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Tc                 Tetracycline 

TcR               Tetracycline resistant 

TO                Tuberculosis del olivo 

VBNC            Viable but non-culturable 

VCG              Vegetative compatibility group 

VO                Verticilosis del olivo 

VOCs           Volatile organic compounds 

VW               Verticillium wilts 

VWO            Verticillium wilt of olive 
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Summary 

 

Olive (Olea europaea L.) has always been a fundamental crop in the Mediterranean 

Basin. Driven by the fact, among others, that an increasing number of scientific reports 

highlight the benefits that olive oil consumption has for human health, olive tree 

cultivation has spread worldwide to other regions with Mediterranean-type climate. 

Two relevant pathogens affecting olive trees are the hemibiotrophic soil-borne fungus 

Verticillium dahliae and the bacterium Pseudomonas savastanoi pv. savastanoi (Psv), 

causal agents of Verticillium wilt of olive (VWO) and olive knot disease (OKD), 

respectively. Effective control of these pathogens must rely on integrated disease 

management strategies, with emphasis in preventive, cost-effective and 

environmentally-friendly measures. Among the available control tools, the use of 

microbial antagonists with biocontrol potential emerges as a promising strategy to 

implement either alone or in combination with other disease management measures. 

Moreover, the use of biological control agents (BCA) native from the host plant, and 

therefore adapted to the target ecological niche where their benefits can be deployed, 

is a reasonable approach. In previous studies, Pseudomonas fluorescens PICF7, an 

indigenous inhabitant bacterium of the olive rhizosphere, was confirmed as an 

effective BCA against the defoliating, highly-virulent pathotype of V. dahliae. This 

bacterial strain displays endophytic lifestyle in olive roots, produces the siderophore 

pyoverdine (Pvd), and is able to induce a broad range of defense responses in both 

roots and above-ground organs when colonizing olive roots. Even though the 

information so far gathered has increased in the last few years, the study of the PICF7-

V. dahliae-olive tripartite interaction is complex and an in-depth knowledge on the 

relationships established among the three partners is needed. On the one hand, 

working with a woody, long-living plant such as olive poses difficulties inherent to the 

own characteristics of the plant. On the other hand, the genetic and molecular 

mechanisms underlying VWO biocontrol exerted by strain PICF7 are still unknown. To 

shed light for the first time on PICF7 traits involved in the control of V. dahliae as well 

as in the ability of this BCA to colonize the interior of olive roots, four PICF7 

phenotypes were studied by mutant analysis. Thus, two mutants affected in traits 

usually related to colonization ability and biological control of plant pathogens (i.e. 

swimming motility and siderophore pyoverdine production) and two altered in 

nutritional requirements (i.e. growth delay in PDA medium and cysteine auxotrophy) 

were generated, characterized and evaluated in both in vitro and in in planta assays. In 

addition, this thesis also investigated whether the model plant Arabidopsis thaliana 

can be used to facilitate the identification of P. fluorescens PICF7 traits involved in both 

V. dahliae biocontrol and endophytic lifestyle. The aim was to compare the behavior of 

the same PICF7 mutant phenotypes in olive and Arabidopsis. Furthermore, since strain 
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PICF7 is able to induce systemic defense responses in olive aerial tissues, this thesis 

also aimed to assess whether mechanisms such as Induced Systemic Resistance (ISR) 

and/or Systemic Acquired Resistance (SAR) are triggered in olive upon PICF7 root 

colonization. To prove this, spatial separation of the BCA and the pathogen is required. 

