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RESUMEN 

 
Factores abióticos ambientales como la temperatura, la humedad y la radiación 

ultravioleta (UV-B) tienen una gran influencia sobre la presencia, distribución y 

persistencia de los hongos entomopatógenos (HE) en sus hábitats naturales (suelo o 

filoplano de las plantas). Sin embargo, la protección contra estos factores es mayor en el 

primer hábitat que en el segundo, por lo que uno de los objetivos del presente trabajo ha 

sido determinar si el filoplano podría proporcionar aislados fúngicos mejor adaptados a las 

condiciones extremas de temperatura, humedad y exposición a rayos UV-B que los del 

suelo. 

Para ello, 20 aislados del HE Beauveria bassiana obtenidos de suelo y filoplano de 

dos ecosistemas del sur de España (dehesa y reforestación de encinas) fueron seleccionados 

para: (1) Ser caracterizados molecularmente con el factor de elongación EF1-α y la región 

intergénica nuclear Bloc, (2) Estudiar su diversidad utilizando 4 microsatélites (ISSR), (3) 

Evaluar sus requerimientos térmicos, hídricos y de UV-B.  

El análisis genético reveló diferencias entre los aislados, y mostró relación entre los 

microsatelites y EF1-α/Bloc. De los 20 aislados estudiados, se obtuvieron dos haplotipos, 

uno que contenía los aislados de la secuencia tipo del grupo ST1 y un segundo haplotipo 

que contenía el resto de aislados agrupados en tres secuencias tipo (ST2, 3 y 4). Las 

secuencias tipo ST2, 3 y 4 son aparentemente polifiléticas, lo que sugiere heterogeneidad 

temporal aparecida entre estos tres grupos. Este análisis sugiere que no hay una relación 

directa entre el origen de los aislados y su diversidad genética. 

Una vez caracterizados molecularmente, se procedió al estudio de la respuesta de los 

aislados frente a los principales factores climáticos (temperatura, humedad y radiación UV-

B) para dilucidar una posible relación entre la ecología de estos aislados y su origen, 

secuencia tipo o haplotipo. 

El efecto de la temperatura sobre la germinación y crecimiento diametral se evaluó 

sometiendo a los distintos aislados a temperaturas de entre 15 a 35 ºC. Estos presentaron un 

óptimo de temperatura en el crecimiento micelial que osciló entre de 23.8 y 28.7ºC y un 

porcentaje de germinación, máximo para todos los aislados a 25ºC, entre 64.6 y 94.3% tras 

18 horas de incubación. 

La actividad del agua (aw) se evaluó en la germinación de los conidios 

enfrentándolos a distintos valores de aw (1-0.862) obtenidos mediante la adición de glicerol 

al medio de cultivo. Todos los aislados presentaron valores máximos de germinación entre 

1 y 0.996aw, a partir del cual la germinación comenzó a decrecer en la mayoría de ellos. Tan 

sólo 4 aislados germinaron a 0.928aw. Por debajo del mismo no germinó ningún aislado tras 

24 horas de incubación. 

Finalmente, los conidios de los aislados se expusieron a dos irradiancias (920 y 

1200mW m-2) durante 2, 4 y 6 horas. En este caso, se evaluó la germinación, las unidades 

formadoras de colonias (o culturability) y el crecimiento micelial. En el caso de la 

germinación, se observó que los conidios perdían capacidad germinativa cuanto mayor era 

la irradiancia y tiempo de exposición, un hecho que no fue tan evidente en la formación de 

colonias o el crecimiento micelial. Parece ser que los propágulos se “recuperan” tras la 

exposición, una recuperación que es menor cuanto mayor es el tiempo de exposición (6h) y 

la irradiancia (1200 mW m-1). 

Se podría decir que los hongos entomopatógenos procedentes del filoplano, aparentemente 

más expuestos a valores extremos de los factores ambientales evaluados, podrían haber 

evolucionado para resistir las condiciones más desfavorables. Los resultados de este trabajo 

muestran claramente que el hábitat no siempre origina genotipos con mejor competencia 

ambiental. 
Palabras clave: habitat, factor de elongación (EF1-α), Bloc, ISSR, ecología 

 



  



ABSTRACT 

 

Environmental abiotic factors such temperature, moisture and ultraviolet 

radiation (UV-B) highly influence presence, distribution and persistence of 

entomopathogenic fungi (EF) in their natural habitats (soil or plants phylloplane). 

However, protection against these factors is greater in the soil than in the plant 

phylloplane. For that, one of the objectives of the present work has been to determine 

whether the phylloplane could harbour fungal isolates better adapted to extreme 

conditions of temperature, humidity and UV-B exposure than those from the soil. For 

that, twenty isolates of the EF Beauveria bassiana obtained from soil and phylloplane 

of two ecosystems from the south of Spain (holm oak dehesa and reforestation) were 

selected to: (1) be molecularly characterized with elongation factor 1-α(EF1-α) and the 

intergenic nuclear region Bloc, (2) Study their diversity using with 4 microsatellites 

primers (ISSR); (3) Evaluate their thermal, humidity and UV-B requirements. 

From the 20 B. bassiana isolates, two haplotypes were obtained, one contained 

the type sequence of TS1 group and the second one contained the rest of isolates 

grouped in three type sequences (TS2, 3 and 4), which were apparently polyphyletic, 

and could represent temporal heterogeneity between these three groups. Besides, similar 

patterns of isolate grouping were observed by using microsatellites (ISSR) and 

TEF/Bloc. The analysis revealed that these TS were not linked to isolate habitat (soil or 

phylloplane) or origin, holm oak dehesa or reforestation. 

 The temperature effect on germination and colony growth was evaluated in the 

range 15-35 ºC. The optimal temperature for mycelia growth ranged between 23.8 and 

28.7 ºC, and the germination percentage (maximum at 25ºC for all isolates) ranged 

between 64.6 and 94.3 % after 18 hours of incubation. 

The water activity (aw) effect on conidia germination was evaluated against 

different values of aw (1 – 0.862), which were obtained adding glycerol to the medium. 

All isolates showed maximum germination values between 1 and 0996 aw. Only 4 

isolates germinated at 0.928 aw. Germination at aw values lower than 0.928 was not 

observed for any isolate.  

 Finally, conidia were exposed to different irradiances (920 and 1200 mWm
-2

) 

during 2, 4 and 6 hours, and germination, culturability and mycelia growth were 

evaluated. All isolates exhibit an initial delay on germination for higher irradiance and 

longer exposition time, whereas a recovery seemed to occur as revealed by the higher 

culturability rates and colony growth values. It could be concluded that a "recovery" of 

the fungal propagules could occur after exposition to UV-B, even if such recovery is 

lower for longer exposure times (6h) and irradiance (1200 mW m
-1

).  

It could be argued that isolates of entomopathogenic fungi from the phylloplane that are 

most exposed to abiotic environmental factors could have evolved to resist more 

unfavorable environmental conditions, the present work results clearly shows that such 

habitat not always provide the more environmentally competent genotypes. 
 

Keywords: habitat, elongation factor 1-alpha (EF1-α), Bloc, ISSR, ecology 
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1.- Introduction 

Despite the vital role that entomopathogenic fungi (EF) play in the natural pest 

control, they have been overlooked in studies performed to determine their diversity in 

different ecosystems. A better understanding of their ecology can improve our ability to 

use them as a pest control measure and predict their response to agricultural practices 

(Quesada-Moraga y Santiago-Alvarez, 2008).  

Environmental factors such as temperature, moisture and UV radiation are 

conditioning host insects, soil and plants, which are habitat for EF (Vega et al., 2009; 

Quesada Moraga et al., 2006a; Meyling and Eilenberg, 2006). Indeed, these 

environmental factors and their complex interactions may influence EF presence, 

distribution, persistence and infection process (Jaronski, 2010). 

Ambient temperature may influence germination rate, micelial growth and infection 

progress of EF (Roberts and Campbell, 1977), with responses being either lineal or 

showing bell shaped curves (Yeo et al., 2003; Quesada-Moraga et al., 2006b; Garrido-

Jurado et al., 2011). Although the optimal temperatures for germination, growth rate, 

and infection often range between 20-30ºC, these can occur within in a wide range of 

temperatures (5.0–37.0ºC) (McCammon and Rath, 1994). Usually, the vegetative 

growth decreases close to 30ºC, and normally ceases at 34-37ºC, thus they cannot 

involve a risk for mammals.  

Some studies have revealed that the ability of entomopathogenic fungi to germinate 

and infect the host under conditions of low ambient humidity is attributed to sufficient 

moisture within microhabitats (Fargues et al., 2003; Inglis et al., 2001; Wraight et al., 

2000). Besides, moisture is not only determining spore germination, but also 

conidiogenesis after the host death (Inglis et al., 2001). In the habitat , the water 

availability is a critical abiotic parameter, being higher in the limit layer of the host than 
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in the habitat environment (Willmer, 1986). In contrast, ambient temperature influences 

the rate of infection and time to death of insects treated with entomopathogenic fungi 

and is a key factor influencing efficacy of these biocontrol agents (Inglis et al., 2001). 

