and the 

total number detected in each test are also listed. The last column represents the number 

of features detected with the double cartridge configuration in relation to the use of two 

cartridges. 

Sorbent 
MFs 

cartridge 1 

MFs 

cartridge 2 

Total 

MFs 

Detection coverage 
(%) 

C18–anionic MM 1612 897 2016 85.4 

C18– cationic MM 1642 811 2007 92.2 

Resin GP–anionic MM 1553 758 1884 79.5 

Resin GP–cationic MM 1677 899 2176 99.8 

 

 

 Basic tentative identifications based on precursor ion are listed in 

Supplementary Table 1 for the different SPE–SPE couplings. This list gives an 

idea of the potential of this double-cartridge configuration for serum 

fractionation according to SPE selectivity. 

 

4. Conclusions 

 The potential of SPE–LC–MS in combination with sorbents of different 

physico–chemical properties was assessed with a view to maximizing detection 

coverage in the analysis of the human serum metabolome. Sample fractionation 

by SPE was found to provide an effective means for enhancing the detection 

capabilities of a single analytical platform (LC–TOF/MS) relative to a 

combination of several (e.g. LC–MS, GC–MS, CE–MS, NMR spectroscopy). Also, 

the selectivity of SPE sorbents allowed serial configurations to be developed to 

use a combination of protocols applied in two different cartridges for the analysis 

of the same sample aliquot. The need for little operator intervention in the 

process is an additional benefit to be considered in adopting the proposed 

configuration for metabolomic studies involving large numbers of samples. 
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Supplementary material 

 

 

Supplementary Figure 1. Experimental variability in retention time found by analyzing 

three replicates of human serum by SPE–LC–TOF/MS with different sorbents. 
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Supplementary Figure 2. Base peak chromatograms (BPCs) obtained by SPE-LC-

TOF/MS analysis with the next cartridges: (A) Cartridges based on non-mixed retention 

mechanisms in the positive ionization mode.  (B) Cartridges based on non-mixed retention 

mechanisms (C18, C8 and C2) in the negative ionization mode. (C) Cartridges based on 

mixed retention mechanisms in the positive ionization mode. (D) The two ionic sorbents 

in the positive ionization mode. 
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Supplementary Figure 3. A) Extracted ion chromatograms (EICs) obtained by SPE–

LC–TOF/MS with different sorbents for lysophosphatidylcholine C18:1 in human serum. 
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Supplementary Figure 3. C) Extracted ion chromatograms (EICs) obtained by SPE–

LC–TOF/MS with different sorbents for glutamine in human serum. 
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Supplementary Figure 3. D) Extracted ion chromatograms (EICs) obtained by SPE–

LC–TOF/MS with different sorbents for uric acid in human serum. 
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Supplementary Figure 4. Venn diagram comparing molecular features (MFs) 

determined with a single cartridge SPE–LC–TOF/MS configuration for resin GP, C18, 

anionic MM and cationic MM sorbents. 

 

 

Supplementary Figure 5. Base peak chromatograms (BPCs) obtained by SPE–SPE–

LC–TOF/MS analysis with resin GP–cationic MM cartridges. 

 

 

 

Supplementary Table 1 is included in the cd-rom: “Chapter 2 – Supplementary Table 

1.xls”. 
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Enhanced detection and identification in 

metabolomics by use of LC–MS/MS untargeted 

analysis in combination with gas phase 

fractionation 

M. Calderón-Santiago, F. Priego-Capote*,  M. D. Luque de Castro 

Abstract 

 Liquid chromatography coupled to tandem mass spectrometry is one of 

the most widely used analytical platforms for profiling analysis in metabolomics. 

One weakness of untargeted metabolomic analysis, however, is the difficulty of 

identifying metabolites. In fact, the process typically involves mass-based 

searching of LC–MS and LC–MS/MS data, and requires using MS/MS data for 

unequivocal identification. Current strategies use LC–MS analysis in the scan 

mode prior to acquiring MS/MS information about targeted metabolites or the 

“auto MS/MS” mode to fragment high-abundance compounds mainly —which 

requires additional injections to obtain MS/MS data for minor sample 

components. Because an additional procedure is needed to enhance the fraction 

of metabolites with MS/MS data, in this work, the effectiveness of acquiring 

different MS/MS parameters across an analytical batch or repetitions of the same 

sample by using exclusion or inclusion criteria to select precursor ions is 

assessed. The procedure, known as “Gas Phase Fractionation (GPF)”, was used 

here for untargeted analysis of serum. The joint use of four methods with a 

different mass range for selection of precursor ions each provided useful MS/MS 

information for at least 80% of all molecular entities detected in the MS scan 

replicates. By contrast, the conventional “auto MS/MS” mode of data acquisition 

provided MS/MS data for only 48–57% of entities and was therefore less effective 

toward identifying metabolites. The additional use of GPF improved the detection 

and identification of metabolite families such as phospholipids, amino acids, bile 

acids, carnitines, and fatty acids and their derivatives. 
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1.  Introduction 

 The main objective of metabolomics is to identify and/or quantify small 

molecules or metabolites (<1500 Da) present in biofluids, cells or organisms.1 

Metabolomics uses three different strategies mainly (viz., fingerprinting, targeted 

and untargeted or profiling analysis),2 but especially the latter two. Since the 

fingerprinting strategy is aimed primarily at the analysis of specific families or 

groups of metabolites, the underlying analytical methodology can be easily 

adapted to obtain the sensitivity and specificity levels required for each individual 

application. On the other hand, untargeted (profiling) analysis is aimed at 

identifying the greatest possible number of metabolites with a single, high-

throughput analytical protocol or a combination of complementary protocols if 

needed. Although no single analytical tool encompassing the whole metabolome 

is currently available,3 recent advances in liquid chromatography coupled to mass 

spectrometry (LC–MS) have turned this analytical tool into an effective platform 

for the unbiased detection of a large number of metabolites from biological 

samples.4–8 In fact, LC–MS/MS has considerably facilitated metabolite 

identification and quantitation by improving MS sensitivity and precision.9 

  By virtue of its role as a primary carrier of metabolites in the human 

body, serum/plasma is the most common target biofluid of clinical and 

nutritional metabolomics analyses. Serum/plasma provides a liquid highway for 

all molecules secreted, excreted or discarded by different tissues in response to 

different physiological needs or stresses. However, the high complexity of serum 

hinders obtaining a complete metabolite profile in a single analysis. In fact, 

characterizing the serum metabolome has required using a combination of five 

different instrumental platforms.3 

 At present, metabolite identification by untargeted analysis is 

accomplished mainly via mass-based searches of LC–MS and LC–MS/MS data, 

the latter being essential for unequivocal identification. In fact, successful 

identification of metabolites requires managing comprehensive MS/MS spectral 
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libraries and MS/MS information for each potential molecular entity detected in 

a metabolomic analysis. 

 The MS/MS information needed can be obtained by manual selection of 

precursors based on LC–MS data or by use of the “auto MS/MS” acquisition 

mode, which is much less time-consuming.10 This mode combines MS scan cycles 

with programmed MS/MS scans of selected precursor ions depending on their 

relative abundance in the MS scan, thereby allowing both MS and MS/MS data to 

be acquired in a single analysis. However, not all metabolites detected by MS 

scanning will be fragmented and give an MS/MS spectral signal, so frag-

mentation of the most abundant metabolites —or those with high ionization 

capabilities— is to be preferred over that of less concentrated metabolites. 

 Applying different MS/MS acquisition parameters based on preset 

exclusion or inclusion criteria for selection of precursor ions to an analytical 

batch or to replicates of a sample can increase the fraction of metabolites 

providing useful MS/MS data. This procedure, termed “Gas Phase Fractionation” 

(GPF), which has been validated for proteomics applications,11-13 has substantially 

enhanced the identification of proteins. GPF has been introduced in 

metabolomics by developing an algorithm that provides the set of methods 

needed to obtain MS/MS spectra for a ranked list of interesting precursor 

features compiled by automated selection of quasi-molecular ions after LC–MS 

profiling.14 The underlying methodology requires injection of the sample in the 

MS and MS/MS modes. 

 The aim of this work was to assess the usefulness of GPF to increase the 

level of information obtained by LC–MS/MS analysis of serum. For this purpose, 

a combination of methods based on different inclusion criteria for selection of 

precursor ions to undergo MS/MS fragmentation was programmed in order to 

assess the influence of GPF on metabolomic coverage. Since accurate meta-

bolomic profiling requires using at least three replicates per sample,15 using GPF 

in combination with appropriate replicates is an effective approach to enhancing 

identification capabilities without the need for further sample injections. 
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2. Experimental section 

2.1. Chemicals 

 Chromatographic mobile phase B was prepared in LC–MS grade 

acetonitrile from Sigma–Aldrich (Madrid, Spain). MS grade formic acid  from 

Scharlab (Barcelona, Spain) was used as ionization agent in LC–QTOF analyses, 

and deionized water (18 MΩ·cm) supplied by a Millipore Milli-Q water 

purification system from Millipore (Bedford, MA, USA) was used to prepare the 

chromatographic aqueous phase. All samples were prepared in LC grade 

methanol from Scharlab. 

2.2. Instruments and apparatus 

 A Sorvall Legend Micro 21R centrifuge from Thermo Scientific (Waltham, 

MA, USA) was used to centrifuge serum samples after protein precipitation. An 

Agilent 1200 Series LC system consisting of a binary pump, a vacuum degasser, 

an autosampler and a thermostated column compartment, and coupled to an 

Agilent 6540 UHD Accurate-Mass QTOF hybrid mass spectrometer equipped 

with a dual electrospray (ESI) source (Santa Clara, CA, USA), was used to obtain 

MS spectra. Chromatographic eluates were monitored by tandem mass 

spectrometry in the high resolution mode. 

2.3. Blood collection and serum isolation 

 All steps from blood sampling to analysis were performed in compliance 

with the guidelines dictated by the World Medical Association Declaration of 

Helsinki (2004) and supervised by specialist staff of the Maimonides Biomedical 

Research Institute (Cordoba, Spain). 

 Venous blood was collected from ten healthy individuals into evacuated 

sterile serum tubes containing no additives (Vacutainer, Becton Dickinson, 

Franklin Lakes, NJ, USA) and incubated at room temperature for 30 min to 

facilitate coagulation. Then, the tubes were centrifuged at 4 °C at 2000 g for 15 

min to isolate the serum fraction, which was pooled (200 µL per participant) 

prior to placing in plastic tubes and storage at –80 °C until analysis.  
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2.4.     Sample preparation 

 Aliquots of 100 µL of serum pool were immersed in an ice bath and 

deproteinized with 200 µL of methanol.16 The mixture was shaken for 1 min and 

the resulting precipitate removed after centrifugation at 4 °C at 13 800 g for 5 

min. Then, the upper phase was collected in a vial and the vial placed on the 

chromatograph autosampler for subsequent analysis.  

2.5. LC–QTOF MS/MS analysis 

 Chromatographic separation was performed by using a Mediterranean 

C18 reversed phase analytical column (50 mm × 0.46 mm i.d., 3 µm particle size) 

from Teknokroma (Barcelona, Spain) which was thermostated at 25 °C. The 

mobile phases were water (phase A) and ACN (phase B), both containing 0.1% 

formic acid as ionization agent. The LC pump was programmed to use a flow rate 

of 0.8 mL/min and the following elution gradient: 3% phase B as initial mobile 

phase (2 min), ramp to 100% phase B (12 min) and holding (3 min). A post-time 

of 3 min was used to regain the initial conditions for the next analysis. The 

injected volume was 5 µL and the injector needle was washed 10 times with 80% 

methanol between injections. Also, the needle seat back was flushed with 80% 

methanol at 4 mL/min for 12 s to avoid cross contamination. The autosampler 

was kept at 4 °C to increase sample stability. 

 The settings of the electrospray ionization source, which was operated in 

the negative and positive ionization modes, were as follows: capillary voltage 

±4.0 kV, fragmentor voltage 175 V, N2 pressure in the nebulizer 40 psi; N2 flow 

rate and temperature as drying gas 10 L/min and 350 °C, respectively. The 

instrument was calibrated and tuned as recommended by the manufacturer. 

MS/MS data were acquired in both polarities, using the centroid mode at a rate of 

2.5 spectra/s in the extended dynamic range mode (2 GHz). Accurate mass 

spectra over the m/z range 100–1000 were acquired in the MS scan mode, and 

MS/MS was performed with automated selection of 2 precursor ions per cycle 

and an exclusion window of 0.25 min after 2 consecutive selections of the same 

precursor. The collision energy was set at 20 V for the whole run. 
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 Five experimental protocols were designed by restricting the inclusion 

range for selection of precursor ions in the MS/MS acquisition range as shown in 

Table 1. A total of 12 replicates of deproteinized serum were analyzed in each 

experimental protocol. The first experimental protocol used a conventional “auto 

MS/MS” method and the inclusion m/z range from 100 to 1000. The second 

experimental protocol was based on a combination of two MS/MS methods 

differing in the inclusion range used to select precursor ions. Thus, 6 replicates 

were analyzed over the m/z range 100–550 and another 6 over the range 550–

1000. The third and fourth experimental protocols used a combination of 3 and 4 

methods, respectively, and 3 and 4 different inclusion ranges (viz., m/z 100–400, 

400–700 and 700–1000 with the third protocol; and m/z 100–325, 325–550, 

550–775 and 775–1000 with for the fourth), respectively. Finally, the fifth 

protocol involved a combination of six methods with different inclusion ranges. A 

total of 60 analyses were thus conducted on the set of replicates. 

 The QTOF spectrometer provided a typical resolution of 15 000 FWHM 

(Full Width at Half Maximum) at m/z 118.086255 and 30 000 FWHM at m/z 

922.009798. In order to assure the required mass accuracy for recorded ions, the 

spectrometer was subjected to continuous internal calibration during analyses by 

using the signals at m/z 121.0509 (protonated purine) and 922.0098 [protonated 

hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazine or HP-921] in the positive 

ion mode; and those at m/z 119.0362 (proton abstracted purine) and 966.0007 

(formate adduct of HP-921) in the negative ion mode. 

2.6. Data processing and statistical analysis  

 The MassHunter Workstation software package (B.05.00 Qualitative 

Analysis and B.06.00 Profinder, Agilent Technologies, Santa Clara, CA, USA) was 

used to process all data obtained by LC–QTOF in the MS/MS mode. The 

recursive feature extraction algorithm in the software MassHunter Profinder was 

used to extract and align potential molecular features in all injections. This 

algorithm initially deconvolutes chromatograms and aligns features across the 

selected sample files in terms of mass and retention time; then, it uses the mass 
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and retention time of each feature for recursive targeted feature extraction. This 

two-step procedure reduces the number of both false negatives and false positives 

in feature extraction. The target parameters for feature extraction included a 

threshold of 1500 counts and a maximum charge state of 2. In addition, the 

isotopic distribution for a valid feature had to be defined by two or more ions —

with a peak spacing tolerance of 0.0025 m/z, plus 10.0 ppm. Adduct formation in 

the positive (+H, +Na) and negative ionization mode (–H, +HCOO) was also used 

to identify features of the same molecule. Features were aligned by using a 

tolerance window of 0.30 min and a mass accuracy of 10 ppm for retention times 

and m/z values across all data files, respectively. The minimum absolute height 

required for feature extraction was set at 3000 counts, which was also used for 

100% of samples in the recursive step. 

 Once all features were extracted and aligned, the software MassHunter 

Qualitative was used for the targeted extraction of MS/MS information from all 

molecular features in the whole set of analyses. The most salient entities were 

identified by using MS and MS/MS information, and searching the METLIN MS 

and MS/MS database (http://metlin.scripps.edu) and the Human Metabolome 

Database (HMDB, version 3.5). 

 

3. Results and discussion 

3.1. Common LC–MS serum elution profiles 

 As noted earlier, only the molecular features detected in the 60 replicates 

of serum analyses were considered. Following molecular feature extraction and 

alignment, two data sets consisting of 139 and 158 molecular entities in the 

negative and positive ionization mode, respectively, were obtained. Serum is a 

complex biofluid containing water-soluble metabolites and a significant lipid 

fraction as shown by the LC–MS/MS elution profiles obtained in the positive and 

negative ionization mode (see Figure 1). As can be seen, the elution profiles 

revealed the presence of molecular features with variable m/z values and 

http://metlin.scripps.edu/
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retention times. MS and MS/MS information allowed most of the metabolites 

detected in each ionization mode to be identified. Those identified were grouped 

into chemical families, some of which were detected in both ionization modes. 
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Figure 1. Chromatographic profiles obtained by LC–MS/MS analysis of serum in the 

positive (a) and negative ionization mode (b). 
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Table 1. Experimental protocols for the LC–MS/MS analysis of human serum. 

Protocol Method 
MS scan 

(m/z) 

Inclusion 
range (m/z) 

Number of 
replicates 

1 1 100–1000 100–1000 12 

2 
2.1 

100–1000 
100–550 6 

2.2 550–1000 6 

3 

3.1 

100–1000 

100–400 4 

3.2 400–700 4 

3.3 700–1000 4 

4 

4.1 

100–1000 

100–325 3 

4.2 325–550 3 

4.3 550–775 3 

4.4 775–1000 3 

5 

6.1 

100–1000 

100–250 2 

6.2 250–400 2 

6.3 400–550 2 

6.4 550–700 2 

6.5 700–850 2 

6.6 850–1000 2 

 

Worth special note among the metabolites identified in the negative 

ionization mode were nonpolar compounds such as phospholipids, which contain 

ionizing functional groups or tend to form adducts with formic acid. Compounds 

containing carboxyl groups such as fatty acids, bile acids and dicarboxylic acids 

were also prevalent in the elution profile for the negative ionization mode. On the 

other hand, the elution profile for the positive ionization mode was consistent 

with typical polar metabolites such as amino acids and purines, and also with 

their derivatives —the amino group is easily ionized in acid media. Bile acids and 

some phospholipids were also unequivocally identified in the elution profile for 

the positive ionization mode by virtue of most having some amino group. 

Interestingly, single-chain phospholipids (particularly phosphatidylcholines and 

phosphatidylethanolamines) were successfully identified in the positive 

ionization mode thanks to their characteristic fragmentation pattern. On the 
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other hand, double-chain phospholipids required using MS/MS spectra in the 

negative ionization mode to confirm their chain length. Table S-1 lists most of the 

metabolites identified in serum as classified into chemical families. 

 Both elution profiles contained a large number of metabolites coeluting 

over the range 10–16 min, which was confirmed by the times in the positive 

ionization mode: 0–8 min. Thus, a significant fraction of metabolites had similar 

retention times but differed in signal intensity by effect of their different 

concentrations and/or ionization capabilities. In fact, most of the tentative 

metabolites detected from low signals coeluted with metabolites giving higher 

signals. One can therefore assume that the precursor selection process used in 

Protocol 1 (“auto MS/MS” mode, Table 1) favored the detection of abundant 

metabolites or compounds with a high ionization power over that of metabolites 

with a low concentration or ionization capability, which were not fragmented. 

3.2. Comparison of MS/MS detection coverage in terms of the acquisition 

method 

 The purpose of this test was to compare MS/MS detection coverage by 

using a single acquisition method in combination with GPF methods involving 

different inclusion ranges for selection of precursor ions. The reference method 

used for this purpose was that based on a single MS/MS inclusion range (m/z 

100–1000). Figure 2 shows the distribution of tentative metabolites obtained by 

using this method with MS/MS information in the positive and negative 

ionization mode as a function of m/z. 

 Although a total of 158 and 139 molecular entities were detected and 

aligned in the positive and negative ionization mode, respectively, only 90 and 67 

tentative metabolites, respectively, present in all replicates were fragmented by 

MS/MS with the reference method. Therefore, only 57% of all entities were 

detected in the positive mode and 48% in the negative mode. As can be seen from 

Figure 2, a high proportion of molecular features was detected over the m/z range 

400–550 —which corresponds to lysophospholipids mainly— in the positive 

mode and over the range 400–700 —potentially associated with phospholipids, 
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which possess easily ionized functional groups and are highly concentrated in 

serum— in the negative mode. Figure 3 shows the number of tentative 

metabolites fragmented by MS/MS with each method used in the five protocols 

according to the inclusion ranges for precursor selection. As can be seen, the 

results were similar in both ionization modes; in fact, the number of tentative 

metabolites detected by MS/MS increased with that of methods used by the GPF 

protocol, but was slightly smaller with the protocol using a combination of 6 

MS/MS inclusion ranges.  
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Figure 2. Distribution of tentative metabolites with MS/MS information in serum in the 

positive (a) and negative ionization mode (b) as a function of m/z. 

 

 Thus, the proportion of tentative metabolites detected from MS/MS 

information by using the 2-method GPF protocol increased to 73 and 63% of the 

total number of entities identified after alignment. The maximum coverage was 

obtained with the 4-method GPF protocol, which allowed MS/MS information for 

about 80% of all tentative metabolites included in the original data set to be 

extracted. A comparison of the protocols using a combination of 2 and 4 methods 

revealed that the latter allowed a greater number of tentative metabolites to be 

identified over the m/z range 100–325 in the positive ionization mode 

(particularly amino acids, purines and their derivatives, which are very easily 

ionized in this mode). By contrast, the greatest increase in MS/MS acquisitions 

with the negative ionization mode was obtained in the m/z range 550–1000, 

which was assigned to phospholipids. Based on these results, GPF protocols for 
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metabolomic analysis provide an effective tool for expanding metabolite coverage 

(particularly with coeluting compounds). 
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Figure 3. Number of tentative metabolites fragmented with different LC–MS/MS 

protocols using a single method or GPF protocols based on a combination of 2–6 methods. 

(a) Positive ionization mode. (b) Negative ionization mode. 

 

3.3. Identification of metabolites in the positive ionization mode 

 As noted earlier, some metabolite families (particularly amino acids, 

acylcarnitines, purines, lysophospholipids and sphingomyelins) are preferentially 

detected in the positive ionization mode with LC–MS/MS. As stated in the 

previous section, metabolites with m/z < 550 were the most benefited by the use 

of precursor ion restricted fragmentation in GPF. Figure 4 shows the specific 

metabolites identified in each compound family as a function of the GPF 

acquisition method used. Several amino acids were easily identified in all 

replicates with the five protocols, namely: betaine, carnitine, phenylalanine, 

phenylglycine and tryptophan. Creatine was detected with all other protocols and 
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the amino acids (iso)leucine and tyrosine were only detected with combinations 

of 2, 3 and 4 GPF methods. As can be seen from Figure S-1, the extracted ion 

chromatograms (EICs) for these amino acids overlapped over a narrow elution 

interval [0.8–1.1 min for (iso)leucine/and 1.8–2.2 min for tyrosine]; as a result, 

they could only be detected with some GPF methods. A similar behavior was 

observed in purine and its derivatives. Thus, purine was clearly identified with 

both GPF and the conventional acquisition method, but two derivative 

metabolites giving higher peak areas (viz., uric acid and hypoxanthine) were only 

detected with the GPF protocol using 2, 3 and 4 MS/MS acquisition methods in 

combination (see EICs in Figure S-2). 
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Figure 4. Number of compounds with MS/MS information for the most important 

families identified in positive ionization mode as a function of the tested protocol.   
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 Lysophospholipids constitute one other family of compounds that is 

easily identified in the positive ionization mode. Lysophosphatidylcholines 

(LPCs) and lysophosphatidylethanolamines (LPEs), which are the most common 

lysophospholipids, exhibit a characteristic fragmentation pattern in the positive 

ionization mode.17 This family was detected over the mass range m/z 400–700 in 

the elution window from 11 to 14 min; a total of 13 lysophospholipids including 

the most common or abundant LPCs and LPEs were thus identified by using the 

conventional MS/MS acquisition method. Using 2 GPF methods in combination 

increased the number of lysophospholipids detected to 18, and using 3 or 4 

methods expanded coverage to 20 compounds of this family. Finally, using 6 GPF 

methods allowed the identification of 22 LPCs and LPEs including less common 

LPCs such as LPC(O-16:2) and the plasmalogen LPC(P-16:0), which form by 

condensation with an alkyl alcohol (C16:2) and by etherification with glycerol, 

respectively.  

 One other example of the benefits of GPF methodology was that of 

sphingolipids. Thus, sphingosine was clearly identified in all replicates, both with 

GPF and with the conventional method. However, sphingosine-1-phosphate was 

only identified by GPF. Carnitine, present in free and esterified forms in human 

serum, is essentially involved in the metabolism of free fatty acids. As stated 

above, carnitine in free form was successfully detected irrespective of the MS/MS 

acquisition method used. However, only acetylcarnitine and decanoylcarnitine 

among acylcarnitines were identified with the conventional acquisition method —

by contrast, GPF enabled identification of two additional acylcarnitines. Thus, 

octanoylcarnitine was identified with all GPF protocols, and isobutyrylcarnitine 

with 6 MS/MS acquisition ranges only (see Figure S-3). In this particular case, 

the narrower were the mass ranges used for selection of precursor ions, the better 

was identification of low-molecular weight carnitine analogues. 

3.4.  Identification of metabolites in the negative ionization mode 

 The main effect of using GPF in the negative ionization mode was 

increasing the number of metabolites identified at m/z values above 550. This 
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spectral region corresponds mainly to phospholipids (particularly phosphatidyl-

cholines and phosphatidylethanolamines, which are the two most concentrated 

subclasses of glycerophospholipids in human serum). Figure 5 compares the 

number of metabolites identified with different methods in the negative 

ionization mode. No phospholipids could be identified with the conventional 

MS/MS acquisition method. By contrast, GPF allowed several 

phosphatidylcholines to be identified (particularly by use of 6 different mass 

ranges to select precursor ions). Identification of fatty acids and related 

compounds was similarly affected by the use of GPF, which allowed 3–9 

compounds in this family to be identified. The conventional MS/MS acquisition 

method enabled the identification of 12-HETE, 9-HODE and leukotriene B4, 

which form by oxidation of essential fatty acids and contain easily ionized 

functional groups. Using GPF methodology allowed many other major fatty acids 

such as oleic, linoleic, linolenic acid, arachidonic and docosahexanoic, in addition 

to the minor metabolite 13-HpODE —which eluted near 9-HODE and 12-HETE— 

to be identified. As can be seen from the extracted ion chromatograms for fatty 

acids in Figure S-4, all free fatty acids identified eluted at times from 15 to 17 min, 

which is consistent with the fragmentation pattern observed by using GPF 

methodology.  
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Figure 5. Number of compounds with MS/MS information for the most important 

families identified in negative ionization mode as a function of the tested protocol.   

 

 One other family of metabolites identified in the negative ionization 

mode was that of bile acids. Thus, taurocholic, glycocholic and deoxycholic acid 

were identified with both GPF and the conventional MS/MS acquisition method. 

By contrast, cholic acid could only be identified with the GPF protocols based on 

a combination of 3 or more mass ranges for selection of precursor ions because 

its peak was shorter than those for the other bile acids (see Figure S-5). The 

dicarboxylic acids citric and nonanedioic were also identified in human serum. 

Finally, citric acid was identified with all methods, but the MS/MS spectrum for 

nonanedioic acid could only be acquired with GPF. 

 

4. Conclusions 

 Poor metabolite identification is one of the main current weaknesses of 

profiling analysis in metabolomics owing to the absence of a comprehensive 

MS/MS database and the difficulty of obtaining MS/MS information for most 

detected metabolites. 

 Using GPF methodology for serum analysis by LC–MS/MS in 

metabolomics has proved an effective strategy for increasing the amount of 

MS/MS information available about some compounds. A combined method 

splitting the range of precursor ion masses into four intervals was found to be 

best the choice among all studied here as it provided MS/MS information for at 

least 80% of all detected entities. By contrast, the conventional auto MS/MS 

mode of data acquisition provided information for only 48–57% and was 

therefore less effective for unequivocal identification of metabolites.  

 Because samples are usually injected at least in triplicate in metabolomic 

analyses, the proposed methodology can be easily applied to sample batches 

without the need for a previous LC–MS injection. A combination of three 

methods with different exclusion intervals for selection of precursor ions can be 
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used to expand MS/MS information without the need for repeated injection of 

samples. Also, a combination of appropriate exclusion intervals suited to the 

target compounds can be used to maximize the number of potential molecular 

features extracted from MS/MS data. 
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Supplementary material 

 

 

Figure S-1. Extracted ion chromatograms (EICs), in positive ionization mode, of the 

identified amino acids: betaine (118.0867 m/z), carnitine (162.1124 m/z), creatine 

(132.0769 m/z), leucine/isoleucine (132.1016 m/z), tyrosine (182.0812 m/z), 

phenylalanine (166.0856 m/z), phenylglycine (152.0706 m/z), and tryptophan (205.0964 

m/z). 

 

 

Figure S-2. Extracted ion chromatograms (EICs), in positive ionization mode, of purine 

(121.0509 m/z) and its identified derivatives: uric acid (169.0354 m/z) and hypoxanthine 

(137.0457 m/z). 
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Figure S-3. Extracted ion chromatograms (EICs), in positive ionization mode, of the 

identified acylcarnitines: acetylcarnitine (204.1234 m/z), isobutyrylcarnitine (232.1536 

m/z), octanoylcarnitine (288.2164 m/z) and decanoylcarnitine (316.2486 m/z). 

 

 

 

Figure S-4. Extracted ion chromatograms (EICs) of fatty acids and relative metabolites 

identified in negative ionization mode: leukotriene B4 (335.2244 m/z), 13-HpODE 

(311.2246 m/z), 9-HODE (295.2305 m/z), 12-HETE (319.2295 m/z), linoleic acid 

(279.2354 m/z), docosahexaenoic acid (327.2354 m/z), arachidonic acid (303.2336 m/z), 

linolenic acid (277.2173  m/z), and oleic acid (281.2517 m/z). 
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Figure S-5. Extracted ion chromatograms (EICs) of identified bile acids in negative 

ionization mode: glycocholic acid (464.3039 m/z), cholic acid (407.2812 m/z), taurocholic 

acid (514.2877 m/z), and deoxycholic acid (391.2877 m/z). 

 

 

Table S-1. List of all metabolites identified in serum classified by families and including 

the information that led to their identification: the MS and MS/MS information (only two 

of the product ions are shown), as well as the retention times. 

Family Compound 
Precursor 
ion (m/z) 

Adduct 
Product ions 

(m/z) 
Rt 

(min) 

Acylcarnitines 

Acetylcarnitine 204.1234 [M+H]+ 145.0493 85.0287 1.0 

Isobutyrylcarnitine 232.1536 [M+H]+ 173.0758 144.1036 5.4 

Octanoylcarnitine 288.2164 [M+H]+ 229.1509 144.1036 7.9 

Decanoylcarnitine 316.2486 [M+H]+ 155.1428 257.1738 8.9 

Amino acids and 
derivates 

Betaine 118.0867 [M+H]+ 58.0658 59.0735 0.7 

Carnitine 162.1124 [M+H]+ 103.0387 - 0.8 

Creatine 132.0769 [M+H]+ 114.0635 90.0540 0.8 

Leucine/isoleucine 132.1016 [M+H]+ 86.0960 - 2.0 

Leucine/isoleucine 132.1016 [M+H]+ 86.0960 - 2.2 

Tyrosine 182.0812 [M+H]+ 165.0557 136.0776 2.5 

Phenylalanine 166.0856 [M+H]+ 120.0803 103.0545 5.2 

Phenylglycine 152.0706 [M+H]+ 107.0477 135.0371 5.4 

Tryptophan 205.0964 [M+H]+ 188.0703 146.0596 5.9 

Hippuric acid 178.0510 [M-H]- 134.0576 77.0410 6.9 

Indoxylsulfuric acid 212.0025 [M-H]- 132.0440 79.9582 8.7 

Bile acids 

Glycocholic acid 464.3039 [M-H]- 402.2986 74.0210 9.5 

Cholic acid 407.2812 [M-H]- 241.0738 - 10.5 

Taurocholic acid 514.2877 [M-H]- 124.0242 - 11.2 

Deoxycholic acid 391.2877 [M-H]- 345.2739 - 12.3 
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Dicarboxilic acids 
Citric acid 191.0201 [M-H]- 111.0108 87.0032 1.9 

Nonanedioic acid 187.0977 [M-H]- 169.0871 125.1049 8.2 

Fatty acids and 
derivates 

Leukotriene B4 (LTB4) 335.2244 [M-H]- 195.0960 129.0533 11.7 

13-HpODE 311.2246 [M-H]- 293.2173 113.0918 13.0 

9-HODE 295.2305 [M-H]- 277.2173 171.1036 13.1 

12-HETE 319.2295 [M-H]- 301.2180 135.1174 13.7 

Linolenic acid (C18:3) 277.2173 [M-H]- 259.2017 - 15.2 

Docosahexaenoic acid 
(C22:6) 

327.2354 [M-H]- 283.2446 229.1943 15.3 

Arachidonic acid (C20:4) 303.2336 [M-H]- 259.2481 205.1933 15.5 

Linoleic acid (C18:2) 279.2354 [M-H]- - - 15.8 

Oleic acid (C18:1) 281.2517 [M-H]- - - 16.5 

Lysophospholipids 

LPC(20:5) 542.3241 [M+H]+ 184.0708 104.1025 11.1 

LPC(18:3) 518.3206 [M+H]+ 184.0772 104.1068 11.2 

LPC(16:1) 494.3241 [M+H]+ 184.0735 104.1060 11.4 

LPE(18:2) 478.2922 [M+H]+ 337.2728 - 11.5 

LPE(20:4) 502.2924 [M+H]+ 361.2726 - 11.6 

LPE(22:6) 526.2917 [M+H]+ 385.2662 - 11.7 

LPC(22:6) 568.3398 [M+H]+ 184.0747 104.1148 11.8 

LPC(18:2) 520.3365 [M+H]+ 184.0727 104.1045 11.9 

LPC(20:4) 544.3376 [M+H]+ 184.0683 104.1075 12.0 

LPE(16:0) 454.2926 [M+H]+ 313.2745 - 12.0 

LPC(22:5) 570.3551 [M+H]+ 184.0693 104.1049 12.1 

LPC(20:3) 546.3525 [M+H]+ 184.0743 104.1097 12.2 

LPE(20:3) 504.3102 [M+H]+ 363.2936 - 12.2 

LPC(16:0) 496.3397 [M+H]+ 184.0668 104.1048 12.4 

LPE(18:1) 480.3080 [M+H]+ 339.2881 - 12.5 

LPC(O-16:1) 480.3448 [M+H]+ 184.0681 104.1032 12.6 

LPC(18:1) 522.3549 [M+H]+ 184.0730 104.1048 12.6 

LPC(22:4) 572.3689 [M+H]+ 184.0760 104.1032 12.8 

LPC(O-16:0) 482.3604 [M+H]+ 184.0762 104.1064 12.8 

LPC(17:1) 508.3751 [M+H]+ 184.0724 104.1064 13.0 

LPE(18:0) 482.3237 [M+H]+ 341.3035 - 13.6 

LPC(18:0) 524.3716 [M+H]+ 184.0723 104.1068 13.8 

Phospholipids 

PC(18:2/20:4) 850.5559 [M+HCOO]- 790.5390 303.2291 14.5 

PC(18:1/18:2) 828.5747 [M+HCOO]- 768.5515 281.2811 14.7 

PC(19:1/20:2) 870.5686 [M+HCOO]- 810.5444 295.2865 14.7 

PC(16:0/18:2) 802.5586 [M+HCOO]- 255.2295 279.2294 14.8 

PC(18:1/18:1) 830.5884 [M+HCOO]- 770.5730 281.2818 14.9 

PC(18:1/20:4) 852.5688 [M+HCOO]- 792.5429 281.2830 14.9 

PC(18:0/18:1) 832.6003 [M+HCOO]- 772.5957 281.2821 15.0 

PC(16:0/18:1) 804.5804 [M+HCOO]- 255.2350 281.2434 15.0 

PC(16:0/19:1) 818.5521 [M+HCOO]- 758.5389 295.2645 15.1 
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Purines and 
derivates 

Purine 121.0509 [M+H]+ 113.9757 104.0199 1.3 

Uric acid 169.0354 [M+H]+ 152.0090 141.0371 2.1 

Xanthine 151.0266 [M-H]- 108.0332 - 2.5 

Hypoxanthine 137.0457 [M+H]+ 119.0378 110.0465 2.6 

Sphingolipids 
Sphingosine 300.2895 [M+H]+ 282.2781 252.2649 9.8 

Sphingosine-1-phosphate 380.2569 [M+H]+ 282.2733 264.2723 10.9 

Vitamins Choline 104.1074 [M+H]+ 60.0803 - 0.7 
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 Section II of this PhD Book is devoted to two research areas with high 

development in clinical metabolomics at present: nutrimetabolomics and 

biomarkers search. The research on both is under the umbrella of profiling 

analysis.  

 In dealing with nutrimetabolomics, to which the research in Chapter 4 is 

dedicated, metabolome alterations caused in individuals subjected to four 

intervention diets demonstrate, once again, the importance of diet on health. The 

role of this omics on the search for a personalized diet is one of the key steps 

towards a personalized medicine. 

 Two types of samples (serum and sweat) from patients with two very 

different types of diseases (atherosclerosis and lung cancer) were the basis for 

the developed research together with proper analytical approaches such as LC–

QTOF MS/MS, sample preparation, if required, and application of the most 

convenient data treatment.  

 Serum from patients diagnosed with atherosclerosis and affected by 

stable angina or myocardial infarction (acute myocardial infarction or non-ST 

elevation myocardial infarction) were the target samples to be analyzed in 

Chapter 5 and 6. The profiles of given serum metabolites were compared to 

search for potential biomarkers for early prediction of an ischemic event, which 

could lead to a drastic reduction of mortality. Change in the concentration of 

statistically significant metabolites allowed discrimination of individuals who 

suffered acute or non-ST elevation myocardial infarction from those suffering 

stable angina, as can be seen in Chapter 5. On the other hand, a three-variable 

panel for infarct prediction was created, thus discriminating between individuals 

affected by acute myocardial infarct and those diagnosed by stable angina with 

sensitivity and specificity values higher than 80%, as shown in Chapter 6. 
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Mass spectrometry for the identification and  

quantitation of metabolomic biomarkers in clinical analysis 

 
 Sweat from patients with lung cancer and control individuals were 

analyzed by the analytical platform in Chapter 1, and the individual capability of 

the identified metabolites to discriminate between the two groups in terms of 

sensitivity and specificity was successfully established. Additional individual or 

combined panels of metabolites allowed reducing false negative and false positive 

rates, as discussed in Chapter 7.  
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Comparative nutrimetabolomic study of the 

influence of fat intervention diets on serum 

metabolic profiles by LC–MS/MS 

M. Calderón-Santiago, F. Priego-Capote, M. D. Luque de Castro* 

 

Abstract 

 A nutrimetabolomic study to assess the influence of fat intervention diets 

on serum metabolic profiles in 76 patients diagnosed with metabolic syndrome is 

here presented. Four isoenergetic diets but with different fat content [two with 

high-fat content (38%) and two with low-fat content (28%)] were administered to 

the selected cohort. Metabolite profiles were obtained before and after the 

intervention period for 12 weeks by serum fractionation into polar and non-polar 

metabolites and LC–QTOF analysis in high resolution mode. Multivariate 

statistical analysis allowed discrimination among the post-intervention samples 

and between pre- and post-intervention stages for the four diets. Within the lipid 

fraction, phospholipids were the family of metabolites more influenced by the 

intervention diets. Concretely, three common glycerophospholipids 

[PC(18:0/16:2), PC(16:0/18:2) and PC(18:0/18:2)] were affected by the diets. 

High-fat diets led to 19 altered phospholipids, while 16 phospholipids showed 

changes by low-fat diets. Concerning the polar fraction, high-fat diets altered 

more metabolites (14–15) than low-fat diets (6–9). In this fraction, amino acids 

were mostly influenced after the high-fat diets, and only ornithine was altered 

with one of the low-fat diets. Bile acids and acylcarnitines levels were also altered 

after diet intake. A common behavior was found for some of the identified 

compounds; thus, octenoyl-L-carnitine and lysophosphatidylcholine (16:0) levels 

appeared increased after intake of any of the diets. 
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1.  Introduction 

 Nutritional studies play a key role in the identification of essential 

nutrients needed for human growth and health. Nowadays, nutritional scientists 

are challenged to find new ways to treat or prevent diseases brought on by 

nutritional oversufficiency such as obesity, diabetes, chronic inflammation 

and/or cardiovascular diseases. One of the main approaches to face up these 

studies is nutrimetabolomics, which is aimed at: (1) food component analysis; (2) 

food quality/authenticity detection; (3) consumption biomarkers; and, (4) 

elucidation and detection of effects and pathology-risk biomarkers in nutritional 

and epidemiological studies. The last approach has been used to assess metabolic 

changes caused by intake of certain nutrients with an impact on human health. 

The starting hypothesis is that the majority of metabolism alterations are 

detected in biological fluids such as serum/plasma or urine. One of the most 

common analytical strategies to detect and discriminate metabolic changes is 

metabolomics fingerprinting, which is aimed at developing classification models 

based on snapshots or fingerprints from samples by suited detection techniques 

[1]. However, data quality in these approaches is limited as low discrimination 

among metabolites is attained. Data quality is drastically enhanced by application 

of a global metabolomics approach focused on detection and identification of 

those metabolites with the highest contribution to the observed variability. This 

strategy seems to be especially suited to detect and discriminate metabolic 

changes caused by nutritional states. 

 Considering the chemical diversity and number of metabolites in human 

biofluids (a conservative estimation of human serum reported 4229 metabolites 

and a wide range of concentrations —up to 11 orders of magnitude— observed in 

human serum [2–4]), different analytical platforms in combination are needed to 

approach full coverage of the metabolome. In fact, a variety of techniques can be 

employed to maximize metabolite detection coverage, with nuclear magnetic 

resonance (NMR) and mass spectrometry (MS) being the most used. The 

coupling of MS to either LC (LC–MS) or gas chromatography (GC–MS) has been 

widely used to study metabolic changes associated with pathological states and 
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nutritional studies [5–10]. The choice of a separation technique prior to MS 

detection is primarily dictated by the properties of the given analyte, with GC–

MS as more suitable for volatile and semi-volatile analytes and capillary 

electrophoresis (CE) as an alternative to LC for charged analytes [11,12]. 

 Comparing the use of LC–MS to NMR for metabolomics studies [7,13,14], 

the sensitivity of the former is significantly higher than that characterizing NMR, 

thus providing the possibility to monitor metabolic changes that remained 

unnoticed when working with the latter. LC–MS allows analysis of a wide range 

of metabolite classes. The widespread availability of robust LC–MS methods in 

many research laboratories has increased enormously its use for metabolic 

profiling over the past few years. In fact, many studies have provided higher 

metabolome coverage (approximately 55–70% of total metabolites detected using 

multiple platforms) by a single experiment using LC–MS than by GC–MS or CE–

MS [4] (an estimated 10–15% overlap is usual between LC–MS and GC–MS 

platforms [8]). Therefore, LC–MS can provide comprehensive metabolite 

coverage by untargeted analyses using a single platform [15]. LC–MS 

metabolomics studies generally involve differential comparison of several 

subjects or treatment groups (e.g. normal versus treated individuals, healthy 

versus ill individuals) without a priori identification of all detected metabolites. 

 The Lipgene project is a large European multi-centre project which 

includes a human intervention trial (486 volunteers at baseline) conducted to 

compare the impact of different types and amounts of dietary fatty acids on 

insulin sensitivity. This human intervention study is supported on a food-

exchange model involving four diets for alteration of dietary fat quantity and 

quality in participants. The key aspects of this strategy for correlation and 

discrimination of metabolic patterns with the supplied diets were: (i) diets differ 

significantly in overall fat intake but remain isoenergetic; (ii) the two high-fat 

diets are significantly higher in the content of saturated fatty acids (SFAs) or 

monounsaturated fatty acids (MUFAs) as compared with the two low-fat diets; 

(iii) the effect of long-chain n-3 polyunsaturated fatty acids (PUFAs) 

supplementation was tested in a low-fat background diet. Supported on this 
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study, an LC–QTOF MS/MS platform has been applied to obtain metabolic 

profiles of serum from individuals subjected to four isoenergetic intervention 

diets under controlled conditions for twelve weeks. The aim was to detect and 

evaluate serum metabolic differences according to the administered diets.  

 

2. Materials and methods 

2.1. Chemicals 

 LC-MS grade acetonitrile (Sigma-Aldrich, Madrid, Spain) was used for 

preparation of chromatographic mobile phases. MS-grade formic acid (Scharlab) 

was used as ionization agent in LC-QTOF analyses, while deionized water (18 

MΩ·cm) from a Millipore Milli-Q water purification system (Millipore, Bedford, 

MA, USA) was used to prepare the chromatographic aqueous phases. 

Chromatographic-grade methanol and chloroform (Scharlab, Barcelona, Spain) 

were used for sample treatment. 

2.2. Instruments and apparatus 

 A Sorvall Legend Micro 21R centrifuge (Thermo Scientific, Waltham, MA, 

USA) was used to centrifuge samples after deproteination. An Agilent 1200 Series 

LC system (consisting of a binary pump, a vacuum degasser, an autosampler and 

a thermostated column compartment) coupled to an Agilent 6540 UHD 

Accurate-Mass QTOF hybrid mass spectrometer equipped with a dual elec-

trospray (ESI) source (Santa Clara, CA, USA) was used. The chromatographic 

eluate was monitored in high-resolution mode. 

2.3. Diets composition 

 Four isoenergetic diets that differed in fat quantity and quality were 

planned for this study. Two diets were designed to provide 38% energy (E) from 

fat and the other two with 28% E from fat with the following assigned names and 

compositions: 
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(1) HSFA: high-fat content (38% energy) with high proportion of saturated 

fatty acids (16% SFA), while monounsaturated and polyunsaturated fatty 

acids (MUFAs and PUFAs, respectively) were present at 12% and 6%, 

respectively. 

(2) HMUFA: high-fat content (38% energy) with high proportion of MUFAs 

(20%), while SFA and PUFAs were 8% and 6%, respectively. 

(3) LFHCC: low-fat content (28% energy) with high-complex carbohydrate 

diet (8% SFA, 11% MUFA, 6% PUFA), supplemented with 1 g/d high 

oleid acid sunflower oil supplement. 

(4) LFHCCn-3: low-fat (28% energy), high-complex carbohydrate diet (8% 

SFA, 11% MUFA, 6% PUFA), supplemented with 1.24 g/d very long chain 

n-3 PUFA supplement. 

 2.4.     Cohort under study 

 This research was conducted within the framework of the LIPGENE 

integrated project [diet, genomics and metabolic syndrome (MetS): an integrated 

nutrition, agro-food, social and economic analysis]. A total of 76 patients with 

MetS from the LIPGENE cohort were accepted to participate in this study aimed 

at evaluating metabolic alterations by LC-QTOF MS/MS. All participants gave 

written informed consent and underwent a comprehensive medical history, 

physical examination and clinical chemistry analysis before enrolment. None of 

the subjects was taking medication or supplementary vitamins with influential 

effect on serum metabolome. 

 Patients were randomly divided into four groups to receive one of the 

four dietary interventions for 12 weeks under controlled conditions. Both the 

design and protocol of the intervention study have been described in detail by 

Shaw et al. [16]. Serum control samples were obtained in basal state prior to the 

intervention as control samples (PRE). Patients arrived at clinical centres after 12 

weeks of the intervention study following a 12-h fast refrained from smoking 

during the fasting period and abstained from alcohol intake during the preceding 
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7 days. In the laboratory and after cannulation a fasting blood sample was taken 

for each individual (POS).  

2.5. Blood extraction and serum isolation 

 Sampling was performed following the Recommendations on Biobanking 

Procedures for serum processing and management recently published by the 

European Consensus Expert Group [17]. The subsequent aspects were taken into 

account: (i) sample storage at 80°C; (ii) recording of the time from collection 

through processing; (iii) experimental definition of the time limits appropriate 

for analytes measurement. All steps from blood to analysis were performed in 

compliance with the guidelines dictated by the World Medical Association 

Declaration of Helsinki (2004), which were supervised by specialized personnel. 

 Venous blood was collected in evacuated sterile serum tubes without 

additives (Vacutainer, Becton Dickinson, Franklin Lakes, NJ, USA) and in-

cubated for 30 min at room temperature to allow coagulation. Then, the tubes 

were centrifuged at 2000 × g for 15 min at 4 °C to isolate the serum fraction that 

was placed in plastic tubes and stored at –80 °C until analysis. 

2.6. Sample treatment  

 Serum samples (100 µl) immersed in a bath ice were treated with 300 µl 

of 1:2 methanol–chloroform. The mixture was shaken for 2 min and centrifuged 

for 5 min at 4 °C and 20200 × g. Both phases (aqueous and organic) were 

collected in different vials, then placed in the LC autosampler for subsequent 

analysis. 

2.7. LC–QTOF MS/MS analysis 

 Chromatographic separation was performed using a C18 reverse-phase 

analytical column (Mediterranean, 100 mm x 0.46 mm i.d., 3 µm particle size) 

from Teknokroma (Barcelona, Spain), which was thermostated at 25°C. The 

mobile phases were 5% ACN (phase A) and 95% ACN (phase B) both with 0.1% 

formic acid as ionization agent. Two chromatographic modes were programmed 

according to the two phases obtained from the sample. In both cases the LC 
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pump was programmed with a flow rate of 0.8 mL/min. For the aqueous fraction, 

the following elution gradient was set: 9% phase B was fixed as initial mobile 

phase, increased to 100% of phase B from min 0 to 10, and kept at 100% for 5 

min. On the other hand, the elution gradient established for the non-polar 

fraction was: 40% phase B was fixed as initial mobile phase, increased to 100% of 

phase B from min 0 to 10, and kept at 100% for 5 min. In both cases, a post-time 

of 5 min was set to equilibrate the initial conditions for the next analysis. The 

injection volume was 8 µL and the injector needle was washed for 10 times 

between injections with 80% methanol. Furthermore, the needle seat back was 

flushed for 12 s at a flow rate of 4 mL/min with 80% methanol to avoid cross 

contamination. 

 The parameters of the electrospray ionization source, operating in 

negative and positive ionization mode (negative mode for non-polar fraction and 

positive mode for polar fraction), were as follows: the capillary and fragmentor 

voltage were set at ±3.5 kV and 110 V, respectively; N2 in the nebulizer was flowed 

at 40 psi; the flow rate and temperature of the N2 as drying gas were 10 L/min 

and 350°C, respectively. The instrument was calibrated and tuned according to 

procedures recommended by the manufacturer. MS and MS/MS data were 

collected in both polarities using the centroid mode at a rate of 2.5 spectrum per 

second in the extended dynamic range mode (2 Ghz). Accurate mass spectra in 

auto MS/MS mode were acquired in MS m/z range 100–1100 and MS/MS m/z 

range 31–1100. The auto MS/MS mode was configured with 2 maximum 

precursors per cycle and an exclusion window of 0.25 min after two consecutive 

selections of the same precursor. The collision energy selected was 20 eV. 

 The instrument gave typical resolution 15000 FWHM (Full Width at Half 

Maximum) at m/z 118.086255 and 30000 FWHM at m/z 922.009798. To assure 

the desired mass accuracy of recorded ions, continuous internal calibration was 

performed during analyses by using the signals at m/z 121.0509 (protonated 

purine) and m/z 922.0098 [protonated hexakis (1H, 1H, 3H-tetrafluoropropoxy) 

phosphazine or HP-921] in positive ion mode; while in negative ion mode ions 
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with m/z 119.0362 (proton abstracted purine) and m/z 966.0007 (formate 

adduct of HP-921) were used. 