This prerequisite is difficult to fulfill in this tripartite interaction since both 

microorganisms share the same ecological niche – the olive roots. To achieve that, two 

different approaches were followed in this thesis. On the one hand, biocontrol 

effectiveness of strain PICF7 was evaluated against OKD, inoculating the BCA in the 

roots and Psv in the stems. As a complement to these bioassays both microorganisms 

were also co-inoculated in stems in order to study the potential effects that the 

presence of strain PICF7 might cause in tumor development. On the other hand, by 

using diverse mutants of the model plant A. thaliana affected in defense signaling 

pathways, the ability of PICF7 to trigger ISR/SAR responses when applied to the roots 

was evaluated against the foliar fungal pathogen Botrytis cinerea. In these studies 

confocal laser scanner microscopy (CLSM) and fluorescently-labeled bacterial 

derivatives were used to monitor: (i) the colonization ability of P. fluorescens PICF7 in 

A. thaliana to check whether this BCA can establish endophytically in this host; and (ii) 

the localization and possible interaction of Psv and PICF7 in olive stem tissues and 

during olive tumor development.  Results demonstrated a similar behavior of P. 

fluorescens PICF7 and its mutants in both olive and Arabidopsis plants. Thus, although 

all mutants colonized the roots of both hosts the cysteine auxotroph mutant always 

displayed the lowest population size. Regarding to biocontrol ability, cysteine 

auxotrophy but not swimming motility nor pyoverdine production seemed to be 

related to VW suppression in both hosts. Results from CLSM showed that all PICF7 

mutants evaluated in this thesis colonized endophytically olive root tissues to the same 

extent than the wild type. In contrast, no evidence of endophytic colonization of A. 

thaliana was found for PICF7 and its mutants, but only colonization of the rhizoplane. 

Evidence of an ISR response triggered by strain PICF7 was found against B. cinerea in A. 

thaliana. In contrast, colonization of olive roots by PICF7 did not hinder knot 

development produced by Psv in olive. However, when strain PICF7 was co-inoculated 

with Psv in stems a transient decrease of the pathogen population size, a reduction of 

tumor necrosis, and changes in the knot inner anatomy were observed. These findings 

indicated that presence of PICF7 altered the normal development of the tumor. 

Besides, CLSM imagery revealed that Psv cells within the hyperplasic tissue showed a 

different location depending on whether PICF7 was absent (Psv cells at the knot 

surface) or present (Psv cells mostly located in the inner regions of the tumors). By 

using this methodological approach it was also shown for the first time that pathogen 

cells can colonize the vascular tissue outside the hyperplasic tissue, indicating that Psv 

can potentially move systemically. 
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Resumen 

 

El olivo (Olea europaea L.) es un cultivo fundamental de la Cuenca Mediterránea. En 

estas últimas décadas se ha extendido a otras regiones que disfrutan de clima 

Mediterráneo debido, entre otros factores, al creciente número de investigaciones 

científicas que subrayan los efectos beneficiosos derivados del consumo del aceite de 

oliva en nuestra salud. Sin embargo, este cultivo se encuentra amenazado por 

diversos factores a/bióticos. De entre los diversos estreses bióticos cabe destacar al 

hongo hemibiotrofo de suelo Verticillium dahliae, causante de la enfermedad más 

importante que afecta a este cultivo, la Verticilosis del olivo (VO). Otra seria amenaza 

para la olivicultura es la Tuberculosis del olivo (TO) causada en este caso por la 

bacteria Pseudomonas savastanoi pv. savastanoi (Psv). Para un control efectivo de 

cualquier fitopatología, entre ellas la VO y la TO, es aconsejable llevar a la práctica 

una estrategia basada en el manejo integrado de la enfermedad, teniendo en 

especial consideración aquellas medidas preventivas que son tanto rentables como 

respetuosas con el medio ambiente. Entre las herramientas de control disponibles, el 

uso de microorganismos antagonistas (agentes de control biológico [ACBs]) emerge 

como una medida prometedora. Los ACBs poseen la ventaja de que pueden aplicarse 

tanto de forma individual como en combinación con otras medidas de manejo de la 

enfermedad, además de actuar de manera beneficiosa en su propio nicho ecológico 

al cual se encuentran plenamente adaptados. En estudios previos, Pseudomonas 

fluorescens PICF7, bacteria indígena de la rizosfera de raíz, confirmó ser un ACB  