Therefore, it is important to match the thermal tolerance of a prospective fungal isolate 

to the climatic conditions expected at the targeted environment (Faria and Wraight, 

2001). 

Solar radiation is a key factor determining inoculum persistence in epigeous 

habitats, with a dramatic fall in the inoculum viability detected after short-term 

exposure to sunlight (Roberts and Campbell, 1977; Braga et al., 2001). Both conidia and 

hyphae of EF are highly susceptible to the damage caused particularly by the ultraviolet 

radiation (UV) (Inglis et al., 2001). UV radiation is a part of the electromagnetic 

spectrum emitted by the sun that can be divided into three types of radiation depending 

on the wavelength (λ): UV-A; UV-B and UV-C. The most important and harmful for 

the biological processes is UV-B (λ between 285-315 nm), which is practically retained 

by O3 from the stratosphere, together with all the UV-C of λ short (lethal for life). Only 

the 10% of the UV-B radiation reaches the Earth surface, as well as 95% of UV-A 

radiation (λ between 315-400 nm), which also may damage to some extend most of the 

living beings.  

The photodegradation of the conidia depend on the surface in where they are 

placed, since differences can be found if they are deposited on glass, on the plant 

surface, or in culture growth media (Inglis et al., 1997). As aforementioned, UV 

radiation is one of the greatest challenges for the commercial use of EF, in view of the 

fact that this radiation reduces the probability of epizooties with the consequent increase 

in the cost of new applications. Therefore, it is essential to find and incorporate solar 
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protectors (e.g. oils or pigments) to the commercial formulations which improve UV 

radiation tolerance, or select high-tolerant isolates to UV radiation for field applications. 

Generally, the thermal, water activity and UV features of the isolates are adapted to 

the microhabitats in which they grow, e.g. phylloplane, providing environmental 

(Meyling and Eilenberg, 2006). That suggests there are differences between genetic 

materials which result in some of them could be selected for high tolerance to 

environmental stresses. The new fungal phylogeny studies have supplied new insights 

that should allow to better understand the environmental features of EF (Vega et al., 

2009).These phylogenetic studies have been used extensively in the field of ecology, by 

the proposal of a variety of methods to examine to which extent the ecological traits are 

conserved or not (Webb et al., 2002). In recent years, many molecular techniques have 

been developed to investigate genetic diversity or population genetics of EF (Pu et al., 

2010). 

The most common method used in the past to differentiate entomopathogenic 

fungal isolates was randomly amplified polymorphic DNA (RAPD) but now was 

replaced due to low reproducibility among laboratories. This technique has also been 

widely employed to study intraspecific variation within species or associations of fungal 

genotypes with specific hosts (Enkerli and Widmer, 2010). For EF, the SSU rRNA gene 

and the internal transcribed spacer region (ITS) region have been the main target loci for 

previous analyses of fungal community structure; nevertheless the region of elongation 

factor 1-alpha (EF1-α) and other nuclear intergenic regions (e.g. Bloc, EFutr,...) have 

proven to be more suited for one deep analysis (Kepler and Rehner, 2013). Moreover, 

inter simple sequence repeat (ISSR) or microsatellites markers have revealed to have a 

great potential for population structure and genetic variation analysis, showing 

considerable intraspecific variability among the isolates (Wang et al., 2005), that owing 
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to the abundant in the genome, high level of variation, statistical independence, and 

codominant pattern of the inheritance. The evaluation of the sources of genetic variation 

for local adaptation can provide different patterns of ecological requirements for the EF 

isolates. 

It is important to bear in mind that the EF show complex relationships of their 

environmental features in the natural habitat. As environmental fluctuations produced in 

normal conditions are not as the same as that those reproduced in laboratory, so it 

should check whether EF which showed desirable environmental features in vitro can be 

successfully applied in the field experiments (Inglis et al., 2001). In this regard, the 

introduction of predictable models will allow the proper use of EF in an ecosystem with 

certain environmental characteristics. Only using predictive modelling, adapted fungal 

strains to the main conditions of the ecosystem could be select for a successfully field 

application (Jackson and O’Callaham, 1997). 

Therefore, the objective of this study was to determine the effect of temperature, 

water activity, and UV-B radiation on germination and colony growth of B. bassiana 

isolates by using predictable models. In addition to that it sought to determine the 

adaptive advantages according to their genotypes for future field applications. 
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2. Materials and methods  

2.1 Fungal isolates 

The 20 fungal used belong to the Research Group "Agricultural Entomology" 

(PAIDI AGR 163 group) from the Department of Agricultural and Forestry Sciences of 

the University of Córdoba (Table 1). Eight isolates were obtained from the soil (five 

from a Holm oak dehesa and three from a Holm oak reforestation) and twelve from the 

phylloplane (seven from a Holm oak dehesa and five from a Holm oak reforestation). 

 

Table 1.- Fungal isolates used in the present study 

Isolate Origin Ecology Habitat 

EABb 10/126-Su Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Soil 

EABb 10/147-Su Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Soil 

EABb 10/275-Fil Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Quercus ilex 

EABb 10/150-Su Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Soil 

EABb 10/156-Su Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Soil 

EABb 10/225-Fil Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Quercus ilex 

EABb 10/282-Fil Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Quercus ilex 

EABb 10/129-Su Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Soil 

EABb 10/223-Fil Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Quercus ilex 

EABb 10/261-Fil Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Quercus ilex 

EABb 9/28-Fil Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Quercus ilex 

EABb 10/329-Fil Castilblanco de los Arroyos (Sevilla) Holm oak dehesa Quercus ilex 

EABb 10/143-Fil Castilblanco de los Arroyos (Sevilla) Holm oak reforestation Quercus ilex 

EABb 10/235-Fil Castilblanco de los Arroyos (Sevilla) Holm oak reforestation Quercus ilex 

EABb 10/121-Su Castilblanco de los Arroyos (Sevilla) Holm oak reforestation Soil 

EABb 9/20-Fil Castilblanco de los Arroyos (Sevilla) Holm oak reforestation Quercus ilex 

EABb 10/133-Su Castilblanco de los Arroyos (Sevilla) Holm oak reforestation Soil 

EABb 10/169-Su Castilblanco de los Arroyos (Sevilla) Holm oak reforestation Soil 

EABb 9/29-Fil Castilblanco de los Arroyos (Sevilla) Holm oak reforestation Quercus ilex 

EABb 09/16-Fil Castilblanco de los Arroyos (Sevilla) Holm oak reforestation Quercus ilex 
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2.2.- Molecular characterization 

2.2.1.- DNA extraction, PCR and sequencing 

Mycelia for DNA extraction were grown on 90 mm Petri plates of malt agar 

medium (MA) (Oxoid, Basingstoke, Hants., England) under sterile conditions. The 

plates were incubated at 25ºC for 15 days in dark. 

Total DNA was extracted from mycelia following the Raeder and Broda (1985) 

method. One nuclear intergenic region developed specifically for Beauveria (Bloc) and 

one nuclear protein-encoding genes (translation elongation factor 1- α (EF1-α)) were 

amplified, sequenced and analyzed. A 1100 bp fragment spanning the 3’ 2/3 of the EF1-

α gene was amplified with primers tef1fw (5’-GTGAGCGTGGTATCACCA-3’) 

(O’Donnell et al., 1998) and 1750-rw (5’-GACGCATGTCACGGACGGC-3’) (Garrido-

Jurado, et al., 2011). A 1500 bp fragment spanning the 3’ 2/3 of the Bloc gene was 

amplified with primers B5.1fw (5’-CGACCCGGCCAACTACTTTGA-3’) and B3.1rw 

(5’-GRCTTCCAGTACCACTACGCC-3’) (Rehner et al., 2006). The total reaction 

volume was 50 μl and contained 1.5 µl of genomic DNA, 10 µl of PCR reaction buffer 

(5x), 1 µl of each primers (0.20 mM), and 0.5 µl of Taq polymerase (MyTaq
TM 

Red 

DNA Polymerase, Bioline Ltd, UK). Finally, add ultrapure water up to 50 µl. The 

amplification program included an initial denaturing cycle of 3 min at 95ºC, followed 

by 35 cycles of 15 s at 95ºC, 15 s at 50ºC for EF1-α primers and 65ºC for Bloc 

primers,10 s at 72ºC, and a final extension step of 7 min at 72ºC. Negative (no DNA) 

and positive controls (fungal DNA from pure culture) were included in each set of 

reactions.  

The PCR products were electrophoresed on 1% agarose gels buffered with 1 X 

TAE and stained with SYBR® Green (Invitrogen, Paisley, UK). A 100-bp ladder 

molecular weight standard (Solis Biodyne, Tartu, Estonia) was also used. The PCR 
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products were purified from agarose gels using the Geneclean II kit® system 

(QBiogene, Inc., Carlsbad, CA), following the manufacturer's protocol. All PCR 

products of EF-1α amplification were sequenced in both directions. 