2.8.   Data processing and statistical analysis 

 MassHunter Workstation software package (B.05.00 Qualitative Analysis 

and B.06.00 Profinder, Agilent Technologies, Santa Clara, CA, USA) was used to 

process all data obtained by LC-QTOF in auto MS/MS mode. The MassHunter 

Profinder software was employed to extract and align potential molecular 

features in all the injections by using the recursive feature extraction algorithm. 

This algorithm performs firstly a chromatographic deconvolution and aligns the 

features across the selected sample files using mass and retention time. Secondly, 

it uses the mass and retention time of each feature to perform a recursive 

targeted feature extraction. This two-step procedure reduces the number of false 

negatives as well as false positives in feature extraction. Parameters considered 

for feature extraction included a threshold of 1500 counts and a maximum charge 

state of two. Additionally, the isotopic distribution for a valid feature had to be 

defined by two or more ions (with a peak spacing tolerance of 0.0025 m/z, plus 

10.0 ppm). Adducts formation in the positive (+H, +Na) and negative ionization 

(-H, +HCOO) modes were also included to identify features corresponding to the 

same molecule. Features alignment was done with a tolerance window of 0.45 

min and 10 ppm mass accuracy for retention time and m/z values across all the 

data files, respectively. The minimum peak area required for the feature 

extraction was fix on 3000 counts, and this value was also set at 3000 counts for 

at least the 75 percent of the samples of each group considered in the cohort in 

the recursive step. 

 After features extraction and alignment, data files in compound exchange 

format (.cef files) were created for each sample and exported into the Mass 

Profiler Professional (MPP) software package (version 12.1, Agilent Technologies, 

Santa Clara, CA, USA) for further processing. Data pretreatment was based on 

baselining to remove background noise and normalization by logarithmic 

transformation to reduce relatively large differences among molecular feature 
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abundances. Supplementary Figure 1 shows the normalization effect of the 

logarithmic transformation. As can be seen, the resultant matrix fits a normal 

distribution both in the polar and non-polar fraction. 

 MPP software allows both supervised and unsupervised analysis of the 

data by PLS-DA and PCA. In the former case, the validation model selected was 

N-Fold, by which the classes in the input data were randomly divided into N 

equal times; N-1 parts were used for training, and the remaining one part was 

used for testing. The process was repeated N times, with a different part used for 

testing in each iterative step. Then, repetitions and a fold number of 3 were 

selected for all validations. 

 Once the difference between the groups under study were verified, an 

analysis of variance (ANOVA) was executed using the ROCCET online tool 

(http://www.roccet.ca/ROCCET/) to know the entities significantly differenced 

between sampling times PRE and POS in each diet. The full process was done 

separately with each fraction: aqueous and organic phases. 

 

3. Results and discussion 

3.1. Serum metabolite differences according to the intervention diets 

 A common factor associated to metabolomics analysis in clinical and 

nutritional studies dealing with humans is the biological variability among 

individuals, which frequently mask the effects of other variability sources 

associated to internal factors (diseases, metabolic disorders) or external factors 

(diet, lifestyle). In this research, data acquisition was carried out to observe the 

biological variability not ascribed to diets intake as compared to the variability 

after diets intake. For this purpose, the chromatograms acquired in basal state 

(PRE) were compared with those acquired after the intervention period for 12 

weeks (POS) of each diet. After obtaining a global profile of metabolites present 

in polar and non-polar phases representing individuals subjected to every diet, 

the comparison among the different profiles would allow evaluation of 



   

206 

Comparative nutrimetabolomic study of the influence of fat 

intervention diets on serum metabolic profiles by LC–MS/MS 

 
similarity/dissimilarity patterns according to administered diets. Supplementary 

Figure 2 shows the base peak chromatograms (BPCs) obtained in both ionization 

modes from an individual prior the intervention study (PRE) and after the 

intervention diets (POS). 

 As mentioned under ‘Materials and methods’, only those molecular 

entities detected in at least 75% of the samples belonging to one of the groups 

considered under study (PRE and POS for each diet) were considered. This 

procedure allows reducing the presence of tentative metabolites related to inter-

individual variability sources such as anthropometric factors. With these 

premises, the number of molecular features detected in the non-polar fraction 

(negative ionization mode) was 170, while in the polar fraction (positive 

ionization mode) 41 tentative compounds were detected.  

 After data pretreatment, Principal Component Analysis (PCA) was 

employed in the first stage of data treatment to evaluate if the variability 

associated to the intervention study allowed discriminating POS samples from 

PRE samples. For this purpose, samples in the PCA scores plot were labelled by 

the sampling time but no attention was paid to the type of diet. Supplementary 

Figure 3 shows the PCA scores plot in a 3D graph. As can be seen, no clear 

discrimination was observed between PRE and POS states although certain 

trends can be visualized. The variability explained with PC1, PC2 and PC3 was 

33.9% for the organic phase and 27.3% for the aqueous phase, which clearly 

means that the variability associated to the intervention diets was not the major 

cause of variability present in the samples cohort. Taking into account this fact, a 

PLS-DA was carried out to find discrimination according to the intervention diet. 

In this case, five classes were considered: PRE samples and POS samples for the 

four intervention diets. Figure 1 shows the PLS-DA loadings plot obtained both 

for polar and non-polar fractions, which clearly allowed differentiating 

individuals prior to the intervention diets (PRE sampling time) from individuals 

after the intervention period (POS sampling time). Additionally, no complete 

discrimination was observed among individuals subjected to the four diets. 

Nevertheless, certain groupings were detected in both fractions according to the 
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intervention diet and, additionally, individuals after the low-fat diet 

supplemented with long chain n-3 PUFAs (LFHCCn-3) provided the highest 

variability versus control individuals (PRE sampling time) in comparison to the 

resting diets. If the PRE sampling time is not considered for PLS-DA, separation 

of individuals after the four intervention diets was appreciated, as Figure 2 

shows. As can be seen, discrimination of individuals according to the intervention 

diet was observed in both the polar and the non-polar fractions. In both analyses 

the maximum separation was observed for individuals subjected to the LFHCCn-

3 diet, who were assigned with the most discriminant metabolic pattern. 

Concerning the diet influence, the main variability source was not associated to 

the fat content but the diet composition. No similarity groupings were observed 

between pairs of diets. At this point, the effects found for the polar and non-polar 

fractions as a result of the intervention diets were independently evaluated 

 

Figure 1. Scores graphs obtained after multivariate analysis by PLS-DA of the polar and 

non-polar fraction, considering POS and PRE time for each diet. 
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Figure 2. Scores graphs obtained after multivariate analysis by PLS-DA of the polar and 

non-polar fractions, considering POS time for each diet. 

 

Figure 3. Scores graphs obtained after multivariate analysis by PLS-DA of non-polar 

fraction for each diet, considering in each case PRE and POS times. 

 

3.2. Non-polar metabolic effects associated to the intervention diets 

  The influence of each diet on non-polar metabolites in serum was 

independently evaluated by comparing the PRE sampling time versus the POS 

sampling time for each diet. For this purpose, a PLS-DA model was created for 

each diet as Figure 3 shows. Complete discrimination was observed between 
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individuals before and after the intervention diets. The discrimination capability 

obtained in the training step was above 94% for the four diets. 

 Taking into account the existing metabolic differences caused by each 

intervention diet, a fold change analysis was executed to identify the tentative 

metabolites with the highest contribution capability to explain the observed 

variability. In all cases, a number of molecular features between 17 and 19 

experienced a fold change higher than 1.25, which implies an increase or decrease 

of 25% of the MS detector response in relative terms. Identification of these 

tentative metabolites by using MS and MS/MS allowed detecting a significant 

number of phospholipids, essentially, glycerophosphatidylcholines and 

glycerophosphatidylethanolamines including different fatty acids chains. Table 1 

lists the lipids identified after fold change analysis. The significance level 

according to an ANOVA test is also shown. As can be seen metabolic changes 

occurring in the non-polar fraction of serum after four intervention diets for 12 

weeks were targeted at phospholipids. Apart from these two families of 

phospholipids, several sphingomyelins and two essential fatty acids —linoleic 

acid and docosahexanoic acid— were also detected with a concentration change 

due to intervention diets. Table 1 shows all the non-polar metabolites that 

experienced a fold change of at least 1.25 by comparing physiological states 

before or after the intervention diets. They are grouped as a function of the diet 

but also according to the magnitude of change. The first aspect to be emphasized 

is regarding the number of glycerophospholipids or sphingomyelins with two 

substituents that experienced a concentration change above 1.25 (increase or 

decrease in individuals after the intervention diets). Thus, two diets, HSFA and 

LFHCC, presented increased levels of 7 and 8 glycerophospholipids, and sphingo-

myelins with two substituents, respectively. On the other hand, only three or one 

metabolites of these families decreased their concentration due to the intake of 

these two intervention diets. The opposite behavior was observe for the LFHCCn-

3 diet since only three of these compounds increased their concentration in 

serum due to the intervention, while 7 of them decreased their concentration. The 

fourth diet —HMUFA diet— caused an increase of four disubstituted 
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glycerophospholipids or sphingomyelins and a decrease of the same number of 

lipidic metabolites. Therefore, the effect of the intervention diet on the lipid 

profile, which was mostly manifested on phospholipidic structures, depended on 

the diet. Nevertheless, some common effects were observed in individuals after 

any intervention diet. The most representative example was found for 

lysophospholipids, with special emphasis on lysoPC(O-16:1), that experienced an 

increase of serum concentration  in all individuals (>2.0) after the intervention 

diets. In fact, this change was statistically significant according to the ANOVA 

test for individuals subjected to HSFA, LFHCC and LFHCCn-3 diets. 

Table 1. Non-polar metabolites that experienced a fold change above 1.25 by comparing 

physiological states before or after intervention diets. Isomers of the same 

lysophosphatidylcholine are differenced by (1) and (2). 

 HSFA HMUFA LFHCC LFHCC(n-3) 

>2 SM(d22:0/20:3)** 
LysoPC(O-16:1)** 

PC(16:0/18:2) 
LysoPE(O-16:1) 
PC(18:0/16:2) 

PC(O-18:0/18:2)* 

LysoPC(18:2) (1) 
LysoPC(18:2) (2) 
LysoPC(16:0) (2) 
LysoPC(O-16:1) 

PC(16:0/18:2)*** 
PC(18:0/18:2)* 
SM(d20:1/16:1) 

LysoPC(O-16:1)*** 
PC(38:5)1 

PC(18:0/20:4) 

LysoPC(O-16:1)** 

1.75-2 LysoPE(18:0) 
LysoPC(18:0) (1) 

PC(18:0/18:2) 
SM(d18:2/24:0) 

LysoPC(16:1) 
SM(d20:1/16:1) 
SM(d22:0/20:3) 

LysoPC(18:0) (1) PC(16:0/18:2) 
Docosahexaenoic 

acid (C22:6) 

1.5-1.75  PC(18:0/20:4) 
PC(16:0/20:3) 

LysoPC(17:0) 
PC(18:0/16:2) 

PC(O-18:0/18:2) 

1.25-1.5 LysoPC(16:0) (1) 
LysoPC(16:0) (2) 

PC(18:2-OH/16:0) 
LysoPE(18:1) 

LysoPC(18:2) (2) 

LysoPC(18:0) (1) 
LysoPC(18:0) (2) 

LysoPC(16:0) (1) 
PC(16:0/20:3) 

SM(d18:0/18:1) 

LysoPC(16:0) (1) 
SM(d20:1/16:1) 
LysoPC(20:4) 

(-1.25)-(-1.5)  Docosahexahenoic 
acid (C22:6) 

PC(18:0/16:2) 
LysoPE(18:1) 

Linoleic acid 
(C18:2) 

PC(18:0/18:1) 

(-1.5)-(-1.75)    PC(18:0/18:2) 
PC(38:5)1 

(-1.75)-(-2) PC(22:6/18:0) 
PC(O-15:1/18:1) 
LysoPC(18:2) (1) 

  PC(16:0/20:3) 

<(-2) PC(16:0/20:4) PC(18:0/18:2)*** 
PC(16:0/18:2) 

LysoPC(16:0) (1) 
PC(O-18:0/18:2) 

LysoPC(17:0) 

PC(16:0/20:4) 
LysoPC(20:4) 
LysoPE(20:4) 

LysoPC(18:2) (2)** 
PC(18:2-OH/16:0) 

LysoPE(20:4) 
SM(d22:0/20:3) 

PC(18:0/16:2) 

 *** p-value < 0 .01 
**  0.01<p-value<0.025 
*    0.025<p-value 
1 PC(38:5) is the sum of PC(18:0/20:5) and PC(16:0/22:5)   
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 Apart from these overall changes, some particular modifications in 

families of phospholipids were observed as a function of the diet. Thus, the main 

difference among diets was observed for three of the most common 

glycerophospholipids, PC(16:0/18:2), PC(18:0/16:2) and PC(18:0/18:2). These 

three metabolites reported different levels depending on the diet, as Figure 4 

shows. Thus, the concentrations of these three PCs were increased in individuals 

after HSFA and LFHCC interventions, while the same compounds were 

decreased in individuals subjected to HMUFA diet. On the other hand, 

individuals after the LFHCCn-3 intervention diet were marked by a different 

effect since PC(16:0/18:2) increased its relative concentration in serum, while 

PC(18:0/18:2) and PC(18:0/16:2) levels were decreased. Attending to these 

results, a direct influence of the intervention diet on three of the most important 

blood phospholipids was found. 

 

Figure 4. Mean values and 95% confidence levels of the normalized area for 

PC(18:0/16:2), PC(16:0/18:2) and PC(16:0/18:2). 

 Additional effects associated to the intervention diets can be deduced by 

comparing the compounds that change their concentration in relative terms. 

Thus, the two diets characterized by high-fat content (38% energy) led to an 

opposite effect in the concentration of glycerophospholipids combining essential 

PUFA substituents and relevant saturated FAs such as palmitic and stearic acids 

(C16:0 and C18:0). Thus, PC(22:6/18:0) and PC(16:0/20:4), which include 

docosahexaenoic acid and araquidonic acid, decreased their concentration in 

serum after intake of the HSFA diet. On the other hand, PC(18:0/20:4) and 
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PC(16:0/20:3) increased their levels in serum after the HMUFA diet. Concerning 

the lysophospholipids profile, these two diets described a common pattern since a 

quite similar trend was found for the most important lysophospholipids —

particularly, lysoPC(16:0) and lysoPC(18:0)— except for one of the isomers of 

lysoPC(18:2) that described an opposite effect. This metabolite (eluting at 8.0 

min) increased its concentration in HMUFA individuals, and decreased in 

individuals subjected to HSFA diet. One other difference detected in individuals 

controlled by these two diets was that affecting lysoPE(18:1). This compound 

increased its concentration in HSFA individuals, while this was decreased in 

HMUFA cases. 

 Concerning the two diets based on low-fat content (LFHCC and LFHCCn-

3), a similar trend was observed for most phospholipid structures, except for 

glycerophospholipids. Glycerophosphocholines, including PUFA substituents, 

clearly increased their concentration in LFHCC individuals, while LFHCCn-3 

individuals were marked by a decreased of this PC structure. Also, one other 

difference between individuals subjected to these two diets was observed for 

lysoPC(20:4), which includes arachidonic acid. This lipidic metabolite was found 

at minor concentration in individuals after LFHCC diet as compared to 

individuals after LFHCCn-3 diet. Taking into account that both diets were based 

on the same fat composition, the mentioned changes can be associated to the 

supplement included, high oleic acid sunflower oil or long chain n-3 PUFA. The 

LFHCCn-3 diet also promoted a change in the profile of sphingomyelins as 

compared to the two diets based on high-fat content. Thus, the SM(d22:0/20:3) 

decreased its concentration in individuals after the LFHCCn-3 diet, while this SM 

increased its concentration in serum after the HSFA and HMUFA diets. One 

other representative effect was observed by comparing individuals after the 

LFHCCn-3 and HSFA diets since an oxidized PC(18:2-OH/16:0) increased its 

serum concentration in HSFA individuals (1.48 fold change), while this oxidized 

phospholipid decreased its serum level (<–2 fold change) after the PUFA 

supplemented diet.   
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 It is also worth mentioning that two essential fatty acids — docosa-

hexaenoic acid and linoleic acid— reported concentration changes in three diets. 

Thus, docosahexaenoic acid was found at increased concentration in LFHCCn-3 

individuals, which included an n-3 PUFA supplement, while that was decreased 

in HMUFA cases. On the other hand, linoleic acid was detected at lower 

concentration in those controlled by the LFHCC diet as compared to control 

individuals.  

3.3. Polar metabolic effects associated to the intervention diets  

 By analogy with the non-polar fraction, the influence of each diet on the 

polar metabolites in serum was evaluated by comparing the PRE sampling time 

versus the POS sampling time. Supervised analysis by multivariate comparison of 

polar tentative metabolites based on PLS-DA allowed establishing metabolic 

differences in serum profiles analyzed in individuals after the four intervention 

diets. In this fraction, prediction capability values were above 94% for the 

training set for the four diets, which supported the discrimination effect observed 

in each PLS scores plot (Figure 5).  

 

Figure 5. Scores graphs obtained after multivariate analysis by PLS-DA of the polar 

fraction for each diet, considering in each case PRE and POS times. 

 A fold change analysis was then executed to know the entities with 

capability to contribute to a higher extent to the separation between PRE and 

POS sampling times in each diet. Identification based on MS and MS/MS 
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information allowed elucidating the compounds that were altered in terms of 

relative concentration due to the intervention diet, as shows Table 2. The 

identified metabolites are classified by the fold change value, positive or negative, 

and diet. The significance level according to an ANOVA test is also shown. As can 

be seen, a common trend was observed in serum from all individuals subjected to 

the diets as compared to the pre-intervention state. Thus, octenoyl-L-carnitine 

resulted increased after the 12-weeks control period. Additionally, this effect was 

highly significant (99%) in the four groups of individuals. Common metabolites 

were found modified after the intake of one of either the low-fat diets or the high 

fat diets. Concretely, several amino acids, excepting ornithine, were only 

modified by intake of a high-fat diet, where the number of metabolites altered 

was higher (14–15) than in the case of the low fat diets (6–9). Apart from that, 

other relevant changes were observed for each diet. Thus, two critical differences 

were observed in the two high-fat content diets, HSFA and HMUFA. The first 

difference affects to levels of certain amino acids such as proline, creatine, 

betaine, valine and ornithine. These amino acids showed a different trend in the 

two groups of individuals. Ornithine was found at increased concentration in 

individuals after the HSFA diet, while those subjected to HMUFA diet decreased 

its concentration as compared to the pre-intervention state. The opposite effect 

was observed for the rest of amino acids, which means that valine, betaine and 

proline significantly increased their concentrations in HMUFA individuals, while 

proline, valine and creatinine decreased their concentration in HSFA diet. In 

addition to the phenomenon observed for ornithine, the same behavior was 

found for inosine, which increased its serum concentration in HSFA individuals 

(with statistical significance) while the HMUFA diet led to a relevant lowering 

effect (–1.82) in the concentration of this purine nucleoside. The mean area with 

the 95 percent of confidence levels for proline, methionine and valine for each 

time and diet are shown in Supplementary Figure 4. 

 Minor relevant changes were found in the polar fraction of serum from 

individuals subjected to the two low-fat content diets, LFHCC and LFHCCn-3. As 

previously emphasized, both diets resulted in increased concentration of 
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octenoyl-L-carnitine, but only in the LFHCC individuals were detected relevant 

effects for other two carnitine derivatives: hexanoyl-L-carnitine and 

acetylcarnitine,. Particularly, both carnitine analogues decreased their serum 

concentration due to the LFHCC diet. This diet also increased the concentration 

of ornithine as the HSFA diet.  

Table 2. Polar metabolites that experienced a fold change above 1.25 by comparing 

physiological states before and after intervention diets. 

 HSFA HMUFA LFHCC LFHCC(n-3) 

>2 Inosine* 
Paraxanthine 
L-ornithine 
Octenoyl-L-
carnitine*** 

Octenoyl-L-
carnitine*** 

Cholic acid CMPF*** 
Octenoyl-L-
carnitine*** 

1.75-2   Octenoyl-L-
carnitine*** 

 

1.5-1.75  Valine*   

1.25-1.5 LysoPC(16:0) 
CMPF 

Hippuric acid 
Bilirubin (1) 

Betaine* 
Proline 

Paraxanthine 
CMPF 

Hippuric acid 
2-Phenylacetamide 

Ornithine LysoPC(16:0) 

(-1.25)-(-1.5) Proline 
Creatinine 

Methionine* 
Glycocholic acid 

Bilirubin (2) 

Aconitic acid 
Bilirubin (1) 
Methionine 

Hexanoyl-L-
carnitine* 

Acetylcarnitine*** 
Bilirubin (2) 

Aconitic acid 
Inosine 

Hippuric acid 
Caffeine 

Hypoxanthine* 

(-1.5)-(-1.75) Caffeine 
Valine 

Caffeine  Bilirubin (2) 

(-1.75)-(-2)  Ornithine 
Inosine 

  

<(-2)     

***p-value < 0 .01 
**  0.01<p-value<0.025 
*    0.025<p-value 
(1) and (2) bilirubin corresponds to bilirubin and bilirubin IXa, two indistinguishable isomers by 

mass spectrometry.  
 

 Two bile acids were also in the list of metabolites altered in terms of 

concentration: cholic acid and glycocholic acids, which are connected by a 

pathway regulated by choloylglycine hydrolase. The concentration of cholic acid 

was considerably increased (2.02) in individuals subjected to LFHCC, while 

glycocholic acid was decreased (–1.33) in HSFA diet. Finally, the LFHCCn-3 class 

was characterized by a decrease in the concentration of inosine, hippuric acid and 
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hypoxanthine (with a statistical significant decrease in the last case). On the other 

hand, the levels of some metabolites were increased or decreased only after 

intake of some of the diets under study. As an example, methionine decreased by 

diets with high-fat content (HSFA and HMUFA). 

3.4.  Pathways analysis 

  After identification of polar and non-polar metabolites that experienced 

changes in concentration due to the 12-weeks intervention period, an 

interpretation of the obtained results was carried out attending to the connection 

of biochemical pathways. Despite concentration changes of polar metabolites 

such as amino acids or carnitines were observed in relative terms, most 

alterations occurred on the metabolism of lipids, which was identified as the 

main variability source. Thus, the main metabolic impact caused by the 

intervention diets is reflected in the metabolism of glycerophospholipids and 

sphingolipids, which are the main components of cellular membranes, but also of  

blood lipoproteins, bile and lung surfactant. The influence of fatty acids intake on 

the qualitative and quantitative behavior of phospholipids had previously been 

reported [18]. In fact, concerning the three most abundant families of lipids 

present in serum, changes of the fatty acids composition in the diet have affected 

to phospholipids in a higher extent than to triglycerides and cholesteryl esters. 

The phenomenon seems to be logical since phospholipids constitute a family of 

compounds necessary for the absorption, transport and storage of lipids. With 

these premises, serum phospholipids could be proposed as sensitive markers of 

the fatty acid composition of diets. Among the metabolic changes altering the 

glycerophospholipids profile, it is worth mentioning that the serum levels of three 

of the most important phospholipids —PC(16:0/18:2), PC(18:0/16:2) and 

PC(18:0/18:2— have been affected by the diet; therefore they were able to set 

differences in individuals after diet intake. Additionally, the relative changes 

occurring in the profile of glycerophospholipids were not dependent on the fat 

energetic contribution that characterizes the diets. Thus, HSFA and LFHCC diets 

promoted a representative increase in relative concentrations of glycerophos-

phatidylcholines with two substituents, while the opposite effect was observed in 
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individuals subjected to LFHCCn-3 diet, which also evidenced a decrease in the 

level of sphingomyelins. The supplement of long chain n-3 PUFAs seems to be 

critical to explain these differences in metabolism. 

 Glycerophospholipids are synthetized from acyl-CoA, a group of 

coenzymes involved in fatty acids metabolism. The presence of PUFAs as 

substituents of glycerophosphatidylcholines contributed to set one other 

metabolic difference between groups of individuals: increased levels in HMUFA 

and LFHCC individuals versus decreased levels in HSFA and LFHCCn-3 

individuals. Also, two PUFAs such as docosahexaenoic acid and linoleic acid, 

which are implicated in the metabolism of essential fatty acids, experienced 

differences among individuals subjected to different diets. The connection 

between the metabolism of fatty acids and glycerophospholipids establishes a 

global effect of intervention diets on the metabolism of lipids.  

 Choline, one other metabolite involved in the metabolism of glycerol-

phospholipids, also revealed a statistical significant change in concentration due 

to the HSFA diet, while in HMUFA diet, betaine, which is synthesized by choline 

oxidation through conversion to betaine aldehyde, was that experiencing a 

change in concentration with statistical significance. Betaine is an intermediate in 

the biosynthesis of essential and non-essential amino acids. Thus, betaine plays a 

crucial role in the synthesis of L-carnitine that is the precursor of carnitines, the 

alteration of which was detected as one of the most representative metabolic 

effects caused by diets. Carnitine is an infrequent amino acid but an essential 

factor in the metabolism of fatty acids. This compound metabolizes fatty acids 

through the formation of acylcarnitines that generate acetyl-CoA and carnitine, 

thus completing the cycle of lipid degradation. Acetylcarnitine levels have also 

shown to be signiticantly decreased after LFHCC intake. 

 One other amino acid that was altered as a result of dietetic interventions 

was valine, whose degradation leads to leucine and, finally, to acetyl-CoA, which 

regulates the biosynthesis of fatty acids. In relation to valine, a variation was 

observed in individuals subjected to HSFA and HMUFA diets, since the levels of 
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this amino acid were increased in HMUFA individuals, while HSFA individuals 

described the opposite result. 

 Other two amino acids implicated in a common pathway, proline and 

ornithine, reported different results for LFHCC and HSFA individuals, since 

ornithine was increased in LFHCC individuals and decreased in HSFA 

individuals. Ornithine is produced in the urea cycle through arginine, but also it 

is the substrate to produce proline by the activity of the ornithine 

cyclodeaminase.  The urea cycle is also connected to the citrate cycle, which could 

explain the decreased concentration of aconitic acid in LFHCCn-3 individuals as 

no modification of the metabolites involved in the urea cycle was observed. 

Methionine presented the same behavior in the two high-fat content diets as its 

concentration was decreased after the intervention period. However, its variation 

was only statistically significant in the case of the HSFA diet. Methionine is an 

intermediate of transmethylation reactions, being the methyl acceptor for the 

catabolism of betaine. 

 Two bile acids (cholic and glycocholic) were also affected by some diets. 

Bile acids facilitate the absorption, transport and excretion of fats and sterols in 

the intestine and liver. Therefore, it seems to be relevant that the type of fat 

administered to individuals could have an important effect on the metabolism of 

bile acids. Two diets revealed changes in the levels of bile acids: LFHCC, which 

increased the concentration of cholic acid, and HSFA, which promoted a relative 

decrease of glycocholic acid, the precursor of cholic acid.    

 Regarding purine base derivatives, inosine and hypoxanthine levels 

resulted modified after the intake of some of the diets. Concretely, inosine levels 

resulted significantly increased after HSFA intake, and decreased unsignificantly 

after HMUFA or LFHCCn-3 intake. Inosine is directly related to hypoxanthine, 

whose levels resulted significantly decreased after LFHCCn-3 intake. Hypo-

xanthine has demonstrated to induce oxidative stress related to lipid oxidation. 

In fact, the only oxidized phospholipid identified in the non-polar fraction —

PC(18:2-OH/16:0)— decreased its concentration in individuals after LFHCCn-3 
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intervention, the same diet by which hypoxanthine was significantly decreased. 

On the other hand, hypoxanthine levels were significantly increased in 

individuals after HSFA intervention, the diet based on high content of SFA and 

the same diet by which inosine and the oxidized phospholipid were significantly 

and slightly increased, respectively.  

 Other compound with concentration modified after intake of some diets 

was hippuric acid, involved in the metabolism of phenylalanine. The concen-

tration of hippuric acid was slightly increased after intake of high-fat content 

diets —HSFA and HMUFA— and slightly decreased after LFHCCn-3 diet. 

Hippuric acid has been associated to the metabolism of phenolic compounds, 

thus it could be associated to oxidation inhibition activity. Additionally, bilirubin 

1 and bilirubin 2 (see Table 2) were found to increase and decrease, respectively 

their concentrations after HSFA intervention; bilirubin 1 experienced a decrease 

by HMUFA intake, while in LFHCC and LFHCCn-3 diets the decrease affected to 

bilirubin 2. Both bilirubin analogues are as potent physiological antioxidants. A 

less well-known metabolite, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid 

(CMPF), experienced a slight concentration increase in individuals subjected to 

one of the two high-fat content diets and the LFHCCn-3 diet. The occurrence of 

this metabolite in blood is associated to the consumption of fish, vegetables and 

fruits, being related with the metabolism of phospholipids [9]. Nevertheless, its 

origin is not clear and an endogenous presence by metabolism of furan fatty acids 

cannot be excluded.  

 

4. Conclusions 

 A global nutrimetabolomics study has been developed to compare 

metabolic effects caused by four intervention diets differentiated in fat quantity 

and quality. The serum samples obtained before and after diet intake were 

fractioned by a mixture methanol–chloroform, and the polar and non-polar 

fractions evaluated separately. The comparison of serum metabolite profiles 
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obtained by LC–QTOF in high resolution mode has shown to be a suitable 

strategy to identify the most influenced metabolites after intervention diets. 

 Multivariate statistical analysis by PLS-DA revealed a slight 

discrimination among metabolic profiles representing the four post-intervention 

states, being the low fat content diet supplemented with n-3 fatty acids that 

providing the most discriminant metabolic pattern. A clear discrimination 

between the pre-intervention and post-intervention times for each diet was also 

observed.  

 The evaluation of the non-polar fraction led to know that phospholipids 

are the major fraction altered in the non-polar fraction after the intervention 

diets. On the other hand, the evaluation of the polar fraction revealed some 

amino acids, bile acids and acylcarnitines as some of the most affected 

metabolites in serum. In fact, the high fat content diets presented more amino 

acids with levels modified after diets, while only ornithine was slightly increased 

in one of the low fat content diets. 
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Supplementary Figure 2. Base peak chromatograms obtained by LC–MS/MS analysis 

of: A) the polar fraction of a pre-intervention sample in positive ionization mode; B) the 

polar fraction of a post-intervention sample in positive ionization mode; C) the non-polar 

fraction of a pre-intervention sample in negative ionization mode; and D) the non-polar 

fraction of a post-intervention sample in negative ionization mode. 
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Supplementary Figure 3. Scores plot obtained for PRE and POS times considering all 

the diets after multivariate principal component analysis (PCA) for polar fraction (a) and 

non-polar fraction (b).  
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Supplementary Figure 4. Mean values and 95% confidence levels of the normalized 

area for proline, valine and methionine. 
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Metabolomic discrimination between patients 

with stable angina, non-ST elevation myocardial 

infarction, and acute myocardial infarct 

M. Calderón-Santiago, F. Priego-Capote, J. G. Galache-Osuna, M. D. Luque de 

Castro* 

 

Abstract 

 The ischemic cascade starts when atherosclerotic plaques decrease the 

supply of oxygen and substrates to cells and finalizes with myocardial infarction. 

These states have been here studied at metabolite level by optimization of a 

metabolomics profiling approach based on high-accuracy MS. For this purpose, 

serum samples from patients diagnosed with coronary artery disease and affected 

by stable angina or myocardial infarction (acute myocardial infarction or non-ST 

elevation myocardial infarction) were analyzed by LC–QTOF MS/MS after 

deproteinization to compare the profile of serum metabolites. The data set, 

composed by tentative molecular features detected in MS analyses, was filtered 

with statistical algorithms to remove entities resulting in redundant information. 

Tentative molecules were identified finding mainly lipids as statistically 

significant metabolites in the discrimination study due to their change in 

concentration. Lipids such as bile acid derivatives, phospholipids, and 

triglycerides were identified as relevant compounds for discrimination of 

individuals who suffered acute or non-ST elevation myocardial infarction from 

those suffering stable angina. The results achieved by this research could support 

the capability of metabolomics to go inside the study of artery diseases, and in 

addition to other omics disciplines could help to detect the occurrence of these 

disorders at initial stages or even to prognosticate their appearance. 
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1.  Introduction 

 Nowadays, cardiovascular diseases (CVDs) are the leading cause of death 

worldwide with supremacy in low-and middle-income countries (80%) and with 

high significance in European countries (50%). Therefore, CVDs are a major 

cause of disability and contribute significantly to increase health care costs [1]. 

Cardiovascular diseases usually originate in atherosclerosis, a coronary artery 

disease characterized by the formation of lipid plaques in arteries restricting 

blood circulation to the heart. Atherosclerosis is the main cause of angina 

pectoris, a perceived symptom resulting from a mismatch of myocardial supply 

and demand caused by the partial obstruction of the artery. When the anaerobic 

threshold is crossed, the patient develops symptomatic angina pectoris (chest 

pain) which can appear after a physical effort or activity (angina stable) [2]. If 

this symptom is perceived with minimum activity and higher frequency, the 

suited term is unstable angina.  

 A rupture in the atherosclerotic plaque can generate a thrombus which 

can occlude normal blood flow. Complete thrombotic occlusion of a coronary 

artery causes myocardial necrosis and is termed acute ST-elevation myocardial 

infarction also known as acute myocardial infarction (AMI), whereas incomplete 

occlusion does not cause myocardial necrosis and is termed non-ST elevation 

myocardial infarction (NSTEMI). It is worth mentioning that unstable angina 

and NSTEMI are often considered together because they can be indistinguishable 

upon first appearance [3]. 

 One of the main problems in clinical practice is the diagnosis of 

cardiovascular dysfunctions, which are commonly detected in a relatively 

advanced stage of the disease course [4]. The initial diagnostic approach for 

coronary artery disease encompasses a detailed patient history, a complete 

physical examination and an electrocardiogram. After this preliminary 

evaluation, laboratory blood tests, stress testing and invasive cardiac 

catheterization may be necessary to obtain further insight diagnostic and confirm 

the presence of atherosclerotic problems. 
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 Different studies on atherosclerosis have been developed in the “omics” 

scene mainly aimed at the search for biomarkers and elucidation of the 

mechanisms through which myocardial infarction occurs. In fact, different 

proteomic databases of cardiac proteins have so far been constructed and 

alterations of several cardiac proteins in human myopathies have been described 

[5–7]. In the genomic area, research has been mainly focused on looking for 

genetic factors that may be associated with this disease susceptibility [8]. On the 

other hand, transcriptomics has also been used to identify specific patterns on 

myocardial tissue with different cardiovascular diseases (e.g. heart failure or 

cardiac transplants) [9, 10]. The latest developed omics, metabolomics, has 

contributed in a lesser extent to the study of atherosclerosis despite the metabolic 

changes that occur as a consequence of ischemia (e.g. accumulation of glucose, 

increased synthesis of prostacyclin and thromboxane, production of nitric oxide) 

[11]. Despite these well-known evidences, the metabolic impact associated to 

myocardial infarction is still unknown. 

 To date, there have been few metabolomics studies devoted to 

cardiovascular diseases. One of the first studies to uncover the potential of 

unbiased metabolomic profiles in predicting atherosclerosis patients was based 

on NMR spectroscopy analysis of blood samples [12]. This study included 

patients with unstable atherosclerosis or prior myocardial infarction. The model 

resulted in a 90% predictive capability for atherosclerosis patients on a major 

lipid region of the NMR spectra. However, a follow-up study was unable to keep 

this prediction results due to variability sources supported on gender and the use 

of3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors 

between the two populations under study [13]. These results emphasize the 

clinical variability of patient cohorts. 

 Other study utilized GC–MS to evaluate major changes in plasma 

metabolites between 9 patients with NSTEMI, 10 patients with stable 

atherosclerosis and 10 patients without coronary lesions [14]. Citric acid,  

4-hydroxyproline, aspartic acid, and fructose levels were decreased, whereas 

lactate, urea, glucose, and valine levels were increased in atherosclerosis patients 
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as compared with the control group. Thus, metabolic changes were limited to 

polar metabolites. 

 Presently, no many biomarkers are used in the diagnosis of cardio-

vascular diseases —e.g. creatinin phosphokinase (CPK) or troponin for acute 

myocardial infarction. There are an ischemic cascade with elevation of specific 

markers at different stages of cardiovascular diseases, from plaque formation to 

necrosis and left ventricle remodeling, but most of the markers proposed so far 

are proteins, lipids or factors (e.g. placental growth factor, tissue factor) [15]. 

Nowadays, it is interesting to use metabolomics as a discrimination tool for 

disease diagnosis, given that many of the analytical tools used in metabolomics 

are automatable and on the whole high throughput, they lend themselves to 

screening populations of individuals for disease. There are still work to be done to 

fully elucidate the metabolic processes and changes occurring as a consequence 

of atherosclerosis. The objective of the present research was to find overall 

metabolic changes which could be used to differentiate three cardiovascular 

pathologies such as stable angina, NSTEMI and AMI by LC–QTOF/MS. This 

instrumental platform provides great advantages in metabolomics studies. The 

use of LC–MS/MS for identification and confirmatory analysis was also planned. 

 

2. Materials and methods 

2.1. Reagents 

 LC-grade methanol and MS-grade formic acid and acetonitrile (ACN) 

were purchased from Scharlab (Barcelona, Spain). Deionized water (18 mΩ • cm) 

from a Millipore Milli-Q water purification system was used. 

2.2. Instruments and apparatus 

 A Sorvall Legend Micro 21R centrifuge (Thermo Scientific, Waltham, MA, 

USA) was used to centrifuge samples after deproteinization.  
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 An Agilent 1200 Series LC system coupled to an Agilent 6540 UHD 

Accurate-Mass QTOF tandem mass spectrometer equipped with a Jetstream® 

ESI source (Santa Clara, CA, USA) was used. The chromatographic eluting 

solution was monitored in high resolution mode. 

2.3. Cohort selected for the study 

 A total of 189 patients affected by significant coronary artery lesion as 

atherosclerosis were included in the study. The main characteristics of the 

patients are shown in Supplementary table 1. As can be seen, the selected cohort 

was composed of 73 and 74 individuals diagnosed with stable angina and 

NSTEMI, respectively, while 42 of them had suffered previously an acute 

myocardial infarct. The average age of the cohort was 67±14, 79.0% of them male 

individuals, 51.6% smokers, 25.8% diabetic, 37.8% obese, 61.4% hypertense and 

52.7% with hypercholesterolemia. Despite the variability of these factors, their 

proportion in the three considered sub-groups was quite similar. In fact, 

independence of clinical factors and cardiovascular pathologies was proved 

according to the Pearson’s Chi Squared test with a 95% of confidence level. 

Atherosclerosis was diagnosed to all patients after evaluation through cardiac 

catheterization (angiographic stenosis revealed a reduction of the arterial lumen 

≥ 70%). Blood extraction immediately preceded catheterization. Most patients 

were taken medication as follows: β-blocking agents (78%), statins (92%), 

antiplatelet agents (88%) and aspirin (98%). 

 2.4.     Blood extraction and serum isolation 

 All steps from blood extraction to analysis were performed in compliance 

with the guidelines dictated by the World Medical Association Declaration of 

Helsinki (2004), which were supervised by specialized personnel from Miguel 

Servet Hospital (Zaragoza, Spain) that approved the experiments. Informed 

consent was obtained from all participants prior to sample collection. 

 Venous blood was collected in evacuated sterile serum tubes without 

additives (Vacutainer, Becton Dickinson, Franklin Lakes, NJ, USA) and 

incubated for 30 min at room temperature to allow coagulation. Then, the tubes 
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were centrifuged at 2000 g for 15 min at 4°C to isolate the serum fraction (which 

was put in an ice bath prior to freezing within 2 h after collection). Serum was 

placed in plastic ware tubes and stored at –80 °C until analysis.  

2.5. Sample treatment 

 Serum samples (100 µL) immersed in an ice bath were treated for 

deproteinization with methanol (200 µL), the most common solvent used for 

metabolomics profiling without sample fractionation. The mixture was shaken 

for 1 min and the precipitate removed after centrifugation for 5 min at 4 °C and 

13800 g. The upper phase was collected in a vial that was placed in the LC 

autosampler for subsequent analysis. 

2.6. LC–QTOF MS/MS analysis  

 Chromatographic separation was performed using a Mediterranea 

reversed phase C18 analytical column (100 mm x 0.46 mm i.d., 3 μm particle 

size) from Teknokroma (Barcelona, Spain) kept at 25 °C. Mobile phases were 

water (phase A) and ACN (phase B), both with 0.1% formic acid as ionization 

agent. The LC pump was programmed with a flow rate of 0.8 mL/min and the 

following gradient elution was carried out: 3% phase B was kept constant from 

min 0 to 2; from 3 to 100% of phase B from min 2 to 27; finally, 100% of phase B 

was kept from min 27 to 33. 

 The injection volume was 10 µL and the injector needle was rinsed with 

70% methanol for 10 times between injections. Furthermore, the needle seat back 

was flushed for 15 s at a flow rate of 4 mL/min with 70% methanol to avoid cross 

contamination. 

 Jetstream ESI source parameters, operating in negative and positive 

ionization mode, were as follows: nozzle, capillary and fragmentor voltage were 

set at +/– 2 kV, +/– 3.5 kV and 175 V, respectively; N2 nebulizer gas was flowed 

at 40 psi; N2 drying gas flow rate and temperature were 8 L/min and 325°C; N2 

sheath gas flow rate and temperature were 11 L/min and 350°C. The instrument 

was calibrated and tuned according to procedures recommended by the 
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manufacturer. The data were collected in both centroid and profile modes at a 

rate of 2 spectrum per second in the extended dynamic range mode (2GHz). 

Firstly, the samples were analyzed in full scan MS mode in the m/z range 60–

1100 for metabolite profiling. The reported data set was statistically processed to 

detect molecular features with a high significance to explain the observed 

variability. Once the most significant entities were recognized, the samples were 

analyzed in targeted MS/MS mode (m/z range 60–1100) to obtain structural 

information with identification purposes. To assure the desired mass accuracy of 

recorded ions, continuous internal calibration was performed during analyses 

with the use of signals at m/z 121.0509 (protonated purine) and m/z 922.0098 

[protonated hexakis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine or HP-921] in 

positive ion mode; in negative ion mode ions with m/z 119.0362 (proton 

abstracted purine) and m/z 966.000725 (formate adduct of HP-921) were used. 

Resolution provided by the instrument ranged from 15000 FWHM (Full Width at 

Half Maximum) at low masses (purine) and 30000 FWHM at high mass values 

(HP-921). 

 Samples were randomized injected twice to obtain chromatograms in 

both ionization modes. A blank sample was injected every 10 samples and the ESI 

source was cleaned every day to avoid carry over. A stability study was planned by 

repetitive injections of samples to avoid variability associated to disturbances in 

the metabolic profile. As can be seen in Supplementary figure 1, variability was 

found from the 13th injection, which sets the maximum period that samples can 

be at the autosampler without affecting their stability. 

2.7. Data processing and statistical analysis 

 Raw data files were converted to mzData files using MassHunter 

Workstation software (version 3.01 Qualitative Analysis, Agilent Technologies, 

Santa Clara, CA, USA) and then the data from each polarity were separately 

processed in R statistical language (version 2.15.0, http://www.r-project.org/) 

using the open-free XCMS R-package (version 1.24, http://metlin.scripps.edu/ 

xcms/index.php) [16,17] and the also open-free CAMERA R-package (version 
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1.12.0, http://www.bioconductor.org/packages/2.10/bioc/html/CAMERA.html). 

First, the XCMS package was used for processing mzData files of each ionization 

mode by extraction of potential molecular features (MFs) considering only ions 

exceeding 1000 counts peak height with a peak width between 10 and 60 s, a 

signal to noise threshold of 10 and 5 ppm of error in mass accuracy. Then, a non-

linear alignment was executed using the “retcor” function with a degree of 

smoothing for local polynomial regression fitting of 0.5 and a symmetric fitting, 

process that used a re-descending M estimator with Tukey’s biweight function. 

Then, the CAMERA package was used to correlate potential adducts (in positive 

ionization mode [M+Na]+ and [M+H]+;in negative ionization mode [M+HCOO]–, 

[M+Cl]– and [M-H]–) and isotopic peaks of the same molecular entity. Adducts 

formed by dehydration neutral loss were also considered.  Thus, ions with 

identical elution profiles and related m/z values (representing different adducts 

or isotopes of the same compound) were grouped as a unique feature to remove 

redundant information. This process resulted in a data set containing the 

intensity values in the apex of chromatographic peaks for all molecular entities 

characterized by accurate mass and retention time (RT). Background 

contribution was removed by subtraction of MFs linked to plasticizers, solvent 

impurities and other contaminating compounds after analysis of blank sample 

(methanol) under identical instrument operation conditions. 

 The data set from each polarity was then imported to the Mass Profiler 

Professional (MPP) software package (version 2.0, Agilent Technologies, Santa 

Clara, CA, USA) for further processing. Data pretreatment was based on 

baselining to median across samples to remove background noise and 

normalization by logarithmic transformation to reduce relatively large differences 

among MF abundances. A fold-change algorithm was applied as filter to retain 

those molecular entities that experienced a change in relative concentration of 

2.0 between pairs of classes. MPP software also allowed unsupervised and 

supervised analysis by PCA and PLS-DA of the data. In the case of PCA, data 

scaling by mean centering was used as pretreatment. Auto-scaling was selected in 

the case of PLS-DA. The validation model selected was N-Fold. With this model 
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the classes in the input data are randomly divided into N equal parts; N-1 parts 

are used for training, and the remaining one part is used for testing. The process 

repeats N times, with a different part being used for testing in an iterative 

process. Thus, each row is used at least once in training and once in testing, and a 

confusion matrix is generated. This whole process can then be repeated as many 

times as specified by the number of repetitions. For all validations 10 repetitions 

and a fold number of 3 were selected. 

 Finally, an ANOVA test was executed for each metabolite to know the 

discrimination capability of each one among the three groups of patients 

considering significant a p-value lower than 0.05. 

 

3. Results and discussion 

3.1. Optimization of the LC–QTOF MS/MS analysis 

 Profiling analysis of serum metabolome from cardiovascular patients was 

carried out with a global approach based on non-targeted analysis. A simple 

deproteinization step with methanol was selected in this study to avoid sample 

fractionation which would increase the number of analysis. Chromatographic 

resolution was optimized with three different elution gradients, 22, 33 and 55 

min, from aqueous solution (phase A) to acetonitrile (phase B) in both ionization 

modes. For the three methods tested, a 3% of phase B was kept for 2 min and, 

then, a gradient to 100% of B was programmed for 14, 25 and 47 min with a final 

step for 6 min of 100% B. Figure 1 includes base peak chromatograms (BPCs) 

provided by analysis of three aliquots of serum pool with the three 

chromatographic methods using negative ionization mode. According to the 

number of features extracted (3 replicates), the longest chromatographic method 

did not improve chromatographic resolution in any ionization modes. Therefore, 

theintermediate gradient method was adopted for analysis of samples from the 

complete cohort of individuals. 
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Figure 1. Base peak chromatograms obtained by the three chromatographic methods 

tested in negative ionization mode from three aliquots of serum pool. The number of 

molecular features obtained by each chromatogram are also included.  

 

3.2. Data mining and pre-treatment 

 The alignment of molecular features is a crucial step prior to statistical 

analysis. The tolerance window for alignment employed was 0.2 min and 5 ppm 

for elution time and mass accuracy, respectively. Supplementary figure 2.A 

illustrates the curves for retention time deviation with elution time for all 

molecular entities after alignment. As can be seen chromatographic profiles were 

well-aligned demonstrating that chromatographic precision was quite good. One 

outlier was detected according to retention time deviation and, for this reason, 

this entity was removed. After data pretreatment, the data set obtained in the 

negative ionization mode contained 289 molecular entities. Supplementary figure 

2.B shows the frequency histogram as a bars diagram plotting the number of 

entities with a certain frequency. The bars diagram reveals that most entities 

(92.7%) were detected in at least 90% of samples considered in this study, which 

supports a data set representative of the selected cohort. The data set obtained in 

the positive ionization mode did not reported significant differences among the 

groups under study, so these data were removed. 
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3.3. Statistical analysis by unsupervised and supervised methods 

 As mentioned above, myocardial infarction or heart attack implies 

myocardial cell death as a consequence of prolonged ischemia (impairment of 

blood flow with inadequate oxygen delivery to the heart muscle). Some heart 

attacks strike suddenly but it is also frequent to experience symptoms (angina) 

some hours, days or weeks in advance.  

 Despite some metabolic changes occurring in a myocardial infarction 

have been described [15,18], it may be of interest to compare metabolic profiles of 

different atherosclerosis stages to elucidate metabolic pathways of the process. 

For this purpose, a fold-change filter was applied to simplify the data set and 

eliminate redundant information. The filter removed those molecular features 

that did not experience a relative change in concentration of 2.0 between pairs of 

groups. The fold-change algorithm reduced the data set from 289 to 13 molecular 

features, which should explain a relevant part of the variability associated to the 

three groups. With this new data set, a principal component analysis was 

executed but no discrimination of the three groups was observed (Supplementary 

figure 3) due to overlapping of patients pertaining to the three groups. For this 

reason, PCAs were split into three studies: stable angina versus NSTEMI, stable 

angina versus AMI and NSTEMI versus AMI. Figure 2 illustrates the three-

dimensional scores plot for the three independent studies. As can be seen, the 

two PCAs involving individuals diagnosed with stable angina clearly 

differentiated the two groups considered (Figure 2.A and 2.B). Therefore, 

relevant metabolic changes allowed differentiating patients diagnosed with the 

less severe diagnostic in atherosclerosis (stable angina) versus those diagnosed 

with NSTEMI and those who suffered an AMI episode. On the other hand, no 

discrimination was observed between individuals with NSTEMI and after an AMI 

episode (Figure 2.C). With these premises, prediction models based on PLS-DA 

were developed for the three studies to estimate the discrimination capability 

supported on the clinical diagnostic. Figure 3 shows the three-dimensional plots 

for each PLS model with the first three latent variables. As can be seen, PLS-DA 

plots confirmed the results obtained by PCA since clear discrimination was 
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observed in those cases involving individuals diagnosed with stable angina but 

not for the NSTEMI/AMI study. Prediction capability values expressed in 

percentage for training and validation sets of each PLS-DA are shown in Table 1. 

 

 

Figure 2. PCA scores plot obtained for AMI versus stable angina (A), stable angina 

versus NSTEMI (B), and AMI versus NSTEMI (C). 

 

 

Figure 3. PLS-DA scores plot of the three models: AMI versus stable angina (A), stable 

angina versus NSTEMI (B), and AMI versus NSTEMI (C). 

 

 Therefore, supervised analysis by PLS-DA confirmed the capability of the 

panel of molecular features obtained after simplification of the data set to 

discriminate patients diagnosed with stable angina versus those who suffered 

more severe diagnostics: NSTEMI or AMI. 

 

 



                                                                                                                         

243 

Electrophoresis, 34 (2013) 2827–2835 

 

Section II. Chapter 5 

 
Table 1. Prediction capability for the three PLS-DA models considered. 