efectivo frente al patotipo defoliante, altamente virulento, de V. dahliae, además de 

producir el sideróforo pioverdina (Pvd), inducir un amplio rango de respuestas 

defensivas tanto en raíces como en órganos aéreos y comportarse como endófita en 

la raíz del olivo. Sin embargo, el conocimiento en lo referente a la interacción 

tripartita PICF7-V. dahliae-olivo es todavía muy escaso, dificultado en parte por las 

características propias de un huésped leñoso y longevo como el olivo. Asimismo, los 

mecanismos genéticos y moleculares que subyacen en el control biológico de la VO 

por parte de la cepa PICF7 son todavía desconocidos. Para dilucidar qué caracteres 

de PICF7 pueden estar implicados en el control de V. dahliae, así como la capacidad 

de este ACB para colonizar el interior de las raíces de olivo, se seleccionaron cuatro 

fenotipos de PICF7 mediante el empleo de mutantes. Para ello, se generaron, 

caracterizaron y evaluaron tanto in vitro como en ensayos en planta dos mutantes 

afectados en rasgos habitualmente relacionados con la capacidad de colonización y el 

control biológico de fitopatógenos (motilidad tipo ‘swimming’ y producción del 

sideróforo pioverdina) y dos alterados en requerimientos nutricionales (retraso en el 

crecimiento en medio PDA y auxotrofía en cisteína). Además, la presente tesis 

también investigó la posibilidad de que la planta modelo Arabidopsis thaliana 
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pudiera ser un posible sustituto y/o complemento que facilitase la identificación de 

los caracteres de P. fluorescens PICF7 involucrados tanto en el biocontrol de V. 

dahliae como en el endofitismo. Para ello, se comparó el comportamiento de los 

cuatro fenotipos mutantes de PICF7 mencionados con anterioridad en ambas plantas 

huésped, olivo y Arabidopsis. Además, puesto que la cepa PICF7 es capaz de inducir 

respuestas de defensa sistémica en tejidos aéreos del olivo, esta tesis también tuvo 

como objetivo evaluar si los mecanismos tales como la resistencia sistémica inducida 

(‘Induced Systemic Resistance’; ISR) y/o la resistencia sistémica adquirida (‘Systemic 

Acquired Resistance’; SAR) se activan en olivo tras la colonización de la raíz por parte 

de PICF7. Para la consecución de lo anterior es requisito indispensable la separación 

espacial del ACB y del patógeno. Esta premisa es difícil de cumplir en esta interacción 

tripartita ya que PICF7 y V. dahliae comparten el mismo nicho ecológico, las raíces 

del olivo. Por tanto, se llevaron a cabo dos enfoques diferentes. Por un lado, se 

evaluó la eficacia de la cepa PICF7 en el biocontrol de la TO (enfermedad que afecta a 

la parte aérea) al inocular el ACB en las raíces y a la bacteria fitopatógena (Psv) en 

tallo. Con el fin de complementar estos bioensayos ambos microorganismos se co-

inocularon en tallo para así estudiar los efectos que la presencia de la cepa PICF7 

podría causar en el desarrollo del tumor. Por otro lado, mediante el uso de diversos 

mutantes afectados en rutas de señalización relacionadas con la defensa de la planta 

huésped en la planta modelo A. thaliana, se evaluó la capacidad de PICF7 para 

desencadenar respuestas ISR y/o SAR tras su aplicación en raíz frente al hongo 

patógeno foliar Botrytis cinerea. En estos estudios se usó la microscopía confocal 

láser de barrido (‘Confocal Laser Scanner Microscopy’; CLSM) junto con derivados 

bacterianos marcados con fluorescencia para observar: (i) la capacidad de 

colonización de P. fluorescens PICF7 en A. thaliana y comprobar si puede 

establecerse endofíticamente en este huésped; y (ii) la localización y posible 

interacción de Psv y PICF7 en los tejidos del tallo y el efecto que la presencia del ACB 

pudiera tener en el desarrollo del tumor. Los resultados obtenidos demostraron un 