Microsatellite amplification reactions were carried out in 25 µl reaction mixture 

containing 5 µl of PCR reaction buffer (5x), 1 µl of each primers (Table 2), 0.25 µl of 

Taq polymerase, 1 µl of genomic DNA, and ultrapure water up to 25 µl. The 

amplification program included an initial denaturing cycle of 3 min at 95ºC, followed 

by 35 cycles of 15 s at 95ºC, annealing at the specific annealing temperature for 15 s, 10 

s at 72ºC, and a final extension step of 7 min at 72ºC. The annealing temperatures were 

61, 49, 43 and 47 for primer 6, 7, I and D, respectively. The PCR products were 

electrophoresed on 2% agarose gels buffered with 1 X TAE and stained with SYBR® 

Green (Invitrogen, Paisley, UK). A 100-bp ladder molecular weight standard (Solis 

Biodyne, Tartu, Estonia) was also used. Gels were photographed in UV light using a 

GelDoc
TM

 EZ Imager (Bio-Rad, Hércules, CA, USA). 

 

Table 2.- ISSR primer sequences with details of the number and the size of amplified fragments 

(Ormond et al., 2010) 

Primer Sequence 
Total number of 

polymorphic bands 

Amplicon size 

range (bp) 

6 5’-GATATCCGTCCGACGACGACGA-3’ 43 180-1500 

7 5’-CTATCCTGTGTGTGTGTG-3’ 41 180-1600 

I 5’-GCCTCCTCCTCCTC-3’ 34 220-1500 

D 5’-GTTGTGTGTGTGTGTG-3’ 40 130-1600 

 

2.2.2.- Data analysis 

Sequences were alienated with DNASTAR 5.0. Maximum Parsimony (MP) 

analyses were implemented in MEGA 4.0, using the heuristic search option close-

neighbor-interchange. A heuristic MP bootstrap analysis consisted of 500 

pseudoreplicates and with gapped and parsimony-uninformative characters excluded. 

Clades with bootstrap values >50% were considered supported by the data. 
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For the microsatellites analysis, gels were scored manually for band size and the 

resulting binary (presence/absence of amplified bands) data matrix was analyzed using 

FreeTree (Hampl et al., 2001) where 1000 bootstrap replicates of trees generated via the 

Jaccard coefficient and neighbor joining algorithms were produced for each of the four 

ISSR primers. For visualization of the clusters TreeView package were used (Page, 

1996) 

 

2.3.- Ecological characterization 

2.3.1.- Temperature effect on the fungal growth 

For each selected isolate, circular plugs (8-mm diameter) were cut from non-

sporulating mycelia of 4-day-old culture dishes using a cork-borer and a single plug was 

placed upside down in the center of a new Petri plate (60mm diameter) of MA medium 

(Oxoid, Basingstoke, Hants., England). Plates were sealed with Parafilm® (Pechiney 

Plastic Packaging Co., Chicago, IL) and incubated in the dark in separated incubator at 

15, 20, 25, 30 and 35 ºC during 10 days. Five replicates plates were prepared for each 

isolate/temperature combination, with each replicate being submitted to a different 

model adjustment.  

Surface radial growth was evaluated for 2, 4, 6, 8, and 10 days, with a digital 

calibrator, measuring two perpendicular diameters. After that, the average diameter was 

calculated and expressed in real growth, subtracting 8 mm because of the initial sown 

disc. 

Radial growth data were fitted by regression analysis. The radial measurements 

(from 2
nd

 to the 10
th 

day) were fitted a linear model 

𝑌(𝑚𝑚  𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ) = 𝑣 × 𝑡(𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛  𝑑𝑎𝑦𝑠 ) + 𝐵. 
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The linear regression slopes (v) indicates the growth rate (velocity in mm per day) 

at a certain temperature. The regression analysis was carried out for each 

isolated/temperature repeats.  

Temperature effect on the fungal growth rates (V) was evaluated by nonlinear 

model ß according to Bassanezi et al. (1998). The generalized β function is given by: 

 

𝑉 𝑇 = 𝑇𝑌𝑜𝑝𝑡 ×  
𝑇 − 𝑇𝑚𝑖𝑛
𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛

 

𝑇𝐵× 
𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛
𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡

 

×  
𝑇𝑚𝑎𝑥 − 𝑇

𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡
 

𝑇𝐵

 

 

where V(T) is the fungal growth in mm per day (dependent variable) and T is the 

incubation temperature (independent variable). Tmin, Tmax and Topt are, respectively, the 

lowest, the highest, and the optimal temperature for fungal growth. TYopt is the fungal 

growth at the optimal temperature Topt. Tb3 is the shape parameter that influences the 

temperature range around Topt in which the curve stays near to TYopt. Tmin was fixed at 5 

ºC (similar researches have proved that does not exist any growth at that temperature) 

for all the strains. So then, a better fit was achieved and the standard error estimation of 

the other parameters was also improved. 

For each strain, non-linear model ß and the estimation of parameters and its 

standard error, were realized by using 5 values of V obtained (mm/day) from 5 

repetition to each temperature. Tmax, Topt, TYopt  and Tb3 values was estimated by the 

method of Newton. The comparisons were made two by two with Student’s t-test 

(P=0.05) from estimated values (p1 and p2) and their standard errors. 

𝑡 =
𝑝1−𝑝2

 𝑆𝐸1
2+𝑆𝐸2

2
 , 
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2.3.2.- Temperature effect on germination 

Conidial suspensions of twenty B. bassiana isolates were obtained by scraping the 

surface of 15-days old cultures maintained on MA medium. Conidia were then 

suspended in sterile distilled water. This suspension was shaken, sonicated for 5 

minutes, and filtered. The number of conidia in the suspension was counted with 

Malassez chamber (Blau Brand, Germany) at 400X magnification and finally all 

suspensions were adjusted to 1x10
5
 conidia ml

-1
. 

Conidial suspensions were spread on Petri plate (60mm diameter) of water-agar 

medium. Each inoculated plate were sealed with Parafilm® and incubated at 15, 20, 25, 

30 and 35 ºC in complete darkness. Germination percentage was observed after 18h 

because at 24h the germination percentage was similar at 25 and 30ºC. At 18 hours post 

inoculation, the germination was halted by transferring 0.5 ml of lactophenol cotton 

blue on to each plate and covered with a glass coverslip. Germination percentage was 

determined by counting 100 conidia for each plate at 400X magnification. Three 

replicates plates were prepared for each isolate/temperature combination. 

Analysis of variance (ANOVA) was used to analyze the germination percentage, 

and the LSD test was used to compare means. 

 

2.3.3.- Water activity effect on germination  

In the natural environment, the ability of fungi to grow on a substrate with low 

availability of free water (aw) is related to its ability to infect in water stress conditions. 

Under laboratory conditions, this fact is usually studied with the variation of the 

osmotic potential (ψ) of the culture medium using solutes such as KCl, NaCl or glycerol 

(Ma et al., 2001; Whiting y Rizzo, 1999). 
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In this case, the culture medium was performed with water-agar and glycerol. For 

each osmotic potential, half of the amount of water-agar indicated by the manufacturer 

was added, together with the amounts of glycerol that are shown in Table 3, each 1 liter 

flask contained 500 ml of distilled water. After that, it was sterilized in autoclave for 20 

min and 1 overpressure atmosphere at 120 ºC. 

Table 3.- Relationship between water activity (aw) and glycerol concentration in the culture 

medium. 

(a) 
aw was calculated in relation to osmotic potential by the following thermodynamic expression: 

ψ=(RT/Vm)lnaw ; where ψ is the osmotic potential, R is universal gas constant (8.31x10
-5

 m
3
 bar 

mole
-1

 K
-1

), Vm is the  partial molal volume of water, and aw is the water activity (Baver et al, 

1972)
 (b)

 Molar mass of glycerol=92.10g/mol (Harris, 2006) 

 

After sterilization, the flasks containing water-agar and glycerol medium were 

cooled at about 45°C. The medium was shaken and poured into Petri plates (60 mm 

diameter) and placed inside a biosafety chamber. 

Conidial suspensions (obtained and adjusted as described in section 2.3.2) were 

spread on Petri plate (60mm diameter) of water-agar and glycerol medium and 

incubated at 25°C. Eight aw regimes (0.999, 0.996, 0.985, 0.970, 0.995, 0.928, 0.895 

and 0.862) and one control (free glycerol in the medium, with aw=1) were assayed. 

Potential(bar) aw
(a) 

Glycerol
(b)

 20 
o
C 

(moles/1.000 g 

H2O) 

Glycerol 20
o
C 

(g/l H2O) 
0.5 l of medium 

1 0.999 0.05 4.61 2.30 

5 0.996 0.21 19.34 9.63 

20 0.985 0.80 73.68 36.84 

40 0.970 1.57 161.18 80.59 

60 0.995 2.30 211.83 105.92 

100 0.928 3.71 341.69 170.85 

150 0.895 5.42 499.18 249.6 

200 0.862 7.14 657.59 328.8 
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Three replicate plates were prepared for each strain and osmotic potential combination. 

Plates were sealed with Parafilm® and incubated at the referred temperature in 

darkness. 

Twenty four hours post inoculation, the germination was halted by transferring 0.5 

ml of lactophenol cotton blue on to each plate and covered with a glass coverslip. 

Germination percentage was determined by counting 100 conidia for each plate at 400X 

magnification. Three replicates plates were prepared for each isolate/temperature 

combination. 

Analysis of variance (ANOVA) was used to analyze germination percentage, and 

the LSD test was used to compare means. 