 Model 1 Model 2 Model 3 

 AMI 
Stable 
angina 

NSTEMI 
Stable 
angina 

AMI NSTEMI 

Model validation 

Sensitivity (%) 76.2 72.6 74.0 79.7 56.7 59.5 

Specificity (%) 72.6 76.2 79.7 74.0 59.5 56.7 

Recognition ability (%) 75.68  76.9  57.7 

Model Training 

Sensitivity (%) 74.0 71.4 78.0 83.8 66.2 69.0 

Specificity (%) 71.4 74.0 83.8 78.0 69.0 66.2 

Recognition ability (%) 73.0  80.9  67.2 

 

3.4.  Identification of significant metabolites contributing to explain 

diagnostics 

 Targeted analysis of significant molecular features was carried out by 

tandem mass spectrometry with the QTOF spectrometer for identification of 

metabolites, which would allow interpreting the connection between metabolic 

changes and clinical diagnostic. The HMDB and the METLIN databases were 

used to support the identification step. The identified metabolites are listed in 

Table 2 with analytical information such as retention time, m/z value of the 

detected adduct, error expressed in ppm and the main fragment ions used for 

identification. According to the fold-change algorithm, cholic acid was the most 

significant metabolite to discriminate patients affected by AMI from those 

diagnosed with stable angina. On the other hand, lysophosphocholine (16:0) was 

the metabolite with the highest relative change in terms of concentration for 

discrimination of patients diagnosed with NSTEMI from those with angina 

stable. 

 Cholic acid is one of the major bile acids biosynthesized from cholesterol 

and transformed into other secondary bile acids, one of them being deoxycholic 

acid [19]. Bile acids are usually the form in which the excess of cholesterol in the 

body is eliminated, so low levels of bile acids are generally related to high levels of 
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cholesterol, one of the CVD risk factors. The levels of cholic and deoxycholic acids 

were not significantly related with the presence of hypercholesterolemia (p-

values 0.5986 and 0.1005, respectively). Nevertheless, a positive relationship 

between hypercholesterolemia and deoxycholic levels was observed as 

Supplementary figure 4 shows.  Furthermore, it has been demonstrated   that 

coronary artery disease patients have significantly decreased bile acid excretion 

levels as compared with normal population [20]. Supplementary figure 5 shows 

that patients with AMI presented the lowest level of both bile acids, while 

patients with stable angina presented the highest levels; however, a low 

discrimination capability is obtained by both metabolites. 

 One other identified bile metabolite was bilirubin which is the end-

product of porphyrin rings degradation catalyzed by hemeoxygenase (HO). This 

enzyme generates free redox active iron, carbon monoxide and biliverdin, which 

is metabolized to bilirubin. One of the two HO isoforms, the HO-1, is a stress-

responsive enzyme highly induced by many agents such as cytokines, endotoxin, 

heavy metals, nitric oxide and the own hemesubstrate [21]. An excess of nitric 

oxide released during occlusion of artery lumen could be responsible for the 

increase of bilirubin concentration in AMI and NSTEMI patients (Figure 4.A), 

which endows this metabolite with high discrimination capability (p-value 

0.001). HO-1 represents a key defensive mechanism against further oxidative 

injury by virtue of the anti-inflammatory and antioxidant capacities of CO, 

biliverdin and bilirubin.  

 On the other hand, lysophosphocholines are produced by hydrolysis of 

lysophophatidylcholines, resulting from cholesterol by the action of cholesterol 

acyltransferases. LysoPC (16:0) is one of the most common lysoPCs formed by a 

chain of palmitic acid, which is present in animal fats, in vegetable and fish oils. 

 Apart from lysoPC(16:0), other phospholipids were identified in the 

resulting panel, which emphasizes the role of phospholipids in the development 

of the coronary artery disease. The metabolism of phospholipids has previously 

been related to cardiovascular disorders [22]. In fact, lysoPCs play a key role in 



   

246 

Metabolomic discrimination between  

patients with stable angina, NSTEMI, and AMI  

plaque inflammation and vulnerability, whereas oxidized phospholipids tend to 

accumulate at sites where oxidative stress is especially involved. Among them, it 

is worth mentioning areas with atherosclerotic lesions, hyperlipidemic plasma or 

with low concentration of high-density lipoproteins. Additionally, the reverse 

cholesterol transport is inhibited, thus contributing to the development of 

hypercholesterolemia and atherosclerosis [23]. Other relevant lysoPC identified 

in the panel of significant metabolites were lysoPC(18:2) and lysoPC(18:1) which, 

together with lysoPC(16:0), constitute three of the main phospholipids present in 

human plasma. Supplementary figure 6 illustrates the average levels obtained for 

the three lysoPCs in the three groups considered in this research. An oxidized 

phosphocoline —PC(16:0/5:0(CHO)—  was also detected with a relative change in 

concentration in NSTEMI patients versus stable angina patients, supporting the 

importance of phospholipids oxidation in the atherosclerotic cascasde [24]. 

Supplementary figure 6.D describes the average levels of this oxidized 

phospholipid in the three groups included in the study. 

 Two additional phospholipids were identified as contributing meta-

bolites: a phosphatidylserine (compound 1), and PA(10:1/18:1). Phosphatidyl-

serines are located mainly on the inner monolayer surface of the plasma cell 

membrane and are the most abundant anionic phospholipids contributing to 

interfacial effects in membranes involving non-specific electrostatic interactions. 

The main cause of their presence in serum is connected to cellular apoptosis, 

which takes place after a myocardial infarction or during platelet activation [25]. 

In this case, two identification options were possible for m/z 734.4243: the 

[M+FA–H]– adduct of either methyl ester PS(14:1/14:1) or PS(14:1/15:1), the 

latter related with an exogenous factor such as diet. Thus, detection of C:15 fatty 

acid is based on the intake of dairy products and milk [26]. On the other hand, 

phosphatidic acids (PAs) are main components of cellular membranes and 

intermediates in the biosynthesis of triacylglycerols and phospholipids. PAs are 

involved in many processes: platelet aggregation, smooth muscle contraction, in 

vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased 

tight junction permeability of endothelial cells, induction of stress fibres, 
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modulation of cardiac contractility, and many others [27]. As can be seen in 

Figure 4.B and Supplementary figure 7.A, PA(10:1/18:1) and PS(compound 1) 

levels were lower in patients with stable angina than in those with AMI episode or 

NSTEMI diagnostic, but only PA(10:1/18:1) is endowed with high discrimination 

capability (p-value 0.002). 

 

Figure 4. Means and 95% least significance difference (LSD) intervals for each group of 

patients for the metabolites: bilirubin (A), PA(10:1/18:1) (B), phosphatidylserine (C), m/z 

497.27492 (D) and m/z 355.15819 (E). P-value of ANOVA test for those metabolites, and 

the cardiovascular disease as categorical factor are also shown. 

 The triglyceride TG(18:3/20:4/18:3) was also identified with a lower 

concentration in individuals who suffered an AMI episode or were diagnosed 

with NSTEMI as compared with individuals suffering from stable angina (see 

Supplementary figure 7.B). Triglyceride concentrations have been widely 

proposed as predictors of myocardial infarction as their levels seem to be related 

with the probability of cardiovascular events [28]. 

 One other interesting lipid metabolite was 25-hydroxy metabolite of 

vitamin D3, which is the main circulating form of vitamin D3. Deficiency of this 

vitamin has been linked to an increased risk of hypertension, congestive heart 

failure, peripheral arterial disease, myocardial infarction, stroke, and related 

mortality, even after adjustment for traditional cardiovascular risk factors. 
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Clinical and epidemiological studies have evidenced that vitamin D may also be 

associated with several indices of vascular function, including the development 

and progression of atherosclerotic cardiovascular disease [29]. This fact could 

partially explain the significance of the monohydroxy metabolite of vitamin D3. 

Supplementary figure 8 shows the main levels of this metabolite in the three 

groups of patients. 

 Finally, two additional metabolites were not identified according to their 

MS/MS spectra. In this case, the objective was to calculate the molecular formula 

with the best isotopic distribution adjustment for the precursor ion and also for 

the most representative product ions. Thus, the precursor ion m/z 497.27492 

eluted at 16.4 min was assigned to two potential molecular formulas (C26H42O9 

and C22H45NO9P) with accuracy error of 1.42 and 2.04 ppm, respectively. Figure 

4.E illustrates the high discrimination capability (p-value 0.0009) of this 

metabolite for the three classes under study. On the other hand, the precursor ion 

at m/z 355.15819 was eluted at 29.4 min and, for this reason, it should be a lipid 

metabolite. The tentative molecular formula for this metabolite was C18H28O5S 

with accuracy error of 0.78 ppm, which could fit to a sulfate derivative. The 

concentration levels for this metabolite in the three classes considered are shown 

in Figure 4.D, which explains its high discrimination capability (p-value 0.0005). 

 

4. Conclusions 

 A group of 13 metabolites able to discriminate between different stages of 

atherosclerosis has been identified, most of them lipids and some bile acids as 

cholic or deoxycholic acids. Bilirubin has shown to be one of the most influential 

metabolites as it is able to discriminate between patients with stable angina and 

patients with AMI or NSTEMI with a p-value of 0.0012. Some of those 

compounds had previously been related to cardiovascular diseases or oxidative 

stress, which has shown to be very influential on atherosclerosis. It would be 

interesting to use other techniques as NMR or GC–MS to identify the unknown 

metabolites, thus assessing the results of this study. 
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 Metabolomics has shown to be a very useful strategy to study metabolic 

changes relevant in cardiovascular disease and to propose new biomarkers to 

discriminate between different stages of atherosclerosis. 
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Supplementary material 

 

 

Supplementary figure 1. PCA comparing metabolic profiles associated to serum by 

repetitive injections of one aliquot in LC–MS in positive ionization mode. 

 

Supplementary figure 2. A. Retention time deviation curves obtained for all molecular 

entities after alignment as a function of the elution time. B. Bars diagram of frequency 

histogram plotting the number of entities with a certain frequency. 
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Supplementary figure 3. PCA scores plot obtained for the three groups of patients 

(AMI, NSTEMI and stable angina) 

 

Supplementary figure 4. Means and 95% least significant difference (LSD) intervals 

for patients with hypercholesterolemia and those with normal cholesterol level for 

metabolites cholic acid (A) and deoxycholic acid (B). 

 

Supplementary figure 5.Means and 95% least significance difference (LSD) intervals 

for each group of patients for the metabolites cholic acid (A) and deoxycholic acid (B). p-

Value of ANOVA test for all metabolites, and the cardiovascular disease as categorical 

factor are also shown. 



   

254 

Metabolomic discrimination between  

patients with stable angina, NSTEMI, and AMI  

 

 

Supplementary figure 6. Means and 95% least significance difference (LSD) intervals 

for each group of patients for the metabolites LysoPC(16:0)  (A), LysoPC (18:1) (B), 

LysoPC (18:2) (C) and PC (16:0/5:0(CHO)) (D). p-Vvalue of ANOVA test for all 

metabolites, and the cardiovascular disease as categorical factor are also shown. 

 

 

 

Supplementary figure 7.TG(18:3/20:4/18:3) peak area means and 95% least 

significance difference (LSD) intervals for each group of patients. p-Value of ANOVA test  

for this metabolite, using the cardiovascular diagnostic as categorical factor is also shown. 
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Supplementary figure 8. Hydroxyvitamin D3 peak area means and 95% least 

significance difference (LSD) intervals for each group of patients. p-Value of ANOVA test  

for this metabolite using the cardiovascular diagnostic as categorical factor is also shown. 
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Osuna, J. C. Sanchez, M. D. Luque de Castro* 

 

Abstract 

 Atherosclerosis is one of the most frequent aetiology for myocardial 

infarction and death. Therefore, the early prediction of an ischemic event can 

lead to a drastic reduction of mortality. In this research, serum marker 

metabolites from atherosclerotic patients who either had suffered from acute 

myocardial infarction or had been diagnosed with stable angina were analyzed by 

LC–QTOF MS/MS. Clinical factors such as age of the patients and body mass 

index (BMI), and biochemical factors such as urine levels of urea and creatinine 

were also considered as potential markers for the development of discriminative 

models. Individual markers with discrimination capability between individuals 

affected by myocardial infarct and those diagnosed by stable angina have been 

used to create a three-variable panel for infarct prediction. The panel consists of 

two lipid metabolites: 13-HpODE (a metabolite connected to the inflammatory 

cascade), lysophosphatidylcholine PC(22:6) (with an essential omega-3 fatty acid, 

docosahexanoic acid) and BMI. Sensitivity and specificity values were 85.1 and 

80.8%, respectively, while positive and negative predictive values were 75 and 

88.9%. Monitoring these markers could allow the early detection and risk 

stratification of myocardial infarct episodes with subsequent reduction of 

cardiovascular damages.  
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1.  Introduction 

 One of the most frequent causes of death worldwide is related to 

cardiovascular diseases (CVDs) with over 80% of deaths in low- and middle-

income countries and almost 50% of deaths in Europe (Petersen et al. 2005). 

CVDs are also a major cause of disability that significantly contributes to increase 

health care costs (Gaziano et al. 2006). These diseases usually have their origin in 

atherosclerosis, a coronary artery disease (CAD) that occurs when lipid plaques 

formed along the artery walls cause a subsequent thickening effect, which results 

in partial artery stenosis. In this stage, the symptomatic diagnostic is called 

angina. Then, the formation of thrombi (blood clots) on plaques surface can 

cause total occlusion of the artery leading to insufficient supply of oxygen and 

substrates to the cells (ischemia) that is produced as acute myocardial infarction 

(AMI). 

 Early diagnosis and risk stratification of myocardial infarction can lead to 

a reduction of mortality by initiation of the reperfusion treatment. Nowadays, 

this cardiovascular episode can be clinically diagnosed by an electrocardiogram 

(ECG), the main limitation of which is its alteration by other cardiopathies such 

as acute pericarditis or left ventricular hypertrophy resulting in false positives 

(Wang et al. 2003). Apart from ECG, measurement of some markers like creatine 

kinase isoenzymes, cardiac myoglobin, Human Fatty Acid Binding Protein (H-

FABP) and troponins can help in the detection of AMI and risk stratification (Wu 

et al. 1996). Among them, troponins have been widely considered as the best 

cardiac markers, but conventional troponin assays lack sensitivity and precision 

at the low serum concentrations observed in the early hours after the onset of 

chest pain (Baker et al. 2011).The new ultra sensitive troponin assays may soon 

offer improved certainty in this early period with capability of reliable detection 

in patients with chronic stable heart disease and even in asymptomatic healthy 

individuals (Omland et al. 2009). One of the main limitations in using troponins 

as AMI markers is that acute and chronic conditions distinct from acute coronary 

syndromes (ACS) commonly lead to small elevations in troponin levels, with few 

available data regarding management of care for patients under such conditions 
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(de Lemos, 2013). Therefore, new statistical tools combined with highly sensitive 

assays, incorporating baseline troponin values and changes in concentration over 

1 to 2 h may allow rapid exclusion of myocardial infarction and help to address 

specificity concerns, but they must be validated in appropriate target cohorts 

(Cullen et al. 2013). 

 Currently research on cardiac markers is also focused on the 

transcriptome and metabolome levels. Thus, the study of cardiac-specific micro-

RNAs, one of the most active research areas, has resulted in a new marker, miR-

208a, with a prediction model characterized by 90.9% sensitivity and 100% 

specificity (Devaux et al. 2012). However, additional investigations with large 

cohorts need to be done to validate microRNAs as cardiac markers and obtain the 

false positive rate. Furthermore, a more exhaustive research is required to make 

rapid detection of microRNAs possible and support their viability (Wang et al. 

2010). 

 Metabolomics markers have also been proposed to study atherosclerosis 

events. Wang et al. identified choline, betaine,trimethylamine N-oxide, aconitic 

acid, threonine or hypoxanthine as metabolites with statistical relevance to aid in 

the atherosclerotic diagnostics (Wang et al. 2011).In other recent study, Shah et 

al. identified metabolite profiles (medium-chain acylcarnitines, short-chain 

dicarboxylacylcarnitines, long-chain dicarboxylacylcarnitines, branched-chain 

amino acids and fatty acids) for independent prediction of death/myocardial 

infarction (Shah et al. 2012). This study provided an opportunity to refine 

cardiovascular risk assessment and elucidate novel mechanisms of the disease. 

The specificity and sensitivity of these markers have been determined in only a 

short number of cases, but they have not been evaluated in multimetabolite 

panels.  

 The aims of this research were to find and configure panels of markers to 

increase the predictive power of myocardial infarction. Statistical models sup-

ported the selection of markers with discrimination capability between a group of 

atherosclerotic patients diagnosed with stable angina and another group affected 
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by acute myocardial infarct (AMI). The main risk factors considered in atheros-

clerosis and AMI were combined with metabolite markers as a strategy to 

evaluate their predictive capability either independently or in multiparametric 

diagnostic panels.  

 

2. Materials and methods 

2.1. Reagents 

 LC-grade methanol and MS-grade formic acid and acetonitrile (ACN) 

were from Scharlab (Barcelona, Spain). Deionized water (18 mΩ • cm) was from a 

Millipore Milli-Q water purification system. 

2.2. Instruments and apparatus 

 A Sorvall Legend Micro 21R centrifuge (Thermo Scientific, Waltham, MA, 

USA) was used to centrifuge samples after deproteinization.  

 An Agilent 1200 Series LC system coupled to an Agilent 6540 UHD 

Accurate-Mass QTOF tandem mass spectrometer equipped with a Jetstream® 

electrospray (ESI) source (Santa Clara, CA, USA) was used. The chromatographic 

eluate was monitored in high-resolution mode (2 GHz). 

2.3. Cohort selected for the study 

 A total of 73 patients diagnosed by significant CAD were included in the 

study. CAD was diagnosed after evaluation through cardiac catheterization with a 

reduction of the arterial lumen ≥ 70% by angiographic stenosis. The main 

characteristics of the patients are shown in Table 1. As can be seen, the selected 

cohort was composed of 47 individuals diagnosed with stable angina and 26 

individuals who had previously been affected by AMI (around 3 days prior to 

catheterization). The average age and body mass index (BMI) of the cohort was 

66±13 years old and 28±4 kg/m2, respectively. The cohort was composed by 

86.3% male individuals and 50.7% smokers. Concerning clinical parameters, the 

CAD cohort was formed by 23.3% diabetic, 38.4% obese, 62.0% with 
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hypertension and 43.8% with hypercholesterolemia. These distributions were 

equilibrated in the two groups considered in this study: stable angina and AMI 

patients. Independence of these clinical factorsas well as smoking habit was 

proved according to the Pearson’s Chi Squared test for categorical variables with 

a 95% of confidence level (p-values are shown in Table 1). Non-categorical factors 

were included for statistical analysis with potential metabolite markers. 

Table 1 Main features of the cohort selected for this study. Independence of categorical 

variables was checked by P-Pearson Chi Squared test.  

Characteristic 

Atherosclerosis 

patients 

(n=73) 

Patients 

with AMI 

(n=26) 

Patients with 

stable angina 

(n=47) 

p-value 

Age (mean± SD, years) 66±13 68±12 65±13 - 

Male, n (%) 63 (86.3) 23 (88.5) 40 (85.1) 0.690 

Smoking, n (%) 37 (50.7) 12 (46.1) 25 (53.2) 0.565 

Diabetes, n (%) 17 (23.3) 8 (30.7) 9 (19.1) 0.278 

Obesity, n (%) 28 (38.4) 9 (34.6) 19 (40.4) 0.436 

Hypertension, n (%) 44 (62.0) 14 (53.8) 30 (66.7) 0.284 

Hypercholesterolemia, n (%) 32 (43.8) 11 (42.3) 21 (44.7) 0.845 

BMI (kg/m2) 28±4 27±4 29±3 - 

 

 Clinical examination was completed by quantitative analysis of urea and 

creatinine levels in urine following conventional protocols (using the auto-

analyzers AU2700 and AU5400 from Beckman Coulter, Marseille, France). Most 

patients included in the cohort were under controlled medication as follows: β-

blocking agents (78%), statins (92%), antiplatelet agents (88%) and aspirin 

(98%). Therefore, drugs administration was not considered in this study.  

2.4.     Blood drawing and serum isolation 

 Blood drawing immediately preceded catheterization. All steps from 

blood to analysis were performed in compliance with the guidelines dictated by 

the World Medical Association Declaration of Helsinki (2004), which were 

supervised by specialized personnel from Miguel Servet Hospital (Zaragoza, 

Spain) that approved the experiments. Individuals selected for this study were 

informed to obtain consent prior to sample collection. 
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 Venous blood was collected in evacuated sterile serum tubes without 

additives (Vacutainer, Becton Dickinson, Franklin Lakes, NJ, USA) and 

incubated for 30 min at room temperature to allow coagulation. Then, the tubes 

were centrifuged at 2000 g for 15 min at 4 °C to isolate the serum fraction that 

was placed in plastic tubes and stored at –80 °C until analysis.  

2.5. Sample treatment 

 The vials containing the serum samples (100 µL) were immersed in an ice 

bath and treated for deproteinization with methanol (200 µL) (Bruce et al. 2009). 

The mixture was shaken for 1 min and the precipitate removed after 

centrifugation for 5 min at 4 °C and 13800 g. The upper phase was collected in a 

vial, then placed in the autosampler of the chromatograph for subsequent 

analysis. 

2.6. LC–QTOF MS/MS analysis  

 Chromatographic separation was performed using a Mediterranea 

reversed phase C18 analytical column (100 mm×0.46 mm i.d., 3 μm particle size) 

from Teknokroma (Barcelona, Spain) kept at 25 °C. Mobile phases were water 

(phase A) and ACN (phase B) both with 0.1% formic acid as ionization agent. The 

LC pump was programmed at a flow rate of 0.8 mL/min and the following 

gradient elution was carried out: 3% phase B was kept constant from min 0 to 2; 

from 3 to 100% of phase B since min 2 to 27; finally, 100% of phase B was kept 

since min 27 to 33. 

 The injection volume was 10 µL and the injector needle was rinsed with 

70% methanol for 10 times between injections. Furthermore, the needle seat back 

was flushed for 15 s at a flow rate of 4 mL/min with 70% methanol to avoid cross 

contamination. Electrospray source parameters, operating in both positive and 

negative ionization mode, were as follows: nozzle, capillary and fragmentor 

voltage were set at ±2 kV, ±3.5 kV and 175 V, respectively; N2 nebulizer gas was 

flowed at 40 psi; N2 drying gas flow rate and temperature were 8 L/min and  

325 °C, respectively; N2 sheath gas flow rate and temperature were 11 L/min and 

350 °C, respectively. The instrument was calibrated and tuned according to 
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procedures recommended by the manufacturer. The data were collected in both 

centroid and profile modes at a rate of 2 spectra per second. Firstly, the samples 

were analyzed in full scan MS mode in the m/z range 60–1100 for metabolite 

profiling. The reported data set was statistically processed to detect molecular 

features with a high significance to explain the observed variability. Once the 

most significant entities were recognized, the samples were analyzed in targeted 

MS/MS mode (m/z range 60–1100) to obtain structural information with 

identification purposes at three collision energies 10, 20 and 40 eV. To assure the 

desired mass accuracy of recorded ions, continuous internal calibration was 

performed during analyses by using the signals at m/z 119.0362 (proton 

abstracted purine) and m/z 966.0007 (formate adduct of hexakis (1H, 1H, 3H-

tetrafluoropropoxy)phosphazine or HP-921) in negative ionization mode; while 

in positive ion mode ions with m/z 121.0509 (protonated purine) and m/z 

922.0098 [protonated HP-921] were used. Resolution provided by the 

instrument ranged from 15000 FWHM (Full Width at Half Maximum) at low 

masses (purine) and 30000 FWHM at high mass values (HP-921). 

2.7. Data processing and statistical analysis 

 Raw data files were converted to mzData files using MassHunter 

Workstation software (version 3.01 Qualitative Analysis, Agilent Technologies, 

Santa Clara, CA, USA) and then processed in R statistical language (version 

2.15.0, http://www.r-project.org/) using the two open-free XCMS R-package 

(version 1.24, http://metlin.scripps.edu/xcms/index.php) (Carpenter and Bithell, 

2000; Robin et al. 2011) and CAMERA R-package (version 1.12.0, 

http://www.bioconductor.org/packages/2.10/bioc/html/CAMERA.html). First, 

the XCMS package was used for processing mzData files by extracting potential 

molecular features (MFs) considering only ions exceeding 1000 counts peak 

height with a peak width between 10 and 60 s a signal-to-noise threshold of 10 

and 5 ppm of error in mass accuracy. Secondly, a non-linear alignment was 

executed using the “retcor” function with a degree of smoothing for local 

polynomial regression fitting of 0.5 and a symmetric fitting, process which used a 

re-descending M estimator with Tukey’s biweight function. Then, the CAMERA 

http://metlin.scripps.edu/xcms/index.php
http://www.bioconductor.org/packages/2.10/bioc/html/CAMERA.html
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package was used to correlate potential adducts ([M-H]–, [M+Cl]– and 

[M+HCOOH-H]– in negative ionization mode; and [M+H]+ and [M+Na]+ in 

positive ionization mode) and isotopic peaks of the same molecular entity. Ions 

with identical elution profiles and related m/z values (representing different 

adducts or isotopes of the same compound) were grouped as a unique feature to 

remove redundant information. This process resulted in a data set for each 

polarization mode containing the intensity values in the apex of chromatographic 

peaks for all molecular entities characterized by accurate mass and retention time 

(RT). Background contribution was removed by subtraction of MFs linked to 

plasticizers, solvent impurities and other contaminating compounds after 

analysis of blank sample (methanol) under identical instrument operation 

conditions. Data sets were then imported to the Mass Profiler Professional (MPP) 

software package (version 2.0, Agilent Technologies, Santa Clara, CA, USA) for 

further processing. Data pretreatment was based on baselining to median across 

samples to remove background noise and normalization by logarithmic 

transformation to reduce relatively large differences among MF abundances. A 

fold-change algorithm was applied as filter to retain those molecular entities, 

which experienced a change in relative concentration of 1.75 between the two 

classes. Significance of the remaining entities was studied by Kruskal-Wallis test, 

after verifying their non-normal distribution by Kolmogorov-Smirnov test. 

 MPP software also allowed unsupervised analysis of the data set by PCA. 

Mean centering as pretreatment scaled the data set. 

 The p-ROC R-package (1.5.1 version, URL http://web.expasy.org/ 

pROC/) was used to build ROC curves as statistical tool to study the influence of 

risk factors related to CAD. This study was carried out by using multiparametric 

pROC to differentiate groups formed by combination of diagnostic (stable angina 

or AMI) and risk factor with categorical yes/no response. Thresholds of 

individual predictors were set to provide specificity above 90% considering that 

an efficient predictor in clinical practice should be able to detect clearly at least 

nine out of ten patients having a favorable prognosis when the test was negative. 

Partial ROC AUCs (pAUC) (Fawcett, 2006; Robin et al. 2011) were calculated 
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using an adaptation of algorithms previously reported (Carpenter and Bithell 

2000). PanelomiX toolbox, which is supported on the iterative combination of 

biomarkers and thresholds, was used to combine biomarkers and other scores by 

selecting thresholds that provide optimal classification performance in terms of 

sensitivity and specificity (Robin et al. 2013). Panels of markers were built by 

setting sensitivity and selectivity cut-off values >80%.  

 Identification of the most relevant entities was done using MS and 

MS/MS information and searching in the METLIN MS and MS/MS database 

(http://metlin.scripps.edu) and Human Metabolome Database (HMDB, v. 3.5).  

 

3. Results and discussion 

3.1. Data pre-treatment and statistical analysis 

 Serum samples were analyzed by LC–QTOF MS/MS both in positive and 

negative ionization modes. Nevertheless, the data set obtained in the positive 

ionization mode did not report significant differences between the two groups 

under study. For this reason, this section is entirely focused on the results 

obtained by LC–QTOF MS/MS in negative ionization mode. 

 As previously mentioned, MFs were extracted from the raw data files 

obtained after LC–TOF MS analysis of serum taking into account alignment of 

chromatograms to correct small differences in retention time and mass accuracy. 

The resulting data set was composed by 73 samples×289 molecular entities, 

92.7% of which were detected in at least 90% of the total number of samples. This 

fact ensures representativeness of the study since no molecular entities 

associated to particular individuals, which could divert the resulting statistical 

models, were included in the data set. Once the data set was built, a fold change 

algorithm with cut-off 1.75 was applied to reduce the data set to those molecular 

entities that exhibited a change of relative concentration ascribed to both CAD 

events. The application of this filter reduced the number of entities up to 26 

tentative metabolites defined by the pair m/z value and retention time. 

http://metlin.scripps.edu/
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 This data set was completed by clinical parameters obtained after routine 

urine analysis which reported information on levels of creatinine and urea. Both 

parameters have shown to be linked to risk cardiovascular factors (Alderman et 

al. 1995; Kapitulnik 2004). Anthropometric information through body mass 

index (BMI), expressed as kg/m2, and patients age were also included in the data 

set, which was finally formed by 30 variables (26 potential metabolites, BMI, age, 

creatinine and urea).The Kolmogorov-Smirnov test was used to check if these 30 

variables showed normal distributions in the cohort under study. As these 

variables did not show a normal distribution, the non-parametric Kruskal-Wallis 

test was applied to identify the most influential variables to explain the CAD 

diagnostic. Thirteen molecular features and the BMI reported significance with p-

value below 0.1, which was selected to keep a suited number of variables for 

multivariate analysis. Supplemental Table S1 shows the values of parameters 

describing the significance of variables. These 14 variables (13 MFs and BMI) 

formed a new data set that was analyzed by principal component analysis (PCA) 

to find discrimination trends according to the CAD diagnosis: stable angina or 

AMI. As shown by the PCA plots (Fig. 1), there is a discrimination trend that gives 

partial separation between patients diagnosed with stable angina and those who 

had suffered an AMI episode. Separation was visualized by plotting PC1, PC2 and 

PC3 components that explained 61.6% of the total variability. 

 

Figure 1. PCA scores plot to find discrimination patterns between CAD patients 

diagnosed with stable angina or after an AMI episode. 
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3.2. Influence of risk factors in the diagnosis of CAD events 

 There are numerous risk factors associated to cardiovascular diseases. 

Among them, it is worth mentioning diabetes, obesity, hypertension, smoking 

habit, hypercholesterolemia, lack of physical activity, unhealthy diet, stress or 

genetic factors. In this study, obesity, hypercholesterolemia and smoking habit 

were selected to evaluate their prediction capability. For this purpose, statistical 

analysis by the Kruskal-Wallis test raising significance with p-value<0.05 as cut-

off was applied to identify the most influential metabolites contributing to 

differentiate both groups of individuals (Table 2). Five molecular features were 

detected as highly significant together with the BMI. Search of MS/MS spectra in 

databases led to the identification of biliverdin and bilirubin, two eicosanoids (5-

HETE and 13-HpODE) and the 1Z-alkenylacylglycerolDG (P-14:0/18:1n9). 

Bilirubin is an excretion product formed in normal heme catabolism, which can 

be found in human serum (Kapitulnik 2004). However, biliverdin is an 

intermediate formed in the same pathway but rapidly reduced to bilirubin by the 

activity of biliverdin reductase. This metabolite has not been detected in human 

serum and, therefore, its presence could be justified by partial oxidation of 

bilirubin from sampling to analysis. Concerning 5-HETE and 13-HpODE 

metabolites, their identification was supported on the selective product ions 

formed by MS/MS fragmentation, which allows discriminating them from their 

structural isomers (Ferreiro-Vera et al. 2011). The fifth metabolite, 1Z-alkenyl-

acylglycerol DG (P-14:0/18:1n9), is an intermediate in the biosynthesis of ether 

phospholipids, which are known as plasmalogens. These metabolites have been 

detected in cardiovascular tissues where they are supposed to exert antioxidative 

functions as scavengers of reactive oxygen species (Stenvinkel et al. 2004). 

Plasmalogen oxidation products as α-hydroxyaldehydes and epoxides accumulate 

in all chronic diseases as atherosclerosis and myocardial infarction as well as in 

different neuropathologies and aging. Table 2 shows the information used for 

identification of the target metabolites with the highest discrimination capability. 
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Table 2. List of identified metabolites including retention time (RT), monoisotopic 

molecular weight (Mw), m/z value of the detected adducts and product ions and the error 

expressed in ppm. 

Metabolite Mw 
RT 

(min) 
Parent ions (m/z) 

Product 

ions (m/z) 
Δppm 

Bilirubin 584.2818 31.5 
605.2380 [M+Na-2H]- 

583.2565 [M-H]- 
285.1301 0.2 

Biliverdin 582.2478 31.6 581.2405 [M-H]- 358.7100 0.1 

13-HpODE 312.2300 29.4 357.2263 [M+FA-H]- 

311.1689 

293.1795 

183.0120 

5.0 

5-HETE 320.2351 23.3 319.2289 [M-H]- 115.0396 3.0 

DG(P-14:0/18:1n9) 550.4961 29.4 595.4904 [M+FA-H]- 

225.0080 

281.2461 

535.0597 

6.0 

 

 

 Once identification of potential metabolites was completed, the next step 

was to study their prediction capability to discriminate the CAD diagnostic, stable 

angina or AMI in conjunction to the three risk factors: obesity, smoking and 

hypercholesterolemia. Biliverdin was excluded from this study since this 

metabolite seems to be produced by degradation of bilirubin. The study was 

carried out by using multiparametric pROC, as previously described (specificity 

above 90%). Under these conditions, the maximum partial area under the curve 

(pAUC) for a ROC curve was 10%. Table 3 lists the main parameters and 

performance of each metabolite fulfilling the specificity requirement, while Fig. 2 

shows the prediction performance (through ROC curves) of each metabolite for 

discrimination of the different indication/risk factor combinations. Smoking and 

obesity were the two risk factors that led to prediction capabilities with specificity 

above 90% and sensitivity values above 40% for DG(P-14:0/18:1n9), 13-HpODE 

and BMI. Particularly, the inclusion of obesity led to sensitivity values around 

44% for DG(P-14:0/18:1n9) and 13-HpODE, while the BMI pROC reported 58% 

for the same parameter. On the other hand, sensitivity reached 50% for the same 

two metabolites when smoking habit was considered. This fact suggested the 

evaluation of the prediction capability of the target metabolites by selecting only 
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patients defined by the risk factors: obese, hypercholesterolemic and smokers. In 

this context, the best prediction capability was for hypercholesterolemic patients, 

for which sensitivity values reached 48% for BMI, 57% for bilirubin and 5-HETE 

and 62% for 13-HpODE. Therefore, it is clear that the prediction capability of 

individual markers improved when hypercholesterolemic patients were 

evaluated. In the case of obese patients and smokers, the prediction capability did 

not lead to better sensitivity as compared to models including patients non 

defined by risk factors.  

 

 

 

 

Compound Parameter CVD 
CVD + SH 

(4 classes) 

CVD in 
smokers 

CVD + Obesity 

(4 classes) 

CVD in 
obese 

patients 

CVD + HC 

(4 classes) 

CVD in 
patients 
with HC 

Bilirubin 

Sensitivity 38 20 0 28 0 24 57 

Specificity 92 96 100 93 100 92 91 

pAUC 0.8 1.2 0.0 2.1 0.0 2.2 4.8 

13-HpODE 

Sensitivity 28 50 32 42 48 25 62 

Specificity 93 91 92 97 100 100 91 

pAUC 2.2 1.1 2.9 3.1 4.7 2.7 4.9 

DG(P-14:0/18:1n9) 

Sensitivity 28 50 42 42 31 26 32 

Specificity 93 91 92 96 100 100 91 

pAUC 1.7 0.5 1.4 2.6 3.2 2.7 2.9 

BMI 

Sensitivity 18 21 22 58 6 6 48 

Specificity 92 91 92 93 100 98 91 

pAUC 0.6 1.9 0.7 3.9 3.7 0.3 4.3 

5-HETE 

Sensitivity 20 8 3 11 38 0 57 

Specificity 92 91 92 93 100 100 91 

pAUC 0.8 0.1 0.1 0.7 0.5 0.0 4.4 

 

Table 3. Parameters of the ROC curves obtained for each identified metabolite 

by selecting a specificity range from 90 to 100% considering classes generated 

after combining cardiovascular disease (CVD) with risk factors (smoking habit 

(SH), obesity and hypercholesterolemia (HC)). Sensitivity, specificity and partial 

area under the curve (pAUC) parameters are expressed as percent. Curves 

reaching a sensitivity value higher than 40% are highlighted in grey. 
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3.3. Panel development 

 The development of a panel for discrimination between CAD patients 

diagnosed with stable angina and those affected by AMI was addressed using 

PanelomiX as computational toolbox. In this research, the initial data set was 

formed by 30 variables (26 metabolites and BMI, urea and creatinine levels and 

age). The configuration of the panel was supported on two statistical criteria: at 

least 80% sensitivity and at least 80% specificity. Thus, both false negative and 

positive rates would be considerably decreased. PanelomiX was applied to the 

cohort formed by 73 CAD patients to define a panel of three markers with the 

best classification parameters. Thereby, the best panel providing specificity and 

sensitivity above 80% was obtained with two variables corresponding to two 

metabolites and the BMI. This panel enabled a model with 85.1% specificity and 

80.8% sensitivity, while the pAUC at 95% CI was 9.7 (5.7–15.7)%. Furthermore, 

positive and negative predictive values were 75 and 88.9%, respectively. One of 

the metabolites involved in this panel was the 13-HpODE, which was previously 

detected as a highly significant metabolite to discriminate between 

atherosclerotic patients. The second metabolite was identified as 

lysophosphatidylcholine, particularly lysoPC(22:6). Identification of this 

metabolite is described in Fig. 3 that contains MS/MS spectra in positive and 

negative ionization modes. As can be seen, product ions from fragmentation of 

the phosphatidylcholine moiety were identified in positive ionization mode. On 

the other hand, the characteristic [M–CH3]– fragment, which is representative of 

phosphatidylcholines, and the product ions corresponding to the acyl chain R-

COO– (C22:6) and its decarboxylated fragment were identified in negative mode. 

This panel formed by two lipids and BMI is especially interesting since it 

combines two lipidic metabolites with an anthropometric variable directly related 

to obesity. Furthermore, the lipids included in this panel belong to two families 

that have been related to cardiovascular diseases through oxidative stress. Firstly, 

13-HpODE, one of the primary oxidation products of linoleic acid, is a significant 

component of oxidized LDL, which is implicated in the pathogenesis of 

atherosclerosis. The concentration of 13-HpODE has previously been linked to 
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atherosclerotic lesions (Natarajan et al. 2001). Secondly, anomalies in levels of 

lysophosphatidylcholines have been shown to be involved in cardiovascular 

complications (Matsumoto et al. 2007). 

 

Fig. 3 Fragmentation pattern and MS/MS spectra in positive and negative ionization 

modes for lysophosphatidylcholine PC(22:6). 

 

4. Conclusions 

 The analysis of serum samples by LC–QqTOF has shown to be a suitable 

strategy for biomarker discovery. The influence of risk factors has been studied 

by analyzing the prediction capability of potential markers in patients with a 

specific risk factor. In this context, a better prediction capability was obtained for 

hypercholesterolemic patients, for which specificity values of 91% and sensitivity 

values from 48 to 62% were obtained for bilirubin, 13-HpODE, BMI and 5-HETE.   

 A panel of markers for myocardial infarction prediction have been 

proposed with a specificity of 85.1 % and a sensitivity of 80.8 %, which gave rise 

to low false negative and positive rates. The metabolites that composed this panel 

are two lipids, 13-HpODE and lysoPC(22:6), and BMI, an anthropometric 

variable directly related to obesity. These results warrant a larger scale study to 

validate the proposed model. 
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Supplementary material 

Supplementary Table 1. Statistical p-value obtained after application of the Kruskall-

Wallis test considering the cardiovascular atherosclerotic disease diagnosis as dependent 

variable and individual potential metabolites or clinical factors as independent variables. 

Only those variables with p-value below 0.10 are shown. 

Independent variable p-value 

357.2263 0.003 

595.4904 0.004 

Body Mass Index (BMI) 0.006 

581.2405 0.007 

605.2380 0.008 

319.2289 0.036 

804.5745 0.051 

381.1743 0.056 

105.9603 0.060 

612.3289 0.087 

383.1896 0.090 

407.2794 0.090 

293.1793 0.099 

391.2851 0.099 
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prediction 

M. Calderón-Santiago, F. Priego-Capote*, N. Turck, X. Robin, B. Jurado-

Gámez, J. C. Sanchez, M. D. Luque de Castro* 

 

Abstract 

 Lung cancer is the carcinogenic disease with the highest mortality rate 

owing to the advanced stage at which it is usually detected. For this reason, 

methods for lung cancer detection at early stages are needed. In this context a 

method based on the metabolite analysis of sweat to discriminate between 

patients with lung cancer versus control individuals (smoker and non-smoker 

individuals) is proposed. The capability of the metabolites identified in sweat to 

discriminate between both groups was studied. Among them, a trisaccharide 

phosphate presented the best independent performance in terms of the 

specificity/sensitivity pair (80 and 72.7%, respectively). Additionally, two panels 

of metabolites were also configured using the PanelomiX tool as an attempt to 

reduce false negatives (at least 80% specificity) and false positives (at least 80% 

sensitivity). The first panel (100% specificity and 63.6% sensitivity) was 

composed by nonanedioic acid, γ-GluLeu dipeptide and maltotriose, while the 

second panel (88.6% specificity and 81.8% sensitivity) included nonanedioic acid, 

maltotriose and the monoglyceride MG(22:2). As both panels were supported on 

high sensitivity and specificity values, the proposed approach would be based on 

the analysis of the four implicated metabolites. The combined use of the two 

panels would allow reducing the number of cases subjected to confirmatory tests 

with the minimum rate of false negative and positive rates (0% and 18.2%, 

respectively). 
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1.  Introduction 

 Lung cancer is nowadays the neoplasic disease associated to the highest 

mortality worldwide. According to the American Cancer Society, lung cancer 

causes more deaths than the sum of the three most common cancers (colon, 

breast and prostate) (World Health Organization, 2012). Despite the advances in 

diagnostic, surgery and chemotherapy, overall survival rate 5 years after 

detection is below 15% (Howlander et al. 2010). The high mortality rate of lung 

cancer is mainly explained by the advanced stage at which it is usually detected as 

available diagnostic tests are invasive and, therefore, they cannot be used for 

general screening. 

 Presently, non-invasive techniques for cancer screening are the subject of 

wide clinical research. The use of diagnostic screening by sputum or thorax 

radiography has not succeeded in the reduction of mortality (Wegwarth et al. 

2012). Recently, the utilization of techniques such as low-dose computed 

tomography and chest X-ray radiography have achieved to decrease mortality 

rate around 20% (National Lung Screening Trial Research Team, 2012). 

Nevertheless, the main limitation of the present methods to diagnose lung cancer 

is ascribed to the high number of abnormalities potentially mimicking lung 

cancer (false positives) and the difficulty in applying diagnostic tools to the target 

population because of the high costs. 

 The above limitations have driven active research in omics disciplines 

with two main purposes: to understand the development and biology of lung 

cancer and identify potential biomarkers to detect initial stages in the 

development of the disease (Khadir and Tiss, 2013). Specifically, recent 

proteomic research has led to identification of potential biomarkers of lung 

cancer in saliva (Xiao et al. 2012) or plasma (Fan et al. 2009). On the other hand, 

recent genomic and transcriptomic studies have been focused on the detection of 

mutations related to cancer, as an attempt to understand the mechanism of 

tumour generation and the influence of risk factors such as smoking habit 

(Girard et al. 2000; Pleasance et al. 2009; Beane et al. 2011).    
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 Metabolomics has provided new technical approaches to enhance the 

capability of this discipline in biomarker discovery for clinical diagnosis, as many 

of the analytical tools used in metabolomics are automatable and, on the whole 

high throughput, they lend themselves to screening populations of individuals for 

disease. Recent research in this field has focused on biomarker discovery using 

different biological samples (tissue, urine, exhaled breath condensate or plasma) 

(Beger 2013). The most common strategy has been metabolic profiling, which has 

been applied to conventional biofluids such as urine and serum/plasma. 

However, the complexity of serum/plasma and urine matrices is a factor to be 

considered in the search for biomarkers since other pathological conditions could 

interfere, particularly when a panel of markers formed by metabolites involved in 

primary metabolism is found. This is the case with amino acids or compounds 

involved in energy metabolism (glycolysis or Krebs’ cycle) (Kami et al. 2013) as 

they have shown to be modified in tumour cells. Concretely, potential markers 

found in urine included modified nucleosides, sarcosine, creatinine or 

acetylglutamine (Beger 2013) (Carrolla et al. 2011). However, the measurement of 

modified nucleosides levels have not shown to be reproducible or robust and 

sarcosine has also shown to fail in prostate cancer detection (Jentzmik et al. 

2010). On the other hand, potential markers found in plasma/serum included 

mainly proteins and metabolites as lysophosphatidylcholines or 

phosphatidylinositols (Beger 2013), compounds previously related to other 

diseases (Karlsson et al. 2006). 

 Despite blood and urine are the most common human biofluids in 

clinical studies on lung cancer, other biofluids can be easily obtained and in a 

noninvasive manner. Sweat, saliva or tears, characterized by less complex 

matrices, could be evaluated in cohorts involving individuals affected by lung 

cancer (Kutyshenko et al. 2011). In contrast to the abundant research using 

serum/plasma or urine as target biofluids, sweat has received scant attention 

owing to the lack of homogenous sweat sampling protocols providing enough 

volume for analysis. However, the sensitivity of present available instrumentation 

makes possible obtaining metabolite profiles from small sample volumes (Wing 
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et al. 2013; Álvarez-Sánchez et al. 2010). Furthermore, sweat collection protocols 

have also been improved (Mena-Bravo and Luque de Castro 2014). In fact, there 

are already methods in which sweat is analyzed for disease discrimination such as 

in the analysis of chloride to diagnose cystic fibrosis (Gibson and Cooke 1959; 

Lynch 2010; Kirk et al. 1992). Sweat has also been used to detect the presence of 

toxics in the organism (Giovanni and Fucci 2013; Kintz et al. 1996; Taylor et al. 

1998; Uemura et al. 2004; Sears et al. 2012) or to control the hydro–electrolytic 

relationship during exercise in humans (Lee et al. 2010; Hew-Butler et al. 2010). 

All these findings, together with present cutting-edge analytical technologies, 

have led the authors to study sweat as a potential sample to diagnose lung cancer. 

 The aim of the present study was to evaluate sweat to discriminate 

individuals affected by lung cancer by metabolomics analysis using liquid 

chromatography–tandem mass spectrometry in high-resolution mode (LC–

QTOF MS/MS). Metabolite profiles obtained from diagnosed patients were 

compared to those provided by a control cohort and most significant metabolites 

identified were studied to evaluate their prediction capability. Statistical analysis 

of those metabolites supported the performance of a panel to reduce the rate of 

individuals to be subjected to invasive intervention for lung cancer diagnosis. 

 

2. Materials and methods 

2.1. Chemicals and reagents 

 MS-grade formic acid and acetonitrile (ACN) to prepare the chroma-

tographic mobile phases were from Scharlab (Barcelona, Spain). Deionized water 

(18 mΩ • cm) from a Millipore Milli-Q water purification system was used. 

2.2. Instruments and apparatus 

 An Agilent 1200 Series LC system (consisting of a binary pump, a vacuum 

degasser, an autosampler and a thermostated column compartment) coupled to 

an Agilent 6540 UHD Accurate-Mass QTOF hybrid mass spectrometer equipped 
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with a dual electrospray ionization (ESI) source (Santa Clara, CA, USA) was used. 

The chromatographic eluate was monitored in high-resolution mode. 

2.3. Cohort selected for the study 

 Forty one patients of the Respiratory Medicine Department diagnosed 

with lung cancer from May to December 2012 were included in this study. All 

patients with lung cancer were diagnosed after clinical tests based on 

bronchoscopy, fine-needle biopsy, or video-assisted thoracoscopy. These patients 

had an average age of 62±11 years and 78% of them were males. Their main 

characteristics —age, sex, body-mass index (BMI) and smoked pack-year— are 

shown in Supplementary Table 1. Independence of these factors among them and 

the control group was proved by analysis of variance (ANOVA) with a 95% of 

confidence level, except for the age that was proved by Kruskal-Wallis as it did 

not fit a normal distribution according to the Skewness and Kurtosis criteria for 

normality (p-values are  shown in Supplementary Table 1). 

 The present accepted guidelines for pathological and staging diagnosis of 

lung cancer were used (Sánchez de Cos et al. 2011). The most frequent diagnostic 

was squamous cell carcinoma (21 patients, 51%), followed by adenocarcinoma (8 

patients, 19.5%), small cell carcinoma (7 patients, 17 %) and large cell carcinoma 

(2 patients, 4.8%). Three individuals (7.3%) were diagnosed with non-small cell 

lung cancer without histological classification. Concerning stages, 5 cases were 

diagnosed as stage IA, 2 as stage IB, 2 as stage IIA, 2 as stage IIB, 12 as stage IIIA, 

4 as stage IIIB and 7 as stage IV. Clinical differences among the different stages 

are specified in Supplementary Table 1. The remaining 7 individuals were 

diagnosed with small cell lung cancer at advanced stage. The reduced number of 

patients for each diagnostic and stage did not enable the inclusion of these 

variability sources in the study. 

 The control group included 55 healthy individuals, 24 of which were 

active smokers. The existence of lung cancer or other severe pulmonary diseases 

(interstitial pneumonitis, pneumonia, tuberculosis, etc.) was excluded by 

fibrobronchoscopy and/or computed tomography scanning. Exclusion criteria 
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were: (i) coexistence of extrapulmonary neoplasia during the last five years or 

chemotherapy for other different neoplasias; (ii) severe organ disease with 

negative influence on prognostic or with influence on the application of the target 

protocol, including congestive heart failure, chronic liver disease (functional 

stage MELD >12), chronic kidney disease stage 5 with substitutive treatment 

(hemodialysis or peritoneal dialysis). The control group had an average age of 

55±10 years and 71% of them were males. 

 The study was approved by the ethical committee of the Reina Sofia 

University Hospital. The individuals selected for this study were previously 

informed to obtain complete consent. All steps from sweat extraction to analysis 

were performed in compliance with the guidelines dictated by the World Medical 

Association Declaration of Helsinki of 2004. 

 It should be emphasized that sweat collection was performed before 

finishing the clinical study, which means that patients were not subjected to 

cytostatic treatment. Therefore, medication was exclusively restricted to control 

the symptoms by analgesics (paracetamol or ibuprofen), cough suppressants 

(codeine) and similar drugs. Apart from that, both control individuals and 

patients were taking common treatments related to diseases associated to the age 

interval (statins, antihypertensives, analgesics, etc.).   

2.4.     Sweat extraction 

 A Macroduct® SweatAnalysis System (Wescor, Utah, USA), consisting of 

a Webster sweat inducer and a Macroduct sweat collector (US Patent 4,542,751), 

was used. Pilogel® Iontophoretic Discs (US Patent 4,383,529) (Wescor, Utah, 

USA), a gel reservoir of pilocarpinium ions, were used in the iontophoretic 

stimulation of sweat excretion. A total sweat volume around 50 µL was collected 

per individual. 

 The sweat inducer provided a current intensity of 1.5 mA for 5 min 

through two Pilogel discs as electrodes located on the forearm. After removing 

the discs the skin where the positive disc had been located was cleaned with 

distilled water and the Macroduct collector covered this skin to collect sweat for 
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15 min. The collected sweat was transferred to a microEppendorf tube and stored 

at –80 °C until use.  

2.5. Sample treatment 

 Sweat samples (10 µL) were diluted with 0.1% formic acid in 1:2 (v/v) 

ratio. The mixture was vortexed for 1 min and placed in the LC autosampler for 

subsequent analysis. All samples were prepared by duplicate. 

 A pool from each group under study (lung cancer and control patients) 

was prepared taking 5 µL aliquots from each participant. The two pools were 1:2 

diluted with water containing 0.1% formic acid, and vortexed for 

homogeneization before analysis. 