comportamiento similar de P. fluorescens PICF7 y sus mutantes tanto en olivo como 

en Arabidopsis. Todos los mutantes fueron capaces de establecerse en las raíces de 

ambos hospedadores. Sin embargo, el mutante auxótrofo en cisteína siempre mostró 

un tamaño poblacional menor. En cuanto a la capacidad de biocontrol, la auxotrofía 

en cisteína pero no la motilidad tipo ‘swimming’ ni la producción de pioverdina 

parecen estar relacionadas con la supresión de la VO en ambos hospedadores. Los 

resultados obtenidos gracias a la CLSM mostraron que tanto PICF7 como sus 

mutantes colonizan endofíticamente el tejido radical del olivo. Por el contrario, no se 

obtuvo evidencia de colonización endofítica por parte de PICF7 y sus mutantes en A. 

thaliana, sólo colonización del rizoplano. Igualmente, se demostró que la cepa PICF7 

provoca una respuesta ISR frente a B. cinerea en A. thaliana. Por otro lado, la 
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colonización de las raíces de olivo por parte de PICF7 no impidió el desarrollo de 

tumores tras la inoculación de Psv en tallo. Sin embargo, la co-inoculación en tallo de 

ambas bacteria produjo una disminución transitoria del tamaño poblacional del 

patógeno, una reducción de la necrosis tumoral y cambios en la anatomía interna del 

tumor. Estos hallazgos indican que la presencia de PICF7 altera el desarrollo normal 

del tumor. Además, las imágenes de CLSM revelaron que las células de Psv en el 

tejido hiperplásico muestran una ubicación diferencial definida por la ausencia de la 

cepa PICF7 (células de Psv en la superficie del tumor) o presencia de la misma 

(células de Psv mayoritariamente localizadas en las regiones internas del tumor). 

Además, el uso de este enfoque metodológico demostró claramente por primera vez 

que las células del patógeno pueden colonizar el tejido vascular fuera del tumor, lo 

que indica que Psv puede desplazarse potencialmente  de manera sistémica. 
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1.1. Olive history and importance 

 

Olive (Olea europaea L.) cultivation was established and spread throughout the 

Mediterranean Basin since at least 5000 years ago (Connor, 2005) by Phoenicians, 

Greeks and Romans. The original area of domestication of this tree, from wild olive 

(Olea europaea var. sylvestris) (Moazzo et al., 1994; Teofrasto, 1988), is uncertain 

and controversial. While some authors affirm that cultivated olive originated from 

the Eastern Mediterranean Basin (Zohary and Spiegel, 1975; Angiolillo et al., 1999), 

this assumption being supported by archeological evidence, others suggest that 

domestication took place in the Western Mediterranean area (Magdelaine and 

Ottaviani, 1984; Terral and Arnold-Simard, 1996; Terral, 1997). More recent surveys 

using molecular techniques propose that cultivar selection was multilocal, taking 

place in different areas of the Mediterranean region (Besnard et al., 2001). After the 

spread of olive cultivation in the Mediterranean Basin, this crop was introduced into 

other countries situated between latitudes 30°- 45° at both Northern and Southern 

Hemispheres in Mediterranean-type climatic regions (Figure 1.1). Thus, following the 

discovery of the Americas, olive cultivation was expanded into both south and north 

of the continent (Peru, Argentina, Chile, USA, and Mexico). Thereafter, in the XIX 

century, olive crop reached Australia. Since olive oil benefits for human health are 

increasingly established based on a number of scientific reports (Owen et al., 2000; 

Amiot, 2014), the list of regions where this tree is being cultivated has steadily grown 

over the last two centuries: South Africa, China, Japan, Pakistan and Australia 

(Connor, 2005).  

 

 
 

Figure 1.1. Olive cultivation in the world. Grey rectangle and solid circles, regions where olive tree is 

being cultivated. Grey rectangle frames the Mediterranean Basin. Solid circles mark the remaining areas. 