 

2.3.4- Ultraviolet radiation effect (UV-B) on fungal conidia 

All isolates were grown on 150mm Petri plates with MA medium in darkness at 25 

ºC for 15 days. The conidia were collected and suspended in 20ml distilled and 

sterilized water. This suspension was shaken, sonicated for 5 minutes, and filtered. The 

number of conidia in the suspension was counted with Malassez chamber (Blau Brand, 

Germany) at 400X magnification and finally all suspensions were adjusted to 1x10
3
 and 

1x10
5
 conidia/ml. The suspensions were stored at 4ºC for no more than 24 hours. 

Irradiation experiments were conducted in a temperature-controlled chamber 

(Fitoclima S600PL, ARALAB, Portugal). The temperature inside the chamber was 

maintained at 25±1 ºC. The irradiated material was covered with a 0.13 mm-thick 

cellulose diacetate film, which removed the radiation below 290nm. This allows the 

passage of most UV-B and UV-A, but prevents the UV-C (<280nm) exposure of 

samples Control plates were covered with aluminum foil and thus physically protected 

from radiation inside the UV chamber. 
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These spectral weighting functions were selected on the basis of the fungal 

response to the UVB-radiation that is closer to the action spectrum for DNA damage 

(Paul et al., 1997). The selected irradiances were 920 mW m
-2

 for low-irradiance, and 

1200 mW m
-2

 for the high-irradiance. For our location, South of Spain, these irradiances 

corresponds with non sunlight for low-irradiance, and 30% ozone depletion for high 

irradiance. All UV measurements were made with the PMA2106 UVB detector that 

provides fast and accurate irradiance measurement in the UVB region. 

 

3.3.4.1.- UV-B radiation effect on conidial germination 

The experiment was performed using 60mm Petri plates containing MA medium 

with low concentration of dodine 60% (20μg/ml) that slow fungal growth and allowing, 

therefore, to monitor the germination for longer periods. Each plate was inoculated with 

40µl of conidial suspension (1x10
5
 conidia/ml) and also they were spread using a sterile 

disposable spreader. Tree replicates plates per exposure time and tree replicates control 

plates per exposure time were irradiated of 920 and 1200 mW m
-2

 for 2, 4 and 6 hours 

and immediately incubated at 25 ºC in the dark for 24 hours (modified Braga et al., 

2001). 

A total of 100 conidia were selected for each exposure time, and after 24 hours 

incubation, germination was observed with Leitz DMRB optical microscope 

(x400/0.65PH2). The relative germination percentage after each period of incubation 

was calculated by the following equation: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑔𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (%) = 𝑊𝑡
𝑊𝑐 𝑥100 

where Wt is the number of germ-lings at exposure time t per plate and Wc is the 

mean number of germ-lings mean of the control plate. 
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Analysis of variance (ANOVA) was used to analyze the relative germination 

percentage, and the LSD test was used to compare means. 

 

2.3.4.2.- UV-B radiation effect on conidial culturability and on colony growth 

The experiment was performed using 60mm Petri plates which contained MA 

medium. Each plate was inoculated with 40µl of conidial suspension (1x10
3 

conidia/ml) 

and these were spread using a sterile disposable inoculation spreader. Three replicates 

plates per exposure time and three replicates control plates were prepared for each 

strain/treatment and irradiance combination. 

Conidia were immediately exposed to irradiances of 920 and 1200 mW m
-2

 for 2, 4 

and 6 hours and immediately incubated at 25 ºC in darkness for 48 hours (modified 

Braga et al., 2001). 

Forty eight hours post inoculation, the growth on the plates was halted by 

transferring 0.5 ml of lactophenol cotton blue on to each plate. 

Conidial culturability was evaluated counting colony forming units (CFUs), 

observed at 40X magnification and calculating the relative percentage culturability after 

each exposure time by the following equation: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) = 𝑇𝑡
𝑀𝑐 𝑥100 

where Tt is the number of CFUs of each replicate at exposure time t and Mc is the mean 

number of CFUs for all control plates, regardless of exposure time. 

The effect of conidial irradiation on the colony growth was determined by 

evaluating the size of the 48 hours colonies after irradiation, recording the two 

orthogonal diameters of each colony and considering 10 colonies per treatment. 

The analysis of colony growth was carried out by calculation of the growth index 

after each exposure time by the following equation: 
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𝐺𝑟𝑜𝑤𝑡ℎ 𝑖𝑛𝑑𝑒𝑥 = 𝐶𝑐 − 𝐶𝑡
𝐶𝑐 + 𝐶𝑡 𝑥100 

where C is the diameter mean of each replicate at exposure time t and Cc is the 

mean diameter for all control plates, regardless of exposure time. Values near to 100 

represent that the isolate is very sensible to UV radiation and values near to 0, UV 

radiation no affect at colony growth isolate. 

Analysis of variance (ANOVA) was used to analyze relative culturability and 

growth index, and the LSD test was used to compare means. 
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3. Results and Discussion 

3.1.- Molecular characterization 

Both primers (EF1-α and Bloc) were analyzed and compared with selected 

sequences available from GenBank (Rehner et al., 2011). The phylogenetic analysis 

combining EF1-α and Bloc showed that the 4 type sequences (TS) were grouped with 

the Beauveria bassiana species (Figure 1). Soil and phylloplane isolates may be found 

in ST 1, 2, 3, and 4 (Table 4). However, ST4 was detected to be phylloplane shaped as it 

included only three phylloplane isolates (Table 4).  

 

 

 

 

 

 

 

 

ARSEF1564 

 ARSEF751 

 ARSEF1040 

 TS4 

 TS2 

 ARSEF1811 

 TS3 

 TS1 

 ARSEF 2694 

 ARSEF985 

 ARSEF10277 

 HQ881020 

100 

100 

100 

75 

100 

81 

Beauveria bassiana 

Beauveria varroae 

Beauveria brongniartii 

Cordyceps militaris 

Figure 1.- Cladogram of four Beauveria bassiana type sequences illustrating species relationships 

inferred from joint Maximum Parsimony analysis of Bloc and TEF. Bootstrap values (based on 

1,000 replicates) when above 50% are indicated on the branches. Species clades are indicated by 

vertical bars 
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Table 4.- Ecosystem, habitat and type sequence of the evaluated Beauveria bassiana isolates 

Isolate Ecosystem Habitat Sequence Type 
EABb 10/126-Su Holm oak dehesa Soil 1 

EABb 10/147-Su Holm oak dehesa Soil 1 

EABb 10/275-Fil Holm oak dehesa Quercus ilex Phylloplane 1 

EABb 10/150-Su Holm oak dehesa Soil 1 

EABb 10/156-Su Holm oak dehesa Soil 2 

EABb 10/225-Fil Holm oak dehesa Quercus ilex Phylloplane 2 

EABb 10/282-Fil Holm oak dehesa Quercus ilex Phylloplane 2 

EABb 10/129-Su Holm oak dehesa Soil 3 

EABb 10/223-Fil Holm oak dehesa Quercus ilex Phylloplane 3 

EABb 10/261-Fil Holm oak dehesa Quercus ilex Phylloplane 3 

EABb 9/28-Fil Holm oak dehesa Quercus ilex Phylloplane 4 

EABb 10/329-Fil Holm oak dehesa Quercus ilex Phylloplane 4 

EABb 10/143-Fil Holm oak reforestation Quercus ilex Phylloplane 3 

EABb 10/235-Fil Holm oak reforestation Quercus ilex Phylloplane 1 

EABb 10/121-Su Holm oak reforestation Soil 2 

EABb 9/20-Fil Holm oak reforestation Quercus ilex Phylloplane 2 

EABb 10/133-Su Holm oak reforestation Soil 3 

EABb 10/169-Su Holm oak reforestation Soil 3 

EABb 9/29-Fil Holm oak reforestation Quercus ilex Phylloplane 3 

EABb 09/16-Fil Holm oak reforestation Quercus ilex Phylloplane 4 

 

 

Forty six loci alleles were detected with four microsatellite markers (ISSR primers). 

Phylogenetic analysis of these ISSR primers revealed polymorphism within isolates that 

had been phylogenetically and morphologically classified as Beauveria bassiana. The 

analysis revealed differences amongst all isolates, showing a relationship between 

microsatellites characterization and TEF/Bloc characterization (Figure 2). Of the 20 

isolates studied, two large haplotypes were resolved: one containing isolates of TS1 and 

the second containing the remaining TS (Figure 2). The finding that the TS2, 3, and 4 

are apparently polyphyletic suggests that temporal heterogeneity appeared between 

these three groups. ISSR analysis showed that particular groups of fungal isolates with 

similar genetic backgrounds are associated with particular TS.  
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The combined analysis of EF1-α and Bloc and ISSR analysis allow highly sensitive 

detection of diversity, so they are well suited to differentiate closely related B. bassiana 

isolates. Concordance of genetic similarity among B. bassiana isolates and geographic 

origin or host affiliation has been previously studied but it is yet ambiguous (Wang et 

al., 2003; Rehner, 2005). In our study, 20 isolates has been selected in the holm oak 

dehesa and holm oak reforestation ecosystems in two habitat, soil and phylloplane, to 

determine the genetic structure of these populations, and as starting point to select 

isolates with different environmental requirements. As it known B. bassiana have a 

saprophytic phase, which may be more important than the insect-pathogenic phase in 

EABb 10/129-Su 

EABb10/133-Su 

EABb10/169-Su 

EABb9/29-Fil 

EABb 10/223-Fil 

EABb 10/261-Fil 

EABb9/20-Fil 

EABb 10/156-Su 

EABb10/121-Su 

EABb 10/225-Fil 

EABb 10/282-Fil 

EABb10/329-Fil 

EABb 9/28-Fil 

EABb09/16-Fil 

EABb 10/275-Fil 

EABb 10/126-Su 

EABb 10/147-Su 

EABb 10/150-Su 

EABb10/143-Fil 

EABb10/235-Fil 

TS·4 

TS·2 

TS·3 

Figure 2.-Dendrogram of genetic relationship between Beauveria bassiana isolates from 

different natural habitat (Fil=Phylloplane; Su=Soil) and their relationship with type sequences 

obtained with Bloc and TEF molecular markers. 