2.6. LC–QTOF MS/MS analysis  

 Chromatographic separation was performed using a C18 reverse-phase 

analytical column (Mediterranean, 50 mm × 0.46 mm i.d., 3 μm particle size) 

from Teknokroma (Barcelona, Spain), which was thermostated at 25°C. The 

mobile phases were water (phase A) and ACN (phase B) both with 0.1% formic 

acid as ionization agent. The LC pump was programmed with a flow rate of 0.8 

mL/min with the following elution gradient: 3% phase B as initial mobile phase 

was kept constant from min 0 to 1; from 3 to 80% of phase B from min 1 to 10.5, 

and from 80 to 100% of phase B from min 10.5 to 11.5. A post-time of 5 min was 

set to equilibrate the initial conditions for the next analysis. The injection volume 

was 3 µL and the injector needle was washed for 10 times between injections with 

70% methanol. Furthermore, the needle seat back was flushed for 15 s at a flow 

rate of 4 mL/min with 70% methanol to avoid cross contamination. 

 The parameters of the electrospray ionization source, operating in 

negative and positive ionization mode, were as follows: the capillary and 

fragmentor voltage were set at ±3.5 kV and 175 V, respectively; N2 in the 

nebulizer was flowed at 40 psi; the flow rate and temperature of the N2 as drying 

gas were 8 L/min and 350 °C, respectively. The instrument was calibrated and 

tuned according to procedures recommended by the manufacturer. MS and 
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MS/MS data were collected in both polarities using the centroid mode at a rate of 

1 spectrum per second in the extended dynamic range mode (2 GHz). Accurate 

mass spectra in MS scan and MS/MS mode were acquired in the m/z range 60–

1100. The instrument gave typical resolution 15000 FWHM (Full Width at Half 

Maximum) at m/z 118.086255 and 30000 FWHM at m/z 922.009798. To assure 

the desired mass accuracy of recorded ions, continuous internal calibration was 

performed during analyses by using the signals at m/z 121.0509 (protonated 

purine) and m/z 922.0098 [protonated hexakis (1H, 1H, 3H-tetrafluoro-propoxy) 

phosphazine or HP-921] in positive ion mode; while in negative ion mode ions 

with m/z 119.0362 (proton abstracted purine) and m/z 966.0007 (formate 

adduct of HP-921) were used. 

 Samples were first injected in full scan acquisition mode (two replicates 

per sample) and then in auto MS/MS acquisition mode with a preferred list to 

obtain the product ion information of metabolites with significant difference 

between the groups under study. The maximum number of precursors selected 

per cycle was set at 2, with an exclusion window of 0.3 min after 2 consecutive 

selections of the same precursor. Three collision energies (10, 20 or 40 eV) were 

used to obtain the maximum fragmentation information for each entity. 

2.7. Data processing and statistical analysis 

 MassHunter Workstation software (version 3.01 Qualitative Analysis, 

Agilent Technologies, Santa Clara, CA, USA) was used to process all data 

obtained by LC–QTOF in full scan MS mode. Treatment of raw data files started 

by extraction of potential molecular features (MFs) with the suited algorithm 

included in the software. For this purpose, the extraction algorithm considered 

all ions exceeding 500 counts with a single charge state. Additionally, the isotopic 

distribution for a valid feature had to be defined by two or more ions (with a peak 

spacing tolerance of 0.0025 m/z, plus 10.0 ppm). Adducts formation in the 

positive (+H, +Na) and negative ionization (–H, +HCOO) modes as well as 

neutral loss by dehydration were also included to identify features corresponding 

to the same molecule. Thus, ions with identical elution profiles and related m/z 



                                                                                                                         

293 

Sent to: Metabolomics Section II. Chapter 7 

 
values (representing different adducts or isotopes of the same compound) were 

extracted as entities characterized by retention time (RT), intensity in the apex of 

chromatographic peaks and accurate mass. Background contribution was 

removed by subtraction of MFs linked to plasticizers, solvent impurities and 

other contaminants after analysis of a blank (0.1% formic acid) under identical 

instrument operational conditions. In this way, raw data files were created in 

compound exchange format (.cef files) for each sample and exported into the 

Mass Profiler Professional (MPP) software package (version 2.2, Agilent 

Technologies, Santa Clara, CA, USA) for further processing.  

 In a next step, the data were preprocessed by alignment of retention 

times and m/z values across the data matrix using a tolerance window of 0.4 min 

and 10 ppm mass accuracy, respectively. The alignment was based on the 

iterative comparison of m/z and retention times values for all MFs detected in 

each sample with the resting samples. Data pretreatment was based on baselining 

for each variable across samples to treat all compounds equally regardless of their 

intensity. This involved a preprocessing method that subtract the median 

abundance of each variable from the corresponding values in each sample. 

Furthermore, a logarithmic transformation was used to reduce relatively large 

differences among the respective MF abundances. Stepwise reduction of MFs 

number was performed based on frequency of occurrence and abundance of the 

respective MFs in classes. This filter allowed retaining MFs detected in all the 

samples from each group (cancer and control), removing those entities only 

detected in reduced number of samples, which is due to individual variability. 

MPP software also allowed unsupervised and supervised analysis of the data by 

PCA and PLS-DA, respectively. In both cases, the data set used was the previously 

scaled. An N-Fold cross-validation model was selected for this research. With this 

model, the individuals of the input data are randomly divided into N equal parts; 

N-1 parts are used for model training, and the remaining part is used for testing. 

The process is repeated N times, with a different subset iteratively used for 

testing. Thus, each object is used at least once in training and once in testing, and 

a confusion matrix is generated. This whole process can then be repeated as 
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many times as specified by the number of repetitions. Ten repetitions and a fold 

number of 3 were selected in all PLS-DA models.  

 Identification of the most relevant entities was done using MS and 

MS/MS information and searching in the METLIN MS and MS/MS database 

(http://metlin.scripps.edu) and Human Metabolome Database (HMDB, 3.5 

version). Statistical significance of metabolites identified was done by Kruskall-

Wallis analysis. 

 The R (URL http://www.R-project.org) and pROC (1.5.1 version, URL 

http://web.expasy.org/pROC/) were used to evaluate the prediction perfor-

mances of each identified compound. PanelomiX toolbox, supported on the 

iterative combination of biomarkers and thresholds, was used to combine 

biomarkers by selecting thresholds that provide optimal classification perfor-

mance (Robin et al. 2013). Two panels of markers were built by setting either 

sensitivity or specificity cut-off values > 80%. In both cases, 5 repetitions and a 

fold number of 10 were selected. Cross-validation was executed using the 

PanelomiX computational toolbox, and no pre-filtering steps were included.  

 

3. Results and discussion 

3.1. Quality control and data pretreatment 

 The pool of sweat prepared from each group under study (lung cancer 

patients and control individuals) was injected 10 times in each polarity mode to 

obtain the global profile of molecular features associated to them. The initial data 

set was built after alignment of LC–TOF/MS chromatograms for efficient 

extraction of MFs according to retention time and mass accuracy. The tolerance 

window for both parameters was set at 0.4 min and 10 ppm for elution time and 

mass accuracy, respectively.  

 After data pretreatment, two data sets were obtained for positive and 

negative ionization modes. The experimental variability was minimized by 

applying a filter algorithm based on the detection frequency of MFs in the 



                                                                                                                         

295 

Sent to: Metabolomics Section II. Chapter 7 

 
replicates. In particular, the algorithm eliminates MFs no detected in at least all 

the replicates from each group —in this case, patients with lung cancer and 

control group. The application of the frequency filter simplified the data sets to 

209 and 35 MFs in negative and positive ionization modes, respectively. These 

sets were used to carry out a quality control (QC) study to evaluate the 

instrumental precision of the detection step. With this aim, a PCA was built for 

data sets (Supplementary Fig. 1) that revealed the absence of variability sources 

due to time injection. Under these conditions, the relative standard deviation for 

MS signals was below 20% in both positive and negative ionization modes. 

 The two sets of MFs obtained in both polarities using the pools were 

extracted in data files obtained by analysis of all individual samples and aligned 

with the same tolerance parameters used for pools. As samples were injected by 

duplicate, the average area of the two injections was calculated for each potential 

molecular feature. Then, the frequency filter was applied to remove those MFs no 

detected in at least a representative percentage of samples forming each 

predefined class. This representative percentage was set at 75%, selection 

supported on statistical criteria to build a fingerprinting representative of the 

sweat metabolome from the two target groups. It is worth mentioning that the 

pathology influences differently the serum metabolome of the individuals. For 

this reason, the filtering algorithm should not be completely restrictive. After this 

filter, 33 and 28 potential molecular entities were found in the positive and 

negative ionization modes. 

3.2. Identification and statistical analysis 

 Once the molecular entities with statistical significance were established, 

the MS/MS spectra of these entities were obtained by LC–QTOF MS/MS in 

automated mode to obtain the necessary information for identification. In this 

mode, the selection of precursor ions is automatically carried out in each MS 

scan, but a list of preferred ions can be included for selective fragmentation. The 

list of preferred precursor ions was formed by those associated to the molecular 

entities of the data set. The HMDB and METLIN database were used for 
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identification. To compare the MS/MS spectra of each entity with those recorded 

in the METLIN database, the information was collected using 10, 20 and 40 eV as 

collision energies with the purpose of obtaining different fragmentation levels. 

Table 1 shows the list of identified metabolites including the retention time and 

m/z values for precursor and product ions. Exogenous metabolites and 

interferents present in the Pilogel® to induce sweat production (e.g. pilocarpine 

or propylparaben) were removed from the data set. Most of the identified 

compounds were detected in negative ionization mode. As a result, only three 

metabolites (tryptophan, maltotetraose and 1-octen-3yl-glucoside) were 

confirmed in the positive ionization mode for inclusion in a preliminary panel. 

Table 1. Metabolites identified in sweat, including the retention time and m/z values for 

precursor and product ions as well as the error in precursor ion detection expressed as 

ppm. 

Negative ionization mode 

 Compound name RT (min) Precursor ion (m/z) Δppm Product ions (m/z) 

1 Citrulline 0.7 174.0883 0 

131.0818 

44.9974 

72.0078 

2 
Trisaccharide phosphate 

C18H34O20P 
0.8 601.1371  

547.0835 

96.9696 

161.0440 

259.0221 

3 Phenylalanine 3.5 164.0718 0 

147.0445 

103.0549 

91.0549 

72.0094 

4 Nonanedioic acid 7 187.0981 2 

125.0962 

187.0954 

97.0645 

123.0799 

57.0335 

5 Sulfonic lipid 8.5 577.1470  

170.0046 

391.1109 

497.1911 

6 Maltotriose 0.7 549.1672 0 

503.1598 

341.1085 

179.0553 

89.0241 
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7 Histidine 0.6 154.0624 1 

137.0358 

93.0457 

80.0385 

67.0307 

8 Taurine 0.7 124.0072 1 79.9567 

9 Urocanic acid 1.2 137.0360 2 

93.0445 

66.0349 

65.0206 

50.0050 

10 Muconic acid 7.5 123.0089 5 

53.0033 

95.0139 

68.9982 

11 Suberic acid 6.2 173.0824 2 

111.0809 

83.0503 

57.0349 

12 MG(22:2) 8.7 431.3127 3.6 89.0247 

Positive ionization mode 

 Compound name RT (min) Precursor ion (m/z) Δppm Product ions (m/z) 

1 Tryptophan 4.7 205.0970 0.7 

188.0699 

146.0593 

118.0647 

2 Maltotetraose 0.8 689.2103 1 

145.0488 

127.0385 

85.0283 

487.1640 

3 1-Octen-3yl-glucoside 8.4 291.1802 0.1 

273.1697 

127.1117 

57.0899 

 

 After metabolites identification, quantitative information (height of the 

chromatographic peaks obtained from extracted ion chromatograms, EICs) was 

extracted in all samples in the studied cohort. Statistical analysis by the Kruskal-

Wallis test between the two groups studied (lung cancer patients and control 

individuals) revealed that the trisaccharide phosphate, MG(22:2), nonanedioic 

acid, maltotetraose and maltotriose were the most significant metabolites (p-

value < 0.008), as Table 2 shows. Urocanic acid and γ-GluLeu dipeptide were 

also significant presenting a p-value between 0.01 and 0.05. The remaining 
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metabolites present in the data set did not report significant difference between 

the two groups under study. 

Table 2. Kruskal-Wallis statistical analysis to evaluate the significance of the identified 

metabolites in sweat to discriminate between lung cancer patients and control individuals. 

Marker p-Value 

Trisaccharide phosphate 0.00019 

Maltotriose 0.00177 

Nonanedioic acid 0.00194 

MG (22:2) 0.00411 

Maltotetraose 0.00728 

γ-GluLeu 0.03809 

Urocanic acid 0.04437 

Suberic acid 0.07485 

Sulfonic lipid 0.1828 

Citrulline 0.3254 

Tryptophan 0.3417 

Histidine 0.5015 

Phenylalanine 0.5648 

Muconic acid 0.6763 

GluVal 0.7430 

Taurine 0.8569 

 

3.3. Multivariate analysis for discrimination of lung cancer patients and 

control individuals 

 It is worth mentioning that the objective of this research was not to 

establish metabolite differences among histological types as presently the cyto-

histological diagnostic to confirm both tumour and hystological subtypes is 

irreplaceable. The same situation is found with the cancer stage. It would be very 

interesting to know if there are differences among the stages of the disease, which 

could be the subject of future research. Presently, distinction among stages 

requires x-ray computed tomography and endoscopic techniques to evaluate the 

endobronchial lesions and to study lymphadenopathies in the mediastinum.     
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 As commented above, one of the problems concerning lung cancer 

diagnosis is the stage at which the disease is detected and the characteristics of 

the existing available tests (cost and complexity), which hinders their application 

to all patients. Therefore, more economical tests with prognostic capability are 

demanded for a preliminary screening, which allows reducing the population 

under study by eliminating individuals in a categorical “rule-out” group. For this 

reason, the most important aspect in a prediction model for lung cancer is a low 

probability of false negatives, while the probability of false positives is not critical 

as the disease could be confirmed by other tests. 

 In this study a discrimination model based on PLS-DA was built using 

the dataset formed by identified metabolites (Table 1). The accuracy parameters 

for the validation and training sets of the resulting PLS-DA are listed in Table 

3,while the scores plot is shown in Fig. 1. As Table 3 shows, according to the 

training set the probability of false positives was 42.7%, which is high. However, 

the presence of the pathology for these target individuals could be confirmed with 

one other test. On the other hand, the probability of false negatives was only 

13.3%. Therefore, this discrimination model led to know that the identified 

metabolites could be combined to reduce the proportion of individuals 

demanding for a confirmatory test. 

 

Table 3. Accuracy parameters for the validation and training sets of the developed PLS-

DA model including sensitivity and specificity and the positive and negative predictive 

value. 

 

              Parameters 

Set 

Sensitivity 

(%) 

Specificity 

(%) 

Positive predictive 

value (%) 

Negative predictive 

value (%) 

Training 79.8 93.1 90.5 84.7 

Validation 78.6 86.1 82.5 82.8 
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Fig. 1. PLS-DA scores plot for discrimination of lung cancer patients and control 

individuals by sweat metabolomics analysis 

 

3.4. Statistical evaluation of the prediction capability by ROC curves 

 Assessment of sensitivity and specificity of the significant metabolites for 

lung cancer prediction was carried out by obtaining the ROC curves and 

estimating the partial area under the curve (pAUC). Evaluation of a predictor by 

the total AUC is not recommended when the performance test only takes place in 

high specificity or high sensitivity regions (Robin et al. 2011). For this reason, the 

pAUC parameter is more suited since it is restricted to specific regions of the 

curve. In this case the region selected encompassed from 80 to 100 % of 

specificity to reduce the probability of false negative predictions. With this 

restriction, the maximum value of pAUC obtained would be 20%. The values of 

pAUC, sensitivity and specificity expressed in percentage, with a 95% of 

confidence interval, are listed in Table 4, and ROC curves obtained for 

metabolites with the highest discrimination capability  are shown in Figure 2. As 

can be seen, the compounds that presented a higher value of pAUC were the 

trisaccharide phosphate (10.6%), maltotriose (10.0%), nonanedioic acid (7.9%) 

and maltotetraose (6.4%). These data show that the marker with the best 

discrimination capability of this dataset was the trisaccharide phosphate.  

 Regarding specificity and sensitivity, the compound with the highest 

specificity was muconic acid (100%), followed by maltotetraose, the sulfonic 
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lipid, GluVal dipeptide and histidine, all with 97.1% of specificity for 

discrimination of patients with lung cancer from control individuals. However, 

any of these compounds exhibits the highest sensitivity, which was attributed to 

the trisaccharide phosphate (72.7%). This fact supports the necessity for 

combining metabolites to develop a panel of markers in order to obtain statistical 

models with improved prediction capability. 

Table 4. Parameters of the ROC curves obtained for each identified metabolite by 

selecting a specificity range from 80 to 100%. pAUC, sensitivity and specificity are 

included with a 95% of confidence interval (CI). 

Marker 
% pAUC 

(95% CI) 

% Specificity 

(95% CI) 

% Sensitivity 

(95% CI) 

Trisaccharide phosphate 10.6 (6.5–15.3) 80.0 (65.7–91.5) 72.7 (54.5–90.9) 

Maltotriose 10.0 (5.2–14.9) 91.4 (80.0–100.0) 63.6 (45.5–81.8) 

Nonanedioic acid 7.9 (4.0–12.6) 88.6 (77.1–97.1) 50.0 (31.8–68.2) 

Urocanic acid 6.6 (2.6–11.8) 94.3 (85.7–100.0) 40.9 (22.7–63.6) 

Maltotetraose 6.4 (2.7–10.8) 97.1 (91.4–100.0) 31.8 (13.6–50.0) 

Sulfonic lipid 5.5 (2.1–9.7) 97.1 (91.4–100.0) 27.3 (9.1–45.5) 

MG (22:2) 4.8 (1.7–9.9) 94.3 (85.7–100.0) 31.8 (13.6–54.5) 

γ-GluLeu 4.0 (0.5–9.1) 82.9 (68.6–94.3) 45.5 (22.7–68.2) 

Muconic acid 3.0 (0.9–7.1) 100.0 (100.0–100.0) 13.6 (0.0–27.3) 

Citrulline 3.0 (0.4–6.8) 82.9 (68.6–94.3) 31.8 (13.6–54.5) 

Phenylalanine 2.7 (0.7–6.3) 82.9 (68.6–94.3) 27.3 (9.1–45.5) 

Suberic acid 2.5 (0.4–8.0) 80.0 (65.7–91.4) 31.8 (13.6–54.5) 

Tryptophan 2.3 (0.1–5.8) 94.3 (85.7–100.0) 13.6 (0.0–31.8) 

GluVal 1.6 (0.0–5.7) 97.1(91.4–100.0) 4.5 (0.0–13.6) 

Histidine 1.6 (0.0–4.8) 97.1 (91.4–100.0) 9.1 (0.0–22.7) 

Taurine 1.2 (0.0–4.4) 82.9 (68.6–94.3) 18.2 (4.5–36.4) 
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Fig. 2. ROC curves obtained for metabolites with the best prediction capability to 

discriminate lung cancer patients and control individuals. pAUC values calculated for 

specificity above 80% are included. 

 

3.5.  Development of panels with predction capability for lung cancer 

 The development of panels for discrimination between lung cancer 

patients and control individuals selected for this research was addressed by using 

PanelomiX as computational toolbox. This tool iteratively combines significant 

variables and thresholds to find panels of potential biomarkers with good 

prediction/discrimination parameters in terms of sensitivity and specificity. As 

mentioned above, the most important aspect in a prediction model for lung 

cancer is to reduce the probability of false negatives, while the probability of false 

positives is not critical as the disease could be confirmed by other tests. 
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Nevertheless, the development of discrimination models targeted at reducing 

false positives would also be useful as screening strategy to minimize the number 

of patients subjected to invasive confirmatory tests. In this research, the 

configuration of panels was supported on two statistical criteria: at least 80% 

sensitivity or specificity, which resulted in two panels of biomarkers. The panel 

with at least 80% specificity should allow decreasing considerably false negative 

rates. On the other hand, a biomarkers panel with at least 80% sensitivity should 

allow a significant decrease of false positive rates. PanelomiX was applied to the 

whole cohort to define panels of three biomarkers with the best classification 

parameters. The list of all identified metabolites (Table 1), in both positive and 

negative ionization modes, was considered as the set of variables. Cross-

validation was included in the development of both panels for internal validation, 

which reported information on the model stability. The classification capability of 

the panels was assessed by threshold sensitivity and specificity and the pAUC 

value. The best panel providing specificity above 80% was obtained with the 

combination of three metabolites including nonanedioic acid, γ-GluLeu and 

maltotriose (100.0% specificity and 63.6% sensitivity, while the pAUC was 13.3% 

(95% CI 9.6–16.9). Cross-validation for this model also reported good statistics 

parameters since specificity and sensitivity were 80.0% and 59.1%, respectively. 

This panel would allow diagnosing individuals with lung cancer with a low false 

negative rate. Figure 3.A shows the ROC curve obtained with this panel in 

comparison with that obtained independently for trisaccharide phosphate, which 

was the best independent marker of this configuration in terms of pAUC value. As 

can be seen, sensitivity was significantly improved by application of the panel.  

 On the other hand, the best panel providing sensitivity above 80% was 

obtained with two of the metabolites included in the previous panel (nonanedioic 

acid and maltotriose) and MG(22:2). Figure 3.B shows the ROC curve from this 

second panel together with that reported by the best independent marker of this 

configuration, which was MG(22:2). The parameters obtained for this panel were 

88.6% of specificity, 81.8% of sensitivity and a pAUC of 10.7% (95% CI 6.2–16.6). 
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Fig. 3. ROC curves obtained from the configured panels with: (A) at least 80% specificity 

to reduce false negatives and, (B) at least 80% sensitivity to reduce false positives. The 

ROC curves are compared with those provided by the marker with the best independent 

prediction capability, trisaccharide phosphate and MG(22:0), which are shown in grey. 

  As both panels were characterized by high sensitivity and specificity 

values, a proposed approach could be supported on the analysis of the four 

involved metabolites. The combined use of the two panels would allow reducing 

the number of cases subjected to confirmatory test with the minimum rate of 

false negative and positive rates. 

 

4. Conclusions 

 As previously exposed, one of the main limitations relative to the 

diagnostic of lung cancer is the stage at which this is detected as well as the 

characteristics of the existing available tests. These are invasive and require a 

high cost, which makes their application to all individuals defined by risk factors 

of lung cancer difficult. For this reason, more economical tests featured with high 

prediction capability are demanded for a preliminary screening, which should 

allow decreasing the number of individuals requiring confirmatory tests.  
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 Sweat has not been widely exploited in the clinical field despite the 

advantages associated to its sampling. The potential of sweat as biofluid for 

implementation in the diagnostic of lung cancer has been demonstrated. A 

prediction model based on a panel of metabolites including amino acids, sugars 

and some lipids has been built to discriminate patients with lung cancer from a 

control group. The high negative predictive value reflects the potential use of this 

biofluid to reduce the number of cases as possible positive cases to be subjected 

to confirmatory tests. 

 The discrimination capability of individual metabolites revealed that a 

trisaccharide phosphate presented the highest prediction capability. However, 

this compound is not present in the two panels of three metabolites generated for 

lung cancer prediction. The two panels included maltotriose and nonanedioic 

acid in combination with γ-GluLeu and MG(22:2). Both panels significantly 

improved the discrimination capability of independent metabolites. The first 

panel was characterized by 100% specificity and 63.6% sensitivity. Therefore, the 

false negative rate was 0%. The second panel reported specificity and sensitivity 

values above 81%.  

 These preliminary results emphasized the necessity of a large scale study 

to validate the proposed panels in order to reduce the proportion of individuals to 

be subjected to confirmatory tests, and to detect lung cancer in less advances 

stages. 
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Supplementary material 

 

 

Supplementary Fig. 1. Principal Component Analysis (PCA) built from the data set 

obtained after analysis (10 replicates) of sweat pools prepared from lung cancer patients 

and control individuals. 

 

 

Supplementary Table 1. Main characteristics of the cohort under study including the 

age, sex and body mass index (BMI). All data are expressed as percent or mean (range).  

1 Cigarettes consumption is included as pack-years. Pack-years = (average cigarettes smoked per day/20) x (years of 

smoking). 
2P-values were obtained by analysis of variance (ANOVA) —the non-parametric version (Kruskal-Wallis) in the case 

of age as it does not fit normal distribution. 

 

 

 

Individuals 

(n = 96) 

Lung cancer 

patients (n=41) 

Controls (n=55) 
P-value2 

Smokers (n=24) Non-smokers (n=31) 

Age, (year) 63 (42–87) 56 (38–85) 54 (40–83) 0.344 

Sex, (male %) 78 70 70 0.739 

Pack-years1 51 (15–102) 37 (10–80) 0  

BMI, (kg/m2) 26.8 (17–38) 27.8 (22.6–36.3) 27.6 (21.8–40.1) 0.440 
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 After development of approaches based on global profiling analysis in 

clinical metabolomics, the next step was to develop methods based on targeted or 

quantitative analysis of metabolites involved in relevant biological processes. All 

the protocols were developed by using human serum as biofluid. 

 Three of the targeted platforms have been applied to the analysis of 

different groups of metabolites in atherosclerotic patients. Thus, phospholipid 

profiles have been analyzed by LC–MS/MS in high resolution mode for 

evaluation of atherosclerotic patients with different diagnostics, thus leading to 

the proposal of a four-marker panel with prediction capability for stable angina 

and NSTEMI patients, as shows Chapter 8. 

 A hyphenated SPE–LC–MS/MS configuration for determination of eight 

essential amino acids allows discrimination between atherosclerotic patients with 

stable angina and acute myocardial infarction. The information, in Chapter 9, 

was supported on a cohort of 122 atherosclerosis patients, diagnosed with the aid 

of a catheterization test. 

 The content of Chapter 10 deals with metabolites involved in the 

tricarboxylic acids (TCA) cycle that had been previously proposed as 

cardiovascular biomarkers. A method for determination of the target metabolites 

based on GC–MS applied to serum from 223 patients —172 of them with 

significant coronary lesion— has demonstrated the influence of three 

cardiovascular risk factors such as obesity, hypercholesterolemia, and smoking 

habit on serum levels of TCA-cycle metabolites. Multifactor analysis of variance 

and statistical evaluation by ROC curves support interactions between the 

occurrence of a coronary lesion and the risk factors considered in this study, and 

the discrimination capability of these metabolites, respectively.  

  Assessment of cathelicidin as a biomarker of prone to infectious diseases 

status made mandatory a robust, automated, selective and sensitive platform for 
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determination of the peptide in serum samples. Chapter 11 shows such platform 

in which robustness was achieved by unattended operation of the approach, 

automation was allowed by online coupling of a commercial system for SPE with 

a triple quadrupole mass spectrometer, and selectivity and sensitivity were 

achieved by the joint effect of removal of interferents non-retained on the 

sorbent, and preconcentration in the solid-phase cartridge and the MS detector, 

respectively. In this way, short analysis time, and detection and quan-titation 

limits at the low μg/L levels were achieved.  
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Analysis of serum phospholipid profiles by LC–

MS/MS in high resolution mode for evaluation of 

atherosclerotic patients 
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Castro* 

 

Abstract 

 Atherosclerosis is one of the most frequent aetiology for myocardial 

infarction and death. It is also the main cause of angina pectoris, a perceived 

symptom that results  of a mismatch between myocardial supply and demand 

caused by the partial obstruction of the arteries. The correct diagnosis of 

atherosclerosis can led to a reduction of mortality. In this research, the 

phospholipids profile of serum samples from patients diagnosed with stable 

angina and non-ST elevation myocardial infarction (NSTEMI) or unstable angina 

have been compared to found potential markers to discriminate between stable 

angina and NSTEMI. Phospholipids profiles obtained by LC–QTOF MS/MS have 

led to the identification of four potential markers with significant difference 

between the two groups under consideration: lysoPC(20:5), PC(18:1/18:2), 

PC(18:0/20:4) and SM(d18:2/14:0). The panel generated with the four 

compounds have a disease prediction capability in the training set of 70.7 and 

66.0% for stable angina and NSTEMI patients, respectively. On the other hand, 

the validation set by application to an independent cohort improved the 

predictive power for angina stable patients (92.3%) while this was slightly 

decreased up to 50.0% for NSTEMI patients. The discrimination capability of the 

metabolite panel was assessed in terms of sensitivity and specificity by ROC 

analysis. In this way, LC–QTOF MS/MS has shown to be a useful strategy for 

phospholipid profiling in serum and development of tools to aid in clinical 

diagnostic. 
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1.  Introduction 

 Among of the most frequent causes of death worldwide are cardio-

vascular diseases and, in particular, atherosclerosis, with over 80% of deaths in 

low- and middle-income countries [1]. Atherosclerosis is the main cause of 

angina pectoris, a perceived symptom that results from a mismatch between 

myocardial supply and the demand caused by partial obstruction of the arteries. 

When the anaerobic threshold is crossed, the patient develops symptomatic 

angina pectoris (stable angina) that can appear after a physical effort or activity 

[2]. If this symptom is perceived with minimum activity and high frequency, the 

suited term is unstable angina. A rupture in the atherosclerotic plaque can 

generate a thrombus that can occlude partially or completely the normal blood 

flow. Complete thrombotic occlusion of a coronary artery causes myocardial 

necrosis and is termed acute ST-elevation myocardial infarction, also known as 

acute myocardial infarction (AMI), whereas incomplete occlusion does not cause 

myocardial necrosis and is termed non-ST elevation myocardial infarction 

(NSTEMI). Unstable angina and NSTEMI are often considered together because 

they can be indistinguishable upon first appearance [3]. 

 One of the main problems in clinical practice is the diagnosis of 

cardiovascular dysfunctions that are commonly detected in a relatively advanced 

stage of the disease course [4]. The initial diagnostic approach for coronary artery 

disease encompasses a detailed patient history, a complete physical examination, 

and an electrocardiogram, which is one of the test that supports the 

discrimination between stable angina and NSTEMI. The main limitation of the 

electrocardiogram is that its profile could be also altered by other cardiopathies 

such as acute pericarditis or left ventricular hypertrophy, resulting in false 

positive results [5]. After this preliminary evaluation, laboratory blood tests 

(troponin, creatine kinase,…), stress testing, and invasive cardiac catheterization 

may be necessary to obtain further insight of the diagnostic. 

 Blood lipoproteins contain a protein and a phospholipid component, 

which allow setting differences among them [6]. Extensive epidemiological 
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studies have revealed a major role of lipoproteins in the development of 

atherosclerosis, with special emphasis on LDL cholesterol, the concentration of 

which is directly related to the risk of coronary artery disease, while HDL 

cholesterol level is inversely related to this risk [7]. Despite LDL-lowering 

therapies are frequently recommended, cardiovascular events still occur. For this 

reason, the lipoprotein composition should play a relevant role in the occurrence 

and progression of atherosclerosis. In this sense, the plasma phospholipid 

transfer protein (PLTP) mediates the transfer of phospholipids from VLDL and 

LDL to HDL and it is able to modulate HDL size and composition [8]. 

Additionally, PLTP may also be involved in HDL cellular-mediated efflux of 

phospholipids and cholesterol [9]. The alteration of the content of negatively 

charged phospholipids in vascular cell membranes was also shown in patients 

with essential hypertension [10]. Other studies have suggested that the 

phospholipid composition of HDL could be a key factor in processes such as 

inhibition of adhesion molecules and also in its anti-inflammatory and anti-

oxidant properties [11]. On the other hand, the phospholipid content is one of the 

factors contributing to the closer lateral molecular packing in LDL [12]. 

 The objective of the present research was to compare the profile of 

phospholipids in serum from patients diagnosed with atherosclerosis after 

catheterization. Patients were classified in two different clinical groups: those 

with non-ST elevation myocardial infarction (NSTEMI) and those diagnosed with 

stable angina. Discrimination between both groups by multivariate methods are 

used to search for a predictive panel formed by marker phospholipids with 

capability to differentiate the two atherosclerotic diagnostics. Phospholipids 

analysis was accomplished by a selective solid-phase extraction (SPE) protocol 

with deproteinization and subsequent determination by liquid chromatography 

high resolution tandem mass spectrometry using a QTOF detector to take 

benefits from high accuracy for phospholipids identification. 
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2. Material and methods 

2.1. Reagents 

 MS-grade formic acid and acetonitrile (ACN) from Scharlab (Barcelona, 

Spain) were used for SPE sample preparation and to prepare the 

chromatographic mobile phases. LC-grade ammonia and methanol were also 

from Scharlab. Deionized water (18 mΩ·cm) from a Millipore Milli-Q water 

purification system was used. 

2.2. Instruments and apparatus 

 A vacuum manifold (Varian VacElut SPS 24, USA) was used for SPE–

deproteinization of phospholipids from human serum. A speed-vac 

ConcentratorPlus, from Eppendorf Ibérica (Madrid, Spain), was used to 

evaporate the methanol phase after SPE elution to concentrate the analytical 

sample. 

 An Agilent 1200 Series LC system (consisting of a binary pump, a vacuum 

degasser, an autosampler and a thermostated column compartment) coupled to 

an Agilent 6540 UHD Accurate-Mass Q–TOF hybrid mass spectrometer 

equipped with a dual electrospray (ESI) source (Santa Clara, CA, USA) was used. 

The chromatographic eluate was monitored in high-resolution mode. 

2.3. Cohort selected for the study 

 One hundred forty patients diagnosed with coronary atherosclerosis by 

catheterization were selected in the Cardiology Unit of Miguel Servet Hospital 

(Zaragoza, Spain). Two clinical diagnostics were distinguished in the selected 

cohort: unstable angina or non-ST elevation myocardial infarction (NSTEMI) 

diagnosed to 72 patients and stable angina to 68 patients. The main 

characteristics of the individuals forming the cohort under study are specified in 

Table 1. The independence of clinical factors and cardiovascular pathologies was 

proved according to the Pearson’s Chi squared test for categorical factors and by 

the Mann-Whitney test for numerical factors with a 95% of confidence level in 

both cases. The p-value obtained for each factor is also listed in Table 1. 
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Table 1. Main characteristics of the cohort as well as the p-value obtained after studying 

the independence of each factor from the disease under study. The test used for categorical 

factors was the Pearson’s Chi Squared test, while the Mann-Whitney test was used for 

numerical factors. 

Factor 
Population 

(n=140) 

Stable 

angina 

(n=68) 

NSTEMI 

(n=72) 
p-Value 

Age, yr 68 (33–96) 67 (42–82) 69 (33–96) 0.07 

Sex, % male 74.9 79.4 70.6 0.08 

Obesity, % obese (BMI≥30) 39.8 44.1 35.8 0.43 

Hypercholesterolemia, % 54.4 54.4 54.4 0.66 

Arterial hypertension, % 58.9 60.6 57.3 0.66 

Renal insufficiency, % 6.7 2.9 10.4 0.11 

Diabetes, % 24.2 26.5 22.1 0.58 

Smoking habit, % 49.8 54.4 45.6 0.45 

 

 Most atherosclerotic patients were taken medication as follows:  

β-blocking agents (78%), statins (92%), antiplatelet agents (88%) and aspirin 

(98%). However, distribution of patients under pharmaceutical treatment was 

equal for the two groups and, statistical analysis did not show significance for any 

treatment. 

2.4.      Blood extraction and serum isolation 

 Blood extraction immediately preceded coronary catheterization. All 

steps from blood extraction to analysis were performed in compliance with the 

guidelines dictated by the World Medical Association Declaration of Helsinki 

(2004), which were supervised by specialized personnel from Miguel Servet 

Hospital that approved the experiments. Individuals selected for this study were 

informed to obtain consent prior to sample collection. 

 Venous blood was collected in evacuated sterile serum tubes without 

additives (Vacutainer, Becton, Dickinson, Franklin Lakes, NJ, USA) and 

incubated for 30 min at room temperature to allow coagulation. Then, the tubes 

were centrifuged at 2000 g for 15 min at 4 °C to isolate the serum fraction. Serum 

was placed in plastic ware tubes and stored at –80 °C until analysis. 
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2.5. Sample treatment 

 Phospolipids were extracted from serum samples using 30 mg 

HybridSPE® cartridges from Supelco (PA, USA) with the following protocol. A 

300 µL aliquot of serum of each patient was mixed with 700 µL of acetonitrile 

acidified with 1% formic acid (v/v) in the cartridge and left for 2 min. Then, the 

vacuum was applied to make the mixture to flow through the sorbent cartridge, 

which was then washed with 1 mL of acetonitrile acidified with 1% formic acid 

(v/v) and 1 mL of acetonitrile. Phospholipids were eluted by pH change using 1 

mL of methanol with 5% (v/v) ammonium hydroxide.  

 The extract was evaporated and the resulting residue was reconstituted 

with 300 µL of methanol with 5% (v/v) ammonium hydroxide and shaken for 30 

s before injection into the LC–QTOF MS/MS equipment. 

2.6. LC–QTOF MS/MS analysis 

 Chromatographic separation was performed using a C18 reverse-phase 

analytical column (Mediterranean, 50 mm x 0.46 mm i.d., 3 µm particle size) 

from Teknokroma (Barcelona, Spain), which was thermostated at 25 °C. The 

mobile phases were water (phase A) and acetonitrile (phase B) both with 0.1% 

formic acid as ionization agent. The LC pump was programmed with a flow rate 

of 0.7 mL/min with the following elution gradient: 25% phase B was kept as 

initial mobile phase constant from min 0 to 2; from 25 to 100% of phase B from 

min 2 to 12, and kept at 100% for 3 min. A post-time of 5 min was set to 

equilibrate the initial conditions for the next analysis. The injection volume was 5 

µL and the injector needle was washed between injections with 80% methanol for 

10 times. Furthermore, the needle seat back was flushed for 12 s at a flow rate of 

4 mL/min with 80% methanol to avoid cross contamination. 

 The parameters of the electrospray ionization source operating 

sequentially in negative and positive ionization modes were as follows: the 

capillary and fragmentor voltage were set at ±3.5 kV and 175 V, respectively; N2 

in the nebulizer was flowed at 60 psi; the flow rate and temperature of the N2 as 

drying gas were 10 L/min and 350 °C, respectively. The instrument was 
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calibrated and tuned according to procedures recommended by the 

manufacturer. MS and MS/MS data were collected in both polarities using the 

centroid mode at a rate of 2.6 spectrum/s in the extended dynamic range mode 

(2Ghz). Accurate mass spectra in auto MS/MS mode were acquired in MS m/z 

range 60–1100 and MS/MS m/z range 60–1100. The instrument gave typical 

resolution 15000 FWHM (Full Width at Half Maximum) at m/z 118.086255 and 

30000 FWHM at m/z 922.009798. To assure the desired mass accuracy of 

recorded ions, continuous internal calibration was performed during analyses by 

using the signals at m/z 121.0509 (protonated purine) and m/z 922.0098 

[protonated hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazine or HP-921] in 

positive ion mode; while in negative ion mode ions with m/z 119.0362 (proton 

abstracted purine) and m/z 966.0007 (formateadduct of HP-921) were used.The 

auto MS/MS mode was configured with 2 maximum precursors per cycle and an 

exclusion window of 0.25 min after 2 consecutive selections of the same 

precursor ion. The collision energy selected was 25 V. 

2.7. Data processing and statistical analysis 

 MassHunter Workstation software (vesion 5.00 Qualitative Analysis, 

Agilent Technologies, Santa Clara, CA, USA) was used to process all analysis data 

obtained by LC–QTOF in MS/MS mode. Identification of the different phos-

pholipid families was carried out with a search algorithm including characteristic 

product ions and neutral losses of each phospholipid class and ions ascribed to 

the alkanoyl chains. Then, identification was validated with the aid of the 

METLIN MS and MS/MS databases (http://metlin.scripps.edu), the Human 

Metabolome Database (HMDB, version 3.5) and the Lipid Maps online tool for 

glycerophospholipids product ion calculation (http://www.lipidmaps.org). 

 The dataset obtained after identification included the list of all 

phospholipids detected in serum samples from atherosclerotic patients of the 

cohort. This dataset was exported as compound exchange format (.cef) files for 

each sample and imported into the Mass Profiler Professional (MPP) software 

package (version 2.2, Agilent Technologies, Santa Clara, CA, USA) for further 

http://metlin.scripps.edu/
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processing. Preprocessing of data was based on the alignment of compounds and 

logarithmic transformation to reduce relatively large differences among the 

respective abundances of phospholipids in serum. 

 MPP software allowed statistical analysis of data to detect variability 

sources as well as supervised analysis of the data by Partial Least Squares–Data 

Analysis (PLS–DA). The autoscaling was set as pretreatment in the case of PLS–

DA and an N-fold cross-validation model was selected for this study. With this 

model, the individuals of the input data are randomly divided into N equal parts; 

N-1 parts are used for model training, and the remaining part is used for 

validation. Thus, each object is used at least once in training and once in 

validation and a confusion matrix is generated. This whole process can then be 

repeated as many times as specified by the number of repetitions. Ten repetitions 

and a fold number of 3 were selected in all PLS–DA models. The search for 

marker phospholipids with discrimination capability was addressed with a web-

based tool called ROCCET (ROC Curve Explorer & Tester, http://www.roccet.ca). 

This is a training and testing resource to build and validate biomarker models 

based on metabolomics data [13]. 

 

3. Results and discussion 

3.1. Identification of phospholipids in serum samples 

 Phospholipids extracts obtained from human serum by SPE were 

analyzed by LC–QTOF in MS/MS acquisition mode. It is worth mentioning that 

the SPE cartridges used for sample preparation are packed with zirconia coated 

silica, which allows setting a selective interaction between the phosphate moiety 

(Lewis base) and Zr atoms, which act as a Lewis acid due to the acceptance of 

electrons by d-orbitals. The selectivity of this treatment enables to clean-up other 

lipids as well as proteins that could exert ionization suppression effects. 

Therefore, an oriented identification strategy was planned since only phos-

pholipid metabolites were present in the extract. 
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 Data-dependent methods based on product ion or neutral loss scanning 

modes in low-resolution mass spectrometry have been frequently tested for 

screening the different phospholipids classes and subclasses. For this purpose, 

characteristic ion products or neutral losses, which are representative of each 

phospholipid structure, have been monitored as identification and confirmatory 

strategy. However, mass accuracy has not been good enough to assure the 

identification of phospholipids, at least when using only one product ion or 

neutral loss scan modes or when working exclusively in one polarity mode. 

Despite of these evidences, few studies have described the utilization of high 

resolution mass spectrometry with QTOF or Orbitrap detectors to improve the 

identification capability of methods for analysis of phospholipids. However, the 

involvement of high-resolution mass spectrometry is crucial to success in 

metabolomics profiling of phospholipids as an attempt to find connection 

between their concentration in biofluids and certain pathologies. 

 Both positive and negative ionization modes were tested in this research 

to maximize the identification coverage. It is well-known that some phospholipid 

subclasses such as glycerophosphatidylcholines are optimally detected in positive 

ionization mode, while other subclasses such as glycerophosphatidylinositols and 

glycerophosphatidic acids are preferentially detected in the negative mode. This 

selection is supported on the sensitivity for ionization of precursor ions, but also 

on sensitivity and selectivity of product ions after suited fragmentation in the 

collision cell, which is crucial for identification. The preference of one or other 

ionization mode is strongly associated to the polar head group that defines the 

phospholipid subclass. 

 Fragmentation of phospholipids in mass spectrometry has been widely 

studied and the mechanisms involved in the fragmentation reactions of each 

phospholipid subclass have been described. Thus, representative product ions 

ascribed to the fragmentation of each phospholipid family are well-known [14]. 

This information was used in this research to develop an identification algorithm 

based on the most representative product ions pertaining to the different 

phospholipid families. For this purpose, human serum pools prepared with 
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aliquots of atherosclerotic patients affected by stable angina and NSTEMI were 

analyzed by the proposed approach combining SPE and LC–QTOF  

MS/MS. Glycerophosphatidylcholines and sphingomyelins, particularly 

ceramidephosphocholines, presented the same fragmentation pattern in positive 

ionization with the product ion m/z 184.0730 fitting the most characteristic 

fragment for both families, which corresponds to the phosphorylcholine moiety. 

In negative ionization mode, the fragmentation pattern for both families was also 

similar with the MS/MS spectra dominated by the presence of the [M–CH3]– 

product ion. The main difference between the MS/MS spectra of these two 

phosphorylcholine classes was found in the product ions ascribed to the alkanoyl 

chains, acyl and sphingosine units, which aid decisively to the identification of 

them. Sphingomyelins with ceramidephosphoethanolamine structure were not 

detected in serum from atherosclerotic patients; therefore, this subclass was not 

monitored. 

 Glycerophosphatidylethanolamines were properly identified in both 

ionization modes by detection of representative neutral loss (m/z 141.0205 and 

140.0096 in positive and negative ionization modes, respectively), which fits the 

phosphorylethanolamine moiety. In the case of glycerophosphatidylserines, the 

identification was supported on the detection of the neutral loss ascribed to the 

phosphorylserine polar group at 87.0350m/z in negative ionization mode, which 

fits the serine moiety. Fragmentation of phosphatidic acids was characterized by 

the product ion at 152.9975m/z in negative ionization mode, which is associated 

to the cyclic glycerophosphate derivative. The resting glycerophospholipid sub-

classes such as glycerophosphatidylinositols and glycerophosphatidylglycerols 

were not detected in serum samples of the selected cohort, despite their MS/MS 

behavior is also known. 

 Detection of the family-dependent product ions or neutral losses for each 

phospholipid subclass was combined with detection of the product ions 

associated to alkanoyl chains in negative ionization mode. This combination 

allowed elucidating the complete structure of the phospholipids by confirming 

the phospholipid subclass and the fatty acids present in the structure. Only in the 
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case of sphingomyelins the N-acyl chain did not provide a signal in the MS/MS 

spectra and, for this reason, identification of these phospholipids was based on 

the sphingophospholipid representative fragments and that corresponding to the 

unique alkanoyl chain. 

 The algorithm including the representative product ions, neutral losses of 

each phospholipid subclass, and the list of ions associated to the alkanoyl 

fragments for fatty acids from C12 to C30 was executed for all raw data sets 

generated after LC–QTOF MS/MS analysis of treated serum samples. 

Supplementary Table 1 shows the list of all phospholipids identified in human 

serum after analysis of the cohort studied in this research. Information about 

chromatographic retention time, precursor ion as well as the characteristic 

product ions supporting the identification are included. As can be seen, most of 

the phospholipids corresponded to phosphatidylcholines, which is the most 

common family of phospholipids detected in human serum. Thirty-four 

glycerophosphatidylcholines, including lyso forms, were identified in the 

analyzed cohort. Concerning fatty acids of phosphatidylcholine structure, 

saturated, monounsaturated and polyunsaturated fatty acids were detected. 

Additionally, fatty acids with odd number of carbons (C15:0 and C17:0) were 

detected, which could be explained by intake in the diet. It is also worth 

mentioning the detection of less conventional glycerophosphatidylcholines such 

as the plasmalogenlysoPC(P-16:0), lysoPC(OH-16:0) and PC(O-16:0/20:4), 

which contain palmityl alcohol in their structure.  

 Lysophosphatidylethanolamines with the most common fatty acids from 

16:0 to 22:6 were also detected in human serum, including lysoPE(O-18:1), which 

contains oleyl alcohol. A profile formed by seven sphingomyelins as 

ceramidephosphocholines was also identified. Conventional fatty acids such as 

palmitic acid, stearic acid and oleic acid were present in the sphingomyelin 

structure, while the sphingosine unit consisted of saturated, monounsaturated 

and polyunsaturated amino alcohols (18:0, 16:1, 18:1, 18:2 and 24:2). 
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 Two other phospholipid subclasses such as phosphatidylserines and 

phosphatidic classes were also identified in the cohort of atherosclerotic patients. 

The most concentrated LysoPA in serum, with oleic acid, was identified and 

detected in all samples. Finally, four phosphatidylserines including two 

plasmalogens such as PS(P-22:6/18:0) and PS(P-20:2/18:2),  PS(O-20:0/22:2) 

with an arachidyl alcohol and PS(18:4/22:4) with two polyunsaturated fatty acids 

conjugated with glycerol. 

3.2. Quality control and sample stability 

 A pool of serum samples from atherosclerotic patients was prepared for a 

quality control test and analysis of sample stability. Healthy control individuals 

were not included in this research since medication would be responsible of 

differences in the metabolite profiling. The extract obtained after application of 

the SPE protocol was sequentially analyzed 40 times by LC–TOF/MS in scan 

mode to obtain the profile of phospholipids present in serum. Ionization in 

positive mode was selected because glycerophosphocholines are the most 

concentrated phospholipid subclass in human serum, although the resting 

subclasses can also be detected in this polarity mode. The sample obtained after 

SPE treatment of the human serum pool was stored during the test in the 

autosampler of the LC system, which was refrigerated at 4 °C. Each analysis took 

17 min to be completed, which means that the complete study was finished within 

11.5 h. The initial data set was built after alignment of LC–TOF/MS 

chromatograms in scan mode according to retention time and mass accuracy.  

The tolerance window for both parameters was set at 0.4 min and 10 ppm for 

elution time and mass accuracy, respectively. Apart from this preprocessing step, 

a baselining treatment was also applied to the average of each variable across 

samples, which treats all molecular entities equally regardless of their abundance. 

After data pretreatment, the data set obtained was filtered using an algorithm 

based on detection frequency of entities in the replicates to minimize 

experimental variability. In particular, the algorithm eliminates the entities not 

detected in at least 100% of the replicates. A PCA was built for the data set 

obtained to evaluate the existence of variability sources that could be attributed 
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to instrumental precision in the detection step as well as to sample stability. The 

PCA scores plot is shown in Fig. 1 for PC1–PC2, which were only able to explain 

58.7% of the total variability. As can be seen, the only variability source is 

detected after 24 replicates, while analyses 25–40 are clearly separated. 

Discrimination was observed along PC2, which only explained 25.8% of the total 

variability included in the data set. This variability source could be associated to 

sample alteration since the group of samples 25–40 are clearly separated. The 

loadings plot, shown in Supplementary Fig. 1, revealed that sphingomyelins were 

relevant to explain the differences observed between the two groups of samples. 

In fact, the concentration of sphingomyelins in the extract clearly decreased after 

6 h. Taking into account that seven sphingomyelins were detected in the sample 

cohort, this aspect was considered in the processing of analysis sequences.  

 

Figure 1. PCA scores plot for samples injected in the stability study. 

 

 The subsequent step was to estimate the standard deviation in the 

intensity of the phospholipids detected in the replicates 1–24. This estimation 

allowed concluding that at least 95% of the molecular entities presented in all 

replicates reported a coefficient of variation below 25%. Therefore, instrumental 

precision is quite consistent and the stability of the sample in terms of 
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phospholipids concentration can be ensured for 6 h at 4 °C (equivalent to 24 

replicates). 

3.3.  Multivariate analysis for discrimination of atherosclerosis diagnostics  

 After identification, a database containing all compounds detected in the 

different serum samples was created. The database contained information about 

the molecular weight, formula, and retention time of each phospholipid. The 

algorithm “Find by database” was then executed to detect the presence of each 

phospholipid in the samples of the cohort and extract the quantitative area of 

each peak confirmed in the extracted ion chromatogram in MS mode. Confidence 

parameters were set at 10 ppm for mass accuracy and 0.3 min for retention time 

to minimize errors by quantitation of isomers. The resulting data set was then 

exported to the MPP software, which allowed filtering variables by frequency of 

occurrence in samples. Thus, the phospholipids no detected in at least 75% of 

samples in one condition (stable angina or NSTEMI) were excluded. The filtered 

data set was formed by 48 phospholipids distributed as follows: 13 

phosphatidylcholines, 18 lysophosphatidylcholines, 6 sphingomyelines, 7 phos-

phatidylethanolamines, 3 phosphatidylserines and 1 phosphatidic acid, which 

cover practically the different subclasses of phospholipids. The filtering step 

based on the occurrence of phospholipids in serum samples allowed ensuring the 

representativity of the data set associated to the serum phospholipid profile of 

atherosclerotic patients. The phospholipids, which were present in the processed 

data set, are listed in Fig. 2.  