Based on http://www.zonu.com/fullsize/2009-11-05-10853/Mapa-Mudo-del-Mundo.html. 
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Regarding to olive world production and cultivation acreage, Spain is the 

leading country in both aspects, accounting for 7.9 x 106 tons (39% of the world 

production) and 2.5 x 106 ha, (24% of the world acreage) (Table 1.1) (FAO, 2013). 

Production is diversified in table olives, oil mill olives and olives with double aptitude 

(7.6 x 104, 2.5 x 106 and 7.1 x 104 ha, respectively) (MAGRAMA, 2014). In particular, 

the region of Andalusia (Spain) is the main producer with a registered cultivated area 

of 1.5 x 106 ha (5.5 x 104, 1.4 x 106 and 6.7 x 104 ha devoted to table olives, oil mill 

olives and olives with double aptitude, respectively) (MAGRAMA, 2014). 

 
Table 1.1. Production and area devoted to olive cultivation worldwide.  

 

Country 

Production
a
  Cultivation area

a 
 

VWO
1
 first report Tons 

(x1000) 
%  

Ha 

(x1000) 
%  

Spain 7875.80 38.71  2500.00 24.40  Caballero et al., (1980) 

Italy 3022.89 14.86  1125.00 10.98  Ruggieri, (1946) 

Greece 2000.00 9.83  930.00 9.08  Zachos, (1963) 

Turkey 1676.00 8.24  825.83 8.06  Saydam and Copcu, (1972) 

Morocco 1181.68 5.81  922.24 9.00  Serrhini and Zeroual, (1995) 

Syrian Arab Republic 1000.00 4.91  690.00 6.74  Al-Ahmad and Mosli, (1993) 

Tunisia 963.00 4.73  1800.00 17.57  Triki et al., (2006) 

Egypt 510.00 2.51  52.10 0.51  
 

Algeria 395.00 1.94  330.00 3.22  Bellahcene et al., (2000) 

Portugal 350.90 1.72  347.30 3.39  Gouveia and Coelho, (2007) 

Argentina 172.00 0.85  63.00 0.61  Docampo et al., (1981) 

USA 145.00 0.71  17.00 0.17  Snyder et al., (1950) 

Libya 138.00 0.68  210.00 2.05  
 

Jordan 128.19 0.63  62.39 0.61  Mamluk et al., (1984) 

Albania 125.00 0.61  48.00 0.47  
 

Lebanon 97.00 0.48  58.00 0.57  Makhlouf and Geagea, (2005) 

Australia 93.52 0.46  42.00 0.41  Morschel, (1961) 

Occupied Palestinian 

Territory 
76.00 0.37  51.00 0.50  

 

Chile 74.30 0.37  18.31 0.18  
 

Israel 67.00 0.33  34.00 0.33  Levin et al., (2003a) 

Peru 57.77 0.28  16.44 0.16  
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Iran (Islamic Republic 

of) 
36.00 0.18  22.00 0.21  Sanei et al., (2004) 

Croatia 34.27 0.17  18.59 0.18  
 

France 26.85 0.13  17.17 0.17  Vigouroux, (1975) 

Mexico 26.30 0.13  6.92 0.07  
 

Iraq 19.00 0.09  4.65 0.05  Al-Taae and Al-Taae, (2010) 

The former Yugoslav 

Republic of 

Macedonia 

13.00 0.06  6.00 0.06  
 

El Salvador 10.25 0.05  5.00 0.05  
 

Cyprus 8.88 0.04  10.40 0.10  
 

Afghanistan 6.60 0.03  2.20 0.02  
 

Uruguay 6.30 0.03  3.00 0.03  
 

Montenegro 2.90 0.01  2.40 0.02  Latinovic and Vucinic, (2010) 

China 2.00 0.01  0.27 0.00  
 

China, Taiwan 

Province of 
2.00 0.01  0.27 0.00  

 