TS·1 
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determining the population genetic structure (Bidochka et al., 2002), because the fungus 

is subject to many environmental factors in this phase of its life cycle. These operating 

changes could resulting in heterogenous populations might facilitate the occurrence and 

persistence of the fungus in the environment (Luan et al., 2013). Our results seem to 

indicate that the presence of B. bassiana in the phylloplane could be the consequence of 

the dispersion of fungal propagules from the soil to the plant by the wind, insects etc., 

whereas the phylloplane shaped ST4 could reveal the occurrence of particular epiphyte-

like genotypes.  

 

3.2.- Ecological characterization 

3.2.1.- Temperature effect on the fungal growth 

Temperature had a significant effect on in vitro radial colony growth of all fungal 

isolates (Table 5). The radial measurements from the 2
nd

 to the 10
th

 day fitted a linear 

model. All fungal isolates grew at 15, 20, 25 and 30ºC, whereas none grew at 35ºC. The 

examination of the fixed regression lines indicates that maximum growth rate was 

reached at 25ºC. In general, incubation temperature higher or lower than 25ºC, were 

established to be suboptimal for the fungal growth of all the isolates. 

There was no apparent relationship between the fungal growth rate and the habitat 

or ecosystem of isolation and molecular analysis. The growth rate became maximum 

when optimal temperature (Topt) ranged between 23.8 and 28.9ºC. Similar results were 

obtained by other authors, which established as an optimal range of growth between 20 

and 30ºC (Roberts and Campbell, 1977; Fargues et al, 1992; 1997; Quesada-Moraga et 

al., 2006). Fungal growth rate (TYopt), which was estimated at the optimal temperature, 

varied between 2.1 and 3.9 mm/day (Table 5). The maximum temperature for fungal 

growth (Tmax) did not reach 35ºC for any strain. 
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Table 5.- Estimated parameters (±SE) of the generalized β function modified according to 

Bassanezi et al. (1998) fitted to data of the vegetative growth of different Beauveria bassiana 

isolates. Vegetative growth was not observed for any isolate at 35ºC. 

Isolate 
Estimated parameters 

(a)(b)
 

Topt Tyopt Tb3 

EABb 10/126-Su 24.7±0.2acg 3.2±0.1ah 1.3±0.1acek 

EABb 10/147-Su 28.7±2.0ab 2.6±0.1bc 0.3±0.2b 

EABb 10/275-Fil 25.0±0.2ad 3.2±0.0a 1.3±0.1a 

EABb 10/150-Su 24.6±0.3ae 2.6±0.0bd 0.91±0.1cd 

EABb 10/156-Su 25.5±0.2af 2.4±0.0be 1.2±0.1ad 

EABb 10/225-Fil 25.0±0.3ah 2.1±0.0fj 1.1±0.1ad 

EABb 10/282-Fil 25.7±0.3bdfhi 2.3±0.0bfg 0.9±0.1adf 

EABb 10/129-Su 25.3±0.2a 3.1±0.0a 1.3±0.1ag 

EABb 10/223-Fil 24.8±0,1gh 3.9±0.0m 1.9±0.0h 

EABb 10/261-Fil 24.9±0.2aij 3.1±0.0a 1.2±0.1degj 

EABb 09/28-Fil 25.0±0.1aik 2.3±0.0b 1.2±0.0ad 

EABb 10/329-Fil 27.3±0.5b 2.7±0.1gi 0.3±0.2bi 

EABb 10/143-Fil 24.4±0.4al 2.9±0.1aci 1.0±0.2ad 

EABb 10/235-Fil 26.0±0.4bfhi 2.0±0.0f 0.4±0.0bf 

EABb 10/121-Su 23.8±0.5cehjl 2.5±0.1bij 1.8±0.3ahj 

EABb 09/20-Fil 24.4±0.2cdehjkl 2.3±0.0bjk 1.3±0.1ad 

EABb 10/133-Su 25.6±0.1bfl 2.6±0.0ci 1,2±0.0ad 

EABb 10/169-Su 24.8±0.2ah 2.1±0.0fl 1.2±0.1ad 

EABb 09/29-Fil 24.1±0.4cdejkl 2.1±0.0fk 1.1±0.2dkl 

EABb 09/16-Fil 25.5±0.2ah 3.3±0.1degh 1.5±0.1kl 
(a) 

The generalized β function is given by: V(T) = TYopt * ((T - Tmin) / (Topt - Tmin)) ^ (TB3 * ((Topt - Tmin) / 

(Tmax - Topt))) * ((Tmax - :T) / (Tmax - Topt)) ^ TB3, where V(T) is the fungal growth in mm per day 

(dependent variable) and T is the incubation temperature (independent variable). Tmin, Tmax and Topt are, 

respectively the lowest, the highest, and the optimal temperature for fungal growth. TYopt is the fungal 

growth at the optimal temperature Topt and TB3 is the shape parameter. (b) Means within columns with 

the same letter are not significantly different according to the least significant difference Student’s t test. 

 

A relationship was not found between lower and upper threshold temperatures or 

growth rates at different temperatures and their origin as reported by Fargues et al. 

(1997) using isolates from insects and soils from different latitudes. Nonetheless, it has 

speculated that response of fungal isolates to environmental factors could be related to 

their geographical origin, with possible adaptation of B. bassiana populations to specific 

habitats inside the climatic zones (Roberts and Campell, 1977; Vidal et al., 1997; 
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Fernandes et al. 2008). Besides,  Kryukov et al. (2012) found a correlation between B. 

bassiana ISSR haplotypes and temperature response, even if the isolates were obtained 

from highly distant habitat. In our study, such a relationship among temperature, 

haplotype and habitat has not been detected.  

 

3.2.2.- Temperature effect on germination 

There were significant effect of temperature on germination of conidia at 18h post-

inoculation at 15, 20, 25 and 30ºC (Table 6).  

The range of conidial germination percentage at different temperatures is recorded 

in Table 6. The effect of temperature on germination was highly significant at all 

temperatures (F19,59=89.28; F19,59=29.52, F19,59=11.28 and F19,59=12.43 at 15, 20, 25 and 

30ºC respectively; P<0.001). The maximum value of germination was observed at 25ºC 

and ranged between 64.7 and 94.3%. None of the isolates germinated at 35ºC, however 

only four of them germinated at 15ºC, even if they belonged to different ST. 

There were differences among the isolates in the effect of temperature on conidial 

germination. Spore germination occurred at 20-30ºC, although the optimum temperature 

for all the isolates was 25ºC. Similar results were reported by other studies about B. 

bassiana thermal requirements (Devi et al., 2005; Luz and Fargues, 1997), in which 

there was no apparent relationship between the fungal growth rate and the habitat, 

ecosystem, or genetic characteristics of the isolates. It appeared that tolerance to 

environmental stresses, such as high temperature or UV irradiation depends on enzyme 

regulation as superoxide dismutases (SOD), mitochondrial isoenzymes, or different 

catalases (Xie et al., 2010; 2012; Wang et al., 2013). These reactive oxygen species 

(ROS) are involved in the response of the entomopathogenic fungi to abiotic stresses 
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and provide target genes to be genetically manipulated for improved performance 

(Wang and Feng, 2013). 