 Once completed the data set containing quantitative information in 

relative terms of phospholipids levels in human serum, the next step of this 

research was to find a potential connection of this data matrix with 

atherosclerosis diagnostic. Previously, the data set was pretreated by log 

transformation to minimize the relevance of the phospholipids concentration in 

serum. Supplementary Fig. 1 shows the effect of this transformation on the 

variability observed for each phospholipid. 
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Figure 2. Phospholipids detected in all samples including their peak area variability 

before and after log2 transformation. The areas are plotted using box-and-whiskers. 

 Multivariate analysis was applied to develop a statistical model with 

capability to discriminate between the two groups diagnosed with 

atherosclerosis: stable angina versus NSTEMI. Thus, a PLS-DA model was 

created to find classification patterns related to the atherosclerosis diagnostic. 

The scores graph for the PLS–DA study is illustrated in Fig. 3. As can be seen, 
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discrimination was observed between the two groups using three-dimensional 

plots. Sensitivity and specificity values obtained in the training model were 76.1 

and 76.2%, respectively. On the other hand, the stability of the model was 

assessed by cross-validation, which reported sensitivity and specificity values of 

62.7 and 56.7%, respectively. These results suggest that phospholipid levels 

would be different in the two diagnostics of atherosclerosis under study, which 

means that the composition and concentration of phospholipids are altered by 

the occurrence or not of hypoxia [15-16]. For this reason, a prediction capability 

study is necessary to obtain further information. 

 

Figure 3. Scores plot of the PLS–DA model built to discriminate between patients 

diagnosed with stable angina and those diagnosed with non-ST elevation myocardial 

infarction (NSTEMI).  

 

3.4.  Prediction capability study, development and validation of a markers 

panel 

 Taking into account the discrimination level observed between the two 

atherosclerosis diagnostics in cardiovascular patients, it would be of interest to 

confirm the existence of phospholipid patterns responsible for the observed 

variability. For this purpose, the web-based tool ROCCET was used to find 

phospholipids with the highest contribution according to statistical analysis to 
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explain the occurrence of atherosclerotic diagnostics. In a first step of this 

protocol illustrated in Supplementary Fig. 2, identification of phospholipids 

statistically relevant between the two atherosclerosis diagnostics was carried out 

by the t-test with p-value<0.05 as significance level. Table 2 lists the four 

phospholipids that reported differences in serum concentration between stable 

angina and NSTEMI patients, which means discrimination attributed to the 

occurrence of hypoxia. The highest significance was observed for lysoPC(20:5), 

which contains the essential omega-3 eicosapentaenoic acid. Lysophos-

phatidylcholines have been previously related to atherosclerosis as they are the 

major phospholipid components of atherogenic lipoproteins, generated upon 

extensive LDL oxidation [17]. Two of the most concentrated phospholipids in 

human serum, PC(18:1/18:2) and PC(18:0/20:4), resulted significant (p-value 

0.0459 and 0.0115, respectively) to explain the severity of the atherosclerosis 

diagnostic, stable angina or NSTEMI. The fatty acids present in these two 

glycerophospatidylcholines were the three most concentrated C18 fatty acids 

(stearic acid, oleic acid and linoleic acid), and arachidonic acid, an omega-6 

essential fatty acid. The fourth phospholipid was the SM(d18:2/14:0), which gave 

a p-value of 0.0030. 

Table 2. Phospholipids with high significante (p<0.05) for discrimination of patients with 

stable angina and those diagnosed with non-ST elevation myocardial infarction 

(NSTEMI). 

Phospholipid AUC t-Test p-value Fold change 

PC(20:5) 0.6842 0.0008 0.9198 

SM(d18:1/16:0) 0.6142 0.0030 -0.8448 

PC(18:0/20:4) 0.6330 0.0115 -0.2646 

PC(18:1/18:2) 0.6090 0.0459 -0.2145 

 

 Supplementary Fig. 3 shows the box and whiskers diagrams obtained for 

the four metabolites in the two groups considered. As can be seen, only in the 

case of lysophosphatidylcholine levels are slightly increased in patients with 

NSTEMI in comparison with patients diagnosed with stable angina. This effect 

has been previously observed by Fernández et al. who concluded that 

lysoPC(16:0) and lysoPC(20:4) were positively correlated with HDL and, thus, 
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negatively correlated with cardiovascular disease risk factor [18]. Furthermore, 

polyunsaturated acyl lysophosphatidylcholine prevent inflammation [19]. The 

opposite behavior is shown by phosphatidylcholines and sphingomyelin, the 

levels of which are slightly higher in angina stable patients. This found is also in 

accordance with preceding research as plasma sphingomyelin levels have been 

found to be positively and independently related to the presence of coronary 

artery disease [20]. The same occurs with phophatidylcholines, which are related 

to inflammation and can be up synthetized in atherosclerotic lesions [21]. 

 The four statistically significant phospholipids detected in stable angina 

and NSTEMI patients were selected as features subset to evaluate the predictive 

power between the two conditions under study. The discrimination model was 

based on PLS–DA and the cohort was randomly divided into training and 

validation sets, which included 80% and 20% of the samples of each condition 

(113 and 27 samples for each set), respectively. Prediction model parameters 

obtained with the PLS–DA model generated for the two classes in the training 

and validation sets are shown in Table 3. Thus, the disease prediction capability 

in the training set was 70.7 and 66.0% for stable angina and NSTEMI patients, 

respectively. On the other hand, the validation set by application to an 

independent cohort improved the predictive power for angina stable patients to 

92.3%, while this was slightly decreased up to 50.0% for NSTEMI patients. 

Table 3. Prediction capability values and false positive rates (expressed as percent) 

obtained for the validation and training model created with the four phospholipids 

selected for patients with stable angina versus those diagnoses with non-ST elevation 

myocardial infarction (NSTEMI). 

 

Stable angina 

prediction 

capabiliy 

NSTEMI 

prediction 

capability 

False positive 

for NSTEMI 

False positive 

for stable 

angina 

Training model 70.7 66.0 30.5 32.7 

Validation model 92.3 50.0 36.9 12.5 

 

 This characterization was completed with the ROC analysis of the panel 

formed by the selected phospholipids. Fig. 4 illustrates the ROC curves obtained 

for this panel in the training and validation sets. As can be seen, the area under 
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the curve parameter (AUC) was 0.715 for the training set, while this was 0.747 for 

the external validation set. The performance of this panel of markers was 

assessed by estimation of sensitivity, selectivity and accuracy both in the training 

set and validation set by application of the model to this sub-cohort of samples 

not used to build the model. The optimum predictive model in the training set 

gave 66% and 70% of sensitivity and specificity, respectively. Nevertheless, the 

model could be improved in terms of sensitivity or specificity if a decrease of false 

positive or false negative rates is desired without reducing any parameter below 

60%. Thus, the best conditions to minimize false positives provided 77% 

sensitivity and 60% specificity, while the best model targeted at specificity 

reported 76% for this parameter and 60% sensitivity. It is worth mentioning the 

stability of the model, since this is well-balanced for sensitivity and specificity. 

The application of the statistical model to the validation set allowed improving 

both parameters, which were 79 and 78% for sensitivity and specificity, 

respectively. This means that only two of ten patients would be erroneously 

diagnosed with NSTEMI by metabolomics analysis (false positives), which could 

be confirmed by use of an electrocardiogram. 

 

 Figure 4. ROC curve obtained from the model created using the four phospholipids 

significantly different between patients with stable angina and those with NSTEMI. 

The ROC curve for both training and validation sets are represented by their area 

under the curve (AUC). 
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 Finally, the predictive capability of the panel of markers improved the 

independent prediction power of the four target phospholipids. Fig. 5 shows the 

ROC curves obtained for each phospholipid with information about the optimum 

values of sensitivity and specificity. The best behavior was found for lysoPC(20:5) 

that provided 62% of sensitivity and 70% of specificity, while a noticeable 

decrease was observed for the other three phospholipids. These results justify the 

selection of the panel to aid in the diagnosis of stable angina and NSTEMI in 

atherosclerotic patients and provide information which could be used for 

catheterization. Concerning phospholipids with the highest significance to 

explain the variability observed, it is worth mentioning the presence of essential 

omega-3 and omega-6 fatty acids such as linoleic acid, arachidonic acid and 

eicosapentaenoic acid. 

 

Figure 5. Individual ROC curve for lysoPC(20:5), PC(18:1/18:2), PC(18:0/20:4) and 

SM(d18:2/14:0) when discriminated from stable angina patients and those diagnosed with 

NSTEMI. 
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4. Conclusions 

 The analysis of phospholipids serum profiles by LC–QTOF MS/MS has 

shown to be a suitable strategy for biomarker discovery. A group of four 

phospholipids significantly different between patients with stable angina and 

those diagnoses with NSTEMI have been used to build a panel of markers which 

were composed by lysoPC(20:5), PC(18:1/18:2), PC(18:0/20:4) and 

SM(d18:2/14:0). 

 The panel of markers proposed for discrimination between stable angina 

and NSTEMI presented a disease prediction capability in the training set of 70.7 

and 66.0% for stable angina and NSTEMI patients, respectively. Furthermore, 

the ROC curve obtained for the model gives an area under the curve parameter 

(AUC) was 0.715 for the training set, while it was 0.747 for the external validation 

set. This ROC curve shows a 66% and 70% of sensitivity and specificity, 

respectively. These results warrant a larger scale study to validate the proposed 

model and support the usefulness of LC–QTOF/MSMS strategy to profile 

phospholipids for development of tools to aid in clinical diagnostics. 
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Supplementary Figure 2. Schematic overview of the procedure for generation and 

validation of the classification model. 
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Supplementary Figure 3. Box-and-whisker obtained from the log2 of the areas of 

lysoPC(20:5), PC(18:1/18:2), PC(18:0/20:4) and SM(d18:2/14:0) in the two groups under 

study: patients diagnosed with stable angina and those diagnosed with NSTEMI.  
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Determination of essential amino acids in human 

serum by a targeting method based on automated 

SPE–LC–MS/MS: Discrimination between 

atherosclerotic patients  

M. Calderón-Santiago, F. Priego-Capote, J.G. Galache-Osuna, M. D. Luque de 

Castro* 

 

Abstract 

 An automated method based on a hyphenated SPE–LC–MS/MS 

configuration has been optimized for the determination of essential amino acids 

(threonine, valine, methionine, leucine, lysine, tryptophan, and phenylalanine) in 

human serum, with the aim of discriminating between different states of 

coronary artery disease. Validation in terms of sensitivity (detection limits below 

28.0 ng on column) and precision (repeatability expressed as relative standard 

deviation below 6.0%) supports the suitability of the method for application to a 

cohort of 122 atherosclerosis patients confirmed catheterization test. The cohort 

was composed by 80 individuals diagnosed with stable angina and 42 patients 

who suffered from acute myocardial infarction (AMI). Both groups of individuals 

are differentiated by the occurrence of ischemia in AMI patients due to the 

formation of thrombi. The chemometric treatment of the data obtained by 

multivariate analysis of variance (MANOVA) allowed by isoleucine, a comparison 

both groups of diagnosed patients. Therefore, amino acids whose serum levels 

were affected by ischemia have been identified. The contribution of risk factors 

such as obesity and hypercholesterolemia as well as the individuals’ sex to the 

concentration of essential amino acids has also been studied. 

 



   

354 

Determination of essential amino acids in human serum by a targeting method based on 
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1.  Introduction 

 Amino acids are molecules with a common structure that contains an 

amine group, a carboxylic acid group and a characteristic side-chain that varies 

among amino acids. They have critical functions to life with a direct involvement 

in metabolism by serving as the building blocks of proteins. Apart from their 

functions in proteins synthesis, amino acids are key regulators of gene expression 

and the protein phosphorylation cascade, and act as precursors for synthesis of 

hormones and low-molecular weight nitrogenous substances with enormous 

biological importance such as nitric oxide, polyamines, glutathione, taurine, etc 

[1]. The biochemical relevance of amino acids, their levels and those of their 

metabolites may be of interest in the study of metabolic and nutritional disorders 

as well as in other pathologies related with oxidative stress. 

 The heart is one of the organs more affected by reactive oxygen species 

(ROS) [2], so one of the pathologies related with oxidative stress is 

atherosclerosis, a disease that represents a state of heightened oxidative stress 

characterized by lipid and protein oxidation in the vascular walls [3–5]. 

Furthermore, atherosclerosis is clearly related with the inflammatory cascade 

where ROS are key mediators starting from the initiation of fatty streak 

development, through lesion progression, to ultimate in plaque rupture and 

thrombi formation (resulting in myocardial infarction) [6].  

 Atherosclerosis causes are not clear, but there are certain traits, 

conditions or habits known as risk factors that may raise the risk of suffering 

atherosclerosis [7]. Most common atherosclerosis risk factors are age, 

hypercholesterolemia, hypertension, diabetes, obesity and smoking. Among the 

different factors, obesity is a major public health crisis worldwide considered a 

leading risk factor for different pathologies such as diabetes, atherosclerosis, 

stroke, hypertension and some types of cancer [1,8,9]. Sex also influences 

atherosclerosis development, as men are more likely than women to develop this 

disease; however, sex difference narrows as men and women grow older. 
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 Due to their central role in biochemistry, amino acids are important in 

nutrition. Plasma amino acid concentrations represent the balance of protein 

turnover (protein synthesis and degradation), amino acids absorption from diet, 

and metabolism of individual amino acids [9]. In fact, there are essential amino 

acids (viz. leucine, isoleucine, lysine, methionine, phenylalanine, threonine, 

histidine, tryptophan and valine) that the human body cannot synthesize at the 

concentration demanded for normal development and may be obtained from 

diet. Some essential amino acids have been proposed as cardiovascular disease 

biomarkers. Thus, threonine and phenylalanine have been proposed as 

myocardial infarction biomarkers [10]. The explanations given to this behavior 

are either their metabolism pathways are obstructed by the ischemia and oxygen 

deficiency condition, or the catabolism of the injured myocardial proteins to 

amino acids is enhanced due to the ligation of the left anterior descending 

coronary artery. Also, leucine, isoleucine and threonine are compounds affected 

immediately (10 min) after the onset of myocardial infarction [11]. 

 Different analytical platforms have been proposed to determine amino 

acids in biofluids such as serum [12,13] and urine [14]. Most of them involve an 

electrophoretic or chromatographic step with subsequent determination by 

fluorimetry (usually with laser as excitation source), UV absorption spectro-

photometry or mass spectrometry. A derivatization step prior to separation to 

enhance detection of amino acids by increasing signal given by analytes or 

ionization properties can also be involved. In fact, different labelling reagents 

such as 9-fluorenylmethyl chloroformate have been proposed for derivatization 

of amino acids [15]. Methods without previous derivatization have also been 

reported for determination of amino acids in serum and urine [16,17]. 

Furthermore, a Hitachi analyzer based on ion exchange chromatography with a 

spectrophotometer detector specific for amino acids is available in the market 

[18]. This analyzer, which allows the determination of a wide range of amino 

acids in 70 min, has been used to study the levels of amino acids in both patients 

with heart failure and normal individuals. 
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 Because of the lack of automated methods for the simultaneous 

determination of essential amino acids of interest in the clinical field, the aims of 

this research were as follows: (i) to develop a method for determination of these 

amino acids in serum by on-line coupling of an automated solid-phase extraction 

system (Symbiosis-Pharma system) with an LC–MS/MS device; (ii) to apply the 

resulting method to the determination of the target compounds in a cohort 

formed by individuals affected by atherosclerosis; (iii) to correlate levels of 

essential amino acids in atherosclerotic patients and different risk factors such as 

obesity, sex, hypercholesterolemia and smoking habit. 

 

2. Material and methods 

2.1. Reagents 

 A multistandard solution of amino acids from Sigma–Aldrich (Madrid, 

Spain) with an individual concentration for each analyte of 0.5 mM ± 4% in a  

0.2 N litium citrate buffer (pH 2.2), 2% of thiodiglycol and 0.1% of phenol was 

used to optimize both chromatographic separation and detection. L-valine, L-

leucine, L-phenylalanine and L-lysine standards and phosphate buffer solution 

(PBS) were provided by Sigma–Aldrich. D-tryptophan was provided by Fluka 

(Spain) and L-methionine and L-threonin were from Merck (Madrid, Spain). An 

aqueous stock solution containing 100 µg/mL of each target amino acid was used 

to prepare diluted working solutions.  

 LC–MS grade acetonitrile and ammonium formate were purchased from 

Scharlab (Barcelona, Spain). Deionized water (18 mΩ cm) from a Millipore  

Milli-Q water purification system was used for preparation of all aqueous 

solutions. 

2.2. Blood extraction and serum isolation 

 Venous blood was collected in evacuated sterile serum tubes without 

additives (Vacutainer, Becton Dickinson, Franklin Lakes, NJ, USA) and 

incubated for 30 min at room temperature to allow coagulation. Then, the tubes 
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were centrifuged at 2000 g for 15 min at 4 °C to isolate the serum fraction 

(processing within 2 h after collection). Serum was placed in plastic ware tubes 

and stored at –80 °C until analysis. 

2.3. Cohort selected for the study 

 A total of 122 patients clinically diagnosed with an episode of either 

stable angina (80 individuals) or myocardial infarction (42 individuals) formed 

the cohort. All patients were affected by atherosclerosis after evaluation through 

a cardiac catheterization. The main characteristics of the patients are shown in 

Table 1. The cohort was composed by individuals with an average age of 66±14, 

81% of them male individuals, 53% smokers, 26% diabetic, 41% obese, 58% with 

hypertension and 50% with a high cholesterol level. 

Table 1. Features of the cohort under study. 

Characteristic  Patients (n=122) 

Age  65.5 ± 13.5 

Male sex, n (%)  99 (81.1) 

Obesity, n (%)  50 (41.0) 

High cholesterol level, n (%)  61 (50.0) 

 

 All steps from blood extraction to analysis were performed in compliance 

with the guidelines dictated by the World Medical Association Declaration of 

Helsinki of 2004, which were supervised by specialized personnel from Miguel 

Servet Hospital (Zaragoza, Spain). Individuals selected for this study were 

previously informed to obtain consent. 

2.4.      Instruments 

 Hyphenated SPE was performed with an automated robotized 

workstation Symbiosis-Pharma (Spark Holland, Emmen, The Netherlands) 

equipped with an autosampler Reliance (Spark Holland) furnished with a 250-μL 

sample loop and a refrigerated stacker sample compartment. The SPE 

workstation is endowed with a unit for SPE cartridge exchange —automatic 

cartridge exchanger (ACE)— and two high-pressure dispensers (HPD) for SPE 
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solvents delivery. Peek tubes of 0.25 mm i.d. (VICI, Houston, TX, USA) were 

used for all connections. The ACE unit included three switching valves, one of 

them equipped with a T-rotor, and two clamps. The Sparklink 3.10 SP#3 software 

was used to control the system. Hysphere MM anion cartridges (8 μm,  

10 mm x 2.0 mm, Spark Holland) were used as sorbent material in the SPE step. 

 Chromatography was performed with an Agilent (Palo Alto, CA, USA) 

1200 Series chromatograh composed by a binary pump and a Luna (3 μm,  

100 mm x 4.6 mm) hydrophilic interaction chromatography column (HILIC) 

from Phenomenex (Torrance, CA, USA). 

 Detection was carried out by an Agilent 6410 Triple quadrupole mass 

spectrometer, furnished with an electrospray ionization (ESI) source. 

2.5. Sample treatment 

 Serum samples (100 µL) immersed in an ice bath were treated for 

deproteinization with 600 µL methanol, the most common solvent used with this 

aim. The mixture was shaken for 1 min and the precipitate removed after 

centrifugation for 5 min at 6 °C and 13,800 × g. 400 µL of the upper phase was 

collected in a vial and diluted with 1 mL methanol, then placed in the Symbiosis 

autosampler, programmed to maintain the analytical sample at 15 °C until 

injection into the automatic SPE system coupled with the LC–MS/MS 

equipment. 

2.6. Analysis protocol for amino acids determination in serum 

 Basically, the sample preparation step starts by activation of the sorbent 

phase with acetonitrile and subsequent equilibration before sample loading with 

1 mL 50% acetonitrile containing 1% formic acid. After filling the 250-μL loop 

with analytical sample, this is loaded into the SPE cartridge with 0.5 mL  

90% acetonitrile containing 1% formic acid. Under these conditions, the amino 

acids were retained in the cartridge, which was rinsed with 1 mL 70% acetonitrile 

to remove potential interferents. All these steps are performed in the left clamp. 
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 Then, the cartridge is moved to the right clamp and 450 μL 90% 

acetonitrile containing 5% ammonium hydroxide passes through the cartridge for 

2 min and 15 s to elute the amino acids. The eluate from the cartridge is merged 

with the chromatographic mobile phase by a T-rotor and both mixed phases go to 

the column. The elution time was 2 min 16 s, after which, the valve with the T-

rotor is switched to allow the passage of mobile phase exclusively through the 

column. This initial mobile phase, with a flow of 0.6 mL/min, is composed by 

90% acetonitrile with 5 mM of ammonium formate as ionization agent. The SPE 

step finishes by rinsing the cartridge consecutively with 1% formic acid, 

acetonitrile and water (1 mL each). The cartridges can be reused for three times 

without loss of efficiency. 

 The gradient used for LC separation of the compounds goes from 90% 

acetonitrile (maintained for 5 min) to 70% of acetonitrile in 10 min (also 

maintained for 5 min). A post time of 5 min was necessary to equilibrate the 

column prior to the next injection. The column temperature was set at 15 °C. 

 MS detection was performed in positive ESI mode at unit resolution in 

both quadrupoles. The ESI parameters were set as follows: 4 kV capillary voltage, 

350 °C source temperature, and 50 psi pressure nebulizer. Nitrogen gas flowed at 

9 mL/min to dry the eluent at the ionization source. Precursor and product ions 

selected for selected reaction monitoring (SRM), and those respective collision 

energies, are shown in Table 2. 

 The dwell time was set at 50 ms for all transitions. The entire analytical 

process was completed in 27 min. Nevertheless, the automated system enabled 

the chromatographic analysis of one sample while a second sample can be 

simultaneously prepared. The voltage of the first quadrupole was set at 90 V, 

which allows an efficient filtering for all selected precursor ions. 

2.7. SRM-based quantitation 

 Calibration curves were run by diluting the stock solution with PBS. 

Calibration levels were expressed as ng on colum, ranging from 0.05 to 750. Five 

of them were injected in duplicate. This calibration model was selected because 
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no matrix effects were observed when recovery and ionization suppression were 

studied. 

Table 2. Parameters used for LC–MS/MS determination of essential amino acids. 

Compound 
Retention 

time (min) 

Precursor ion → Product ion 

(m/z) → (m/z) 

Collision 

energy (V) 

Phenylalanine 7.8 166.2 → 120.1 5 

Leucine/isoleucine 9.0 132.2 → 86.1 5 

Methionine 9.2 150.2 → 132.8 0 

Tryptophan 9.5 205.1 → 188.1 5 

Valine 10.7 118.2 → 72.3 10 

Threonine 13.9 120.1 → 74.2 0 

Lysine 14.3 147.2 → 84.1 10 

 

 

3. Results and discussion 

3.1. Development of the LC–MS method 

 A commercial standard solution containing the target amino acids 

(phenylalanine Phe, leucine Leu, isoleucine Ile, methionine Met, tryptophan Trp, 

valine Val, threonine Thr and lysine Lys) was used to optimize the LC–MS 

method. The process was initiated by optimization of the MS parameters, for 

which a generic chromatographic protocol starting with 90% acetonitrile and 

finishing with 40% acetonitrile was used. The recommendation of using a buffer 

solution when working with a HILIC column to obtain reproducible resolution 

results led to utilize 5 mM ammonium formate as ionizing agent, which gives a 

pH of 6. This value is in between the two pKa values of the majority of amino 

acids, at which the net charge of them is neutral. 

 Both positive and negative ionization modes were tested, but the highest 

sensitivity for most compounds was clearly achieved with the positive ESI mode. 

The electrospray variables were optimized by a univariate design. The ranges 

studied for temperature, pressure, and capillary voltage were 200–350 °C,  

30–50 psi, and 3000–4000 V, respectively. The effect of these three variables on 
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the signal intensity corresponding to the target ions was positive, but not 

significant; so all the variables were established at their maximum values tested. 

Superior values led to an increase of background noise. The most abundant ions 

of all amino acids under the optimum conditions were established as precursor 

ions, as shows Table 2, which corresponded in all cases with the ion [M+H]+. 

 The fragmentation of the different amino acids was studied using 

collision energies from 0 to 45 eV. Table 2 shows all product ions selected for 

each amino acid with the respective optimum collision energies. In most cases 

the product ion is produced after the loose of the carboxylic group, generating the 

ion [M–COOH]+. 

 Different gradients were tested seeking for appropriate separation 

between the target analytes in a time as short as possible. All the assayed 

gradients involved acetonitrile and water both contaning 5 mM ammonium 

formate as ionizing agent. The pH of the mobile phase strongly affected the 

chromatographic separation; thus, pHs between 3 and 9 were tested, being pH 6 

the optimum to attain a suited interaction with the chromatographic column. 

Values of pH out of the 5–7 range led to irreproducible results due to an 

inefficient retention of the analytes. Other variables that influenced the 

chromatographic separation —temperature and flow rate— were also studied. 

The best separation was obtained with the program under experimental. 

3.2. Development of the SPE protocol 

 Optimization of the SPE step was carried out under real conditions by 

using a serum pool spiked with the target amino acids. The optimization of the 

SPE protocol was divided into three main blocks: tests with sorbent materials, 

evaluation of the variables involved in each step of the SPE protocol and 

characterization of the process (detailed below under Section 3.3).  

3.2.1. Selection of the suited sorbent material 

 Attending to the variability in the chemical structure of the essential 

amino acids, seven types of SPE sorbent with different retention properties were 
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tested: Hysphere CN (silica-based cyanopropyl phase), Hysphere C2 (silica-based 

ethyl phase), Hysphere C8 (silica-based octyl phase), Hysphere C18 (silica-based 

octadecyl phase), Resin GP (polymeric polydivinylbenzene phase), MM anionic 

(mixed-mode phase containing a strong anion exchange functional group), and 

MM cationic (mixed-mode phase containing a strong cationic exchange 

functional group). Since the phase behavior is different for each type of cartridge, 

three protocols were developed to test sorbents under conditions dependant on 

their retention mechanisms: one for the anionic sorbent, other for the cationic 

sorbent and a third one, a generic protocol, for the rest of the phases. The 

differences were the solution used for equilibration of the cartridge and sample 

loading, and that one for elution of the target amino acids. Thus, the pH played a 

crucial role in this preliminary experiment. The three protocols were initiated 

with a step for solvation of the sorbents by using 1 ml acetonitrile. The sample 

was loaded in the ionic protocols with a 20% acetonitrile (v/v) solution with a 

difference in the pH to enhance the ionic interactions. Thus, the pH of the 

loading solution was alkaline for the anionic sorbent by using 2% ammonia, and 

acid for the cationic sorbent by using 1% formic acid. On the other hand, the 

generic protocol was based on sample loading with water. The elution, 

programmed with the chromatographic mobile phase (90%, v/v, acetonitrile), 

was also distinctive of the three protocols in terms of pH. Thus, the elution from 

the anionic sorbent was performed with 5 mM ammonium formate at pH 4, while 

the same composition but at pH 6 was applied to the elution in the generic 

protocol. These protocols were compatible with the chromatographic process 

since the elution solution does not alter the separation. In fact, in the generic 

protocol the elution and mobile phases were identical, while minimal changes 

were used in the elution solution tested in the anionic protocol. On the other 

hand, the alkaline elution from the cationic sorbent was carried out by using 5% 

ammonia in the mobile phase. This pH change was not compatible with the 

chromatographic process. For this reason, an especial mode designed for elution 

with the minimum volume at a reduced flow-rate was employed to minimize the 

influence on the chromatographic separation. This mode, called focusing elution, 
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has been previously employed in clinical analysis for determination of 

thyronamines in human plasma and tissue [19] and cocaine and its metabolites in 

blood or urine [20,21]. This strategy would allow elution under alkaline condi-

tions to be compatible with a chromatographic process in acid media. The 

instrumental configuration for this approach is shown in Fig. 1, which illustrates 

the main steps involved in the SPE process.  

 

Figure 1. Instrumental configuration including the main steps involved in the SPE step. 

 This preliminary experiment revealed that the cationic sorbent offered an 

optimum response for retention/elution of essential amino acids in serum. The 

acid media favored the retention of the target amino acids, which was 

complemented with an optimum elution under alkaline conditions to displace the 

retained analytes from the cationic sorbent. 

3.2.2.  Optimization of the main variables involved in the SPE process 

 Once the suitability of the MM cationic sorbent for analysis of essential 

amino acids in serum was checked, the variables involved in the SPE protocol 

(viz. composition of the solutions and flow-rate) were studied independently for 
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each SPE step: loading, rinsing and elution. A univariate strategy was used 

because the discontinuous character of the variables studied. The response 

factors, aimed at maximizing sensitivity and minimizing dispersion, were the 

area and height of the chromatographic peaks for the target amino acids.  

 Methanol and acetonitrile were tested as organic solvents in the loading 

solution using a dual strategy depending on the solvent concentration. For 

concentrations of organic solvent below 20% the samples were used as such, 

whereas superior concentrations (tested up to 100% acetonitrile) required a 

deproteinization step to avoid tubes clogging by massive precipitation of proteins. 

Deproteinization was also studied with both organic solvents using different 

dilution ratios (from 1:1 to 1:10, v/v). The best results were obtained after 

deproteinization with methanol using a 6:1 (methanol:serum v/v) ratio  

—600 µL methanol and 100 µL serum sample. By contrast, 90% acetonitrile 1% 

formic acid was the preferred option to load the sample by enhancing the ionic 

interaction. The deproteinization and subsequent loading with a high 

concentration of organic solvent improved the retention of the target analytes, 

favored the elimination of interferences and matrix effects and enabled to 

improve the reusability of the SPE cartridge. The pH of the loading solution, 2.1, 

was slightly below the pKa of the target amino acids except for phenylalanine 

(pKa=1.8). Therefore, retention of analytes was a mixed contribution of cationic 

exchange, preferred for all analytes, but also contribution of non-polar/polar 

interactions ascribed to the polymeric phase. 

 The rinsing step was also developed with acetonitrile by testing different 

concentrations. The deproteinization step simplified rinsing of the cartridge by 

pumping 1 ml  70% acetonitrile prior to elution of the target analytes.  

 Finally, the elution step was done in the focusing mode with a reduced 

volume of 90% acetonitrile/5% ammonia and a low flow rate to avoid effect on 

the chromatographic process developed at acid conditions. The volume of the 

elution phase, tested from 0.2 to 0.6 ml, provided 0.45 ml as the optimum.  
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 As Table 3 shows, a cleaning sequence formed by four steps was required 

to prepare the SPE cartridge for the following analysis. A reusability study 

enabled to report that each cartridge could be reused for three times by setting a 

cut-off value of 5% in terms of efficiency. The SPE process was completed in 7.4 

min, which enables to prepare the following sample while the chromatographic 

analysis is running. Supplementary Fig. 1 illustrates the TIC and SRM 

chromatograms obtained after analysis of serum from an atherosclerosis patient. 

Table 3. Sequence of operations for the overall SPE process. 

Step Solvent Volume (ml) 
Flow rate 

(ml/min) 
Time (s) 

Put the selected cartridge into the left clamp 10 

Solvation Acetonitrile 1.00 2.0 36 

Equilibration 50% acetonitrile 

1% formic acid 

1.00 2.0 36 

Sample loading 90% acetonitrile  

1% formic acid 

0.50 2.0 18 

Rinsing 70% acetonitrile 1.00 1.0 66 

Move cartridge from left to right clamp 5 

Elution 90% acetonitrile 

5% ammonia 

0.45 0.2 135 

Move cartridge from right to left clamp 5 

Rinsing Water 1.00 2.0 36 

Rinsing 2% formic acid 1.00 2.0 36 

Rinsing Acetonitrile 1.00 2.0 36 

Rinsing Water 1.00 2.0 36 

Total time 7 min 35 s 

 

3.3.  Validation of the method  

 The method resulting from optimization of variables was supported on a 

validation study for characterization in analytical terms. For this purpose, 

calibration curves were established by dilutions of the stock solution. The 

correlation coefficients and linear dynamic ranges are shown in Table 4. The 

sensitivity of the method was evaluated by estimation of the lowest limit of 

detection (LLOD) and that of quantitation (LLOQ), both determined by injecting 

in-series dilutions of the multistandard of amino acids to obtain signals 3 and 10 

times, respectively, the background noise (average noise value obtained for blank 
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injections in SRM chromatograms). The absolute concentrations that provided 

these signals are also listed in Table 4. 

Table 4. Analytical figures of merit of the method for analysis of essential amino acids in 

human serum. 

Analyte 
LOD 

(ng on column) 

Linear dynamic range 

(ng on column) Correlation 
coefficient 

LOQ Maximum 

Tryptophan 0.6 1.9 760.0 0.996 

Valine 28.0 95.0 760.0 0.969 

Leucine/isoleucine 0.6 1.9 760.0 0.996 

Methionine 0.6 1.9 760.0 0.993 

Threonine 0.6 1.9 760.0 0.996 

Phenylalanine 0.6 1.9 760.0 0.996 

Lysine 0.6 1.9 100.0 0.995 

 

 The accuracy of the method and potential matrix effects were assessed by 

analysis of non-spiked and spiked serum samples at two concentration levels 

(100 and 300 ng/mL) and by comparison to the analysis of aqueous solutions of 

the standard mixture at the two concentrations. The recovery factor for each 

analyte was studied with the two-cartridge configuration shown in Fig. 2 by the 

analysis of five replicates of a non-spiked serum pool. Two MM cationic 

cartridges were in-series located, so after sample injection, the amount of amino 

acids non retained in the first cartridge was retained in the second. The eluates 

from both cartridges were sequentially injected into de QqQ analyzer, estimating 

the concentration retained in each cartridge. The recovery factor in this system 

was calculated as amount retained in cartridge 1/(amount retained in cartridge 1 

+ amount retained in cartridge 2). The recoveries ranged between 99.4–99.9% 

for the target analytes, which ensured quantitative retention/elution of them.  

 Matrix effects were estimated by analysis of spiked serum and 

multistandard solutions at the two levels. The peak areas for chromatographic 

signals obtained from the analysis of the blank (non-spiked serum) were 

substracted from those reported by the analysis of spiked serum. The recovery 

factor in this case ranged from 96.9–99.9%, which ensures the absence of matrix 
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effects. This is justified taking into account that a deproteinization step was 

previously carried out.  

 

Figure 2. Two-cartridge configuration employed to calculate the recovery factor. 

 Within-laboratory reproducibility and repeatability were evaluated in a 

single experimental setup with duplicates by daily experiments carried out for a 

week with a serum pool . The repeatability, expressed as relative standard 

deviation (RSD), ranged from 2.3 to 6.0 %, and the within-laboratory 

reproducibility, also expressed as RSD, ranged from 3.9 to 10.4 %. 

3.4.  Application of the method to human serum from atherosclerosis 

patients 

 Different studies have evidenced that amino acid levels can be related 

with cardiovascular diseases. The method optimized in this research was applied 

to human serum sampled from individuals affected by atherosclerosis (n=122), 

which is one of the most frequent causes of cardiovascular diseases. Eighty of 

these patients were diagnosed with stable angina while the rest of the individuals 
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(42) had suffered an acute myocardial infarct. Therefore, the main difference 

between both groups is that the latter had presented the formation of thrombi 

with subsequent lesions derived from ischemia.  

Table 5. Comparison between normal levels of essential amino acids in plasma and levels 

obtained in serum of cardiovascular patients. 

Analyte 
Normal levels 

(μg/ml) 

Levels in cardiovascular patients 

(μg/ml) 

Threonine 16.7±3.9 7.8±3.8 

Valine 27.3±5.0 8.0±5.4 

Leucine + isoleucine 24.3±5.1 30.9±16.8 

Tryptophan 9.0±1.5 7.4±5.0 

Lysine 27.5±4.7 5.5±2.0 

Methionine 3.7±0.6 24.5±13.1 

Phenylalanine 9.4±1.5 45.4±25.6 

 

 The concentrations found for each target amino acid in samples from 

atherosclerosis patients are listed in Table 5. The samples were injected in 

triplicate resulting in RSD values lower than those estimated in the repeatability 

test. Averaged levels in healthy individuals for these analytes according to the 

Human Metabolome Database are also included to compare between them. These 

results were provided by Cynober after analysis of plasma with the Hitachi 

analyzer . Anyway, different studies have reported that serum and plasma levels 

of amino acids are comparable except for dicarboxilic amino acids that are high 

concentrated in red blood cells . As can be seen, levels of threonine, valine and 

lysine were below normal levels detected in plasma. On the other hand, 

leucine/isoleucine, methionine and phenylalanine were found above normal 

levels in plasma. These results are in partial agreement with other studies found 

in the literature. Thus, Yao et al. have reported elevated levels of threonine and 

phenylalanine in individuals affected by a myocardial infarction . On the other 

hand, increased levels of leucine/isoleucine and decreased concentrations of 

lysine, threonine and phenylalanine were found in plasma from patients who 

suffered a heart failure as compared to healthy individuals. In the study proposed 

here, phenylalanine levels were above normal levels in patients with stable angina 

and with myocardial infarction. On the other hand, threonine levels were below 
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the normal levels; while a significant increase of threonine level in patients with 

myocardial infarction as compared to patients with stable angina was found. 

 Associations between the concentrations of the target amino acids in 

serum were detected by correlation analysis with a statistical significance at 95% 

confidence level (P<0.05). High correlations were found between all pairs of 

essential amino acids, except for the tryptophan-phenylalanine and tryptophan-

threonine pairs. 

 The influence of age on amino acids levels was also studied in four groups 

of patients defined to obtain a normal or Gaussian distribution: 36–50, 51–65, 

66–80, and 81–96 years old. With these groups, the skewness and kurtosis 

coefficients were in the range 0±2 for the studied cohort, which is required for a 

normal distribution. An ANOVA test revealed no significant differences were 

detected between groups, so the age does not exert any influence on the 

concentrations of essential amino acid. 

 After this characterization, the influence of factors such as obesity, 

hypercholesterolemia, sex and atherosclerosis on the concentration of essential 

amino acids was studied. A Multifactor Analysis of Variance (MANOVA) test was 

applied to detect the influence of these factors and their interactions. This 

chemometric approach enables to estimate the significance of different sources of 

variation by analysis of metabolomics data. The variability observed in the data 

set for each compound is decomposed into contributions to different factors. The 

contribution of each factor (or interaction between factors) is measured by 

removing the effects of all other factors and expressing it as a sum of squares. The 

values and the percent that they represent in the total variability of the 

compound are shown in Table 6. The concentrations of lysine (p=0.0335) and 

threonine (0.0058) were significant in atherosclerosis patients as a function of 

either occurrence of ischemia or not. This can be confirmed by visualization of 

the box-and-whisker plots representing the concentrations of both essential 

amino acids for patients with stable angina and acute myorcardial infarction (Fig. 

3). 
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Figure 3. Box-and-whiskers plots for lysine and threonine including mean and 95% least 

standard deviation for patients with stable angina and myocardial infarction. 

 

 As can be seen, serum concentrations of lysine and threonine were higher 

in patients who had suffered a myocardial infarct. Apart from this statistical 

significance, the concentration of both analytes was also influenced by the 

interaction of ischemia–sex factors. Discrimination between male and female 

individuals is exposed in Fig. 4 that shows a high relevance of sex to explain the 

variability of the results. Threonine (p=0.0453) and lysine (p=0.0214) levels are 

considerably increased in those female atherosclerotic patients who had suffered 

a myocardial infarct. In the case of male individuals, only threonine increased its 

serum concentration as a result of ischemia. However, lysine level did not report 

the same behavior since it was slightly decreased due to ischemia.   

 

 

Figure 4. Interaction plot showing the influence of the sex in threonine levels for patients 

diagnosed with stable angina or myocardial infarction. 
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Figure 5. Box-and-whiskers plots for valine and methionine including mean and 95% of 

least standard deviation for obese and non-obese patients. 

 Concerning the two risk factors, only obesity contributed to explain the 

variability in the concentrations of essential amino acids. As can be seen, valine 

levels (p=0.0167) and, particularly, methionine levels (p=0.0001) were highly 

influenced by obesity. The box-and-whisker plots, including the 95% least 

significance difference for the levels of valine and methionine in obese and non-

obese atherosclerotic patients is shown in Fig 5. The two plots show significantly 

increased levels of both amino acids in obese atherosclerotic patients, which 

could be ascribed to diet. 

 The interaction between sex and obesity expressed the variation of 

methionine with statistical significance (p=0.0479). Thus, levels of methionine 

were higher in serum from non-obese male patients than in non-obese female 

patiens. The opposite situation was found with obese patients that reported 

higher methionine concentrations in female atherosclerotic patients (Fig. 6).  

 

Figure 6. Interaction plot showing the influence of the sex in methionine levels for obese 

and non-obese patients. 
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 Finally, interaction between obesity and cholesterol explained with 

statistical significance (p=0.0214) variation on valine levels. In this case (Fig. 7), 

valine levels were higher in non-obese individuals with hypercholesterolemia and 

also in obese individuals with normal cholesterol levels. 

 

Figure 7. Interaction plot showing the influence of the hypercholesterolemia in valine 

levels for obese and non-obese patients. 

 

4. Conclusions 

 An automated method based on an SPE–LC–MS/MS configuration has 

been developed for analysis of essential amino acids in human serum. The 

method was optimized for high-throughput analysis of samples with 

synchronization of the sample preparation and determination steps. The 

applicability of the method has been supported on analysis of a cohort of 

atherosclerotic patients diagnosed with stable angina and acute myocardial 

infarction. The ischemia phenomena, present in patiens who had suffered an 

infarct, has revealed a significant contribution in the concentration of two 

essential amino acids such as threonine and lysine. This effect was more 

pronounced in female than in male individuals. The influence of obesity, as an 

important risk factor in cardiovascular diseases, has also been elucidated 

indicating higher levels of valine and methionine in serum from obese 

individuals. 
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Supplementary figure 1. TIC and SRM chromatograms obtained after analysis of 

serum from an atherosclerotic patient. 
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tricarboxylic acids cycle metabolites on 
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Castro* 

 

Abstract 

 Metabolites involved in the tricarboxylic acid (TCA) cycle have previously 

been proposed as cardiovascular biomarkers. This cycle plays a key role in cell 

metabolism and the levels of the involved metabolites can also be affected by 

other physiological factors. The influence of three cardiovascular risk factors such 

as obesity, hypercholesterolemia, and smoking habit on serum levels of  

TCA-cycle metabolites has been studied in patients diagnosed with significant 

coronary lesion. For this purpose, a method based on GC–MS for determination 

of the target metabolites (viz. citric/isocitric, pyruvic, aconitic, oxaloacetic, malic, 

fumaric and succinic acids) in serum has been developed. The high accuracy and 

throughput analysis featuring the method have allowed application to a cohort of 

223 patients, 172 of them with significant coronary lesion. Multifactor analysis of 

variance has revealed interactions between the occurrence or not of a coronary 

lesion and the risk factors considered in this study. These interactions were 

crucial to explain the levels of target TCA metabolites. Statistical evaluation by 

ROC curves allowed evaluating the discrimination capability of those significant 

metabolites with the occurrence of coronary lesions.  
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1.  Introduction 

 The citric acid cycle, also known as the tricarboxylic acids cycle (TCA 

cycle) or the Krebs’ cycle, consists of a series of chemical reactions aimed at 

generating energy (ATP) through oxidization of acetate from carbohydrates, fats 

and proteins into carbon dioxide and water. In addition, the cycle provides 

precursors for the biosynthesis of compounds including certain amino acids as 

well as the reducing agent NADH, involved in a number of biochemical reactions 

(Suppl. Fig. 1). Oxygen is needed along the TCA pathway since the different 

coenzymes involved in the process need subsequent re-oxidation [1]. Drop of 

oxygen levels in cells interrupts activity in the Krebs cycle; therefore, the products 

from glycolysis would not be processed as required. 

 Alterations in the TCA cycle have been correlated with numerous 

pathologies such as cancer [2], cardiovascular diseases [3], metabolic syndrome 

[4] and neurodegenerative disorders [5], where oxidative stress plays a key role 

[6–9]. The importance of the TCA cycle in the metabolic defensive mechanism 

against oxidative stress is clear as this cycle is the main producer of pro-oxidant 

NADH. Thus, alterations in the TCA cycle could modulate the production of 

reactive oxygen species (ROS) by increasing the concentration of ROS and 

shortening cellular longevity as a result. The link between TCA cycle and ROS 

homeostasis may explain the fact that an inefficient functioning of the former 

characterizes various pathological conditions and ageing [10].  

 Atherosclerosis, one of the most common cardiovascular diseases, is 

attributed to the accumulation of lipids, macrophages, smooth muscle cells, etc. 

in the walls of arteries, thus reducing the lumen of arteries. The result is the ap-

pearance of coronary lesions, which make difficult the blood supply of nutrients 

and oxygen to the heart muscle. The relationship between cardiovascular diseases 

and the TCA cycle has been supported on the appearance of ROS and oxygen sup-

ply deficiency (ischemia) [11]. In fact, metabolites involved in the TCA cycle have 

been widely suggested as cardiovascular biomarkers [12–15]. Thus, citric acid was 

found at lower concentration in patients with non-ST elevation acute coronary 
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syndrome (NSTEACS) as compared to both patients with stable coronary artery 

disease and controls [12]. Also, succinate and malate were detected at high con-

centrations in the circulation system of groups affected by myocardial infarction 

[13], although inhibition of the TCA cycle is supposed on myocardial ischemia. In 

fact, citric acid level was decreased in groups with clear-cut inducible ischemia 

[14]. Additionally, α-ketoglutaric acid is within the plasma metabolites that 

allowed discrimination between individuals with high and low risk of suffering 

cardiovascular diseases in general terms, according to well-known risk factors 

such as age, hypertension, hypercholesterolemia, obesity or smoking habits [15]. 

It can be of interest to know how these factors, together with cardiovascular 

disorders, can affect the levels of metabolites involved in the TCA cycle.  

 Different analytical platforms have been developed to determine com-

pounds of the TCA cycle, the most common being GC–MS after derivatization 

[16–18]. Other strategies such as LC with either fluorescence (after 

derivatization) or photometry detection [19,20] have also been used. In this 

research, a method based on GC–MS has been proposed for determination of 

TCA cycle metabolites in human serum from individuals diagnosed with 

significant coronary lesions. The objective was to study the potential effects of 

risk factors for the occurrence of coronary lesions such as obesity, 

hypercholesterolemia or smoking habit on serum levels of metabolites of the TCA 

cycle. The data thus obtained have been treated searching for factors that could 

explain variations in the level of metabolites of the TCA cycle. 

 

2. Material and methods 

2.1. Materials, reagents and chemicals 

 The target metabolites were citric acid, oxaloacetic acid, aconitic acid, 

isocitric acid, pyruvic acid, α-ketoglutaric acid, malic acid, fumaric acid and 

succinic acid, supplied by Sigma–Aldrich, Co. (St. Louis, MO, USA). Isotopic 

(15N) glutamic acid from Sigma–Aldrich was used as internal standard for 

quantitation of TCA metabolites. Methanol, formic acid and chloroform were 
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from Panreac (Barcelona, Spain). Bis-(trimethylsilyl)-fluoroacetamide (BSTFA) 

and trimethylchlorosilane (TMCS) from Sigma–Aldrich were used as silylation 

agents in the derivatization step. Pyridine from Merck (Darmstadt, Germany) 

was used as derivatization solvent. Deionized water (18 MΩ • cm) from a 

Millipore Milli-Q water purification system was used to prepare the solutions.  

2.2. Cohort selected for the study 

 A total of 223 patients diagnosed with different cardiovascular problems 

were recruited at the Cardiology Unit of Miguel Servet Hospital (Zaragoza, 

Spain). Among them, 172 patients were affected by a significant coronary artery 

lesion as atherosclerosis after evaluation through cardiac catheterization 

(angiographic stenosis revealed a reduction of the arterial lumen ≥ 70%). Blood 

samples from these patients were collected within 7 days after catheterism 

intervention. The rest of the patients (n=51) were affected by other clinical 

manifestations without significant coronary lesion such as chest pain, angina, 

and heart failure, or were heart transplanted individuals. The main 

characteristics of the patients are shown in Table 1 with discrimination between 

individuals diagnosed with a coronary lesion or not. The average age of the cohort 

was 66±14, with a similar range for patients with and without coronary lesion. A 

70.4% of the total individuals were male, most of them affected by a coronary 

lesion. Concerning risk factors, 46.2% of total individuals were smokers, 31.4% 

obese and 45.7% with hypercholesterolemia.  

Table 1. Features of the cohort under study. 

Characteristic 
Patients 
(n=223) 

Patients with 
coronary lesion 

(n=172) 

Patients without 
coronary lesion 

(n=51) 

Fisher’s 
exact test 

p-value 

Age 66 ± 14 67.7 ± 13.4 61.5 ± 12.8 – 

Male gender, n (%) 157 (70.4) 136 (79.1) 21 (41.2) 0.000*** 

Smoking habit, n (%) 103 (46.2) 86 (50.0) 17 (33.3) 0.026* 

Obesity, n (%) 70 (31.4) 57 (33.1) 13 (25.5) 0.195 

High-cholesterol level, n (%) 102 (45.7) 88 (51.2) 14 (27.5) 0.002** 

 * P-value between 0.05 and 0.01. 
** P-value between 0.01 and 0.001. 
*** P-value lower than 0.001. 
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2.3. Blood extraction and serum isolation 

 Venous blood was collected in evacuated sterile serum tubes without 

additives (Vacutainer, Becton Dickinson, Franklin Lakes, NJ, USA) and incu-

bated for 10 min at room temperature to allow coagulation. Then, the tubes were 

centrifuged at 2000 × g for 15 min at 4 °C to isolate the serum fraction 

(processing within 1 h after collection). Serum was placed in plastic ware tubes 

and stored at –80 °C until analysis.  

 All steps from blood extraction to analysis were performed in compliance 

with the guidelines dictated by the World Medical Association Declaration of 

Helsinki (2004), and supervised by specialized personnel from Miguel Servet 

Hospital (Zaragoza, Spain). Individuals selected for this study were previously 

informed to obtain consent. 

2.4.      Instruments and apparatus 

 A micro-centrifuge Sorvall Legend Micro 21R from Thermo Scientific 

(Waltham, MA, US) was used to separate the phases after extraction and protein 

precipitation. A speed-vac Concentrator Plus, from Eppendorf Ibérica (Madrid, 

Spain), was used to evaporate the methanol phase before derivatization. A block 

heater from Stuart (Afora, Barcelona, Spain) was used to maintain constant the 

temperature during the derivatization step. 