Slovenia 1.50 0.01  0.90 0.01  
 

Azerbaijan 0.84 0.00  1.74 0.02  
 

Brazil 0.30 0.00  0.10 0.00  
 

Bosnia and 

Herzegovina 
0.15 0.00  0.11 0.00  

 

Uzbekistan 0.10 0.00  0.10 0.00  
 

Kuwait 0.06 0.00  0.04 0.00  
 

Malta 0.01 0.00  0.01 0.00  Porta-Puglia and Mifsud, (2005) 

WORLD 20346.34 100.00  10244.46 100.00  
 

 

a 
2013 data obtained from the Food and Agriculture Organization of the United Nations (FAO)  (http:// 

faostat3.fao.org/browse/Q/*/E) 
1
 VWO, Verticillium wilt of olive 

 

1.2. Principal diseases affecting olive 

 

Olive cultivation is threatened by a multitude of diverse (a)biotic stresses. Known 

biotic disorders are summarized along with their importance in the Mediterranean 

Basin in Table 1.2. 
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Table 1.2. Principal biotic disorders affecting olive cultivation. 

 

Disease
 

Causal agent
 

Importance
1 

Aerial mycoses  
 

Peacock eye  Fusicladium oleagineum(= Cyclonconium oleaginum, = 

Spilocaea oleagina ) 
H 

Anthracnose Colletotrichum acutatum, C. gloesporioides 

(=gloeosporium olivarum) 
H 

Leaf spot Pseudocercospora cladosporioides (= Cercospora 

cladosporioides) 
M 

Prill Capnodium elaeophilum L 

Canker Botryosphaeria dothidea (=Camarosporium dalmaticum) L 

Leprosy Phlyctema vagabunda (=Glieosporium olivae) L 

Other fruit rots Alternaria, Aspergillus, Cladosporium, Diplodia, 

Geotrichum, Fusarium, Phomopsis, etc. 
L 

Other leaf mycosis Leveillula, Phyllactinia, Stictis panizzei, etc. L 

Cankers Neofusicoccum mediterraneum, Eutypa lata, Phoma 

incompta 
L 

Wood decay Fomes, Formitiporia, Phellinus, Polyprous, Stereum, etc. L 

Vascular mycosis   

Verticillium wilt Verticillium dahliae H 

Root diseases   

Rot of thin roots Oomycetes 

Phytophthora, 

Pythium,etc. 

Fungi 

Cylindrocarpon, Fusarium, etc. M-L 

Rot of thick roots Armillaria mellea, Rosellinia necatrix, Omphalotus 

olearius 
L 

Bacterial diseases   

Olive tuberculosis (= olive knot 

disease) 
Pseudomonas savastanoi pv. savastanoi H-M 

Olive quick decline syndrome Xylella fastidiosa H 

Virus and phytoplasma diseases  

Malformations, Yellowness Virus and phytoplasmas not identified W 

Latent infections, Yellowness Nepovirus, Cucumovirus, Oleavirus, etc. W 

Nematodes   

Nodules/Root damage Meloidogyne, Pratylenchus, etc. W 

Phanerogams   

Mistletoe, Red-berry 

Mistletoe, Dodder 
Viscum, Cuscuta W 

 

Based on Trapero et al., (2010) 
1
H=high; M=moderate; L=low; W=without general practical importance, although severe attacks have 

been observed occasionally 
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Two biotic constraints affecting olive cultivation in almost all olive growing 

areas worldwide, in particular within the Mediterranean Basin, are Verticillium 

dahliae (López-Escudero and Mercado-Blanco, 2011; Tsror, 2011; Jiménez-Díaz et al., 