 

Table 6.- Conidial germination (%) of Beauveria bassiana isolates at different temperatures 

Isolate 
Temperature ºC

(a) 

15 20 25 30 

EABb 10/126-Su 0.0±0.0d 43.0±1.1ef 66.6±3.1hi 51.0±2.8ghij 

EABb 10/147-Su 0.0±0.0d 45.6±2.7ef 82.3±0.6bcde 58.0±5.0defg 

EABb 10/275-Fil 0.0±0.0d 32.6±1.2g 73.0±2.0gh 54.3±2.0fghi 

EABb 10/150-Su 0.0±0.0d 42.3±2.1f 74.0±1.0fgh 44.6±3.3hijk 

EABb 10/156-Su 0.0±0.0d 51.0±2.6def 90.0±1.0ab 70.6±6.1abcd 

EABb 10/225-Fil 0.0±0.0d 25.3±2.3gh 72.0±3.0ghi 23.3±2.9l 

EABb 10/282-Fil 0.0±0.0d 27.0±3.0gh 84.0±2.0bcd 61.0±6.5cdefg 

EABb 10/129-Su 0.0±0.0d 44.0±1.1ef 93.3±3.4a 79.0±2.5a 

EABb 10/223-Fil 0.0±0.0d 22.0±1.7h 67.3±2.9hi 41.3±2.0jk 

EABb 10/261-Fil 0.0±0.0d 62.6±5.1a 77.6±6.1defg 56.0±6.0efgh 

EABb 09/28-Fil 0.0±0.0d 19.3±3.5h 76.0±2.5efg 44.0±5.2hijk 

EABb 10/329-Fil 13.6±3.3b 51.3±5.0cde 92.3±4.4a 69.0±5.7abcd 

EABb 10/143-Fil 0.0±0.0d 57.6±3.6bcd 64.6±3.3i 32.6±2.4kl 

EABb 10/235-Fil 6.3±1.6c 45.0±2.5ef 84.0±2.3bcd 43.0±4.3ijk 

EABb 10/121-Su 0.0±0.0d 42.6±4.2ef 78.3±3.1defg 55.0±3.5efghi 

EABb 09/20-Fil 42.3±2.6a 65.0±1.7b 87.3±2.0abc 76.6±3.4ab 

EABb 10/133-Su 0.0±0.0d 9.3±1.6i 81.3±2.3cdef 64.3±1.4bcdef 

EABb 10/169-Su 15.6±1.4b 60.0±3.6bc 83.0±0.5bcde 73.6±9.0abc 

EABb 09/29-Fil 0.0±0.0d 45.6±4.3ef 94.3±1.8a 79.0±4.5a 

EABb 09/16-Fil 0.0±0.0d 26.6±0.3gh 94.0±1.0a 67.6±4.9abcde 
(a)

Standard errors are after each mean. Means in the same column followed by different letters are 

significantly different (P<0.05, LSD test) 

 

3.2.3.- Water activity effect on germination 

The conidia germination percentages at 24 hours post-inoculation at different water 

activities were statistically different (F19,59=2.19; F19,59=2.23, F19,59=7.90, F19,59=35.54, 

F19,59=137.45, F19,59=50.68 and F19,59=26.55 at 1, 0.998, 0.996, 0.985, 0.970, 0.955 and 

0.928aw respectively; P<0.05) (Table 7).  

Germination was not observed in any isolate at 0.895 and 0.862aw. Only two 

isolates germinated at 0.928aw, particularly EABb 10/126-Su isolate with a 32.0% 
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germination, which could be present an adaptive advantage in dry climatic conditions of 

arid areas in southern Spain. Gillespie and Crawford (1986) noted that the B. bassiana 

development ceased at 0.92 aw, which was inhibitory for growth (Luz and Fargues, 

1997; Lazzarini, et al., 2006). Conidia germination is marked by an increase in oxygen 

consumption during the germ tube growth (Braga et al., 1999). It is possible that the 

hydrogen peroxide formed during the germination produce other ROS (Wang and Feng, 

2013). Indeed, water activity below 0.93 had a considerable negative effect on the 

germination kinetics (Lazzarini et al., 2006). However, in our study an important 

decrease in conidial germination was observed between 0.985 and 0.970, which is 

remarkable for two phylloplane isolates (EABb 10/275-Fil and EABb 10/282-Fil). The 

optimal water activity for conidia germination ranged between 1 and 0.985 aw, in 

agreement with Lazzarini et al. (2006) that reported 0.99 aw as the optimal water activity 

for B. bassiana conidial germination.  
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Table 7.- Conidial germination (%) of Beauveria bassiana isolates at different water activities 

Isolate 
aw 

(a) 

1 0.999 0.996 0.985 0.970 0.955 0.928 

EABb 10/126-Su 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a 91.3±2.9ab 32.0±6.1a 

EABb 10/147-Su 100.0±0.0a 100.0±0.0a 100.0±0.0a 98.6±1.3a 91.3±2.4b 72.6±1.7cd 0.0±0.0c 

EABb 10/275-Fil 100.0±0.0a 96.6±2.4bc 98.6±2.3a 77.3±3.7d 12.6±1.7h 0.0±0.0i 0.0±0.0c 

EABb 10/150-Su 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a 99.3±0.6a 92.0±3.0a 0.0±0.0c 

EABb 10/156-Su 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a 92.0±1.1b 74.0±3.0cd 0.0±0.0c 

EABb 10/225-Fil 100.00±0.0a 100.0±0.0a 100.0±0.0a 71.3±4.6e 64.0±1.1f 35.3±2.9h 0.0±0.0c 

EABb 10/282-Fil 98.0±1.1abc 99.3±0.6ab 96.0±1.1b 70.6±2.9e 32.6±2.9g 35.3±2.9h 0.0±0.0c 

EABb 10/129-Su 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a 82.6±0.6cd 41.3±2.4gh 0.0±0.0c 

EABb 10/223-Fil 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a 99.3±0.6a 82.0±2.0bc 0.0±0.0c 

EABb 10/261-Fil 99.3±0.6ab 100.0±0.0a 100.0±0.0a 100.0±0.0a 85.3±3.5c 55.3±1.7e 0.0±0.0c 

EABb 09/28-Fil 99.3±0.6ab 100.0±0.0a 100.0±0.0a 100.0±0.0a 85.3±3.5c 55.3±1.7e 0.0±0.0c 

EABb 10/329-Fil 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a 76.0±1.1e 54.6±5.8ef 0.0±0.0c 

EABb 10/143-Fil 97.3±1.3bc 99.3±0.6ab 100.0±0.0a 100.0±0.0a 99.3±0.6a 77.3±2.4cd 0.0±0.0c 

EABb 10/235-Fil 98.0±1.1abc 94.6±1.7c 92.6±1.3c 88.6±2.4b 66.6±2.6f 32.0±2.3h 0.0±0.0c 

EABb 10/121-Su 100.0±0.0a 100.0±0.0a 98.6±1.3a 99.3±0.6a 77.3±3.7de 45.3±8.1fg 0.0±0.0c 

EABb 09/20-Fil 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a 96.0±1.1ab 58.6±3.5e 4.0±1.1b 

EABb 10/133-Su 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a 91.3±2.9ab 0.0±0.0c 

EABb 10/169-Su 99.3±0.6ab 100.0±0.0a 100.0±0.0a 100.0±0.0a 82.6±1.7cd 70.0±4.6d 0.0±0.0c 

EABb 09/29-Fil 96.0±2.3c 97.3±2.6abc 100.0±0.0a 82.6±1.7c 68.6±0.6f 34.6±1.7h 0.0±0.0c 

EABb 09/16-Fil 99.3±0.6ab 98.6±1.3ab 98.6±1.3a 92.6±1.7b 92.6±1.7b 40.0±4.0gh 0.0±0.0c 
(a)

Standard errors are after each mean. Means in the same column followed by different letters are significantly different (P<0.05, LSD test) 
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3.2.4- Ultraviolet radiation effect (UV-B) on fungal conidia 

3.2.4.1.- UV-B radiation effect on conidial germination 

UV-B exposure time had a significant effect on the relative germination percentage 

for the twenty isolates at 920 mW m
-1 

(F19,59=11.32; F19,59=20.41 and F19,59=38.35 for 2, 

4 and 6 hours of exposure time respectively; P<0.001) and 1200 mW m
-1

 (F19,59=22.51; 

F19,59=36.87 and F19,59=32.55 for 2, 4 and 6 hours of exposure respectively; P<0.001). 

Be aware of the germ tube was shorter after 6 hours of exposure time than in the control 

for 920 and 1200 mW m
-1

 (Figure 3). 

 

Figure 3.- Germination of EABb09/16-Fil isolate. A.- Non irradiated control at 24 hours 

post-inoculation. B.- Conidial germination after 6 hours of exposure time to 1200 mW m
-1

 

and 24 hours post-inoculation. 

 

However, EABb 10/129-Su and EABb 10/223-Fil isolates showed a particularly 

higher susceptibility to UV-B, both of them grouped in the ST 4.  

B A 
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Table.8- Relative percentage germination of Beauveria bassiana isolates observed at 24 hours after exposure to 920 and 1200 mW m
-2

 and irradianced for 2, 

4 and 6 hours.  