 A Varian CP-3800 Gas-Chromatograph coupled to a Saturn 2200 ion-

trap mass spectrometer (Sugar Land, TX, USA) equipped with a VF-5ms Factor 

Four capillary column (30 m x 0.25 mm, 0.25 μm), also provided by Varian, was 

used for the specific analysis of organic acids in the extracts. The overall system 

was controlled and the data acquired and processed by using Star Chroma-

tography Workstation 6.0 software (Varian, Walnut Creek, California, USA). All 

injections were carried out using a Varian 8400 autosampler equipped with a 10 

μl syringe from SGE (Scharlab, Barcelona). 
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2.5. Sample preparation for analysis of tricarboxylic acids 

 First, 5 μL of the internal standard stock solution at 80 µg/mL was added 

to the serum sample (150 μL) prior to deproteinization with 300 μL of methanol. 

The mixture was vortexed for 1 min and subsequently cooled at –20 ºC for 3 min. 

The resulting precipitate was separated by centrifugation at 14000 × g for 15 min 

at 4 ºC and the methanol aqueous phase was isolated and cleaned by extraction 

of non-polar compounds with 300 μL of chloroform. The clean phase was 

concentrated by evaporation and the resulting residue was reconstituted with 10 

μL of pyridine and 1 μL of formic acid. For derivatization, 90 μL of a 98:2 

BSTFA–TMCS mixture was mixed with the analytical sample, shaken for 30 s 

and maintained at 30 °C for 30 min before injection into the chromatograph. 

2.6. GC–MS analysis  

 Eight µL of the derivatized solution was injected into the GC instrument 

with the following split ratio program: 1:50 (0 min), 1:1 (0.5 min), 1:100 (3.5 min) 

and 1:20 (4.5 min). The injector temperature was programmed as follows: from 

70 °C (held 0.5 min) to 270 °C (maintained for 25.5 min) at a rate of 150 °C/min. 

Carbon dioxide was used as coolant gas for the injector in order to reduce 

analysis time. The column temperature was programmed from 60 °C (held 1 min) 

to 300 °C (maintained for 5 min) at a rate of 10 °C/min. Helium was used as 

carrier gas at a constant flow rate of 1 mL/min.  

 Electron impact ionization (EI) positive mode was selected prior to single 

ion monitoring of each analyte by ion trap in microselected ion storage (μSIS) 

mode. The instrumental parameters were set at the following values: filament 

emission current 70 µA; transfer line, ion trap and manifold temperatures 280, 

200 and 50 °C, respectively. The scan time for data acquisition was set at 1.0 s, 

and the number of microscans per second for each segment was a function of the 

mass range under study (always from 50 m/z to ten units above the highest mass 

monitored in the segment). 
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2.7. Statistical analysis 

 Statgraphics Centurion (XV.I version, Statpoint Technologies Inc.), R 

(URL http://www.R-project.org) and pROC (1.5.1 version, URL 

http://web.expasy.org/pROC/) were used for data analysis.  

 The Kolmogorov-Smirnov test was used to check if TCA serum levels 

showed normal distributions in the cohort selected for the study. Statistical 

significance analysis (set at 0.05) was carried out by the non-parametric Mann-

Whitney test for continuous variables, while the Fisher exact test was used for 

categorical variables. Multifactor analysis of variance was tested to evaluate the 

significance of each factor as well as two-factor interactions after normalization 

of TCA serum levels by box-cox transformation. 

 A receiver–operating characteristic (ROC) curve was determined in each 

cohort for each individual predictor, and a cutoff value was selected as the 

threshold predicting the occurrence of a coronary lession with specificity >90%. 

Partial ROC AUCs (pAUC) [21,22] were calculated using an adaptation of 

algorithms previously reported [23]. pAUCs were restricted between 90–100% 

specificity, considering an efficient predictor in clinical practice should be able to 

identify clearly at least nine out of ten patients as having a favorable prognosis for 

negative tests. 

 

3. Results and discussion 

3.1. Optimization of sample preparation 

 Sample preparation was optimized by a serum pool to which the suited 

volume of internal standard was added to eliminate signal fluctuations due to 

variations in the injection volume. The protein content in serum justified the 

inclusion of a deproteinization step, efficiently carried out with methanol in a 2:1 

methanol–serum ratio. Methanol has been widely used for protein precipitation 

by virtue of its high reproducibility and efficiency [24]. After centrifugation, 

different organic solvents were tested for the removal of organic interferences by 
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liquid–liquid extraction. An 1:1 methanol–chloroform ratio provided no 

significant losses of metabolites but a significant decrease of the background 

signal.  

 The reaction temperature and time of the derivatization step were also 

optimized, and the necessity for including an oximation step was tested as some 

methods for analysis of organic carboxylic acids include this step [18,25,26] while 

some others do not [16,17,19]. Oximation was found to be unnecessary; therefore, 

the residue from evaporation was directly reconstituted with 10 μL of pyridine 

(the optimum medium for derivatization with BSTFA–TMCS). The difficulty for 

complete dissolution of the residue made necessary the addition of 1 μL of formic 

acid. After shaking, 90 μL of the derivatization mixture (98:2 BSTFA–TMCS) was 

added to form trimethylsilyl (TMS) derivatives [27]. Several aliquots of the serum 

pool were prepared in this way, each maintained at different temperature (from 

25 to 60 °C) for different times (from 15 to 60 min) to establish the optimum 

operational conditions for derivatization of the target metabolites. The best 

results were obtained at 30 °C for 30 min. Supplementary Fig. 2 shows the effect 

of temperature and derivatization time on the efficiency of the reaction for three 

representative metabolites. 

3.2. Characterization of the GC–MS method 

 Isotopic glutamic acid was selected as internal standard to control 

potential errors in the protocol. The mass spectra of the TMS-derivatized 

compounds formed in the EI source led to fragment ions predicted from their 

chemical structure. The monitored ions were in accordance with research in 

which the analytes were determined using the same derivatizing reagent [16,18]. 

The quantitation ions for all target compounds, including the internal standard, 

are shown in Table 2, which also includes the chromatographic retention times. 

The chromatogram obtained from a serum sample spiked with 100 µg/L of each 

analyte is shown in Fig. 1. 
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Fig. 1. Single ion monitoring chromatograms from a serum sample spiked with 100 μg/L 

of the target metabolites and the internal standard (IS). 

 

Table 2. Quantitation ion and retention time for each target compound. 

 

Compound Quantitation ion (m/z) Retention time (min) 

Glutamic acid (isotopic  marker) 291.2 5.8 

Oxaloacetic acid 290.0 6.1 

Pyruvic acid 174.0 6.5 

Succinic acid 335.5 9.9 

Fumaric acid 278.3 10.4 

Malic acid 335.3 12.1 

α-Ketoglutaric acid 304.3 13.1 

Aconitic acid 229.4 15.1 

Citric acid/Isocitric acid 465.4 15.6 

 

 The calibration equations were established by using the analyte/internal 

standard peak-area ratio as a function of the concentration of each analyte in 

order to circumvent matrix effects. The linear dynamic range for each analyte is 

shown in Table 3. Characterization of the method also involved calculation of 

limits of detection (LODs) and quantification (LOQs), which were estimated by 

diluting a water solution of the target compounds. The LOD for each analyte was 

expressed as the mass of analyte which gives a signal 3σ above the mean blank 
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signal (where σ is the standard deviation of the blank signal), and the LOQ as the 

mass of analyte which gives a signal 10σ above the mean blank signal. Values of 

LOD and LOQ for each analyte, expressed as concentration in serum, are shown 

in Table 3. Sensitivity values reported with this method were better than those 

described in recently published methods, which presented minimum LOD values 

of 10 and 20 µg/L for α-ketoglutaric acid and citric acid, respectively [29], while 

in other cases LODs from 56 to 140 µg/L [24,28] have been reported. 

 

Table 3. Limits of detection (LOD) and quantitation (LOQ) for each target compound and 

linear dynamic range of the calibration curve. 

 

Compound 
LOD 

(µg/L) 

Linear dynamic range (µg/L) 

LOQ 
Maximum 

limit 

Oxaloacetic acid 2.00 6.67 388 

Pyruvic acid 10.00 33.33 317 

Succinic acid 2.00 6.67 1107 

Fumaric acid 2.00 6.67 626 

Malic acid 2.00 6.67 526 

α-Ketoglutaric acid 10.00 33.33 425 

Aconitic acid 2.00 6.67 321 

Citric/Isocitric acid 20.00 66.70 402 

 

 The precision of the method was calculated by injecting different aliquots 

of the same sample twice a day for seven days. The results obtained for each 

compound in terms of intra-day and inter-days precisions, expressed as percent 

of relative standard deviation (RSD), are shown in Table 4. Those values were 

quite acceptable for analysis of biological samples. As an example, Lu et al. [29] 

obtained intraday variability values twice or six times higher than those obtained 

with our method. The accuracy of the method was calculated by comparing a 

serum sample spiked with a known quantity of analyte with the same serum 

sample without spiking. Results obtained are shown in Table 4. 
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Table 4. Precision study expressed as percent of relative standard deviation (% RSD) and 

accuracy obtained expressed as recovery percentage. 

Compound 
Intra-day 
precision 

Inter-day 
precision 

Accuracy 

Oxaloacetic acid 11.4 17.4 102.7 

Pyruvic acid 7.7 17.2 100.8 

Succinic acid 5.3 15.8 99.8 

Fumaric acid 5.2 5.8 100.1 

Malic acid 4.6 6.4 100.0 

α-Ketoglutaric acid 7.7 14.8 101.9 

Aconitic acid 3.2 7.9 109.5 

Citric/Isocitric acid 9.4 15.4 95.4 

 

3.3. Application of the method to human serum samples from the cohort 

under study 

 As commented under “Introduction”, different studies have evidenced 

that the levels of compounds involved in the TCA cycle could be related to 

cardiovascular diseases. In this study, the relationship between TCA serum levels 

and the diagnosis of coronary lesions has been studied by considering different 

risk factors influencing the occurrence of cardiovascular disorders. The risk 

factors studied were obesity, hypercholesterolemia and smoking habit. Apart 

from them, an anthropometric factor such as individual gender was considered in 

the statistical analysis. The study of categorical variables revealed statistical 

significance of three factors by application of the Fisher's exact test (see Table 1): 

smoking habit (p = 0.026) and, specially, hypercholesterolemia (p = 0.002) and 

gender (p = 0.000). The obesity did not report a statistical contribution to the 

presence of coronary lesion in the target cohort.  

 For analysis of TCA in serum, the samples were injected in triplicate, and 

the RSD values were of the same order as those estimated in the precision study. 

Average concentration for each target compound, with the corresponding 

standard deviation, differentiated patients with significant coronary lesion from 
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those without coronary lesion, as shows Table 5. Since TCA concentrations did 

not show normal distributions (Kolmogorov–Smirnov test) between-group 

differences were tested with the non-parametric Mann–Whitney U test. This 

non-parametric test did not detect significance of any metabolite between 

individuals with or without coronary lesion. Prior to application of this test, the 

influence of individuals age on the levels of target metabolites was studied by 

grouping the patients to obtain a normal or Gaussian distribution: 36–50, 51–65, 

66–80, and 81–96 year old. With these ranges, the skewness and kurtosis 

standard were between 0±2, fulfilling the condition required for normal 

distributions. No significant differences were detected between groups, so the age 

did not influence levels of the target compounds. 

Table 5. Levels of TCA cycle metabolites in the cohort under study expressed as 

mean±standard deviation (µg/L). 

Compound 
With significant 
coronary lesion 
Mean ± SD (n=3) 

Without coronary 
lesion 

Mean ± SD (n=3) 

Mann-Whitney 
U test 
P-value 

Oxaloacetic acid 50.9 ± 28.9 49.0 ± 20.6 0.3903 

Pyruvic acid 152.8 ± 74.2 134.3 ± 88.1 0.1227 

Succinic acid 151.2 ± 76.7 219.3 ± 126.9 0.5411 

Fumaric acid 164.9 ± 27.0 164.9 ± 23.7 0.6070 

Malic acid 43.3 ± 27.5 52.1 ± 33.9 0.2028 

α-Ketoglutaric acid 64.3 ± 57.4 80.9 ± 57.9 0.2565 

Aconitic acid 150.4 ± 77.3 175.7 ± 108.9 0.9169 

Citric/Isocitric acid 228.0 ± 147.5 238.6 ± 160.1 0.6297 

 

 Interactions between categorical and quantitative variables were 

analyzed by a multifactor analysis of variance. The variability of each compound 

was decomposed into contributions from different factors. The contribution of 

each factor (or interaction between factors) was measured by removing the 

effects of all other factors and expressing the contribution as a sum of squares. 

The values and the percent they represented in the total variability of the 

compounds are shown in Suppl. Table 1. As can be seen, risk factors were very 
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influential on the levels of pyruvic acid, oxaloacetic acid, aconitic acid and 

fumaric acid. In particular, the smoking habit contributed to explain the levels of 

pyruvic acid (p = 0.0456), oxaloacetic acid (p = 0.0141) and fumaric acid (p = 

0.0254); therefore, smoking is the most influential of the risk factors under study 

on the level of these TCA. Concerning aconitic acid, its serum level was 

significantly explained by the occurrence of coronary lesions. In the case of 

pyruvic acid, Fig. 2A shows that its serum level was higher in smoking patients, 

which is justified by the level of oxygen in blood from smokers, which is lower 

than in non-smokers and explains the decreased efficiency of the Krebs cycle in 

the latter. 

  Oxalacetic and fumaric acids, integrated in the last pathways of the Krebs 

cycle (see Fig. 2A), showed a behavior similar to that of pyruvic acid. Concerning 

interaction coronary lesion–aconitic acid, Fig. 2B shows that the concentration of 

this TCA was lower in individuals diagnosed with coronary lesion than in the rest 

of individuals in the cohort. 

No significant contribution was found for the resting factors under study, namely, 

the individuals gender, obesity or hypercholesterolemia, although the interaction 

effect between factors was critical. Thus, the analysis of two-factor interactions 

revealed the importance of certain risk factors to explain serum levels of the 

target TCA metabolites. Two of the main interactions were coronary lesion × 

smoking habit and coronary lesion × obesity, with highly-significant influence on 

pyruvic acid (p = 0.0029) as well as malic acid (p = 0.0214) and  

α-ketoglutaric acid (p = 0.0021). As Fig. 3 shows, the influence of obesity and 

smoking habit was critical to understand these results since an opposite effect 

was observed depending on obese/non-obese and smoker/non-smoker 

conditions of the individuals. Concerning α-ketoglutaric and malic acids, serum 

levels were considerably higher in obese individuals diagnosed with a coronary 

lesion, but not in non-obese individuals. Pyruvic acid also revealed a 

contradictory behavior since smoker individuals diagnosed with coronary lesion 

reported higher concentrations than smoking individuals without coronary 

lesions and also than non-smoking individuals (Fig. 3B). One other interaction 



   

396 

Method based on GC–MS to study the influence of tricarboxylic acids 

cycle metabolites on cardiovascular risk factors  

contributing to explain levels of TCA metabolites was the gender × smoking 

habit, which influenced serum concentrations of pyruvic and succinic acids. The 

behavior observed for both TCA metabolites is shown in Suppl. Fig. 3. Previous 

studies have reported that gender can also affect metabolites involved in the TCA 

cycle since men generally burn calories more quickly than women as the former 

posses more muscle tissue [30]. This fact could explain the levels found in non-

smoking individuals, but not the change observed for smokers, which 

preferentially affects women. This may be due to the fact that women are more 

vulnerable than men to tobacco smoking effects, shown by more breathlessness, 

coughing and bronquitis [31].  

 

Fig. 2. Mean normalized concentrations in serum (95% of standard deviation) for  

(A) pyruvic, fumaric and oxaloacetic acids in patients with/without smoking habit;  

(B) aconitic acid in patients with/without coronary lesion. The concentration values were 

normalized by dividing each value by the highest concentration value. 
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Fig. 3. Interaction plot of: (A) obesity × significant coronary lesion on α-ketoglutaric and 

malic acid levels; (B) smoking habit × significant coronary lesion on pyruvic acid levels. 

 

3.4.  Evaluation of the TCA predictors by ROC curves 

 The multifactor analysis of variance revealed the influence of coronary 

lesions on the variability of concentrations of TCA metabolites in serum, directly 

(aconitic acid) or by interaction with risk factors such as smoking habit (pyruvic 

acid) or obesity (malic and α-ketoglutaric acids). These results were validated by 

ROC curves and by estimation of the pAUC. Evaluation of a predictor by the total 

AUC is not recommended when the performance test only takes place in high 

specificity or high sensitivity regions [32]. For this reason, the pAUC parameter is 

more suited since it is restricted to specific regions of the curve. In this study, 

aconitic acid was evaluated by one-factor ROC curves (ocurrence or not of 

coronary lesion), while malic-, α-ketoglutaric- and pyruvic acids were evaluated 

by a two-factor ROC curves to take into account the interaction effects detected in 

the multifactor analysis of variance. Thus, malic and α-ketoglutaric acids were 

evaluated by the occurrence of coronary lesion and obesity as factors, while 

pyruvic acid was evaluated by the occurrence of coronary lesion and smoking 

habit as factors. Figure 4 shows the ROC curves for the four TCA metabolites 
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highlighting the specificity threshold (above 90%) for each TCA metabolite to 

reduce the probability of false negative predictions. According to the ROC curves, 

aconitic and pyruvic acids were able to discriminate patients with or without 

coronary lesions (with smoking habit or not for pyruvic acid) with high specificity 

(92 and 91%, respectively), but with low sensitivity (21 and 17%, respectively). 

The situation was different for the other two TCA metabolites the concentration 

profiles of which were significantly explained by the interaction between 

coronary lesion and obesity. Thus, malic acid was able to discriminate individuals 

with coronary lesions with specificity of 92% and sensitivity of 49%, while α-

ketoglutaric acid reported values of 93% specificity and 56% sensitivity. The α-

ketoglutaric acid seems to have a higher discrimination capability than malic 

acid. However, these results need to be supported on the pAUC parameter of the 

two ROC curves, which was 2.3% for α-ketoglutaric acid and 4.2% for malic acid. 

These values enable to conclude that α-ketoglutaric acid discrimination capability 

is less robust than that observed for malic acid. 

 

Fig. 4. ROC curves of malic, aconitic, α-ketoglutaric and pyruvic acids for the one- factor 

or two- factors combination for which each acid was significant. The vertical light grey 

shape corresponds to the pAUC region (between 90 and 100% specificity). 
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4. Conclusions 

 The relevance of three risk factors such as hypercholesterolemia, obesity 

and smoking habit on cardiovascular diseases has been studied through their 

influence on serum levels of TCA metabolites for patients diagnosed with 

coronary lesions. The consideration of these risk factors was crucial to explain the 

variability of the target TCA for patients with coronary lesion versus control 

individuals. TCA metabolites are primary metabolites that could be affected by 

numerous internal and external aspects. For this reason, these factors should be 

considered when TCA cycle metabolites are proposed as potential biomarkers in 

clinical diagnosis. In this study, the statistical analyses were supported on ROC 

curves and their related parameters to validate the discrimination capability of 

TCA metabolites. Statistical analysis revealed that malic acid and α-ketoglutaric 

acid led to models with high specificity and acceptable sensitivity for 

discrimination between patients with and without coronary lesions. The 

discrimination model of α-ketoglutaric acid was less robust than that of malic 

acid. 
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Supplementary Fig. 1. Krebs’ cycle scheme including interactions with cholesterol, fatty 

acids and carbohydrates. 
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Supplementary Fig. 2. GC–MS peaks of aconitic, fumaric and succinic acids obtained at 

different derivatization times and temperatures in the optimization step. 

 

 

 

 

Supplementary Fig. 3. Interaction plot of smoking habit × gender on pyruvic and 

succinic acid levels. 
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Analytical platform for verification and 

quantitation of target peptides in human serum: 

Application to cathelicidin  

M. Calderón-Santiago, J.M. Mata-Granados, F. Priego-Capote*, J.M. Quesada-

Gómez, M. D. Luque de Castro 

 

Abstract 

 A selective and sensitive, fully automated platform for verification and 

quantitative determination of target peptides in biofluids is proposed and then 

validated by development of a method for analysis of cathelicidin in human 

serum. The method is based on the on-line coupling of solid-phase extraction 

(SPE) and tandem mass spectrometry with direct infusion. Mass spectrometry 

analysis was carried out by multiple reaction monitoring using three transitions 

(one for quantitative analysis and two for qualitative analysis), all them 

confirmed by in silico fragmentation of the target peptide. Samples were 

prepared in the SPE workstation on a polymeric divinylbenzene resin by 

preconcentration, deproteinization, and cleanup, removing salts and 

interferences after direct injection of human serum. The analytical process 

required 12 min. The limits of detection and quantitation were 2.5 and 8.25 µg/L, 

respectively (0.20 and 0.66 pg on column). Repeatability and within-laboratory 

reproducibility were 2.4% and 2.7%, respectively. A dual-cartridge configuration 

was used to test recovery of cathelicidin in serum, resulting in 80%. Because 

quantitative retention in the cartridge was assessed, determination of cathelicidin 

was validated without using synthetic peptides labeled with stable isotopes. The 

hyphenated system allows full automation, thereby improving reproducibility 

and accuracy, as demanded by clinical analysis.  
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1.  Introduction 

  Targeted mass spectrometry (MS)1 is emerging as an analytical 

technique capable of selective and sensitive detection and quantitation of any 

protein/peptide of interest (or modification thereof) [1–4]. In selected reaction 

monitoring (SRM) mode, peptides (precursors) from target proteins are 

selectively detected and caused to fragment (products) in the mass spectrometer. 

The resulting product ions are used for selective quantitation of the peptide and, 

therefore, the protein from which it was derived. This two-stage filtering process 

allows chemical background to be overcome by improving the signal-to-noise 

ratio and permits selective determination of target peptides. 

 The first step in developing an SRM-based assay involves the selection of 

a subset of peptides as quantitative candidates for each protein. Signature 

peptides correspond to the subset of proteotypic peptides that are also the 

highest responding peptides for each protein in terms of sensitivity [5]. The 

major challenge for SRM is to decide the target peptides to be monitored taking 

into account that each protein has multiple enzymatic cleavage sites. The 

selection of signature peptides is currently based on detection in the preliminary 

MS data [1,3], identification in databases containing MS experimental data [6,7] 

or the use of computational approaches designed to predict proteotypic peptides 

[8,9]. This can be done manually, for example, by theoretic digestion of the 

sequences of interest and blasting of all resulting peptides 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) [10]. After selecting signature 

peptides, the targeted SRM–MS assay should be independently optimized for 

each peptide to select the appropriate precursor-to-product ion transitions [11]. 

 SRM has proven to be a successful method for discovery and validation of 

novel biomarkers [1,12,13], and in comparison with other alternatives such as 

enzyme-linked immunosorbent assays (ELISAs), it is cost-effective, quicker to 

design, and suitable for multiplexed analysis [4]. Mass spectrometry in SRM 

mode requires a high level of ion separation but not necessarily high resolution. 

Therefore, the instrumentation used to measure peptide SRMs is similar to that 
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existing in robust platforms present in analytical laboratories. Increased 

throughput is also possible by direct coupling of separation (via liquid 

chromatography [LC]) to MS [3,14]. However, automation of sample preparation 

is a challenge in the analysis of target peptides. 

 Quantitation in SRM-based approaches is mostly carried out with stable 

isotopes by calculating the ratio of the signal response of the endogenous peptide 

to a stable isotope-labeled version of the peptide spiked as an internal standard at 

a known concentration (AQUA [absolute quantitation] methodology) [2]. The 

main limitation is the cost of isotopic-labeled peptides that need to be 

synthesized after optimization of the protocol. Another possibility is to evaluate 

potential errors of the method with an internal validation step, avoiding internal 

standard-based quantitation. An internal standard can be highly useful, but its 

selection also creates a problem unless a labeled isotopic standard is used. 

However, the synthesis of a isotopically labeled version of peptides is expensive, 

particularly if long peptides are the target of the analysis. Internal validation can 

be achieved by implementation of a solid-phase extraction (SPE) step that 

validates the analytical method by estimation of the recovery factor. For this 

purpose, spiked and nonspiked serum samples are used to support that the 

method is independent of matrix interferences after optimization of each step of 

the SPE protocol. This matrix independence is the key aspect for this assumption. 

The development of robust and automatic platforms for analysis of peptide 

panels or with high capability for fast individual determination of them is highly 

desirable. 

 Cathelicidin or LL-37 is a peptide formed by 37 amino acids with an  

α-helix secondary structure. It is one of the human antimicrobial peptides that 

take part in the immune response. LL-37 is synthesized as an inactive peptide 

called hCAP-18, which is cleaved by serine proteases in the target tissue to 

activate the C-terminal antimicrobial peptide (LL-37) operating in the first line of 

defense [15]. Cathelicidin stimulates endothelial proliferation, promoting the 

accumulation of leukocytes in the inflammation focus or in a wound [16]. 

Furthermore, this peptide protects against necrotic skin and possesses a synergic 
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effect with β-defensins (other type of human antimicrobial peptides) [17,18]. The 

levels of this peptide, estimated as messenger RNA (mRNA), can be related to 

different diseases such as eczema herpeticum, infective cellulites, and pulmonary 

tuberculosis [19–21]. This relationship confers cathelicidin a promising capability 

as biomarker that still needs to be defined. Preliminary results have revealed that 

low plasma levels of cathelicidin predict increased infectious disease mortality in 

patients undergoing hemodialysis [22]. 

 Despite this relationship, few methods have been reported for deter-

mination of LL-37 in human serum or plasma. Recently, LL-37 plasma levels 

have been estimated using a commercial ELISA kit, an expensive approach with a 

protocol time of 3.5 h [23]. Cathelicidin levels have also been estimated using 

transcriptomic approaches by determination of cathelicidin mRNA expression 

[20,21]. However, it has been supposed that cathelicidin levels are exclusively 

linked to its mRNA expression. The aim of this research was to develop an 

automatic analytical platform for robust targeted analysis of peptides —a 

platform that has been validated by analysis of cathelicidin. 

 

2. Material and methods 

2.1. Chemicals 

 LC–MS-grade methanol, acetonitrile, formic acid, and acetic acid were 

purchased from Scharlab (Barcelona, Spain). Deionized water (18 mΩ cm) from a 

Millipore Milli-Q water purification system was used for preparation of all 

aqueous solutions. LL-37 (cathelicidin) standard (97.4% purity tested by high-

performance liquid chromatography [HPLC] analysis) was provided by Bachem 

(Weil am Rhein, Germany). 

 Commercial standard cathelicidin was weighed and dissolved in water 

according to the manufacturer’s instructions to obtain a 500 mg/L stock solution. 

Working solutions were prepared by dilution of the appropriate volume of stock 

solution in water. 
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2.2. Blood extraction and serum isolation 

 Venous blood was collected in evacuated sterile tubes for whole blood 

hematology determination (Vacutainer, Becton Dickinson, Franklin Lakes, NJ, 

USA) and centrifuged at 4000 rpm for 10 min to isolate the serum fraction 

(processing within 2 h after collection). Serum was placed in a plasticware tube 

and stored at or below –80 °C until analysis. All steps from blood extraction to 

analysis were performed in compliance with the guidelines dictated by the World 

Medical Association Declaration of Helsinki of 2004, which were supervised by 

the ethical review board of Reina Sofia Hospital (Cordoba, Spain) that approved 

the experiments. Individuals selected for this study were told to obtain consent 

prior to this research. 

2.3. SPE–tandem mass spectrometry configuration 

 Fig. 1 illustrates a scheme of the configuration device. A Midas auto-

sampler furnished with a 200 µl sample loop connected to an SPE workstation 

Prospekt-2 system (Spark Holland, Emmen, Netherlands) was used to automate 

SPE. The Prospekt-2 system consisted of an automatic cartridge exchanger and a 

high-pressure dispenser, which enabled fully automated performance of sample 

preparation, controlled by SparkLink version 2.10 software. Hysphere Resin GP 

cartridges (8 µm, 10 x 2.0 mm, Spark Holland) were used for the SPE step. The 

Prospekt-2 system was on-line connected to an Agilent 1200 Series LC system 

(Palo Alto, CA, USA), which consists of a binary pump and a vacuum degasser. 

The eluate was introduced directly into an Agilent 6410 triple quadrupole (QqQ) 

detector furnished with an electrospray ionization (ESI) source. Agilent 

MassHunter Workstation was the software for data acquisition, qualitative 

analysis, and quantitative analysis. 

2.4.      Analytical protocol for determination of cathelicidin 

 Human serum (0.5 ml) was vortexed with 0.5 ml of 15% formic acid for 

30 s into an amber injection vial, which was placed in the autosampler. The 

resulting solution (200 µl) was injected into the SPE–tandem mass spectrometry 
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(MS/MS) system following a sequence of automatic operations. Basically, the 

sample preparation step starts with methanol activation of the stationary phase 

with subsequent equilibration before sample loading with 2 ml of aqueous formic 

acid. Under these conditions, LL-37 cathelicidin is retained in the cartridge, 

which is washed with 10% methanol/0.1% formic acid aqueous solution to 

remove potential interferences. Elution starts by switching the left clamp valve 

and pumping 40% acetonitrile/1% formic acid/2% acetic acid solution with the 

LC pump at 1.0 ml/min. The SPE step finishes by purging the tubes of the 

Prospekt-2 system. Cartridges were reused for three replicates of each sample. 

 MS detection was performed in positive ESI mode at unit resolution in 

both quadrupoles. The ESI parameters were set as follows: 5.3 kV capillary 

voltage, 315 °C source temperature, and 60 psi pressure nebulizer. Nitrogen gas 

was flowed at 10 ml/min to dry the eluent. The precursor ion for cathelicidin was 

749.6 m/z with a charge state of z = 6, which was efficiently filtered by setting the 

voltage of the first quadrupole at 220 V. Optimal collision energy of 30 eV 

activated the precursor ion to generate product ions 854.0, 876.6, and 819.5 m/z 

selected as quantitation and qualifier ions by multiple reaction monitoring 

(MRM). The dwell time was fixed at 200 ms for all SRM transitions. The entire 

analytical process was completed in 12 min. 

2.5. In silico elucidation of SRM transitions 

 The m/z value of the first quadrupole was determined by the mass 

(4492.58 Da) and the predominant charge state of a peptide. The mass of the 

fragment ions was theoretically estimated by in silico fragmentation of the 

precursor ion using the Protein Prospector MS product website developed by the 

University of California, San Francisco (http://prospector2.ucsf.edu/prospector/ 

cgi-bin/msform.cgi?form=msproduct). The parameters considered for this frag-

mentation were quadrupole-based fragmentation, predominant generation of b 

and y ions [24,25] with –H2O and –NH3 neutral losses, and +H2O peeling 

sequence, maximum charge state z = 9, and ±0.6 Da mass fragment tolerance. 
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2.6. Validation of the transitions selected for analysis  

 The three most intense transitions were selected for qualitative and 

quantitative analysis of cathelicidin peptide. These transitions were subsequently 

detected by search in the profile of theoretic fragment ions generated by in silico 

digestion of the precursor peptide. 

2.7. SRM-based quantitation 

 The standard addition method was used to obtain the calibration model 

for cathelicidin and validate the analytical method. Calibration curves (see Fig. S1 

in Supplementary material) were constructed by spiking human serum with 

known amounts of cathelicidin solutions. This calibration model was selected to 

correct matrix effects occurring during sample preparation (recovery, saturation 

effects) and analysis (suppression). Calibration solutions were prepared from 

cathelicidin stock solutions (25 and 500 mg/L) at 25, 50, 75, 100, 200, and  

500 µg/L. Three of them were injected in triplicate. In all cases, the samples were 

human serum spiked with the target analyte; therefore, another calibration level 

corresponded to 0 µg/L standard addition. 

 

3. Results and discussion 

3.1. Development of the MS protocol 

 Preliminary experiments can be exploited to derive information about the 

predominant precursor charge state and the MS/MS fragmentation pattern of a 

target peptide. However, it is important to be aware that the ionization conditions 

can affect distribution of the charge state. Ionization optimization was initially 

focused on the selection of the preferred ESI mode for MS analysis of 

cathelicidin. This was performed by direct injection of standard solutions using 

both positive and negative ESI modes. The highest sensitivity was achieved with 

positive ESI mode that generated different charge states and, therefore, different 

m/z signals. The influence of the ionization agent was studied by the addition of 

different concentrations of trifluoroacetic acid, acetic acid, and formic acid. The 
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best results were obtained by a combination of 1–2% formic acid/acetic acid in a 

30% methanol aqueous solution. The electrospray variables were set by a 

multivariate response surface design consisting of 16 experiments and two 

central points (experimental runs in which the value of each factor is the median 

of the values used in the factorial portion) by monitoring the ion indicated 

previously. The ranges studied for the temperature, pressure, and capillary 

voltage were 185–315 °C, 10–60 psi, and 2700–5300 V, respectively. The effect of 

these three variables in the signal intensity corresponding to the target ion was 

positive, so all of the variables were established at their maximum values. 

 The m/z value of the first quadrupole was determined by the mass 

(4492.58 Da) and the predominant charge state of a peptide, which was z = 6, as 

shown in the mass spectrum illustrated in Fig. 2, obtained in full scan mode by 

direct injection of an LL-37 standard. In the mass range under study (0–2000 

Da), the charge distribution ranged from z = 3 to 6. Therefore, the ion 749.6 m/z 

with charge state z = 6 was selected for quantitative purposes. 

 

Fig.2. Mass scan in the range of 0–2000 Da by direct infusion of a cathelicidin standard 

showing the signals corresponding to the most stable charge states. 

 The mass of the product ions was theoretically estimated by in silico 

fragmentation of the precursor ion using the Protein Prospector MS product 

website. Table S1 (see Supplementary material) shows the sequence of b and y 

ions generated with fragmentation in the hexapole collision cell, including –H2O 
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and –NH3 neutral losses and +H2O peeling sequence. A maximum charge state 

z = 9 was set with ±0.6 Da mass fragment tolerance. It is worth emphasizing that 

the transitions selected for qualitative and quantitative analysis of LL-37 should 

be selective enough to develop a highly selective and sensitive assay. The 

distribution of relative fragment ion intensities is dependent on the type of 

instrument used and the operating parameters. This is particularly relevant when 

ion-trap-derived data are used to select transitions for a QqQ instrument. Owing 

to the different mode of collision-induced activation in ion traps compared with 

quadrupole collision cells, higher b-type ions and doubly charged fragments are 

usually less prominent or absent in the QqQ instrument mass spectra. Product 

ions with greater m/z than that of the precursor ion are preferred because they fit 

in with a greater proportion of the original peptide in the spectrum; therefore, the 

selectivity is significantly increased by these transitions [26,27]. 

 

Fig. 3. MS/MS spectra generated by fragmentation of cathelicidin precursor ion  

749.6 m/z with collision energies from 15 to 45 eV. 
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 MS/MS behavior of cathelicidin was studied using different collision 

energy values from 15 to 45 eV. Fig. 3 shows the MS/MS spectra where the 

fragmentation dependence on the collision energy applied in the cell can be 

observed. Fragmentation of the precursor ion is not significant up to 25 eV by 

generation of different product ions at 819.5, 854.0, and 876.6 m/z that 

theoretically fit for ions y33
5+, y35

5+, and y36
5+, respectively, according to 

Supplementary Table S1. Collision energy of 30 eV was the optimal value, as 

deduced from Fig. 3 by virtue of the efficient fragmentation confirmed by the 

intensity ratio of the signals corresponding to precursor and product ions. Higher 

values of collision energy led to an exhaustive fragmentation of the precursor ion 

without a significant increase of the product ion signal. The product ion at  

854.0 m/z was selected for quantitation, and the transitions to 819.5 and  

876.6 m/z were selected as qualifiers for verification. Fig. 4A shows the result of 

the analysis of a 50 ng/ml cathelicidin standard by direct infusion with MS/MS 

detection in SRM mode. In simple protein mixtures, a single transition may be 

sufficient to monitor a particular protein of interest, but in complex samples such 

as serum and other biofluids, multiple transitions per peptide are generally 

required because of the interferences caused by background and peptides coming 

from high-abundant proteins. 

 

Fig. 4. SRM analysis provided by a 50-ng/L cathelicidin standard (A) and a serum sample 

from a healthy donor (B). 
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3.2. Development of the SPE protocol 

 After optimization of the detection step, automatic SPE was optimized. 

All variables were studied by a univariate mode due to the inclusion of 

noncontinuous variables such as composition of loading, washing, or elution 

solutions. The response variables for optimization of the SPE step were both the 

area and height of the peak signal to maximize sensitivity and minimize 

dispersion. The SPE step was validated by using a dual configuration with two 

cartridges to estimate the recovery factor (calculated as the analyte fraction 

retained in the first cartridge), which was the response variable of this 

optimization study. Serum spiked with LL-37 was used to select the most efficient 

SPE sorbent, and the rest of variables, the range within which they were studied, 

and the optimal values are shown in Table 1. Concerning the SPE cartridge, eight 

types of SPE sorbent with different retention properties were tested: Hysphere 

CN (silica-based cyanopropyl phase), Hysphere C2 (silica-based ethyl phase), 

Hysphere C8 (silica-based octyl phase), Hysphere C8 (EC) (end-capped silica-

based octyl phase), Hysphere C18 (silica-based octadecyl phase), Hysphere C18 

HD (high-density silica-based octadecyl phase), Hysphere Resin GP (polymeric 

polydivinylbenzene phase), and Hysphere Resin SH (strong hydrophobic-

modified polystyrene-divinylbenzene). The best results, in terms of pre-

concentration and cleanup, were obtained with the Hysphere Resin GP cartridge, 

which showed higher cathelicidin retention, the highest recovery, and a 

homogeneous elution. Another aspect of the optimization study was focused on 

the composition and pH of the different solutions used in the SPE protocol for 

loading the sample and washing the cartridge for efficient removal of interferents 

and salts and LL-37 elution. The composition of the solutions was studied by the 

addition of organic solvents in a wide concentration range to favor cathelicidin 

retention, cleanup, and elution. The three operations were also favored by acid 

pHs, as Table 1 shows. In addition, other variables studied were volume and flow 

rate of the different solutions as well as the elution time, which was controlled by 

switching the valve clamp. 
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Table 1. Optimization of main variables involved in SPE step. 

Variable Tested range 
Optimal 

conditions 
Conditions 
employed 

SPE sorbent 
Hysphere CN, C2, C8, C8-EC, C18, C18-

HD, Resin GP and Resin SH 

Hysphere 
Resin GP, 

Resin SH and 
C8 

Hysphere 
Resin GP 

Loading 
solvent 

Composition 

Organic 
proportion in 
the aqueous 

phase 

0–50% methanol and 
acetonitrile 

0% organic 
phase 15% formic 

acid 

Acidification 
0–15% formic acid and 

acetic acid 
15% formic 

acid 

Volume 0.5–4 ml  2 ml 2 ml 

Flow Rate 0.5–3 ml/min  0.5 ml 0.5 ml 

Washing 
 solvent 

Composition 

Organic 
proportion in 
the aqueous 

phase 

0–50% methanol and 
acetonitrile 

10% methanol 10% methanol 
with 0.1% 

formic acid 
Acidification 0.1–10% of formic acid 

0.1% formic 
acid 

Volume 0.5–4 ml  2 ml 2 ml 

Flow rate 1–3 ml/min  1 ml/min 1 ml/min 

Elution  
solvent 

Composition 

Organic 
proportion in 
the aqueous 

phase 

Acetonitrile, methanol, 
tetrahydrofurane, and 

isopropanol in different 
proportions 

40% 
acetonitrile 

40% 
acetonitrile 

pH for optimal 
cathelicidin 
ionization 

0.5–2% formic acid and 
acetic acid 

1% formic acid 
and 2% acetic 

acid 

1% formic acid 
and 2% acetic 

acid 

Elution time 0.5–2 min  1 min 1 min 

Flow rate 0.4–1 ml/min  1 ml/min 1 ml/min 

 

 A key factor was the dilution of the serum samples to improve the loading 

step, minimize proteins interactions, and maximize cathelicidin retention in the 

cartridge, thereby increasing cathelicidin recovery. Water, different 

concentrations of formic acid, and 50 mM phosphate buffer in the pH range 3.0 

to 7.5 were used as solutions for dilution from 50% to 90%. The best results were 

obtained with 15% aqueous formic acid diluting up to 50% (7.5% final formic acid 

concentration in the sample). Fig. 4B illustrates the result of the analysis of a 

human serum sample with SPE as sample preparation; it was highly efficient, as 

demonstrated by comparison with the analysis of an LL-37 standard. The 

automated protocol developed with the SPE workstation is schemed in Table 2, 

which also includes the time required for the different steps. 
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Table 2. Scheme of automated SPE protocol for preconcentration and cleanup of 

cathelicidin in human serum prior to on-line elution to mass spectrometer. 

Step Solvent 
Volume 

(ml) 

Flow 

(ml/min) 
Duration 

1 New cartridge and Star autosampler 

2 Solvation Methanol 1 3 0 min 26 s 

3 Equilibration 15% formic acid 2 3 0 min 52 s 

4 Equilibration 15% formic acid 1 1 1 min 06 s 

5 
Sample 

application 
15% formic acid 2 0.5 4 min 12 s 

6 Wash cartridge 10% methanol and 0.1% formic acid 2 1 2 min 12 s 

7 Elution 
40% acetonitrile, 1% formic acid, and 

2% acetic acid 
1 1 1 min 00 s 

8 Wash cartridge Methanol 2 3 0 min 52 s 

9 Wash cartridge Water 4 3 1 min 44 s 

Total time 12 min 36 s 

 

3.3. Validation of the method 

 Analytical characterization of the method was carried out with a serum 

pool from healthy individuals. The lowest limit of detection (LLOD) and lowest 

limit of quantitation (LLOQ) were determined by injecting dilution series of 

cathelicidin to obtain the concentration with a signal 3 and 10 times the noise 

(average noise value obtained for blank injections in the region of the spectrum of 

interest), respectively, resulting in LLOD and LLOQ values of 2.5 and 8.25 µg/L, 

respectively (0.20 and 0.66 pg/injection). Calibration curves were established by 

applying the method of standard additions using cathelicidin stock solutions. 

Different levels of the target peptide (25–500 µg/L) were added to pool aliquots 

to plot signal responses versus the spiked concentration. The correlation 

coefficient was 0.998, and the linear dynamic range was from 8.25 to 500 µg/L. 

 The accuracy of the method and potential matrix effects were assessed by 

analysis of nonspiked and spiked serum samples at a high concentration level 

(100 µg/L) to evaluate the retention capability of the cartridge. The recovery of 

cathelicidin was calculated with the two-cartridge configuration of the Prospekt-2 

system by analysis of five replicates [28]. Two Hysphere Resin GP cartridges were 

located in serial, so after sample injection the amount of cathelicidin not retained 
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in the first cartridge was retained in the second. The eluates from both cartridges 

were sequentially injected into the QqQ analyzer, estimating the concentration 

retained in each cartridge. The recovery factor in this system was calculated as 

amount retained in cartridge 1/(amount retained in cartridge 1 + amount 

retained in cartridge 2), resulting in 80% recovery. This study was carried out at a 

high concentration of cathelicidin as compared with the normal range. 

Nevertheless, this recovery was confirmed by repetition of the test with samples 

from the individual cohort selected for validation of the method. 

 Within-laboratory reproducibility and repeatability were evaluated in a 

single experimental setup with duplicates by experiments carried out with a 

serum pool for 1 week [29]. The repeatability, expressed as relative standard 

deviation (RSD), was 2.4%, and the within-laboratory reproducibility, also 

expressed as RSD, was 2.7%. 

3.4.  Application of the method to human serum samples 

 Serum samples isolated from intensive care patients (n = 17) and healthy 

blood donors as a control group (n = 23) were collected (Regional Blood Donors 

Center, Córdoba, Spain) to compare LL-37 levels and establish normal con-

centrations in human serum. The mean age of the population was 41 ± 16 years 

formed by 26 males and 14 females individuals. The samples were injected in 

triplicate, being an RSD lower than that estimated in the repeatability test. As can 

be seen in Fig. 5, the group formed by intensive care patients possessed a higher 

variability in LL-37 profile as compared with the group of control individuals, 

which can be represented by a normal distribution. In addition, the average LL-

37 level was higher in intensive care patients (48.4 ± 29.8 ng/ml) than in the 

control group (34.9 ± 18.7 ng/ml). However, no statistical differences were found 

with a running t test (P = 0.22) taking into account standard deviation values 

illustrated in Fig. 5. These preliminary results enable us to conclude only that 

cathelicidin levels were within a controlled range in healthy individuals, whereas 

significant variability was found in intensive care patients. In this research, a 

reduced variable cohort was analyzed to study cathelicidin levels. A subsequent 
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step would be to study a more representative cohort classified according to 

pathological states to discriminate between them. This could be the initial step to 

evaluate the potential of cathelicidin as a clinical biomarker for different 

pathologies. 

 

Fig. 5. Cathelicidin levels found in intensive care patients versus a control group of 

healthy individuals. 

 

4. Conclusions 

 An automated platform has been proposed for verification and 

quantitative analysis of target peptides in biofluids. The method is based on 

direct injection of the biofluid into an automated SPE device where sample 

preparation is efficiently carried out by desalting and deproteinization. This is 

one of the main differences compared with other devices existing in the literature 

[30], especially those designed for biochemical assays developed with standard 

solutions and, therefore, not useful for clinical analysis of biofluids. In this way, 

the resulting eluate is eluted directly into the mass spectrometer with highly 

efficient ionization without affecting electrospray performance. The method was 

applied to the analysis of cathelicidin peptide in human serum. The analyte was 

detected by MS/MS in SRM mode using three different transitions for 

verification and quantitative determination. The use of an internal standard was 

avoided by SPE validation using tests with dual cartridge configurations to check 

quantitative retention of cathelicidin. In this way, sample spiking with synthetic 

peptides labeled with stable isotopes, which notably increases the cost of the 
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analysis, is not required. The overall method was properly validated by 

application to human serum samples in order to set the average concentration of 

cathelicidin peptide in healthy individuals. This is another benefit versus single-

cartridge configurations that omit internal validation tests [31].  

 The approach presented here could be used as a template for quantitative 

analysis of other peptides such as clinical biomarkers and target proteins after 

enzymatic hydrolysis to generate representative peptides. Thus, with minor or no 

changes, it can be applied to any other peptide with a considerably reduced cost 

per analysis, complete automation without implementation of robotized work-

stations, and an extra level of selectivity to suppress cross-reactivity. 
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Supplementary Fig. 1. Calibration curve obtained for cathelicidin using standard 

addition method. 
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Supplementary Table  1. In silico fragmentation of cathelicidin (LL-37). 
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 La normativa actual de la Universidad de Córdoba referente a la presen-

tación de la Memoria de la Tesis Doctoral, en la modalidad en la que se incluyen 

los artículos (publicados o próximos a su publicación) como tales, establece que 

ha de incluirse una sección de discusión conjunta de los resultados. 

 La investigación que constituye la parte principal de la Tesis tiene como 

denominador común la metabolómica en el área en dos de las vertientes de esta 

disciplina ómica: El diagnóstico, pronóstico y tratamiento de enfermedades, y la 

nutrición. Ambas constituyen dos de los pilares básicos que soportan el concepto 

de medicina personalizada. La investigación que se presenta en esta Memoria se 

ha dividido en tres secciones en función, tanto del objetivo perseguido, como de 

la estrategia metabolómica utilizada en cada caso. Con este criterio, la Sección I 

recoge el desarrollo de diferentes innovaciones metodológicas orientadas a 

mejorar dos parámetros analíticos básicos, tales como sensibilidad y selectividad, 

pero también a ampliar el número de metabolitos detectados y facilitar la 

posibilidad de su identificación. Por su parte, las Secciones II y III se dedican a 

las dos estrategias básicas en metabolomica: Análisis global (“untargeted 

analysis”) y análisis orientado (“targeted analysis”), respectivamente. En 

concreto, la Sección II recoge la investigación realizada sobre perfiles metabólicos 

(“profiling analysis”), que es el análisis global más utilizado en metabolómica 

clínica y cuyo objetivo es abarcar la mayor parte posible del metaboloma de un 

biofluido o un tejido dado. Por el contrario, la Sección III engloba la investigación 

sobre determinación de grupos específicos o familias de compuestos de interés 

clínico por su implicación en rutas biológicas cruciales que pueden alterarse o 

desregularse como consecuencia de ciertos estados patológicos. Los metabolitos 

estudiados y que constituyen esta sección fueron aminoácidos esenciales, 

compuestos implicados en el ciclo de los ácidos tricarboxílicos, fosfolípidos y un 

péptido antimicrobiano: La catelicidina. Los resultados obtenidos en cada una de 
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las tres secciones se discuten a continuación, no sin antes comentar algunos 

aspectos instrumentales.  

El uso de la espectrometría de masas como técnica para la detección es 

común a las tres secciones. Las propiedades analíticas de esta técnica, en 

términos de sensibilidad, selectividad, exactitud, precisión y resolución, la 

convierten en la herramienta más útil para análisis metabolómico, tanto 

orientado como global, en muestras clínicas. Las dos estrategias típicas en 

metabolómica se benefician de esta técnica en sus diferentes modos, que son 

función del objetivo que se persiga: Análisis cualitativo o cuantitativo. Entre los 

diferentes tipos de espectrómetros de masas el más utilizado para análisis global 

es el QTOF gracias a su alta resolución (exactitud en la relación m/z), velocidad 

de barrido y sensibilidad a un precio competitivo. Por estas razones constituye el 

detector más adecuado para análisis cualitativo y también para cuantificación 

relativa. Por otra parte, el QqQ es tremendamente operativo en análisis 

orientado, por su sensibilidad y selectividad para análisis confirmatorio. Por 

tanto, es éste el detector de masas óptimo con fines cuantitativos. Teniendo en 

cuenta la complejidad de las muestras clínicas, los espectrómetros de masas son 

muy adecuados en metabolómica clínica, especialmente cuando se acoplan a 

sistemas de separación cromatográficos. La naturaleza de la técnica de 

separación (principalmente un cromatógrafo de gases o de líquidos) depende de 

las propiedades químicas de los metabolitos en estudio. 

 

Sección I. Desarrollo metodológico e innovación en análisis 

metabolómico 

 A pesar de que los avances tecnológicos —que incluyen muy espe-

cialmente la espectrometría de masas de alta resolución— permiten la detección 

de metabolitos de forma fiable, existen aún algunas debilidades de la técnica en 

análisis metabolómico que tienen que superarse, especialmente las relacionadas 

con la obtención de perfiles metabólicos o análisis global. 
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 Uno de los problemas en la obtención de perfiles metabólicos es la 

dificultad de abarcar la detección de todos los metabolitos mediante una única 

plataforma analítica, ya que el metaboloma está compuesto por una amplia 

variedad de metabolitos con muy diferentes estructuras químicas y presentes en 

un rango muy amplio de concentraciones. Otro aspecto clave es la complejidad de 

la mayor parte de los biofluidos generalmente utilizados en análisis clínico, tales 

como suero/plasma, orina o saliva; lo que dificulta aún más las aplicaciones 

clínicas de la metabolómica. En el desarrollo de la investigación que constituye 

esta Tesis Doctoral se plantearon tres retos para contribuir a la resolución de 

estos problemas, cuyos resultados se recogen en esta sección. Uno de ellos se 

refiere a la preparación de la muestra de un biofluido poco estudiado como es el 

sudor, y que presenta como principales ventajas su muestreo no invasivo y una 

composición simple si se compara con otros biofluidos tales como sangre u orina. 