Isolate 
920 mW m

-1 
1200 mW m

-1
 

2h 4h 6h 2h 4h 6h 

EABb 10/126-Su 98.9±0.8abA 89.9±1.7cA' 74.7±1.7cdeA'' 82.5±2.3efB 25.6±6.4jB' 5.4±2.4hB'' 

EABb 10/147-Su 97.3±0.6bcdA 87.3±1.7cdA' 64.7±2.4efgA'' 80.9±5.6efgB 68.4±8.3efA' 33.3±3.5eB'' 

EABb 10/275-Fil 100.0±0.0aA 85.3±2.9cdA' 81.2±2.9cA'' 73.8±5.7fgB 72.9±4.6cdeA' 63.7±2.4bcB'' 

EABb 10/150-Su 97.1±2.9abA 80.6±1.1cdefA' 50.6±1.3hiA'' 94.6±2.1abcB 80.0±1.1bcdeA' 40.6±7.7deA'' 

EABb 10/156-Su 98.6±1.3abA 86.6±3.5cdA' 72.0±4.7cdefA'' 97.1±1.6abA 80.8±3.6bcdA' 59.5±8.8deA'' 

EABb 10/225-Fil 100.0±0.0aA 97.3±0.6bA' 78.0±2.0cdA'' 83.2±1.8efB 82.3±3.8bcB' 49.6±7.2cdB'' 

EABb 10/282-Fil 87.8±3.5eA 70.9±1.2fA' 44.9±2.3hiA'' 84.3±1.8defA 70.2±3.2deA' 39.3±1.2deA'' 

EABb 10/129-Su 51.8±6.6gA 42.1±1.9hA' 13.8±1.3lA'' 16.1±2.2iB 3.2±1.8kB' 0.5±0.3iB'' 

EABb 10/223-Fil 72.0±6.1fA 56.2±3.3gA' 23.4±3.2kA'' 59.1±1.3hA 22.9±4.7jB' 0.7±0.1iB'' 

EABb 10/261-Fil 92.0±4.2deA 72.0±6.1efA' 44.3±2.3iA'' 53.5±9.1hB 40.3±3.1hiB' 12.9±5.0ghB'' 

EABb 09/28-Fil 85.1±3.1eA 72.3±2.4efA' 30.1±7.9jkA'' 68.4±2.3ghB 33.3±5.2ijB' 18.8±4.6fgA'' 

EABb 10/329-Fil 100.0±0.0aA 100.0±0.0aA' 90.5±3.5bA'' 93.2±2.9bcdB 77.7±2.4cdeB' 62.8±1.2bcB'' 

EABb 10/143-Fil 92.0±1.2deA 77.3±4.6defA' 41.3±4.8ijA'' 89.8±2.3cdeA 45.4±2.5ghiB' 31.1±3.6efA'' 

EABb 10/235-Fil 86.5±1.7eA 80.1±1.3defA' 56.4±4.0ghA'' 78.1±1.5fgB 47.5±1.9ghB' 31.8±3.8eB'' 

EABb 10/121-Su 98.0±1.1abcA 96.7±2.4bA' 62.6±5.7fgA'' 90.5±4.9bcdeA 89.2±2.0abA' 55.9±4.3bcA'' 

EABb 09/20-Fil 98.0±1.1abcA 77.9±8.6defA' 67.3±4.2defgA'' 96.6±1.8abA 78.2±3.2deA' 66.1±3.6bA'' 

EABb 10/133-Su 92.1±4.2cdeA 82.7±2.3cdeA' 46.1±1.2hiA'' 77.8±1.6fgB 48.2±3.2ghB' 11.8±1.4ghB'' 

EABb 10/169-Su 87.3±0.6eA 72.4±2.3efA' 56.6±2.4ghA'' 73.3±5.8fgA 56.2±7.2fgA' 48.9±8.2cdA'' 

EABb 09/29-Fil 100.0±0.0aA 100.0±0.0aA' 98.6±1.3aA'' 98.6±1.3aA 94.0±1.1aB' 88.0±3.0aB'' 

EABb 09/16-Fil 98.7±1.2abA 98.6±1.3abA' 90.0±3.4bA'' 99.1±0.4aA 80.7±0.6bcdeB' 35.3±3.7deA'' 

The percentage of germination after each period was calculated in relation to the non-irradiated controls. Standard errors are after each mean. Means in the same column 

followed by different small letters are significantly different (P<0.05, LSD test). Means in the same row and exposure time (2, 4 or 6h) followed by different capital letter are 

significantly different (P<0.05, LSD test). 
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3.2.4.2.- UV-B radiation effect on conidial culturability and on colony growth 

The colonies of most of the isolates originating from irradiated conidia shoed 

delayed development and high heterogeneity both in shape and size as compared to 

colonies from non-irradiated conidia (Fig. 4). The was a significant effect of UV-B 

exposure on colony size (as revealed by the growth index) both at 920 mW m
-1 

(F19,59=6.16; F19,59=9.71 and F19,59=10.51 for 2, 4 and 6 hours of exposure respectively; 

P<0.001) and 1200 mW m
-1

 (F19,59=6.82; F19,59=8.40 and F19,59=13.17 for 2, 4 and 6 

hours of exposure respectively; P<0.001) (Table 9). 

 

Figure 4.- Effect of 1200mW m
-1

 exposure on the colony growth of EABb09/16-Fil 

isolate A.- Non-irradiated control at 48 hours post-inoculation. B.- Exposure for 6 hours 

to 1200 mW m
-1

 and 48 hours post-inoculation. 

 

Once again UV-B had a significant effect on culturability of the twenty isolates 

(Table 10) at 920 mW m
-1 

(F19,59=5.01; F19,59=20.62 and F19,59=9.11 for 2, 4 and 6 hours 

of exposure respectively; P<0.001) and 1200 mW m
-1

 (F19,59=4.54; F19,59=19.02 and 

F19,59=12.82 for 2, 4 and 6 hours of exposure respectively; P<0.001). In general, 

culturability decreased with increasing exposure time to UV-B even if such an effect 

was more acute for germination.  

A B 
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Table.9- Growth index observed at 48 hours after the exposition to 920 and 1200 mW m
-2

 irradiances for 2, 4 and 6 hours of exposure time.  

Isolate 
920 mW m

-1 
1200 mW m

-1
 

2h 4h 6h 2h 4h 6h 

EABb 10/126-Su 3.3±0.5efgA 15.2±2.1defA' 15.9±2.5hiA'' 6.8±2.52efghiA 8.2±2.9hiA' 15.7±3.2hA'' 

EABb 10/147-Su 13.5±3.1abA 18.1±0.6cdeA' 17.7±2.0jA'' 11.2±1.8defgA 30.2±2.9aB' 47.6±0.7abB'' 

EABb 10/275-Fil 14.4±0.7aA 12.9±1.5efgA' 19.6±0.6efghiA'' 12.1±1.1defA 14.5±1.5fghA' 21.1±2.9ghA'' 

EABb 10/150-Su 5.5±1.6cdefgA 15.8±2.3defA' 23.9±7.8defgA'' 10.2±2.2defgA 16.7±1.7defgA' 22.5±1.6ghA'' 

EABb 10/156-Su 1.4±0.7gA 8.6±1.8ghA' 20.1±3.4efghiA'' 2.3±0.7hiA 22.8±3.2abcdeB' 39.7±2.4cdeB'' 

EABb 10/225-Fil 9.0±0.2cA 26.1±1.2abA' 16.9±0.1ghiA'' 5.5±0.2fghiB 18.0±4.4cdefgA' 25.0±0.7fghB'' 

EABb 10/282-Fil 4.0±1.8defgA 17.8±2.9cdeA' 14.7±1.1ijA'' 2.4±1.1hiA 13.0±2.3ghA' 24.2±2.1fghB'' 

EABb 10/129-Su 9.2±0.8bcA 13.0±0.4efgA' 27.0±2.3cdeA'' 1.1±0.3iB 24.7±2.1abcB' 27.1±2.3fgA'' 

EABb 10/223-Fil 10.4±2.7aA 14.4±2.6efA' 39.4±0.6aA'' 4.2±2.4ghiB 15.8±0.9efghA' 49.3±1.5abB'' 

EABb 10/261-Fil 5.3±1.0cdefgA 16.7±3.2deA' 35.4±1.8abA'' 25.7±7.5aB 26.6±6.1abA' 53.1±9.9aB'' 

EABb 09/28-Fil 8.4±0.8cdA 11.2±2.7fghA' 37.7±2.8abA'' 11.1±2.4defgA'' 25.1±3.5abcB' 45.8±3.5abcdB'' 

EABb 10/329-Fil 4.1±1.3defgA 7.1±0.3hA' 20.1±1.7efghiA'' 11.9±2.7defB 13.4±0.7iB' 20.1±3.5ghA'' 

EABb 10/143-Fil 3.5±1.6efgA 16.1±2.2defA' 31.5±2.3bcdA'' 7.9±0.8efghiB 28.5±2.6abB' 37.2±2.2deA'' 

EABb 10/235-Fil 3.2±1.5efgA 28.2±0.1aA' 33.5±0.6abcA'' 19.9±4.9abcB 20.7±4.5bcdefgA' 43.1±2.8bcdB'' 

EABb 10/121-Su 6.4±1.7cdefA 22.8±0.8bcA' 23.7±3.2defgA'' 9.4±1.7defghA 24.1±2.4abcdA' 32.2±2.7efA'' 

EABb 9/20-Fil 4.4±2.4cdefgA 16.6±0.6deA' 23.2±3.2efghA'' 2.3±0.5hiA 2.4±0.3iB' 44.4±0.9abcdB'' 

EABb 10/133-Su 5.7±1.5cdefgA 17.8±1.8cdeA' 13.7±2.6ijA'' 20.5±0.9abB 20.9±1.0bcdefA' 26.1±1.8fgB'' 

EABb 10/169-Su 7.6±0.6cdeA 26.8±1.4abA' 34.9±2.6abA'' 16.3±0.6bcdB 20.8±0.9bcdefgB' 45.2±2.8abcdA'' 

EABb 09/29-Fil 7.6±1.2cdeA 12.9±1.5efgA' 25.1±2.1defA'' 11.3±2.4defgA 28.6±1.4abB' 47.6±5.2abcB'' 

EABb 09/16-Fil 3.0±1.2fgA 20.4±1.2cdA' 28.7±1.4fghiA'' 13.2±0.8cdeB 24.4±0.7abcdA' 50.0±2.1abB'' 
The grow index after each period was calculated in relation to the nonirradiated controls. Standard errors are after each mean. Means in the same column followed by different 

small letters are significantly different (P<0.05, LSD test). Means in the same row and exposure time (2, 4 or 6h) followed by different capital letter are significantly different 

(P<0.05, LSD test). 
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Table.10- Relative culturability observed as 48 hours after the exposition to 920 and 1200 mW m
-2

 irradiances for 2, 4 and 6 hours of exposure time.  

Isolate 
920 mW m

-1 
1200 mW m

-1
 

2h 4h 6h 2h 4h 6h 

EABb 10/126-Su 89.2±5.2abcdeA 92.9±1.8abA' 68.0±3.2defA'' 73.6±5.4deA 69.0±3.9efgB' 66.6±2.8bcdeA'' 

EABb 10/147-Su 93.2±2.8abcA 80.5±4.2defA' 51.1±3.4hiA'' 86.9±1.6abcA 63.2±3.1fghB' 53.3±2.5ghiB'' 

EABb 10/275-Fil 97.1±0.4aA 69.4±1.2ghA' 69.2±5.6defA'' 93.3±5.0aA 56.4±5.1hijA' 50.3±5.5hijA'' 

EABb 10/150-Su 90.2±4.3abcdA 72.6±1.0fgA' 76.8±5.9abcdA'' 85.2±4.3abcA 71.8±2.9defA' 42.9±1.8jB'' 

EABb 10/156-Su 87.2±1.2bcdeA 78.3±1.1efA' 81.9±4.1abcA'' 84.6±3.9abcA 62.7±1.9ghiB' 64.2±4.1cdefB'' 

EABb 10/225-Fil 94.8±4.5abA 92.6±4.0abcA' 85.2±2.7abA'' 84.3±1.1abcA 87.7±1.9abA' 85.0±2.7aA'' 

EABb 10/282-Fil 94.3±2.7abcA 93.0±4.5abA' 74.3±6.3bcdeA'' 87.2±1.4abcA 88.4±1.6aA' 59.0±3.8efghA'' 

EABb 10/129-Su 85.5±2.2cdeA 63.1±2.2hA' 64.5±1.4efgA'' 84.8±2.2abcA 53.9±1.8ijB' 66.5±2.2bcdeA'' 

EABb 10/223-Fil 82.7±3.5deA 68.9±2.1ghA' 63.9±4.6efgA'' 78.4±2.5cdA 63.7±2.4fghA' 61.5±2.1defgA'' 

EABb 10/261-Fil 91.3±0.9abcdA 82.5±1.6deA' 71.5±3.9cdeA'' 85.4±4.4abcA 79.2±1.3bcdA' 76.1±1.9abA'' 

EABb 09/28-Fil 66.3±2.2fA 46.9±3.3iA' 46.2±3.0iA'' 65.8±4.1eA 44.7±0.5kA' 30.8±1.1kB'' 

EABb 10/329-Fil 96.7±3.2bA 96.3±3.1abA' 86.6±7.1aA'' 92.0±2.6aA 62.7±4.7ghi 60.4±7.1defgA'' 

EABb 10/143-Fil 91.0±4.8abcdA 79.5±4.1defA' 65.5±4.2defgA'' 91.1±1.6aA 77.4±3.6cdeB' 49.5±3.3hijB'' 

EABb 10/235-Fil 94.8±2.1abA 77.5±4.1efgA' 66.8±3.3defgA'' 78.9±5.7bcdA 82.4±4.3abcA' 57.3±4.1efghA'' 

EABb 10/121-Su 89.5±3.7abcdeA 99.8±0.0aA' 68.1±3.4defA'' 90.2±2.7aA 81.5±2.8abcB' 65.6±2.9cdeA'' 

EABb 09/20-Fil 93.0±2.4abcA 84.0±1.2cdeA' 46.0±1.2iA'' 88.0±2.2abA 65.6±1.8fgB' 63.1±3.6cdefgB'' 

EABb 10/133-Su 91.6±4.7abcdA 88.2±5.4bcdA' 85.0±2.9abA'' 91.0±1.5aA 88.5±1.2aA' 55.2±3.5fghB'' 

EABb 10/169-Su 93.8±2.3abcA 92.0±2.6abcA' 68.6±2.0defA'' 90.2±1.8aA 88.5±1.9aA' 69.3±4.3bcdA'' 

EABb 09/29-Fil 94.4±1.1abcA 96.3±3.1abA' 55.8±1.6ghiA'' 91.6±3.1aA 84.6±6.6abcA' 72.4±2.4bcB'' 

EABb 09/16-Fil 80.8±1.2eA 61.9±2.6hA' 58.6±2.3fghA'' 78.5±0.9cdA 51.5±0.9jkB' 44.9±0.4ijB'' 
The percentage of culturability after each period was calculated in relation to the nonirradiated controls. Standard errors are after each mean. Means in the same column 

followed by different small letters are significantly different (P<0.05, LSD test). Means in the same row and exposure time (2, 4 or 6h) followed by different capital letter are 

significantly different (P<0.05, LSD test). 
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Our results indicate that exposition to UV-B radiation resulted in a delay of 

germination of B. bassiana, whereas this effect was linked neither to ST nor isolate 

origin, soil or phylloplane. This is supported by the fact that the effect of UV-B 

exposure on germination was more acute than the one observed for culturability. In 

general, fungal colonies from irradiated conidia were more heterogeneous in shape than 

the controls and their growth was delayed. It could be concluded that a "recovery" of the 

fungal propagules could occur after exposition to UV-B, even if such recovery is lower 

for longer exposure times (6h) and irradiance (1200 mW m
-1

), which highlights both the 

key role of the changes operating in the environment in determining the efficacy of 

microbial control with entomopathogenic fungi, and the need for selecting isolates 

adapted to this particular environment ("environmental competence"). This is even more 

important under climatic change scenarios, with a reduction in the ozone layer.  

UV-B, which is the most harmful radiation to biological systems (Quaite et al, 

1992; Paul et al., 1997), is increasing due to the reduction in the ozone layer (Caldmell 

and Flint, 1997; Sola and Lorente, 2011). Differences in UV-B exposure throughout 

Spain national territory are evident both at season and geographical level (Martinez-

Lozano et al., 2012). The higher values of UV-B irradiance reach 1800 mW m
-1

 at solar 

noon in July in Badajoz, while the lower are found in December reaching 200 mW m
-1

 

in La Coruña (Martinez-Lozano et al., 2012). These differences could explain the 

isolation frequency of the EF. Quesada-Moraga et al. (2007) showed that Beauveria sp. 

is more frequently isolated in natural and cultivated habitats in southern Spain, whereas 

Metarhizium sp. is the more abundant fungal species in northern Spain. This could be 

due to the fact that this second fungal species is more susceptible to UV-B inactivation 

than the former, with only few hours of exposure to 920 and 1200 mW m
-1

 need to 
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steadily decrease the germination rate and culturability (Braga et al., 2001a, 2001b, 

Rangel et al., 2004).  

On the other side, our study shows that there was no apparent relationship between 

the response of the fungal isolates to UV-B and their habitat (soil or phylloplane), 

ecosystem, ST or haplotype. In spite of, its remarkable that some isolates showed 

desirable response to the abiotic environmental factors evaluated in this work. Thus, 

isolate EABb 09/20-Fil showed: (1) high resistance to inactivation by UV-B, (2) high 

percentage of germination at 15-30ºC and (3) optimum germination at lower moisture 

levels, making it an excellent candidate to be developed for pest control in 

Mediterranean conditions. Even if it could be argued that isolates of entomopathogenic 

fungi from the phylloplane that are most exposed to abiotic environmental factors could 

have evolved to resist more unfavorable environmental conditions, the present work 

results clearly shows that such habitat not always provide the more environmentally 

competent genotypes.  

 

 

As a conclusion, this work shows that combined analysis of TEF/Bloc and ISSR 

allows highly sensitive detection of Beauveria bassiana isolate diversity. Besides, 

similar patterns of isolate grouping were observed by using microsatellites (ISSR) and 

EF1-α/Bloc. Twenty B. bassiana isolates was grouped in two haplotypes, one of them 

with possible polyphyletic origin suggesting temporal heterogeneity among isolates of 

this group. However, the patterns of isolate grouping were linked neither to habitat (soil 

or phylloplane) nor to origin, holm oak dehesa or reforestation. On the other hand, 

thermal requirements for germination and growth of most isolates were around 25 ºC, 

while optimum water activity was detected at 0.999-0,985aw. High tolerance to UV-B 
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exposure for all B. bassiana isolates after an initial depletion of the germination was 

found. Isolates of entomopathogenic fungi from the phylloplane not always provided 

the more environmentally competent genotypes, despite of this entomopathogenic fungi 

are most exposed to abiotic environmental factors.  
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