La proposición de biofluidos alternativos en análisis clínico es de gran interés si 

se tiene en cuenta que los convencionales son con frecuencia poco o nada 

selectivos para reflejar cambios asociados a alteraciones fisiológicas. El segundo 

reto se orientó al desarrollo de una estrategia de preparación de la muestra con la 

que aumentar la detección de metabolitos en el análisis de muestras clínicas 

mediante LC–MS/MS. La plataforma instrumental para el desarrollo de la estra-

tegia fue un sistema automático para SPE acoplado en línea al LC–QTOF. El 

dispositivo para SPE incluyó dos sorbentes con propiedades complementarias 

para la retención. El tercer reto fue también una innovación metodológica basada 

en la aplicación en metabolómica del fraccionamiento en fase gaseosa (GPF) con 

el que se pretendió mejorar la detección en análisis mediante MS/MS de 

metabolitos en suero humano. Los resultados en cada caso fueron los siguientes: 

 

Capítulo 1 

  La investigación que se recoge en este capítulo se dedicó a la 

optimización de un protocolo de tratamiento de muestra previo al análisis de 

sudor mediante LC–MS/MS. Esta muestra, por la que empieza a aumentar el 
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interés para estudios clínicos, presenta, como principales ventajas frente a otros 

biofluidos su muestreo no invasivo (que puede realizarse por personal no 

especializado), su composición simple y el no requerir estandarización (que sí es 

necesaria en orina). La utilización de otros biofluidos de mayor complejidad 

puede llevar a modelos de predicción basados en metabolitos que no son 

selectivos del proceso biológico en estudio. Esto puede ser debido a inter-

ferencias causadas por otros procesos biológicos.  

 El planteamiento de la optimización implicó el uso de dos modos 

cromatográficos para el análisis en sudor: El modo en fase reversa utilizando una 

columna de C18 y el basado en interacción hidrofílica (HILIC) con la columna 

correspondiente. Respecto a la preparación de la muestra, el análisis directo del 

sudor permitió detectar 67 y 57 entidades moleculares en el modo de ionización 

positivo para los métodos analíticos basados en C18 y en HILIC, respectivamente; 

mientras que en el modo de ionización negativo el número de entidades 

moleculares fue de 29 y 37, respectivamente, para las columnas citadas. La 

variabilidad entre individuos fue evaluada mediante análisis de 7 muestras del 

mismo individuo tomadas en diferentes días y analizadas en duplicado cada día 

durante un intervalo de 5 días. Este estudio también permitió evaluar la 

reproducibilidad metodológica de esta etapa, ya que la variabilidad estimada 

como desviación estándar relativa  (RSD) estuvo en el rango del 2 al 21%. Estos 

valores indican que el sistema de muestreo es suficientemente reproducible para 

investigación en metabolómica. A pesar del alto número de entidades 

moleculares detectadas en el modo de ionización positivo, todavía la etapa de 

preparación de la muestra mejoró la detección de metabolitos. Para ello se 

compararon diferentes protocolos de preparación de la muestra previos a los dos 

modos cromatográficos para la obtención del perfil metabolómico global del 

sudor. Entre los protocolos ensayados, la hidrólisis ácida o básica no resultó 

recomendable, ya que la muestra se afectaba, tal como puso de manifiesto la 

aparición de gran cantidad de artefactos. Por el contrario, el análisis directo del 

sudor después de la dilución apropiada resultó ser una buena opción para 

obtener una instantánea representativa del metaboloma del sudor. Algunos de los 
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compuestos exógenos encontrados en el análisis de este biofluido eran 

componentes del sistema de muestreo. Entre ellos, los más significativos fueron 

el metil- y el propilparabeno, y especialmente la pilocarpina, que se utiliza para 

estimular la sudoración antes del muestreo.  

 Finalmente, la identificación de un alto número de componentes del 

sudor, en total 43 metabolitos, pertenecientes a una amplia variedad de familias 

corroboró que el protocolo de análisis basado en LC–QTOF MS/MS es una buena 

estrategia para analizar sudor. De hecho, se identificaron 19 aminoácidos, 

incluyendo todos los aminoácidos esenciales, excepto la lisina. También se 

identificaron compuestos exógenos, como la cafeína y la teofilina, así como ácidos 

dicarboxílicos, tales como el sebácico, el subérico, el azealico o el butanodioico. 

Este estudio de identificación contribuye a conocer este biofluido tan poco 

estudiado y sugiere que, puesto que algunos de los metabolitos identificados 

habían sido anteriormente evaluados en otros biofluidos como potenciales 

biomarcadores, el sudor puede también proponerse como biofluido para la 

búsqueda de biomarcadores. 

 

Capítulo 2  

 La investigación que conforma este capítulo se dedicó al desarrollo de 

una estrategia para aumentar la detección de metabolitos. La diversidad química 

del metaboloma exige nuevas plataformas analíticas para aumentar la capacidad 

de detección. En este caso, la plataforma estuvo basada en la combinación de un 

sistema automático de SPE y un equipo LC–QTOF para aprovechar los beneficios 

de la excelente selectividad de los sorbentes utilizados en SPE y la alta resolución 

del detector QTOF. El dispositivo de SPE se acopló en línea con el equipo LC–

QTOF para la automatización total del método. De esta forma, la intervención del 

analista se limita a colocar los viales en el automuestreador. La plataforma se 

aplicó al análisis de suero humano como biofluido modelo. Se comparó la 

detección de los posibles metabolitos en suero tras el uso de varios sorbentes 

actuando con mecanismos simples o duales (materiales poliméricos y resinas). 
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Mediante solapamiento de la capacidad de análisis del equipo SPE–LC–MS/MS 

con los diferentes sorbentes, se detectaron 3445 entidades moleculares con 

parámetros predefinidos en términos de carga, distribución isotópica, intensidad 

de señal y frecuencia de detección en las réplicas analíticas. Una combinación de 

cuatro sorbentes (resina de polidivinilbenceno, C18 y sorbentes poliméricos con 

interacciones aniónicas/catiónicas) hicieron posible la detección de más del 81% 

del total de la detección conseguida con la serie completa de sorbentes ensayados. 

Por tanto, esta innovación abre una nueva puerta a la mejora de la capacidad de 

detección en metabolómica utilizando métodos basados en una única plataforma, 

en este caso LC–MS/MS. 

 Un desarrollo extra incluido en esta investigación fue el de métodos 

basados en la combinación de pares de protocolos SPE llevados a cabo en una 

configuración SPE–SPE–LC–MS. Con este propósito, se hizo circular una única 

alícuota a través de dos sorbentes SPE complementarios situados en línea. La 

elución de ambos cartuchos se realizó de forma independiente y secuencial para 

su análisis mediante LC–MS. Se potenció así la selectividad de este modo de 

fraccionamiento de la muestra y se maximizó la rapidez del análisis. Las 

configuraciones en serie diseñadas permitieron conseguir capacidad de detección 

en el rango del 79.5 al 99.7% del número total de entidades moleculares 

detectadas mediante análisis separados utilizando la serie completa de sorbentes. 

Esta alternativa tiene un interés especial en estudios clínicos en los que las 

muestras son escasas o muy valiosas.  

 

Capítulo 3 

 Una de las principales debilidades del análisis metabolómico global 

mediante espectrometría de masas es la necesidad de una información amplia 

para una identificación correcta de los metabolitos encontrados en un deter-

minado biofluido. Este hecho hace necesaria la inyección del compuesto puro en 

cuestión, o la obtención de información de alta calidad, tanto de MS como de 

MS/MS para identificar el compuesto mediante búsqueda en bibliotecas al efecto. 
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Los métodos de análisis por MS/MS propuestos hasta ahora para 

identificar las entidades moleculares de interés en un estudio global implican dos 

o más análisis diferentes. Se requiere una primera inyección de las muestras en el 

modo MS, seguida de una selección de los iones precursores potenciales de los 

que se requiere información mediante MS/MS, y un segundo análisis en modo 

MS/MS orientado. Por otra parte, el modo “auto MS/MS” es una estrategia más 

corta que consiste en ciclos a lo largo de todo el conjunto de barrido de MS de 

fragmentación de dos o tres de los iones detectados en el barrido previo. La 

selección de los potenciales precursores puede restringirse usando rangos de 

masas o tipo de carga, así como un límite de intensidad de respuesta.   

La estrategia GPF consiste en la combinación de diferentes métodos 

basados en barridos de MS utilizando el mismo rango de masas, pero diferentes 

intervalos para la selección de iones precursores de manera que se cubra todo el 

rango del ion precursor deseado. Esta estrategia, aplicada con éxito en proteó-

mica para incrementar el número de proteínas identificadas en una serie de 

muestras, no había sido utilizada en metabolómica; por tanto, éste fue el objetivo 

de la investigación recogida en este capítulo.   

En metabolómica, la inyección de varias réplicas de la misma muestra es 

una práctica habitual, ya que la obtención de un perfil metabólico seguro requiere 

al menos tres réplicas por muestra. Por tanto, el uso de GPF combinado con el 

número apropiado de réplicas es una herramienta efectiva para aumentar las 

posibilidades de identificación sin necesidad de realizar posteriores inyecciones 

de muestra. En esta investigación se ensayaron combinaciones de 2, 3, 4 y 6 

intervalos de selección del ión precursor, cubriendo en todos los casos desde 100 

a 1000 m/z, y se compararon con el método convencional o modo “auto MS/MS”. 

El biofluido seleccionado para este estudio fue suero, el más comúnmente 

empleado en análisis metabolómico clínico y nutricional por su papel de principal 

portador de metabolitos en el organismo humano. El uso de la metodología GPF 

en metabolómica para el análisis de suero mediante LC–MS/MS ha demostrado 

ser una estrategia efectiva para incrementar la cantidad de información sobre 
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algunos compuestos La mejor elección entre todas las combinaciones estudiadas 

resultó ser un método para dividir el rango de masas de ión precursor en cuatro 

intervalos. De esta forma se obtuvo información para al menos el 80% de todas 

las entidades detectadas. Por el contrario, el modo convencional de adquisición 

de datos (“auto MS/MS”) proporcionó información sólo para 48–57% de las 

entidades moleculares detectadas y, por tanto, fue menos efectivo para la 

identificación inequívoca de los metabolitos.  

 Esta investigación ha mostrado que la combinación de diferentes méto-

dos que incluyen distintos intervalos de iones precursores puede incrementar el 

número de entidades potenciales que proporcionen información MS/MS. Los 

resultados de esta estrategia se han corroborado mediante identificación de 

diferentes familias de metabolitos y la evaluación de la información de MS/MS 

registrada para cada compuesto en cada una de las combinaciones ensayadas. 

 

Sección II. Metabolómica global: Estudios de intervención 

basados en nutrimetabolómica y búsqueda de biomarcadores 

de enfermedades 

 Esta sección se centra en la aplicación del análisis metabolómico global 

en estudios clínicos para poner de manifiesto la efectividad de esta estrategia. El 

análisis global en metabolómica puede dividirse en dos categorías genéricas en 

función del objetivo de la investigación: La primera se refiere a la búsqueda de 

biomarcadores y la segunda a la comprensión y explicación del efecto de un 

cambio en una determinada ruta metabólica o un sistema biológico en general. 

Las dos categorías han sido objeto de la investigación que se recoge en esta 

sección, que abarca dos diferentes áreas de aplicación ambas orientadas a la 

medicina personalizada: Diagnóstico, pronóstico y tratamiento de enfermedades, 

y metabolómica nutricional. En lo que se refiere al área puramente clínica se han 

considerado dos enfermedades claves: La aterosclerosis, una de las causas 

principales de muerte en todo el mundo, y el cáncer de pulmón como uno de los 

tipos de cáncer que causa más muertes al ser el segundo más comúnmente 
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diagnosticado. En lo que se refiere al área nutricional, la investigación realizada 

forma parte del proyecto denominado Lipgene, un proyecto europeo para la 

investigación de la interacción de los nutrientes y el genotipo en el síndrome 

metabólico, término usado para relacionar varios factores de riesgo en las 

enfermedades cardiovasculares. 

Es conveniente poner de manifiesto que se utilizaron dos tipos de 

muestras para el desarrollo de la investigación: Suero y sudor, dos biofluidos con 

muy diferentes características químicas. Se utilizaron también diferentes herra-

mientas estadísticas para la evaluación de los biomarcadores: Generación de 

paneles formados por combinación de marcadores y estudio de matrices de datos 

generados en análisis univariante y multivariante. 

Se requieren sistemas de masas de alta resolución para el análisis 

metabolómico global con el fin de conseguir una buena exactitud en la medida de 

la relación m/z que haga posible la identificación del máximo número de meta-

bolitos detectados en el biofluido en estudio. Un equipo QTOF es el preferido en 

estos casos porque satisface las necesidades del análisis global, ya que permite 

obtener espectros MS/MS de los iones precursores detectados y proporciona 

suficiente información para la identificación inequívoca de los metabolitos. 

Existen bases de datos con información de MS y de MS/MS de una amplia 

variedad de compuestos. Entre las más importantes de estas bases se encuentra 

la base de datos de metabolitos basada en MS/MS (Metabolite and Tandem MS 

Database –METLIN), seguida del banco de masas (MassBank). Otra base de 

datos como es la del metaboloma humano (Human Metabolome Database –

HMDB), no proporciona espectros de MS/MS de alta resolución para todos los 

metabolitos, ya que la mayoría de los espectros se han adquirido con un equipo 

de triple cuadrupolo. Otras bases de datos son útiles para obtener información 

sobre las rutas metabólicas en las que están implicados deter-minados grupos de 

metabolitos. Éste es el caso de la Enciclopedia Kyoto de Genes y Genomas (Kyoto 

Encyclopedia of Genes and Genomes —KEGG). 
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Los resultados obtenidos en la investigación que se recoge en los 4 

capítulos que conforman la Sección II de esta Memoria se discuten a 

continuación. 

 

Capítulo 4 

 La investigación sobre nutrición es uno de los pilares fundamentales en 

los que se soportan las vías hacia la Medicina Personalizada. La dieta es uno de 

los factores externos más importantes que contribuyen a alterar los bloques 

básicos de la biología de sistemas: El genoma, el transcriptoma, el proteoma y el 

metaboloma. La relación directa entre el metaboloma y el fenotipo convierte la 

nutrimetabolómica en un área de gran actividad. En este contexto, el análisis 

metabolómico global puede ayudar a dilucidar la respuesta biológica en 

individuos sometidos a dietas de intervención. Éste ha sido el principal objetivo 

de la investigación que se discute en este capítulo: Comparar las diferencias 

metabólicas encontradas en los perfiles de suero obtenido de individuos 

sometidos a 4 dietas de intervención a lo largo de 12 semanas. Las dietas se 

planificaron como parte del proyecto Lipgene y se diferenciaban en la calidad y 

cantidad de grasa. Las muestras de suero se dividieron en dos fases mediante 

extracción líquido–líquido (por tanto, en metabolitos polares y no polares), y 

cada una de las fases se analizó independientemente mediante LC–QTOF en 

modo MS/MS. 

 El análisis estadístico supervisado PLS-DA permitió distinguir 

diferencias metabólicas asociadas a la dieta de intervención, así como detectar 

diferencias en los perfiles de metabolitos (polares y no polares) causadas por las 

dietas ingeridas. Los modelos de discriminación basados en PLS-DA y en análisis 

de cambio permitieron la identificación de los metabolitos que alteraron su 

concentración por la dieta de intervención. En relación con la fracción no polar, 

el papel de los fosfolípidos fue determinante para explicar las diferencias 

metabólicas entre individuos. Se encontraron diferencias críticas en las concen-

traciones de las glicerofosfatidilcolinas que incluían PUFAs como sustituyentes. 
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De hecho, la principal diferencia entre dietas correspondió a tres de los glicero-

fosfolípidos más comunes en sangre humana —PC(16:0/18:2), PC(18:0/16:2) y 

PC(18:0/18:2)—, cuyos niveles dependieron estrechamente de la dieta. También 

los ácidos grasos y las esfingomielinas formaron parte de la lista de metabolitos 

no polares alterados por las dietas de intervención. Por tanto, la influencia de las 

dietas en la fracción lipídica fue muy significativa. 

Por otra parte, el análisis de la fracción polar también reveló diferencias 

metabólicas entre individuos en función de las dietas. Las carnitinas, los ami-

noácidos, los ácidos biliares y los derivados de purina fueron los metabolitos de 

esta fracción más afectados por la dieta. También se encontró una estrecha 

conexión entre las principales rutas metabólicas alteradas en los individuos 

sometidos a los periodos de intervención y el metabolismo de los lípidos. El 

análisis global permitió establecer diferencias metabólicas asociadas a la dieta, a 

pesar de la enorme variabilidad biológica observada en la cohorte seleccionada 

para el estudio.  

 

Capítulos 5 y 6 

 En estos dos capítulos se recoge el estudio sobre potenciales bio-

marcadores de aterosclerosis mediante análisis de muestras de suero de 

pacientes afectados por diferentes enfermedades cardíacas. El estudio que se 

discute en el Capítulo 5 se orientó a la búsqueda de diferencias metabólicas entre 

pacientes con angina estable, con infarto de miocardio sin elevación del segmento 

ST (NSTEMI) o angina inestable, y con infarto agudo de miocardio (AMI). Por su 

parte, el estudio que recoge el Capítulo 6 se dedicó a la búsqueda de marcadores 

para el seguimiento de la aterosclerosis mediante comparación de pacientes con 

angina estable con los que padecían infarto agudo de miocardio. En el primer 

estudio se ensayaron diferentes modos cromatográficos que permitieron elegir la 

mejor opción para cubrir el máximo número de entidades moleculares, 

equivalentes a potenciales metabolitos. De forma adicional, se seleccionó una 
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etapa simple de precipitación de proteínas como única etapa de preparación de la 

muestra con el fin de minimizar la pérdida de metabolitos usual de esta etapa. 

 Una vez establecida la metodología analítica, se analizaron las muestras 

de suero y los datos generados se trataron de acuerdo con las necesidades de los 

resultados globales: Alineamiento y extracción de las entidades moleculares y el 

análisis estadístico correspondiente para encontrar diferencias estadísticas entre 

los grupos en estudio. Se identificó un grupo de 13 metabolitos que presentó 

diferencias de concentración significativas entre los tres grupos de pacientes 

ateroscleróticos. La mayoría de los metabolitos eran lípidos y algunos ácidos 

biliares, como el cólico y el desoxicólico. La bilirrubina fue el metabolito más 

diferenciador, con un valor de p de 0.0012. Algunos de los compuestos 

identificados habían sido relacionados previamente con enfermedades cardio-

vasculares o con estrés oxidativo, ambos con enorme influencia en la 

aterosclerosis. Tras la comparación de las medias de los metabolitos identificados 

como significativos en los tres grupos, se encontró similaridad entre AMI y 

angina instable o NSTEMI, mientras que la diferencia entre los valores en 

pacientes con infarto de miocardio y angina estable fue significativa. Se 

encontraron también otros metabolitos que, si bien no presentaban una 

diferencia significativa entre grupos, sí mostraron una tendencia, creciente o 

decreciente, de angina estable a angina inestable/NSTEMI y a AMI. 

La misma plataforma analítica, LC–QTOF MS/MS, se utilizó en el Capí-

tulo 6, ya que había mostrado ser también una estrategia adecuada para la 

búsqueda de biomarcadores. Este estudio se aplicó a la discriminación de 

pacientes ateroscleróticos afectados por angina estable y AMI. En este caso se 

estudió también la influencia de los factores de riesgo (tales como hábito de 

fumar, obesidad e hipercolesterolemia) mediante análisis de la capacidad de 

predicción de los potenciales marcadores en pacientes con factor de riesgo 

específico. Como este segundo estudio se orientó al desarrollo de un panel de 

marcadores, su evaluación y la de los potenciales marcadores individuales se 

realizó mediante análisis de curvas ROC y se validó su funcionamiento mediante 

los tests de diagnóstico médico con clasificación bi-naria. De esta forma, la mejor 
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capacidad de predicción se obtuvo para los pacientes ateroscleróticos con 

hipercolesterolemia, para los que la bilirrubina, el 13-HpODE, el 5-HETE y el 

índice de masa corporal dieron valores de especificidad del 91%, y de sensibilidad 

entre el 48 y el 62%. 

Basado en estos resultados, se ha propuesto un panel de marcadores para 

la predicción del infarto agudo de miocardio, frente a individuos con angina 

estable, con una especificidad del 85.1% y una sensibilidad del 80.8%, lo que da 

lugar a pocas posibilidades de falsos positivos y negativos. Los metabolitos que 

componen el panel son dos lípidos, el 13-HpODE y el lysoPC(22:6), junto con el 

índice de masa corporal como variable antro-pométrica relacionada con la 

obesidad. La confirmación de los resultados del modelo propuesto requiere su 

aplicación en un estudio a gran escala. 

 

Capítulo 7 

 El objetivo de la investigación que se discute en este capítulo fue evaluar 

el potencial de un biofluido menos común como es el sudor para discriminar 

entre individuos afectados por cáncer de pulmón y donantes sanos. El sudor no 

ha recibido hasta ahora atención como muestra para la búsqueda de bio-

marcadores de cáncer —a pesar de sus comentadas cualidades como el no 

requerir un muestreo invasivo y tener una matriz menos compleja que la sangre o 

la orina. Posiblemente esta laguna era debida a la ausencia de un protocolo de 

muestreo homogéneo y que proporcionara un volumen de muestra suficiente 

para el análisis. No obstante, los avances en instrumentación analítica han 

logrado que en la actualidad se disponga de equipos con la sensibilidad adecuada 

para el análisis de pequeños volúmenes de muestra. Este hecho, junto con la 

mejora de los protocolos de muestreo del sudor, suficientemente reproducibles 

para estudios de cáncer de pulmón, han hecho posible el uso de este biofluido 

para un potencial diagnóstico de esta enfermedad. Esta búsqueda responde a la 

necesidad de nuevas herramientas para el diagnóstico de este cáncer, ya que los 
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tests que existen en la actualidad son invasivos y tienen un coste alto, lo que hace 

impracticable su aplicación a todos los individuos con riesgo de padecerlo. 

Como en capítulos anteriores, se utilizó la plataforma LC–QTOF MS/MS 

junto con el modo más simple de preparación de la muestra, que consistió en 

dilución con la fase móvil cromatográfica inicial. Con estas premisas, el potencial 

del sudor como biofluido para su implantación en diagnóstico de cáncer se 

demostró de la siguiente forma: Se construyó un modelo de predicción basado  en  

un panel de metabolitos que incluyó aminoácidos, azúcares y algunos lípidos y 

que permitió discriminar entre pacientes con cáncer y un grupo control. Su alto 

valor predictivo permite prever su potencial uso para reducir el número de 

posibles casos que tienen que someterse a tests confirmatorios. 

La capacidad de discriminación de metabolitos individuales reveló que 

un trisacárido fosfato presentaba el valor más alto de sensibilidad para una 

especificidad mínima del 80%. Sin embargo, este compuesto no estaba presente 

en los dos paneles de tres metabolitos generados para la predicción de cáncer de 

pulmón. Los dos paneles incluían maltotriosa y ácido nonanedioico, en 

combinación con γ-GluLeu y MG(22:2). Ambos paneles mejoraban de forma 

significativa la capacidad de discriminación de los metabolites independientes. El 

panel se caracterizó por el 100% de especificidad y el 63.6% de sensibilidad; por 

tanto, la presencia de falsos negativos fue 0%. El segundo panel proporcionó 

valores de especificidad y sensibilidad del 82%. 

 Estos resultados preliminares hacen muy conveniente un estudio a gran 

escala para validar los paneles propuestos con un doble objetivo: Reducir el 

número de individuos que tengan que someterse a un test confirmatorio y 

detectar el cáncer de pulmón en una etapa lo más temprana posible. 

    

Sección III. Análisis orientado de potenciales biomarcadores 

El análisis orientado en metabolómica se define como aquél que se aplica 

a una muestra para la cuantificación de un grupo o familia de compuestos, o 
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incluso un único metabolito. A pesar de que sólo se pueden detectar compuestos 

predefinidos utilizando esta estrategia metabolómica, posee una serie de ventajas 

respecto al análisis global. La principal de ellas es que tanto la preparación de la 

muestra como la detección se optimizan para reducir el número de interferentes y 

que la selectividad, y también la sensibilidad, sean máximas con la plataforma 

seleccionada para el análisis. Con este criterio, en el caso de determinar 

compuestos no polares, se prefiere una columna de C18 o similar, mientras que 

para compuestos polares la mejor selección es una HILIC o de intercambio 

iónico. La preparación de la muestra depende, lógicamente, de la naturaleza de 

los analitos y en algunos casos se requiere una etapa de derivatización, como 

ocurre en el análisis mediante GC–MS. En otros casos la extracción en fase sólida 

es la major alternativa para eliminar los interferentes y preconcentrar los 

metabolitos problema. 

El número de compuestos considerados en cada estudio puede variar 

desde un único metabolito a una familia que comprenda un número grande de 

compuestos, como es el caso de los fosfolípidos. Cuando el número de com-

puestos es suficientemente pequeño para optimizar la preparación de la muestra 

y la detección para cada uno de ellos, y se puede obtener su recta de calibrado 

individual  —porque la existencia de patrones lo permite— se puede conseguir la 

cuantificación de todos los compuestos problema. Por el contrario, si el número 

de compuestos es grande y no existen patrones para todos ellos —y, por tanto, la 

obtención de las curvas de calibrado no es completa— la cuantificación de los 

metabolitos que carecen de patrones se hace generalmente de forma relativa con 

respecto al metabolito para el que existe patrón y que tiene la estructura más 

similar a él. 

 Los paneles de compuestos seleccionados en esta investigación para 

análisis orientado estuvieron compuestos por metabolitos implicados en rutas 

metabólicas conocidas y que juegan un papel relevante en ciertas patologías. 

Además, estos metabolitos habían sido descritos previamente como potenciales 

biomarcadores. Tres de las cuatro plataformas analíticas optimizadas en esta 

sección se orientaron al estudio de diferentes familias de metabolitos, como 
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aminoácidos esenciales, compuestos implicados en el ciclo de los ácidos 

tricarboxílicos y fosfolípidos. La cohorte seleccionada para el estudio estaba 

formada por pacientes diagnosticados con diversas afecciones cardíacas. Con la 

cuarta de las plataformas optimizadas se analizó un péptido antimicrobiano del 

que se determinó comparativamente su concentración en suero de individuos 

sanos y de pacientes de la unidad de cuidados intensivos. 

 En relación a la naturaleza química de los compuestos analizados, dos de 

los métodos se basaron en LC–MS, uno en GC–MS y otro en infusión directa en 

MS/MS. Tanto en este último método como en los basados en LC–MS, se 

aprovecharon las ventajas que aporta la SPE como preparación de muestra de 

forma automatizada y con acoplamiento en línea a etapas posteriores del proceso 

analítico. 

 En lo que se refiere a las estrategias de tratamiento de datos, se utilizó un 

esquema general similar al de la sección previa —análisis univariante y 

multivariante— junto con nuevas herramientas con diferente capacidad. Como en 

la sección anterior, se utilizaron las dos formas de análisis univariante, 

paramétrico y no paramétrico, pero también estrategias de análisis multivariante 

supervisado y no supervisado. También se utilizaron diseños multivariantes y 

univariantes para obtener el valor óptimo de cada parámetro que afectaba al 

método en cuestión, siempre en función de la metodología a desarrollar.  

 

Capítulo 8 

 Este capítulo está dedicado a una plataforma para el análisis de 

fosfolípidos en suero con el propósito de determinar el perfil de estos compuestos 

en pacientes ateroscleróticos. Los fosfolípidos son una familia de lípidos que, 

además de ser componentes mayoritarios de las membranas celulares, cons-

tituyen una parte importante de la composición lipídica de las lipoproteínas 

presentes en la sangre. La mayoría de los fosfolípidos contiene un diglicérido o 

monoglicérido, un grupo fosfato y una molécula orgánica simple, tal como colina, 

etanolamina o serina, que dan nombre a las diferentes clases de fosfolípidos. Una 
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excepción a esta regla es la esfingomielina, que deriva de la esfingosina en lugar 

de derivar del glicerol. Como esta familia de lípidos abarca un gran número de 

metabolitos que incluye glicerofosfatidilcolinas (PC), glicerofosfatidiletanola-

minas (PE), glicerofosfatidilserinas (PS) y esfingomielinas (SM), entre otras, es 

parti-cularmente difícil construir las curvas de calibración para todos ellos. Por 

esta razón, los perfiles de fosfolípidos del suero se obtuvieron mediante LC–

QTOF MS/MS, una plataforma que permite la identificación de fosfolípidos 

gracias a su alta resolución. La identificación de fosfolípidos en suero puede 

llevarse a cabo por la información que proporcionan en MS/MS, ya que su 

modelo de fragmentación es conocido. Se combinaron, además, los modos de 

ionización positivo y negativo para obtener resultados complementarios.  

 En cuanto a la preparación de la muestra, se centró en el aislamiento de 

los fosfolípidos de la matriz del suero y a su preconcentración. Con estos fines, 

una etapa de extracción en fase sólida utilizando cartuchos de un sorbente que 

interacciona selectivamente con el grupo fosfato (sílice recubierta de circonio) 

permitió una retención selectiva de los metabolitos con este grupo funcional. 

Ochenta y un fosfolípidos se detectaron e identificaron utilizando esta plataforma 

de los que 48 estaban presentes al menos en el 75% de las muestras estudiadas 

(140 de pacientes diagnosticados con aterosclerosis coronaria, 72 con angina 

inestable o NSTEMI y 68 con angina estable).  

 El análisis estadístico de los datos obtenidos permitió identificar cuatro 

fosfolípidos a concentraciones significativamente diferentes en pacientes con 

angina estable con respecto a los que padecían angina inestable o NSTEMI: 

LysoPC(20:5), PC(18:1/18:2), PC(18:0/20:4) y SM(d18:2/14:0). 

 Se utilizó una herramienta analítica conocida como ROCCET para 

construir un panel de marcadores con los anteriores metabolitos con el que 

discriminar entre pacientes ateroscleróticos que padecían angina estable o 

inestable/NSTEMI. El panel presentó una capacidad de predicción de la 

enfermedad en el set de entrenamiento del 70.7 y 66.0% para angina estable e 

inestable/NSTEMI, respectivamente. Además, la curva ROC del modelo presentó 
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un área bajo la curva de 0.715 para el set de entrenamiento y de 0.747 para el set 

de validación externa, mostrando un 66 y 70% de sensibilidad y especificidad, 

respectivamente. Estos resultados merecen un estudio a gran escala para validar 

el modelo propuesto y asegurar la utilidad de la estrategia basada en LC–QTOF 

MS/MS para establecer el perfil de fosfolípidos que permita el desarrollo de 

herramientas para asistir en  diagnóstico clínico. 

 

Capítulo 9 

 Considerando el perfil de aminoácidos esenciales y su relevancia bioló-

gica, el objetivo del presente capítulo fue desarrollar una plataforma automa-

tizada para la determinación de aminoácidos esenciales en suero con vistas a 

conocer si existen diferencias significativas entre sus niveles dependiendo del 

tipo de pacientes ateroscleróticos. Con este propósito, se adoptó el sistema SPE–

LC–MS/MS como configuración instrumental. 

 El número de metabolitos en este caso permitió la optimización completa 

del proceso analítico, así como la caracterización del método desarrollado: Curvas 

de calibración, rango dinámico, límites de detección y de cuantificación, 

reproducibilidad y repetitividad. Se tuvieron en cuenta las características físico-

químicas de los analitos —aminoácidos— para el diseño del método. Con este 

criterio, en la optimización de la preparación de la muestra mediante SPE se 

utilizaron cartuchos catiónicos, dado que los aminoácidos adquieren carga 

positiva en medio ácido. Teniendo en cuenta el carácter polar de los metabolitos, 

en la etapa de separación cromatográfica, se seleccionó una columna HILIC (fase 

móvil acuosa, inicial con 90% de acetonitrilo y final con 40%, en todo momento 5 

mM en formiato amónico y con pH 6). Puesto que las fases cromatográficas no 

coincidían con el disolvente requerido para eluir los aminoácidos del cartucho 

(90% acetonitrilo, 5% amoníaco, 5% agua), se eligió el modo de elución 

“focusing”. Este modo está especialmente indicado para la elución con un 

mínimo volumen de eluyente diferente de la fase móvil. El caudal de la etapa de 
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elución debe ser pequeño para minimizar su influencia en la separación 

cromatográfica. 

 Una vez optimizado, el método se aplicó al análisis de muestras de suero 

de 122 pacientes ateroscleróticos (80 con angina estable y 42 que habían sufrido 

previamente un infarto agudo de miocardio). El análisis de esta serie de muestras 

reveló que la isquemia, presente en los pacientes que habían sufrido un infarto, 

tenía un efecto significativo en la concentración de dos aminoácidos esenciales: 

Treonina y lisina. Este efecto era más pronunciado en mujeres que en hombres. 

La influencia de la obesidad, un factor de riesgo clave en enfermedades 

cardiovasculares, también se elucidó poniéndose de manifiesto niveles de valina y 

metionina más altos en suero de individuos obesos. Esta investigación permitió 

establecer diferencias significativas en el perfil de aminoácidos esenciales presen-

tes en suero de individuos diagnosticados con aterosclerosis, con especial énfasis 

en la importancia de factores de riesgo para mejorar la discriminación. 

 

Capítulo 10 

 En este capítulo se discuten la puesta a punto y la aplicación de un 

método para la determinación en suero de compuestos implicados en el ciclo de 

los ácidos tricarboxílicos (TCA) mediante el uso de GC–MS tras una etapa de 

derivatización, una estrategia muy común para la determinación de esta familia 

de compuestos. El ciclo de los TCAs también se conoce como ciclo del ácido 

cítrico o ciclo de Krebs’, y participa en la generación de energía a partir de 

carbohidratos, grasas y proteínas. Está también relacionado con la generación de 

ciertos aminoácidos y ácidos grasos, y es la ruta metabólica central de los 

organismos aeróbicos. 

Se optimizaron tanto la preparación de la muestra como la determinación 

para conseguir la máxima sensibilidad y selectividad posibles. El método se basó 

en, (i) precipitación de proteínas con metanol, (ii) limpieza de la fase líquida 

mediante extracción líquido–líquido con cloroformo para eliminar los inter-

ferentes no polares, (iii) derivatización por sililación; (iv) análisis mediante GC–
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MS. El método se aplicó a muestras de suero de 223 pacientes diagnosticados con 

diferentes enfermedades cardiovasculares (172 con lesiones coronarias 

significativas y 51 afectados por otros problemas cardiovasculares, pero sin 

lesiones coronarias). Los compuestos del TCA son primariamente metabolitos 

que pueden verse afectados por un número amplio de factores internos y 

externos. Por esta razón es importante considerar la influencia de los factores de 

riesgo cuando se proponen los metabolitos del ciclo TCA como potenciales 

biomarcadores en diagnosis clínica. Por tanto, se estudió la influencia de tres 

factores de riesgo como la hipercolesterolemia, la obesidad y el hábito de fumar 

en los niveles en suero de los metabolitos del TCA en paciente diagnosticados con 

lesiones coronarias. La consideración de estos factores de riesgo resultó crucial 

para explicar la variabilidad de esos metabolitos en pacientes con lesión 

coronaria frente a los individuos control. En este estudio, el análisis estadístico 

estuvo soportado en curvas ROC y sus parámetros característicos para validar la 

capacidad de discriminación de los metabolitos del TCA. 

 Los resultados obtenidos revelaron que los ácidos málico y α-

cetoglutárico conducen a modelos con alta especificidad y aceptable sensibilidad 

para la discriminación entre pacientes con o sin lesiones coronarias considerando 

también la obesidad (un factor de riesgo que influyó en los niveles de estos dos 

metabolitos). No obstante, el modelo de discriminación del ácido α-cetoglutárico 

fue menos robusto que el del ácido málico. 

 

Capítulo 11 

 La plataforma analítica orientada a la que se dedica este capítulo se 

centró en la cuantificación de péptidos de interés clínico. La plataforma se 

fundamenta en el acoplamiento en línea de la SPE y la espectrometría de masas 

en tándem con infusión directa, con el fin de hacer posible el desarrollo de 

métodos rápidos, con alta sensibilidad y selectividad. La aplicabilidad de la 

plataforma se comprobó mediante su aplicación a la determinación de un péptido 

antimicrobiano en suero humano: La catelicidina. El modo de seguimiento 
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selectivo de reacciones (SRM) se configuró con  tres transiciones confirmadas 

por fragmentación in silico del péptido en cuestión. Se evitó el uso de un estándar 

interno mediante validación de la  SPE realizando ensayos con configuraciones 

de doble cartucho para asegurar la retención cuantitativa de la catelicidina.  

 Mediante el sistema automatizado de SPE se llevó a cabo la desa-

linización y desproteinización de la muestra de forma eficaz utilizando como 

sorbente una resina polimérica de divinilbenceno. La eficacia de esta etapa es de 

crucial importancia en análisis de biofluidos, en los que frecuentemente la etapa 

de preparación de la muestra incluye una etapa de desproteinización con disol-

ventes orgánicos. El proceso analítico requirió sólo 12 min por muestra. Los 

límites de detección y de cuantificación fueron 2.5 y 8.25 µg/L, respectivamente 

(0.20 and 0.66 pg en columna), que ponen de manifiesto la alta eficiencia de la 

combinación SPE–MS/MS. La repetibilidad y la reproducibilidad en el labo-

ratorio fueron 2.4% y 2.7%, respectivamente; lo que demuestra la precisión del 

método desarrollado.  

 Como la catelicidina participa en la respuesta inmunitaria, operando en 

primera línea de los mecanismos de defensa, el método se validó por aplicación a 

muestras de suero de pacientes de la unidad de cuidados intensivos (n=17) y de 

donadores sanos (n=23). Aunque los niveles de catelicidina en los pacientes en 

cuidados intensivos fueron mayores que en los inviduos sanos, no se encontraron 

diferencias significativas entre ambos grupos. 

 La plataforma analítica propuesta en este capítulo puede ser de interés 

para el análisis de otros péptidos, tales como biomarcadores clínicos y de 

proteínas problema después de hidrólisis enzimática para generar péptidos 

representativos. Por tanto, con cambios adecuados o sin ellos, podría utilizarse 

para cualquier otro péptido con una disminución considerable del coste por 

análisis, si se compara con el de los tests basados en inmunoensayo. También se 

consigue una completa automatización sin necesidad de usar estaciones de 

trabajo robotizadas, así como un grado extra de selectividad al suprimirse las 

reacciones cruzadas. 
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 The current regulation of the University of Córdoba on the writing of 

doctoral dissertations dictates that any articles deriving from the doctoral work, 

whether published or awaiting publication, are to be included in the Thesis report 

as such and that the report should include a section presenting a joint discussion 

of the results.  

 The research leading to the main part of this doctoral work revolved 

largely around clinical metabolomics. This choice of research topic was prompted 

by the strong impact of this omics discipline on two especially attractive fields, 

namely: (a) diagnosis, prognosis and treatment of diseases; and (b) nutrition. 

These two fields are the cornerstones of PM. The research presented here is 

described in three different sections according to the aim and the specific 

metabolomic strategy used for each purpose. 

Thus, Section I focuses on the development of new methodologies to 

improve the basic analytical properties sensitivity and selectivity, and also to 

increase metabolite coverage and facilitate identification of potential biomarkers. 

The second and third sections are devoted to two basic metabolomics 

strategies: untargeted and targeted analysis. Specifically, Section II deals with 

profiling analysis, which is the most widely used mode of untargeted analysis in 

clinical metabolomics and aims to cover the metabolomes of specific biofluids or 

tissues as comprehensively as possible. 

By contrast, Section III is concerned with the determination of specific 

groups or families of compounds which are of clinical interest because of their 

involvement in crucial biological pathways that can be altered or deregulated by 

certain pathological conditions. The target metabolites addressed in this section 

include essential amino acids, metabolites involved in the tricarboxylic acids 

cycle, phospholipids and the antimicrobial peptide cathelicidin. 
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The results pertaining to each section are summarized below. One com-

mon link between the three is the use of mass spectrometry for detection. The 

analytical sensitivity, selectivity, accuracy, precision and resolution of mass 

spectrometry make this technique the most suitable tool for targeted and 

untargeted metabolomic analysis of clinical samples. Both metabolomics strate-

gies have taken advantage of this technique for qualitative and quantitative 

analyses. Thus, untargeted analysis has benefited greatly from the high resolution 

(i.e., high m/z accuracy), scan velocity and sensitivity, and competitive pur-

chasing cost, of QTOF mass spectrometers, which have turned it into the 

preferred choice for qualitative analysis and relative quantitation. On the other 

hand, QqQ mass spectrometers are better suited to targeted analysis by virtue of 

their high sensitivity and selectivity for confirmatory analysis —and hence for 

quantitation. Given the complexity of clinical samples, mass spectrometers are 

better suited to clinical metabolomics, especially when used in combination with 

chromatographs. The choice of a specific technique (gas chromatography or 

liquid chromatography, mainly) for separation, when needed, depends on the 

chemical properties of the target metabolites.  

 

Section I. Methodological development and innovation in 

metabolomic analysis 

 Metabolomics analysis continues to be subject to some shortcomings for 

untargeted and profiling analysis despite recent cutting-edge technological ad-

vances including accurate, high resolution mass spectrometry measurements for 

expeditious detection of metabolites.  

 One of the problems with profiling metabolomics is the difficulty of 

covering all possible metabolites with a single analytical platform; this is a result 

of metabolomes encompassing a wide variety of metabolites differing widely in 

chemical structure and concentration. One other crucial problem arises from the 

complexity of some biofluids typically used in clinical analysis (viz., serum, 
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plasma, urine, saliva), which further hinders development of clinical meta-

bolomics applications. 

The previous problems were addressed in three different ways here. One 

involved preparing samples of such a scarcely studied biofluid as sweat, which 

has substantial advantages including non-invasive sampling and a simple com-

position relative to conventional biofluids such as blood or urine. Using new, 

alternative types of samples in clinical analysis can be useful to overcome the low 

selectivity of conventional biofluids to metabolic changes associated to physio-

logical changes. One other challenge was developing an effective sample prepara-

tion strategy to increase metabolite coverage in the LC–MS/MS analysis of 

clinical samples. The strategy used for this purpose was an automated SPE 

system coupled on-line to LC–QTOF. The SPE system was used with two dif-

ferent sorbents possessing complementary retention properties for sequential 

elution to the chromatograph. The third challenge was another methodological 

innovation, namely: using gas phase fractionation in metabolomics to improve 

metabolite detection in the MS/MS analysis of human serum. The results provid-

ed by each approach are summarized below. 

 

Chapter 1 

 The research work described in this chapter was aimed at developing an 

optimized sample treatment protocol for the LC–MS/MS analysis of sweat, an 

uncommon biofluid which is arising increasing interest for clinical studies by 

virtue of its easy, non-invasive sampling —even by unskilled personnel—, simple 

composition and, unlike urine, the need for no standardization. More complex 

biofluids have led to prediction models based on unselective metabolites by effect 

of interferences from other biological processes.  

 The experimental optimization plan involved using two different chroma-

tographic modes for sweat analysis, namely: a reversed phase mode using a C18 

column and a HILIC mode using an appropriate column. Direct analysis of sweat 

enabled detection of 67 and 57 molecular features with the C18 and HILIC 
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analytical method, respectively, in the positive ionization mode, and 29 and 37 

features, respectively, in the negative ionization mode. Intra-individual 

variability was assessed by duplicate analysis of 7 samples from the same 

individual on different days over a period of five. This study also allowed 

evaluation of the methodological reproducibility of this step, the estimated 

variability as RSD of which ranged from 2 to 21%. Therefore, the sampling system 

was reproducible enough for metabolomic research. 

 Despite the large number of potential molecular features detected in the 

positive ionization mode, metabolite coverage was further improved by the 

sample preparation step. To this end, various preparation protocols were used in 

the two chromatographic modes for the overall metabolomics profiling analysis 

of sweat. Sweat hydrolysis, whether acid or basic, proved unsuitable for 

metabolite profiling because it altered the integrity of the samples judging by the 

presence of many artifacts. By contrast, direct analysis after dilution proved 

effective to obtain a representative snapshot of sweat metabolome. Also, C18 

SpinColumn SPE cartridges resulted in improved sensitivity and reduced the 

presence of exogenous compounds. Some exogenous compounds detected in this 

biofluid were components of the sweat extraction system (particularly 

methylparaben, propylparaben and pilocarpine, the last of which was used to 

stimulate sweating prior to sampling). A clean-up step with HILIC SPE cartridges 

was found to be preferable for the analysis of lipid metabolites such as 

monoacylglycerols. 

The optimized LC–QTOF MS/MS protocol afforded the identification of a 

large number of sweat components (a total 43 metabolites from a wide variety of 

families), which testifies to its effectiveness for analysing sweat. The metabolites 

identified included all essential amino acids except lysine —a total of 19 

compounds. Exogenous compounds such as caffeine and theophylline were also 

identified, and so were various dicarboxylic acids (sebacic, suberic, azelaic and 

butanedioic). The results of this identification study can help us better under-

stand this poorly known biofluid and suggest that, since some of the metabolites 
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identified had previously been assessed as potential biomarkers for other bio-

fluids, sweat may be a candidate biofluid for finding new biomarkers. 

 

Chapter 2 

 The work described in this chapter focused on the development of an 

innovative approach to increase metabolite coverage. The high chemical diversity 

of the metabolome requires new analytical platforms to improve existing detec-

tion capabilities. The platform used for this purpose here was a combination of an 

automated SPE device and an LC–QTOF system intended to take advantage of 

the high selectivity of SPE sorbents and the high resolution of QTOF detectors. 

The SPE device was coupled on-line to the LC–MS/MS instrument for fully 

automated operation —in fact, all the analyst needs to do is placing sample vials 

on the autosampler. 

The proposed approach was used for the analysis of human serum as a 

model biofluid. Detection of tentative metabolites in serum with various sorbents 

acting via single or dual retention mechanisms was compared, using polymers 

and resins for dual retention. Using different sorbents allowed the detection 

capabilities of SPE–LC–MS/MS to be maximized and up to 3445 molecular 

entities detected under specific conditions of charge state, isotopic distribution, 

signal intensity and detection frequency. A combination of four sorbents (viz., 

polydivinylbenzene resin, C18, and anionic and cationic mixed mode materials) 

afforded more than 81% of the total coverage obtained with the whole set. 

Therefore, the proposed approach opens a new door to enhancing the detection 

capabilities of metabolomic methods using a single platform (LC–MS/MS here). 

 An additional study was conducted to develop other methods using 

combinations of two SPE protocols conducted on automated SPE–SPE–LC–MS 

configurations. For this purpose, a single aliquot was serially circulated through 

two complementary SPE sorbents, the two cartridges being independently eluted 

and the eluted metabolites sequentially analysed by LC–MS. This increased the 

selectivity of this hyphenated sample fractionation scheme and maximized 
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throughput. Thus, the serial configurations used afforded detection coverages 

ranging from 79.5 to 99.7% of all molecular features detected by separate analysis 

with the whole set of sorbents. This approach can be very interesting for clinical 

studies on scant or highly valuable samples.  

 

Chapter 3 

 One of the weaknesses of untargeted metabolomic analysis by mass 

spectrometry is the need to obtain a large amount information for correct identi-

fication of metabolites in the particular biofluid under study. This requires either 

separate injection of the target compounds in pure form or acquisition of high-

quality MS and MS/MS information to identify them through a library search. 

 Existing MS/MS methodologies for identifying molecular features in 

untargeted analysis involve two or more steps including injection of samples in 

the MS mode, selection of potential precursors for obtainment of MS/MS 

information and targeted MS/MS analysis. The “auto MS/MS” mode is 

comparatively less time-consuming as it involves cycling through the chroma-

tographic run of MS scans and subsequent fragmentation of two or three of the 

ions detected in the previous scan. Selection of potential precursors can be 

restricted to specific mass ranges or charge states, and an abundance threshold 

be established.  

 The strategy based on GPF uses a combination of MS scans over the same 

mass range but different intervals to select precursor ions spanning the whole 

desired precursor range. This strategy, which had been successfully applied to 

increase the number of proteins identified in proteomics sample batches, had 

never before been used in metabolomics. This was thus the primary goal of the 

research work described in this chapter. 

 Because accurate metabolomics profiling requires using at least three 

replicates per sample, replication is a usual practice in metabolomics studies. 

Using GPF in combination with an adequate number of replicates is an effective 
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approach to enhancing identification capabilities without the need for further 

sample injections. In this doctoral work, we used combinations of 2, 3, 4 and 6 

intervals to select precursors spanning the m/z range from 100 to 1000 for 

comparison with the results of the conventional “auto MS/MS” mode. 

 This study was conducted on serum, which is the most widely used 

biofluid for clinical and nutritional metabolomic analyses by virtue of its role as a 

primary carrier of metabolites in the human body. Using GPF methodology for 

serum analysis by LC–MS/MS in metabolomics has proved an effective strategy 

for increasing the amount of MS/MS information available on some compounds. 

A combined method splitting the range of precursor ion masses into four 

intervals was found to be the best choice; thus, it provided MS/MS information 

for at least 80% of all detected entities. By contrast, the conventional “auto 

MS/MS” data acquisition mode afforded identification of only 48–57% of all 

detected molecular entities and was therefore less effective for unequivocal 

identification of metabolites.  

 Based on the results, a combination of methods using different intervals 

of precursor ion masses can increase the number of entities potentially detected 

from MS/MS information, as confirmed by identifying various families of 

metabolites and assessing recorded MS/MS information for each target com-

pound in each combination. 

 

Section II. Untargeted metabolomics: intervention study 

based on nutrimetabolomics, and search for disease bio-

markers  

 This section focuses on the use of different untargeted metabolomic 

approaches to confirm the effectiveness of this strategy for clinical studies. 

Untargeted metabolomics studies can be classified into two general categories 

depending on the particular purpose, namely: (a) discovery of biomarkers, and 

(b) understanding a specific metabolic pathway or an overall biological system. 
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Both categories were addressed here in relation to two aspects of Personalized 

Medicine, namely: (a) diagnosis, prognosis and treatment of diseases, and (b) 

nutritional metabolomics. 

The purely clinical area was examined in connection with atherosclerosis, 

which is one of the leading cause of death worldwide, and lung cancer, which is 

the leading and second most frequently diagnosed cause of cancer death. The 

nutritional area was explored in research conducted within the framework of the 

Lipgene study. Lipgene is a European project focusing on the interaction of 

nutrients and genotype in the metabolic syndrome —a term that encompasses 

several risk factors for cardiovascular disease. Experiments were conducted on 

two different types of matrix: serum and sweat, which are two biofluids of 

different chemical diversity. Various statistical tools for evaluation of biomarkers, 

panels consisting of several markers, and univariate and multivariate analysis of 

the data set, were used for this purpose. 

 Untargeted metabolomics analyses require using high mass resolution 

systems in order to ensure a high enough m/z accuracy to identify as many 

metabolites in the target biofluid as possible. QTOF is a preferential tool here as 

it fulfils the requirements of untargeted analysis while facilitating acquisition of 

MS/MS spectra for precursor ions that contain enough information for the 

unequivocal identification of metabolites. A number of MS and MS/MS databases 

containing useful information for a wide variety of compounds exist, especially 

prominent among which are the Metabolite and Tandem MS Database (METLIN) 

and the MassBank. By contrast, the Human Metabolome Database (HMDB) 

contains MS/MS spectra with inadequate resolution for some metabolites 

because most of the spectra were acquired with a triple quadrupole system. Some 

databases are useful to obtain information about metabolic pathways involving a 

specific group of metabolites; such is the case with the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database. 

 The results obtained in the work described in the four chapters of Section 

II are discussed in detail below. 
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Chapter 4 

 Nutritional research provides another crucial pillar for Personalized 

Medicine. Diet is one of the most important external factors contributing to 

changes in the main blocks of the Systems Biology concept, namely: genome, 

transcriptome, proteome and metabolome. The direct relationship between meta-

bolome and phenotype has turned nutrimetabolomics into a very active research 

area. For example, untargeted metabolomic analysis can be useful to elucidate 

the biological response of individuals under intervention diets. This was the main 

purpose of the research work conducted here: to compare the metabolic dif-

ferences between serum profiles from individuals following four different 

intervention diets for 12 weeks. The diets were planned as part of the Lipgene 

project and differed in fat quality and quantity. Liquid–liquid extraction was used 

to split serum samples into two fractions (polar and non-polar metabolites) that 

were analysed separately by LC–QTOF in the MS/MS mode.  

 Supervised statistical analysis (PLS-DA) allowed metabolic differences 

associated to the intervention diet, and differences in metabolite profiles (polar 

and non-polar compounds) due to each diet, to be detected. Discrimination 

models based on PLS-DA and fold change analysis led to identification of 

metabolites whose concentration in serum was altered by the intervention diet. 

Phospholipids in the non-polar fraction were found to play a central role in 

metabolic differences between individuals. Thus, critical differences in the 

concentrations of glycerophosphatidylcholines including PUFAs as substituents 

were observed. The greatest differences between diets were those in three of the 

most common glycerophospholipids in human blood [PC(16:0/18:2), 

PC(18:0/16:2) and PC(18:0/18:2)], the levels of which differed between diets. 

Non-polar metabolites altered by the intervention diets included some essential 

fatty acids and sphingomyelins. Therefore, the diets had a considerable influence 

on the lipid fraction. 
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 Analysis of the polar fraction also revealed metabolic differences between 

individuals under different diets. Carnitines, amino acids, bile acids and purine 

base derivatives were among the most representative metabolites in this altered 

fraction. A strong connection between the major pathways altered —most relating 

to lipid metabolism— in individuals under the intervention diets was observed. 

Untargeted analysis allowed diet-related metabolic differences to be identified 

despite the high biological variability in the studied cohort.  

 

Chapters 5 and 6 

 These two chapters describe the metabolomic study of potential 

biomarkers for atherosclerosis identified by analyzing serum samples from 

patients suffering from various heart diseases. The study described in Chapter 5 

involved a search for metabolomic differences between patients with stable 

angina, non-ST elevation myocardial infarction (NSTEMI) or unstable angina 

and acute myocardial infarction (AMI), whereas that described in Chapter 6 was 

aimed at finding effective markers for monitoring atherosclerosis by comparing 

patients with stable angina and acute myocardial infarction. In the former study, 

various chromatographic modes were used to identify that leading to the greatest 

possible coverage of potential molecular features —which are equivalent to 

tentative metabolites. The only sample pretreatment needed was protein preci-

pitation, which minimized metabolite losses during the sample preparation step.  

 The ensuing methodology was used to analyze serum samples and the 

data thus obtained were processed according to the particular needs for 

untargeted results, namely: alignment and extraction of potential molecular fea-

tures, and statistical analysis for differences between groups. A group of 13 meta-

bolites with significant differences in concentration between the three different 

groups of atherosclerotic patients was identified. The metabolites were mostly 

lipids, but also included some bile acids (e.g., cholic and deoxycholic acids). 

Bilirubin was the most discriminating metabolite, with p = 0.0012. Some of the 

com-pounds identified had previously been associated to cardiovascular disease 
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or oxidative stress, both of which are highly influential on atherosclerosis. A com-

parison of means for significantly identified metabolites between the three 

groups revealed some similarity between AMI and unstable angina/NSTEMI, and 

the greatest differences in metabolites levels to be those between myocardial 

infarction and stable angina patients. Some other metabolites were not 

significantly different between groups, but tended to increase or decrease from 

stable angina to unstable angina/NSTEMI to AMI. 

 The LC–QTOF MS/MS analytical platform was also used in the research 

work described in Chapter 6 and found to be a suitable choice for biomarker 

discovery. This study was applied to the discrimination of atherosclerotic patients 

affected by stable angina and by a previous AMI episode. The influence of risk 

factors such as smoking habit, obesity and hypercholesterolemia was examined 

by assessing the predictive ability of potential markers in patients with a specific 

risk factor. Because the aim was to develop a panel of markers, assessment was 

based on ROC curve analysis, which is the golden standard for assessing 

performance of medical diagnostic tests with binary classification. The best 

predictions were those for atherosclerotic patients with hypercholesterolemia as 

obtained with bilirubin, 13-HpODE, body mass index (BMI) and 5-HETE, which 

had 91% specificity and 48–62% sensitivity.  

 A panel of markers for predicting acute myocardial infarction versus 

stable angina was compiled that featured 85.1% specificity and 80.8% sensitivity, 

and hence few false negatives or positives. The metabolite panel comprised the 

lipids 13-HpODE and lysoPC(22:6) in addition to BMI, which is an obesity-

related anthropometric variable. In any case, these results and the proposed 

model require validation in a large-scale study. 

 

Chapter 7 

 The aim of the work described in this chapter was to evaluate the 

potential of such a scarcely studied biofluid as sweat for discriminating indi-

viduals with lung cancer from healthy donors. Sweat has in fact been scarcely 
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used as a sample to search for cancer biomarkers despite its above-described 

advantages including non-invasive collection and lesser complexity than blood or 

urine. This has largely been the result of the lack of uniform sweat sampling 

protocols providing large enough volumes for analysis. However, advances in 

analytical instrumentation have raised sensitivity to a level facilitating the 

analysis of small sample volumes. This fact, together with improvements in sweat 

collection protocols which have made them reproducible enough for biomarker 

searching, has turned sweat into a useful sample for diagnosis of lung cancer. 

New tools for diagnosing lung cancer are needed, however, because currently 

available tests are invasive and expensive —and hence impossible to apply to all 

individuals at risk. 

 As in previous chapters, LC–QTOF MS/MS was used in combination with 

the most simple possible sample treatment:  dilution with the initial chroma-

tographic phase. This analytical platform was used to assess the potential of 

sweat as a biofluid for diagnosing lung cancer by developing a prediction model 

based on a panel of metabolites including amino acids, sugars and some lipids to 

discriminate patients with lung cancer from a control group. The high negative 

predictive value of this approach testifies to the potential usefulness of this 

biofluid for reducing the number of positives requiring confirmatory analysis. 

 A trisaccharide phosphate was found to be the best discriminator among 

individual metabolites. However, this compound was not present in both three-

metabolite panels used to predict lung cancer. The two panels included 

maltotriose and nonanedioic acid, in combination with γ-GluLeu and MG(22:2). 

Both significantly improved the discrimination capabilities of individual meta-

bolites. Thus, the former panel featured 100% specificity and 63.6% sensitivity —

and hence a false negative rate of 0%—, and the latter 81.0% specificity and 

sensitivity. 

 These preliminary results exposed the need for a large-scale study to vali-

date the proposed panels in order to reduce the proportion of individuals re-

quiring confirmatory testing, and to be able to detect lung cancer at earlier stages. 
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Section III. Targeted analysis of potential biomarkers 

 Targeted analysis in metabolomics is defined as the analysis of a sample 

to quantify a specific group or family of metabolites, or even a single metabolite. 

Although it only allows certain compounds to be detected, this metabolomic 

strategy has some clear-cut advantages over untargeted analysis. The main 

advantage is that sample preparation and detection can be optimized to reduce 

the number of interferents and maximize the selectivity and sensitivity by using 

an appropriate analytical platform. Thus, a C18 column is to be preferred for non-

polar compounds and a HILIC column for polar compounds. Sample treatment is 

also analyte-dependent and occasionally includes a derivatization step (e.g., with 

GC–MS analysis) or requires SPE for removal of interferents and precon-

centration of target metabolites. 

 The number of compounds included in each targeted study can range 

from a single metabolite to a large family (e.g., phospholipids). When the number 

of target compounds is small enough to allow both sample preparation and 

detection to be optimized, and a calibration curve for each individual metabolite 

obtained, absolute quantitation of the target compounds is feasible. On the other 

hand, if the number of target compounds is too large or some lacks a standard 

from which a calibration curve can be constructed, then absolute quantitation of 

all metabolites is impossible and those lacking a standard must be quantified in 

relation to the most similar metabolite having one. 

 The panel of compounds used here for targeted analysis consisted of 

metabolites involved in some well-known metabolic pathways that play a central 

role in certain medical conditions. The metabolites concerned had been pre-

viously studied as potential biomarkers. Three of the four platforms used were 

applied to different metabolite families including essential amino acids, com-

pounds involved in the tricarboxylic acids cycle and phospholipids. The target 
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cohort consisted of patients diagnosed with diverse cardiovascular diseases. The 

fourth platform used an antimicrobial peptide as target to compare serum levels 

in healthy individuals and intensive care patients. 

 Based on their chemical nature, the target metabolites were determined 

with two LC–MS methods, a GC–MS method and a direct-infusion MS/MS 

method. The last one, and those using LC–MS, benefited from the advantage of 

SPE for automated sample preparation coupled on-line with other steps of the 

analytical process. 

 Data processing was based on the general scheme used in the previous 

section (univariate and multivariate analysis) in addition to new tools differing in 

scope. Both parametric and non-parametric univariate analysis, and supervised 

and unsupervised multivariate strategies were also used here. Multivariate and 

univariate designs were additionally used to optimize each variable affecting 

performance of the different methodologies.  

 

Chapter 8 

 The work described in this chapter involved using a platform to analyse 

phospholipids in serum with a view to elucidating their profile in atherosclerotic 

patients. Phospholipids are a family of lipids constituting the major components 

of cell membranes and a sizeable portion of the lipid fraction of blood 

lipoproteins. Most phospholipids contain a diglyceride or monoglyceride unit, a 

phosphate group and a simple organic molecule such as choline, ethanolamine or 

serine after which phospholipids classes are named. One exception to this rule is 

sphingomyelin, which is derived from sphingosine instead of glycerol. The fact 

that this family of lipids encompasses a large number of metabolites including 

glycerophosphatidyl-cholines (PC), glycerophosphatidylethanolamines (PE), 

glycerophosphatidyl-serines (PS) and sphingomyelins (SM), among others, 

precludes constructing calibration curves for all. For this reason, serum 

phospholipid profiles were obtained by LC–QTOF MS/MS, a platform that allows 

identification of phospho-lipids thanks to its high resolution. Phospholipids in 
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serum can be easily identified from MS/MS information —their fragmentation 

pattern is quite accurately known. Analyses in the positive and negative 

ionization modes were used in combination to obtain complementary results.  

 Sample preparation was intended to isolate phospholipids from serum 

for preconcentration and removal of potential interferents. This was accompli-

shed by using SPE with cartridges interacting selectively with the phosphate 

group (zirconia coated silica) in order to selectively retain metabolites containing 

this functional group. A total of 81 phospholipids were thus detected and 

identified with this platform; 48 were present in at least 75% of samples (from 

140 patients diagnosed with coronary atherosclerosis: 72 with unstable 

angina/NSTEMI and 68 with stable angina). Statistical analysis of the results 

allowed four phospholipids present at concentrations significantly differing 

between patients with stable angina and unstable angina/NSTEMI to be 

identified, namely: LysoPC(20:5), PC(18:1/18:2), PC(18:0/20:4) and 

SM(d18:2/14:0). 

 An on-line computer tool called ROCCET was used to build a panel of 

markers with these four metabolites in order to discriminate between 

atherosclerotic patients with stable angina and unstable angina/NSTEMI. The 

panel exhibited a disease prediction ability for the training set of 70.7 and 66.0% 

for stable angina and unstable angina/NSTEMI, respectively. Also, the area 

under the ROC curve of the model was 0.715 for the training set and 0.747 for the 

external validation set, with 66.0% sensitivity and 70.0% specificity. These 

results warrant a large-scale study to validate the proposed model and testify to 

the usefulness of the LC–QTOF MS/MS strategy for profiling phospholipids with 

a view to developing effective aids for clinical diagnosis. 

 

Chapter 9 

 Taking into account the profile of essential amino acids and their 

biological relevance, the objective in the study of Chapter 9 was to develop an 

automated platform for determining essential amino acids in serum and to 
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identify quantitative differences in amino acids levels between atherosclerotic 

patients by using the SPE–LC–MS/MS system as instrumental set-up. 

 The number of metabolites thus identified was large enough to optimize 

the whole analytical process and to characterize the ensuing method in terms of 

calibration curve, dynamic range, limit of detection and quantitation, repro-

ducibility and repeatability. The method for determining amino acids was de-

signed with provision for their physico–chemical properties. Thus, because 

amino acids acquire positive charge in an acid medium, the sample treatment 

was based on cationic SPE cartridges. Also, their polar nature dictated the use of 

a HILIC column for chromatographic separation —with an aqueous mobile phase 

containing a variable proportion of acetonitrile from 90% at the beginning to 

40% at the end in addition to 5 mM ammonium formate at pH 6 throughout—, 

and the fact that the chromatographic phases were incompatible with the solvent 

needed to elute amino acids from the cartridge (90% acetonitrile, 5% ammonia 

and 5% water) required elution in the focusing mode. This mode was specially 

designed for elution with the minimum volume of an eluent other than the 

mobile phase. The elution step was conducted at a low flow rate in order to 

minimize its effect on chromatographic separation. 

 The ensuing optimized automated method was used to analyse samples 

from 122 atherosclerotic patients (80 with stable angina and 42 who had 

previously had acute myocardial infarction). Analysis of this batch of samples 

revealed that ischemia, present in patients with a history of infarction, had a 

substantial effect on the concentration of two essential amino acids (threonine 

and lysine), particularly in females. The influence of obesity, an important risk 

factor for cardiovascular disease, was also examined and obese individuals were 

found to have increased levels of valine and methionine in serum. This research 

allowed establishing significant differences in the profile of essential amino acids 

in serum from individuals diagnosed with atherosclerosis, with special emphasis 

on the importance of risk factors to improve the discrimination capability. 
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Chapter 10 

 This chapter is devoted to the determination of the compounds involved 

in the tricarboxylic acids (TCAs) cycle in serum by GC–MS after derivatization —

a common choice for this family of compounds. The TCA cycle is also known as 

the “citric acid cycle” or “Krebs’ cycle”, and takes part in the production of energy 

from carbohydrates, fats and proteins. Also, it is associated with the production 

of some amino acids and fatty acids, and is the central metabolic pathway for 

aerobic organisms.  

 Sample preparation and determination were optimized for maximal 

analytical sensitivity and specificity by precipitating proteins with methanol and 

cleaning up the resulting liquid phase by liquid–liquid extraction with chloro-

form to remove non-polar interferents, the clean phase then being derivatized by 

silylation prior to GC–MS analysis. The ensuing method was applied to samples 

from 223 patients diagnosed with various cardiovascular conditions (172 with 

significant coronary lesions and 51 with other clinical manifestations but no 

without coronary lesions). TCA compounds are primary metabolites potentially 

affected by a number of internal and external factors. For this reason, it is 

important to consider the influence of cardiovascular risk factors when proposing 

metabolites of the TCA cycle as potential biomarkers for clinical diagnosis. 

 This led us to examine the relevance of three risk factors (hyperchole-

sterolemia, obesity and smoking habit) to cardiovascular disease through their 

influence on the levels of TCA metabolites in serum from patients with coronary 

lesions. Considering these risk factors proved crucial in order to explain the 

variability of the target TCA metabolites in patients with coronary lesion as 

compared to control individuals. In this study, the statistical analysis was based 

on ROC curves the figures of merit of which were used to assess the 

discriminating capabilities of TCA metabolites. 

 Malic acid and α-ketoglutaric acid led to models with high specificity and 

acceptable sensitivity for discriminating between patients with and without 

coronary lesions, with provision for obesity —a risk factor that influences the 
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levels of both metabolites. In any case, the α-ketoglutaric acid model was less 

robust than the malic acid model. 

 

Chapter 11 

 The platform for targeted analysis used in this chapter was intended to 

enable the quantitative determination of peptides of clinical interest. The 

platform used on-line coupled SPE and tandem mass spectrometry with direct 

infusion to facilitate the development of fast, highly sensitive and selective 

methods. Its applicability was assessed by determining the antimicrobial peptide 

cathelicidin in human serum, using the selective reaction monitoring (SRM) 

mode with three transitions confirmed by in silico fragmentation of the target 

peptide. The need for an internal standard was avoided by using a dual cartridge 

configuration to confirm quantitative retention of cathelicidin.  

 The automated SPE device used, in combination with a polymeric 

divinylbenzene resin as sorbent, proved efficient in desalting and deproteinizing 

samples. This is of paramount importance in clinical analysis of biofluids, which 

frequently involve deproteination with organic solvents. The analytical process 

took only 12 min per sample. The limits of detection and quantitation were 2.5 

and 8.25 µg/L, respectively (0.20 and 0.66 pg on column), and testify to the high 

efficiency of the SPE–MS/MS system. Repeatability and within-laboratory 

reproducibility were 2.4% and 2.7%, respectively, and reflected the high precision 

of the method. 

 Since cathelicidin takes part in the immune response, where it operates 

in the first line of defence, the analytical method was validated by application to 

serum samples from intensive care patients (n = 17) and healthy donors (n = 23). 

Although the levels of cathelicidin in intensive care patients were higher than 

those in healthy donors, the differences were not statistically significant. 

 This approach can be useful to analyze other peptides such as clinical 

biomarkers and target proteins —following enzymatic hydrolysis to representa-
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tive peptides. Thus, with little or no change, it could be applied to any other 

peptide with considerably reduced costs per analysis as compared with immuno-

assay. Furthermore, this new approach can be fully automated without the need 

for a robotic workstation, and also a higher selectivity is obtained because cross-

reactivity is absent.  
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 La investigación que constituye esta Tesis se ha centrado en el desarrollo 

de aplicaciones basadas en análisis metabolómico global y orientado en el área 

clínica, destacando la utilidad de la espectrometría de masas para ambas 

estrategias. Las innovaciones metodológicas constituyen otro de los aspectos que 

caracterizan la investigación. Las conclusiones más destacadas de la investigación 

pueden resumirse en los siguientes puntos:  

- Las innovaciones desarrolladas para mejorar algunos aspectos 

débiles del análisis global, que han llevado a concluir que: 

1) Biofluidos poco convencionales como el sudor constituyen una 

nueva fuente de muestras que debe considerarse en investigación 

clínica. Las ventajas del sudor en esta área están soportadas en 

su muestreo no invasivo y en su composición simple. La identifi-

cación en sudor de una amplia variedad de familias de meta-

bolitos mediante análisis por LC–QTOF confiere a la exploración 

de este biofluido un interés muy particular. 

2) El análisis de sudor mediante LC–QTOF tras una simple dilución 

como única etapa de preparación de la muestra es una opción 

muy adecuada para obtener una instantánea del metaboloma del 

sudor, aunque también pueden utilizarse otros protocolos de 

preparación de la muestra cuando el análisis se oriente a un 

cierto grupo de metabolitos. 

3) El uso de un sistema automatizado de SPE acoplado a un equipo 

de LC–QTOF permite mejorar la detección de metabolitos 

mediante combinación de diferentes sorbentes. Una configura-

ción en serie en la que se acoplan dos sorbentes con mecanismos 

de retención complementarios ha demostrado ser una alternativa 



   

486 

Espectrometría de masas para la identificación y  

cuantificación de biomarcadores metabolómicos en análisis clínico 

competitiva para analizar metabolomas complejos mediante una 

única plataforma, en este caso LC–MS/MS. 

4) La aplicación del fraccionamiento en fase gaseosa (GPF) en 

estudios metabolómicos ha demostrado ser una excelente estra-

tegia para incrementar el número de metabolitos identificados en 

una muestra dada. De hecho, mientras el modo “auto MS/MS” 

convencional de adquisición de datos proporcionó información 

para sólo el 48–57% de las potenciales entidades detectadas, los 

métodos basados en GPF, mediante la combinación de cuatro 

rangos para seleccionar iones precursores, proporcionaron infor-

mación para al menos el 80% de todas las entidades detectadas.  

- La aplicación de diferentes plataformas analíticas globales para 

estudios en nutrimetabolómica o en determinadas enfermedades 

(aterosclerosis o cáncer de pulmón), han conducido a las siguientes 

conclusiones:   

5) Los perfiles metabolómicos obtenidos mediante una plataforma 

basada en LC–QTOF utilizando suero de individuos sometidos a 

diferentes dietas permitió establecer las diferencias metabólicas 

asociadas a cada dieta. El uso de una etapa de preparación de la 

muestra para dividir los componentes del suero en sus fracciones 

polar y no polar resultó una estrategia muy útil para estudiar de 

forma separada las dos fracciones. Los principales efectos meta-

bólicos de las dietas se adscribieron al metabolismo de los lípi-

dos. 

6) La comparación de los perfiles del suero de pacientes con 

aterosclerosis reveló la presencia de 13 compuestos (bilirrubina y 

ácidos cólico y desoxicólico, entre otros) cuyos niveles son dife-

rentes dependiendo de que se trate de pacientes con angina 

estable, infarto agudo de miocardio (AMI) e infarto de miocardio 

sin elevación del segmento ST (NSTEMI). La bilirrubina ha de-
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mostrado ser uno de los metabolitos con mayor influencia para 

discriminar entre episodios de angina estable y de AMI/NSTEMI. 

Esta estrategia es también adecuada para la búsqueda de 

biomarcadores, como lo ha puesto de manifiesto el desarrollo de 

un panel de compuestos para la predicción del infarto de 

miocardio con una especificidad del 85.1% y una sensibilidad del 

80.8%.  

7) En un intento de solventar la principal limitación en el diagnós-

tico del cáncer de pulmón y conseguir su detección en un estadio 

temprano, se han propuesto dos paneles de marcadores para la 

predicción de este tipo de cáncer utilizando sudor. Los dos 

paneles incluyen maltotriosa y ácido nonanedioico en combi-

nación con γ-GluLeu o MG(22:2). Ambos paneles mejoran de 

forma significativa la capacidad de metabolitos independientes 

para la discriminación entre pacientes con cáncer de pulmón y 

controles. El primer panel se caracteriza por un 100% de 

especificidad y un 63.6% de sensibilidad. Por tanto, la posibilidad 

de falsos negativos es del 0%. El segundo panel proporciona 

valores de sensibilidad y selectividad por encima del 81.0%.  

- El desarrollo y aplicación de diferentes plataformas analíticas orien-

tadas ha permitido extraer las siguientes conclusiones: 

8) El método desarrollado para el análisis de fosfolípidos permite la 

identificación de 81 de estos compuestos en suero. La aplicación 

de esta plataforma para analizar muestras de pacientes 

ateroscleróticos ha permitido encontrar un grupo de cuatro 

fosfolípidos —lysoPC(20:5), PC(18:1/18:2), PC(18:0/20:4) and 

SM(d18:2/14:0)— que diferencia de forma significativa los 

pacientes con angina estable de los diagnosticados con NSTEMI. 

El panel construido con estos cuatro metabolitos tiene una 

capacidad de predicción en el conjunto de entrenamiento del 
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70.7 y del 66.0% para pacientes con angina estable y con 

NSTEMI, respectivamente. Además, la curva ROC obtenida para 

el modelo presenta un área bajo la curva (AUC) de 0.715 y 0.747 

para los conjuntos de entrenamiento y de validación, respecti-

vamente, con un 66.0 y 70.0% de sensibilidad y especificidad, 

respectivamente.   

9) Se ha desarrollado, asimismo, un método para determinar 

aminoácidos en suero utilizando la plataforma SPE–LC–MS/MS, 

cuya aplicabilidad se ha demostrado mediante análisis de 

muestras de pacientes ateroscleróticos diagnosticados con angina 

estable o infarto agudo de miocardio. Los resultados ponen de 

manifiesto que la lisina y la treonina se afectan por la isquemia, 

siendo el efecto más pronunciado en mujeres que en hombres. La 

influencia de la obesidad, un factor de riesgo clave en enferme-

dades cardiovasculares, es más significativo para valina y 

metionina, ambas incrementadas en individuos obesos. 

10) Se ha desarrollado un método basado en GC–MS para el análisis 

de compuestos implicados en el ciclo de los ácidos tricarboxílicos 

(TCAs), que se ha aplicado a muestras de suero de pacientes con 

lesiones coronarias y de individuos control. Se ha estudiado la 

influencia en esta enfermedad de tres factores de riesgo tales 

como hipercolesterolemia, obesidad y hábito de fumar. La con-

clusión del estudio es que estos factores deben tenerse en cuenta 

cuando se propongan metabolitos del ciclo de los TCA como 

potenciales biomarcadores. El análisis estadístico reveló que los 

ácidos málico y α-cetoglutárico conducen a modelos de pre-

dicción independientes, con buena especificidad y aceptable 

sensibilidad para la discriminación entre pacientes con y sin en-

fermedades coronarias.  
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11) Se ha demostrado la utilidad de una plataforma simple, como la 

que resulta del acoplamiento SPE–MS/MS, para analizar pépti-

dos mediante su aplicación a la determinación de catelicidina. El 

péptido se detectó mediante tres transiciones, confirmadas por 

fragmentación in silico. La aplicación del método a pacientes de 

una unidad de cuidados intensivos y a individuos sanos reveló 

que no existían diferencias significativas entre ambos grupos, 

aunque los niveles en los individuos control fueron ligeramente 

más bajos. 
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 The research conducted in this Doctoral work was aimed at developing 

applications based on targeted and untargeted metabolomics analysis in the 

clinical field, with special emphasis on the usefulness of mass spectrometry for 

both strategies. Also, the research has introduced some methodological inno-

vations. 

The most salient conclusions drawn from this work can be summarized 

as follows: 

- Innovations alleviating the weaknesses of untargeted analysis: 

1) Unconventional biofluids such as sweat can be effective new 

sources of samples for use in clinical research. The greatest 

advantages of sweat samples are their simple composition and 

the fact that they can be obtained non-invasively. Also, this 

biofluid is potentially useful for identification of metabolites 

from a wide variety of families by LC–QTOF analysis. 

2) The only sample preparation step required to analyze sweat by 

LC–QTOF is dilution. This facilitates obtaining a representative 

snapshot of its metabolome. However, alternative sample pre-

paration protocols can be used to address specific groups of 

metabolites. 

3) The joint use of automated SPE and LC–QTOF with combina-

tions of different SPE sorbents improves metabolite coverage. A 

serially arranged combination of two SPE sorbents possessing 

complementary retention mechanisms seems to be a competitive 

choice for analyzing complex metabolomes with a single plat-

form.  

4) The use of gas phase fractionation (GPF) in metabolomic studies 

has proved an effective strategy for increasing the number of 
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metabolites that can be identified in a given sample. In fact, the 

conventional “auto MS/MS” mode of data acquisition provided 

MS/MS information for only 48–57% of the potential entities 

present, whereas using GPF-based methodology over four dif-

ferent ranges to select precursor ions increased the proportion to 

at least 80% . 

- Use of untargeted analytical platforms in nutrimetabolomics studies 

and research on specific (atherosclerosis and lung cancer) diseases: 

5) Metabolomic profiling with an LC–QTOF platform of serum from 

individuals under different diets allowed metabolic differences 

between diets to be established. Using a sample preparation step 

to split serum components into a polar and a non-polar fraction 

proved useful towards examining polar and non-polar com-

pounds separately. The main metabolic effects of intervention 

diets were found to be associated to lipid metabolism.  

6) A comparison of serum profiles from atherosclerotic patients 

suffering from different cardiovascular diseases revealed the 

presence of 13 compounds including bilirubin, cholic acid and 

deoxycholic acid, the levels of which differed between patients 

with stable angina, acute myocardial infarction (AMI) and non-

ST elevation myocardial infarction (NSTEMI). Bilirubin was 

among the most useful metabolites to discriminate between 

stable angina and AMI/NSTEMI events. This strategy is also 

useful for biomarker identification (e.g., a marker panel allowed 

myocardial infarction to be predicted with 85.1% specificity and 

80.8% sensitivity). 

7) Two marker panels for predicting lung cancer from sweat 

samples were established that overcome the main shortcoming of 

lung cancer diagnosis: the difficulty of detection at an early stage. 

The two panels involve maltotriose and nonanedioic acid in 
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combination with γ-GluLeu or MG(22:2). Both were found to 

substantially improve the discrimination capacity of independent 

metabolites between lung cancer patients and controls. One 

panel features 100% specificity and 63.6% sensitivity, and hence 

a 0% false negative rate; the other has specificity and sensitivity 

above 81%. 

- Development and use of different targeted analytical platforms: 

8) The proposed method for phospholipids enabled the identifica-

tion of 81 phospholipids in serum. Using this platform to analyze 

samples from atherosclerotic patients allowed the identification 

of a group of four phospholipids accurately discriminating 

between patients with stable angina and others diagnosed with 

NSTEMI, namely: lysoPC(20:5), PC(18:1/18:2), PC(18:0/20:4) 

and SM(d18:2/14:0). A panel including these four metabolites 

exhibited a disease prediction capability in the training set of 

70.7 and 66.0% for stable angina and NSTEMI patients, 

respectively. Also, the area under the ROC curve (AUC) for the 

model was 0.715 for the training set and 0.747 for the validation 

set, and the resulting sensitivity and specificity 66.0 and 70.0%, 

respectively. 

9) A method for determining amino acids in serum by SPE–LC–

MS/MS was successfully developed and validated on athero-

sclerotic patients diagnosed with stable angina or acute myo-

cardial infarction. Lysine and threonine levels were found to be 

affected by ischemic events (particularly in females). Obesity, 

which is a major risk factor for cardiovascular disease, was 

especially influential on valine and methionine, which were 

found at increased levels in obese individuals. 

10) A GC–MS method for determining the compounds involved in 

the tricarboxylics acid (TCA) cycle in serum was developed and 
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applied to patients with coronary lesions and control individuals. 

The role of the risk factors hypercholesterolemia, obesity and 

smoking habit in the disease was studied, and the influence of the 

three factors found to be essential with a view to identifying 

potential biomarkers among metabolites of the TCA cycle. Statis-

tical analysis revealed that malic acid and α-ketoglutaric acid 

lead to independent prediction models with high specificity and 

acceptable sensitivity for discriminating between patients with 

and without coronary lesions.  

11) The usefulness of SPE–MS/MS for analysing peptides in bio-

fluids was demonstrated by developing an automated platform 

for assessment and quantitative analysis of cathelicidin. The ana-

lyte was detected by using three different transitions that were 

confirmed by in silico peptide fragmentation. Application of this 

method to intensive care unit patients and healthy individuals 

revealed the absence of significant differences between the two 

groups and also that the control individuals had slightly lower 

concentration levels of the target analytes. 
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Cholesterol oxidation products in milk: 

Processing formation and determination 
 

M. Calderón-Santiago, A. Peralbo-Molina, F. Priego-Capote,  

M. D. Luque de Castro* 

Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, 

and Institute of Biomedical Research Maimónides (IMIBIC), Reina Sofía Hospital, 

University of Córdoba, E-14071, Córdoba, Spain 

Abstract 

Cholesterol oxidation products (oxysterols) are commonly present in foods 

derived from animals. The main limitations for analysis of these products are 

associated with the long sample preparation protocols that require 

saponification. In this research, a protocol was optimized for determination of 

oxysterols in milks under the process to obtain given commercial milk products. 

UHT milks, powder milks, condensed milk, and evaporated milk were selected 

for this study. The levels of the different oxysterols are discussed attending to the 

type of milk. UHT and skimmed powder milks provide the highest concentration 

of oxysterols. Particularly, high concentrations were found for 7β-

hydroxycholesterol (up to 205.6 ng/mL), 5-cholesten-3β-ol-7-one (up to 21.8 

ng/mL), cholesterol 5α,6α-epoxide (up to 14.9 ng/mL), and 25-

hydroxycholesterol (up to 5.1 ng/mL). An increase in cholesten-3β-ol-7-one and 

cholesterol 5α,6α-epoxide, resulting from the skimming process, was also 

observed. Additionally, two different heating modes, microwave-assisted and 

conventional heating, have been mimicked to study their influence on the 
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formation of oxysterols in milk. Both heating protocols contributed to the 

formation of oxysterols but short periods of microwave irradiation (60 s) can lead 

to levels of oxysterols similar to conventional heating for 5 min. 

Practical applications: The results of the research described in this article, 

supported by previous studies in the field, allow to advice about the strong 

influence of microwave heating of milk on the formation of toxic oxides from the 

lipid fraction. Although conventional heating can be more tedious and time 

consuming, it seems to be healthier. 
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Global metabolomics profiling of human 

serum from obese individuals by liquid 

chromatography–time of flight/mass 

spectrometry to evaluate the intake of 

breakfasts prepared with heated  

edible oils 
 

C. Ferreiro-Vera, F. Priego-Capote, M. Calderón-Santiago, M. D. Luque de 

Castro* 

Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, 

and Institute of Biomedical Research Maimónides (IMIBIC), Reina Sofía Hospital, 

University of Córdoba, E-14071, Córdoba, Spain 

Abstract 

The metabolic profile of human serum after intake of breakfasts prepared with 

different heated vegetable oils has been studied. Four oils (olive and sunflower 

oils, pure and enriched with natural and artificial oxidation inhibitors) were 

subjected to a simulated heated process prior to breakfast preparation. A 

metabolomics global profiling approach performed on post-basal serum samples 

revealed statistical differences among individuals based on breakfast intake, and 

identified compounds responsible for such differences. Serum samples obtained 

in basal state (control samples) and 2 and 4 h after programmed intakes were 

analyzed by LC–TOF/MS. The resulting fingerprints were compared and 
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differences between basal and post-basal states evaluated, observing that the 

intake of different breakfasts altered the metabolic signature of serum. Analysis 

models based on PLS algorithms were developed to discriminate individuals in 

post-basal state for each intervention breakfast. Then, Volcano tests enabled to 

detect significant molecular entities explaining the variability associated to each 

breakfast. It is worth emphasizing the importance of fatty acids, their derivatives 

and phospholipids for tentative identification. 
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High-resolution mass spectrometry to 

evaluate the influence of cross-breeding 

segregating populations on the phenolic 

profile of virgin olive oils 
 

V. Sánchez de Medina1,2,3, M. Calderón-Santiago1,2,3, M. El Riachy4, F. Priego-

Capote*1,2,3, M. D. Luque de Castro*1,2,3 

1Department of Analytical Chemistry, Annex Marie Curie Building, Campus of 

Rabanales, University of Córdoba, E-14071, Córdoba, Spain 

2University of Córdoba Agroalimentary Excellence Campus, ceiA3, Campus of 

Rabanales, 14071, Córdoba, Spain 

3Maimónides Institute for Research in Biomedicine of Córdoba, Reina Sofía University 

Hospital, University of Córdoba 

4Lebanese Agricultural Research Institute, Tal Amara, Lebanon 

Abstract 

BACKGROUND: The growing demand of high quality virgin olive oils (VOOs) has 

increased the interest in olive breeding programs. Cross-breeding is considered, 

within these programs, the best strategy to generate new cultivars as an attempt 

to improve the present cultivars. In this research, the phenolic profile of VOOs 

from target crosses (Arbequina×Arbosana, Picual×Koroneiki and 

Sikitita×Arbosana) and their corresponding genitors (Arbequina, Arbosana, 
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Koroneiki, Picual and Sikitita) has been evaluated using a targeted metabolomics 

approach.  

RESULTS: The phenolic profiles were obtained by LC–QqTOF targeted analysis 

of thirty-seven phenols or compounds involved in the main pathways for their 

biosynthesis. Statistical multivariate analysis by Principal Component Analysis 

(PCA) was applied to study the influence of the genotype on phenols composition. 

Phenolic compounds with the highest contribution to explain the observed 

variability associated to genotype were identified through fold change algorithms 

(cut-off>2.0) and t-test analysis.   

CONCLUSION: A total of nine phenols (viz. quercetin, ligstroside aglycon (p-

HPEA-EA), demethyloleuropein aglycon, oleuropein aglycon (3,4-DHPEA-EA), 

hydroxypinoresinol, hydroxytyrosol, phenolic acids such as p-coumaric acid, 

ferulic acid and protocatechuic acid) contributed to explain the observed 

variability with 99% confidence (p<0.01). 
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Quantitative determination and 

confirmatory analysis of N-acetylneu-

raminic and N-glycolylneuraminic acids in 

serum and urine by solid-phase extraction 

on-line coupled to liquid chromatography–

tandem mass spectrometry 

 
F. Priego-Capote*, M. Orozco-Solano, M. Calderón-Santiago, M. D. Luque de 

Castro 

Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, 

and Maimónides Institute for Research in Biomedicine of Córdoba, Reina Sofía 

University Hospital, University of Córdoba, E-14071, Córdoba, Spain 

Abstract 

N-acetylneuraminic acid (Neu5Ac) and N-acetylglycolylneuraminic acid 

(Neu5Gc), two acylated derivatives of 9-C carboxylated monosaccharides, are 

involved in a number of biological processes as modulators of glycoconjugates. A 

partially automated method is here presented for determination of these sialic 

acids in the two most important biofluids for clinical analysis: serum and urine. 

For this purpose, a solid-phase extraction (SPE) workstation was on-line 

connected to an LC–MS/MS triple quadrupole mass detector. Hydrolysis to 

release sialic acids bound to glycoconjugates and derivatization were the two 

steps implemented as sample preparation prior to SPE–LC–MS/MS analysis. 
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Following thorough optimization of the SPE and LC–MS/MS conditions, the 

analytical method was validated using the standard addition approach to assess 

the presence of matrix effects. The proposed method affords detection limits of 

0.03 ng/mL and 0.04 ng/mL for Neu5Ac and Neu5Gc, respectively. The 

precision (expressed as relative standard deviation) was 1.7 and 4.6% for within-

day variability, and 4.8 and 7.2% for between-days variability. Accuracy, 

estimated using spiked (between 1 and 50 ng/mL) and non-spiked samples of 

both biofluids, ranged from 95.2 to 99.6%. The method was applied to human 

serum and urine of healthy volunteers, thus showing its suitability for application 

in both clinical and research laboratories. 
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Influence of the genotype on the fatty acids 

composition of virgin olive oils along the 

ripening process 

 
V. Sánchez de Medina1,2,3, M. Calderón-Santiago1,2,3, M. El Riachy4, F. Priego-

Capote*1,2,3, M. D. Luque de Castro*1,2,3 

1Department of Analytical Chemistry, Annex Marie Curie Building, Campus of 

Rabanales, University of Córdoba, E-14071, Córdoba, Spain 

2University of Córdoba Agroalimentary Excellence Campus, ceiA3, Campus of 

Rabanales, 14071, Córdoba, Spain 

3Maimónides Institute for Research in Biomedicine of Córdoba, Reina Sofía University 

Hospital, University of Córdoba 

4Lebanese Agricultural Research Institute, Tal Amara, Lebanon 

Abstract 

The composition of fatty acids (FAs) is one of the most critical aspects that affects 

the quality of virgin olive oil (VOO), which is related to the balance of 

concentrations of saturated, monounsaturated and polyunsaturated FAs. The aim 

of this research was to study the influence of the ripening stage of olive fruits and 

genotype on the composition of esterified FAs (EFAs) and non esterified FAs 

(NEFAs) present in VOOs from advanced selections obtained by crosses between 

Arbequina, Picual and Frantoio cultivars. For this purpose, a method based on 

gas chromatography with flame ionization detection (GC–FID) was used to 
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estimate the percent of each type FAs. Statistical unsupervised analysis was 

carried out by Principal Component Analysis (PCA) to find clustering of samples 

attending to the ripening stages. Discrimination was observed for VOO samples 

associated to early and advanced ripening stages according to the concentration 

of FAs. Statistical analysis by ANOVA test allowed evaluating the contribution of 

ripening and genotype to explain the variability in the concentration of EFAs and 

NEFAs with p-value<0.05. Linoleic acid (C18:2) was the FA most influenced by 

the genotype; practically along the complete ripening process (from yellow or 

yellowish–green to black color). Furthermore, the highest genetic variability in 

FAs composition was observed in the ripening stage in which the fruit color is 

reddish or light violet, since five EFAs (C16:0, C16:1, C18:1, C18:2 and C18:3) 

were significant to explain this effect. Therefore, the interval that lasts this 

ripening stage is the most appropriate to compare genotypes in olive breeding 

programs according to FAs composition. 
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The dual trend in histatins research 
 

M. Calderón-Santiago, M. D. Luque de Castro* 

Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, 

University of Córdoba, E-14071, Córdoba, Spain 

 

Abstract 

We review histatins (Hsts) in order to encourage development of analytical 

platforms to clarify obscure points in knowledge of this family of antimicrobial 

and antifungal peptides. To explain the present interest, we outline the number 

and the nature of Hsts and their known functions (i.e. antimicrobial action, 

wound closure, biomarkers of stress, satiety, body mass and incipient 

Alzheimer_s disease, and diagnosis and treatment of addiction, including to 

cocaine). The two aspects of research on Hsts (i.e. their natural effects on living 

organisms and their potential use for medical applications, including as 

biomarkers) make it necessary to develop new analytical methods. The variety of 

matrices in which Hsts exist (e.g., saliva and tooth-surface-protein pellicle) make 

it essential to develop new sample-preparation steps and to improve 

identification and quantitation steps as analytical instrumentation evolves. 

 

TrAC, Trends in Analytical Chemistry 

28 (2009) 1011–1018 
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In this context, metabolomics studies could be of great interest, as contributions 

of analytical chemists could be one of the keys to achieving the role that they 

deserve within ‘‘-omics’’ research. 
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1. Päivi Pöhö, Maarit Kivilompolo, Mónica Calderón Santiago, Sirkku 

Jäntti, Susanne K. Wiedmer and Tuulia Hyötyläinen, Chapter 9: 

Applications, in “Chromatographic methods in metabolomics”, edited by 

Tuulia Hyötyläinen and Susane Wiedner, The Royal Society of Chemistry 

(RSC) 2013. 

 

 

2. Mónica Calderón Santiago, María Dolores Luque de Castro, Chapter 25: 

Use of Lactobacillus spp to degrade pesticides in milk, in “Processing and 

impact on active components in food”, edited by Victor R. Preedy, 

Elsevier 2014. 
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C H A P T E R 

Processing and Impact on Active Components in Food 
http://dx.doi.org/10.1016/B978-0-12-404699-3.00025-1 
 
 
 

© 2014 Elsevier Inc. All rights reserved. 
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No Patente: P201331228 

 

Método de clasificación, diagnóstico y 

seguimiento de individuos con riesgo de 

padecer cáncer de pulmón mediante el 

análisis de sudor 

 
B. Jurado-Gámez, A. Salvatierra-Velázquez, M. Calderón-

Santiago, F. Priego-Capote, M.D. Luque de Castro 

 

 
Los autores de la presente invención han analizado la concentración de los 

distintos metabolitos del sudor en individuos que no padecen cáncer de pulmón y 

en individuos que padecen cáncer de pulmón. Han encontrado una serie de 

marcadores para el diagnóstico de los individuos con cáncer de pulmón, 

diferenciando los sujetos con cáncer de pulmón de aquéllos que no lo padecen. 

Esto, entre otras cosas, permitiría hacer un cribado inicial para diferenciar 

aquellos individuos que serían susceptibles de ser sometidos a otras pruebas 

diagnósticas, más agresivas o caras, y/o confirmar o apoyar el diagnóstico 

mediante otras pruebas. Así pues, la presente invención proporciona un método 

de obtención de datos útiles para la clasificación, diagnóstico y seguimiento de 

individuos con cáncer de pulmón. 
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1. Human sweat metabolomics for lung cancer prediction 

M. Calderón-Santiago, F. Priego-Capote, B. Jurado-Gámez, M.D. Luque de 

Castro 

V JORNADAS DE JÓVENES INVESTIGADORES DEL IMIBIC 

Córdoba, 2014 

Tipo de evento: Poster en Congreso  Ámbito: Nacional 

2. Study of Coronary Lesions by Analysis of Essential Amino Acids 

and Citric Acid Cycle in Human Serum 

M. Calderón-Santiago, F. Priego-Capote, J.G. Galache-Osuna, M.D. Luque de 

Castro 

XVIII REUNIÓN DE LA SOCIEDAD ESPAÑOLA DE QUÍMICA ANALÍTICA 

Úbeda, Jaén, 2013 

Tipo de evento: Poster en Congreso  Ámbito: Nacional 

3. Determination of Essential Amino Acids and Tricarboxilic Acid 

Cycle Metabolites in Human Serum to Study Coronary Lesions 

M. Calderón-Santiago, F. Priego-Capote, J.G. Galache-Osuna, M.D. Luque de 

Castro 

XXIII Reunión Nacional de Espectroscopía y VII Congreso Ibérico de 

Espectroscopía 

Universidad de Córdoba, España, 2012 

Tipo de evento: Poster en Congreso  Ámbito: Nacional 

4. Metabolomic study of coronary lesions 

M. Calderón-Santiago, F. Priego-Capote, M.D. Luque de Castro 

III Jornada de Jóvenes Investigadores del IMIBIC 

Hospital Universitario Reina Sofia, Córdoba, España, 2012 

Tipo de evento: Comunicación oral  Ámbito: Autonómico 
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5. Determination of oxysterols in dairy products and study of their 

formation under heating conditions 

M. Calderón-Santiago, A. Peralbo-Molina, F. Priego-Capote, M.D. Luque de 

Castro 

7th Lipidomics Congress (Lipids in all states)  

Anglet-Biarritz (Francia), 2010 

Tipo de evento: Poster en Congreso  Ámbito: Internacional 

6. Determinación de oxisteroles en derivados lácteos mediante 

cromatografía de gases con detección por espectrometría de masas y 

estudio de la influencia de la energía microondas en su formación 

M. Calderón-Santiago, A. Peralbo-Molina, F. Priego-Capote, M.D. Luque de 

Castro 

XII Reunión del Grupo Regional Andaluz de la Sociedad Española de Química 

Analítica  

Córdoba, España, 2010 

Tipo de evento: Poster en Congreso  Ámbito: Regional 

7. Multiple Reaction Monitoring Verification and Quantitative 

Analysis of Cathelicidin Biomarker in Human Serum After Automated 

Sample Cleanup and Deproteinization 

F. Priego-Capote, M. Calderón-Santiago, J.M. Mata-Granados, J.M. Quesada-

Gómez, M.D. Luque de Castro 

58th Annual meeting of American Society of Mass Spectrometry  

SALT LAKE CITY, UTAH, USA, 2010 

Tipo de evento: Comunicación en congreso Ámbito: Internacional  

8. Automatic Determination of Cathelicidin in Human Serum by On-

Line Solid-Phase Extraction Liquid Chromatography-Triple 

Quadrupole Mass-Spectrometry with Multiple Reaction Monitoring 

M. Calderón-Santiago, J.M. Mata-Granados, J.M. Quesada Gómez, M.D. Luque 

de Castro 

Flow Analysis XI  

Mallorca, Spain, 2009 

Tipo de evento: Poster en Congreso  Ámbito: Internacional 
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Abbreviations 

ACE, automated cartridge exchange 

ACN, acetonitrile 

ACS, acute coronary syndrome 

AMI, acute myocardial infarction 

ANOVA, analysis of variance 

AQUA, absolute quantitation 

AUC, area under the curve 

BCAAs, branched chain amino acids 

BMI, body mass index 

BPC, base peak chromatogram 

BSTFA, bis-(trimethylsilyl)-fluoroacetamide 

BTP, black tea polyphenols 

CAD, coronary arthery disease 

CD, Crohn’s disease 

CE, capillary electrophoresis 

CI, confidence interval 

CoA, coenzyme A 

COX-2, cyclooxygenase 2 

CPK, creatinin phosphokinase 

CVD, cardiovascular disease 

CYP, cytochrome P450 

DG, diglyceride 

EBC, exhaled breath condensate 
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ECG, electrocardiogram 

EI, electron impact ionization 

EIC, extracted ion chromatogram 

ELISA, enzyme-linked immunosorbent assay 

EPA, eicosapentaenoic acid 

ESI, electrospray ionization 

FID, flame ionization detector 

FT-IR, Fourier transformation infrared 

FWHM, full width at half maximum 

GC, gas chromatography 

GPF, gas phase fractionation 

HDL, high density lipoprotein 

HETE, hydroxyeicosatetraenoic acid 

H-FABP, human fatty acid binding protein 

HILIC, hydrophilic interaction liquid chromatography 

HLB, hydrophilic–lipophilic balance 

HMDB, Human Metabolome Database 

HMUFA, high fat content diet with monounsaturated fatty acids 

HO, hemeoxygenase 

HODE, hydroxyoctadecadienoic acid 

HP-921, hexakis (1H, 1H, 3H-tetrafluoropropoxy) phosphazine 

HPD, high pressure dispenser 

HpODE, Hydroperoxyoctadecadienoic acid 
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Abbreviations 

HSFA, high fat content diet with saturated fatty acids 

Ile, isoleucine 

IS, internal standard 

IT, ion trap 

KEGG, Kyoto Encyclopedia of Genes and Genomes 

LC, liquid chromatography 

LDL, low density lipoprotein 

Leu, leucine 

LFHCC, low fat content diet supplemented with oleic acid 

LFHCCn-3, low fat content diet supplemented with omega 3 

LIPGENE, Diet, genomics and the metabolic syndrome: An integrated nutrition,       

agro-food, social and economic analysis 

LLE, liquid-liquid extraction 

LOD, limit of detection 

LOQ, limit of quantitation 

LPC, lysophosphatidylcholine 

LPE, lysophosphatidylethanolamine 

Lys, lysine 

MALDI, matrix-assisted laser desorption ionization 

MANOVA, multivariate analysis of variance 

Met, methionine 

METLIN, Metabolites and Tandem MS Database 

MetS, metabolic syndrome 

MF, molecular feature 
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MG, monoacylglycerol 

MIDAS, autosampler 

MM, mix mode 

MPP, mass profiler professional 

MS, mass spectrometry 

MUFA, monounsaturated fatty acid 

NMR, nuclear magnetic resonance 

NSCLC, non-small cell lung cancer 

NSTEACS, non-ST elevation acute coronary syndrome 

NSTEMI, non-ST elevation myocardial infarction 

NU-AGE, new dietary strategies addressing the specific needs of elderly population 

for a healthy aging in Europe 

OGTT, oral glucose tolerance test 

PA, glycerophosphatidic acid 

pAUC, partial area under the curve 

PC, glycerophosphatidylcholine 

PCA, principal component analysis 

PE, glycerophosphatidylethanolamine 

PG, glycerophosphatidylglyceride 

PGE3, prostaglandin E3 

Phe, phenylalanine 

PLS, partial least squares 

PLS-DA, partial least squares discriminant analysis 

PLTP, plasma phospholipid transfer protein 
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PM, personalized medicine 

PS, glycerophosphatidylserine 

PUFA, polyunsaturated fatty acid 

QC, quality control 

QqQ, triple quadrupole 

QTOF, quadrupole–time of flight 

ROC, receiver-operating characteristic 

ROS, reactive oxygen species 

RSD, relative standard deviation 

RT, retention time 

SA, stable angina 

SD, standard deviation 

SFA, saturated fatty acid 

SH, strong hydrophobic 

SM, sphingomyelin 

SPE, solid-phase extraction 

SPME, solid-phase microextraction 

SIM, selected ion monitoring 

SRM, selected reaction monitoring 

T2D, type 2 diabetes 

T2DM, type 2 diabetes mellitus 

TCA, tricarboxylic acid 

TG, triglyceride 
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Thr, threonine 

TIC, total ion current 

TLC, thin-layer chromatography 

TMCS, trimethylchlorosilane 

Trp, tryptophan 

UC, ulcerative colitis 

UHD, ultrahigh definition 

UPLC, ultra performance liquid chromatography 

Val, valine 

VLDL, very low density lipoprotein 

VOC, volatile organic compounds 

 