2012) and Pseudomonas savastanoi pv. savastanoi (Psv) (Quesada et al., 2012; Ramos 

et al., 2012). The gradual shift from traditional olive cultivation to high-tree density 

orchards (up to 2,000 trees/ha) with drip-irrigation systems (Tous et al., 2010) may 

introduce new concerns, yet insufficiently evaluated, about the incidence and 

severity of traditional and/or emerging olive pests and diseases. Thus, dense foliage 

and narrow alleys in olive hedgerow orchards may provoke high humidity, mild 

temperature (favorable to disease development) and lower penetration of fungicide 

treatments (Connor et al., 2014) thereby increasing the incidence of attacks by air-

borne fungi such as Spilocaea oleagina (olive peacock spot), Pseudocercospora 

cladosporioides (olive cercosporiose), and Colletotrichum spp. (olive anthracnose) 

(Trapero et al., 2009). Furthermore, it has been suggested that damage caused by 

harvesting machinery commonly used in this type of super-intensive cropping 

systems can enhance the probability of olive knot disease attacks (see below) 

(Trapero et al., 2009). 

 

This thesis is focused on Verticillium wilt of olive (VWO) and olive knot 

disease (OKD), and a brief summary of aspects such as importance, aetiology, 

symptomatology, epidemiology, life cycle and diversity of the causal agents, mainly 

for VWO, will be presented in the next sections. This basic knowledge is obviously of 

relevance for the development and success of control measures within integrated 

disease management strategies. Among the control measures, biological control 

emerges as a promising one. Therefore, emphasis will be on the use of biological 

control agents (BCAs) against VWO, presenting available antecedents, particularly on 

the potential that bacterial endophytes have to confront VWO, such as strain P. 

fluorescens PICF7. Succinct information on OKD will be also presented since 

biocontrol of Psv by strain PICF7 has been explored. Besides, the use of Arabidopsis 

thaliana as a study system to find out whether systemic defense responses are 

elicited by strain PICF7 will be briefly introduced as well. 

 

1.3. Importance of Verticillium wilt of olive 

 

Verticillium wilt of olive (VWO), caused by Verticillium dahliae Kleb. (Klebahn, 1913), 

is one of the most important diseases affecting olive cultivation (Table 1.1). This 

syndrome was described for the first time in Italy by Ruggieri, (1946). Since then, 



General introduction CHAPTER 2 

 

7 

 

VWO has been reported in almost all areas where olive crop is present (Table 1.1), 

causing severe losses in some of them and a great concern in the olive cultivation 

sector and derivative industries. In Spain, the first observation was reported in 1979 

in experimental fields near to Córdoba (Andalusia, Southern Spain) (Caballero et al., 

1980). Further surveys performed in the three major olive-growing provinces 

(Córdoba, Jaén and Seville) in Andalusia confirmed the presence of the disease 

(Blanco-López et al., 1984). The extension, distribution and severity of VWO attacks 

have been thoroughly reviewed (López-Escudero and Mercado-Blanco, 2011; Tsror, 

2011; Jiménez-Díaz et al., 2012). Recent surveys and epidemiological studies have 

added novel information about the disease, confirming the spread of the pathogen. 

For instance, a survey in the Guadalquivir Valley (Andalusia, Southern Spain) by 

López-Escudero et al., (2011) (Figure 1.2) showed that VWO is alarmingly spreading 

in the region with a mean disease incidence (DI) of 20.4% (9000 examined trees) 

(25.7, 23.7 and 12%, for Jaén, Córdoba and Seville provinces, respectively). These 

authors concluded that the DI was dependent on several agronomical factors. For 

example, significant higher DI values were found in irrigated, non-tilled, low density 

(<200 trees per ha) or young (<25 year-old) orchards as well as in groves located 

nearby areas where V. dahliae susceptible hosts were cultivated or close to the 

Guadalquivir river (<10 km). Besides, ‘Picual’ was the most frequently affected 

cultivar (cv.) by the disease, and highly-virulent, defoliating (D) isolates being the 

most commonly-found pathotype. A broader survey study carried out by Jiménez-

Díaz et al., (2011) in Andalusia demonstrated the prevalence of the vegetative 

compatibility group (VCG, see below) 1A (highly virulent) (78.1%) of V. dahliae 

isolates, followed by VCG2A, VCG4B and VCG2B (19.8%, 1.4% and 0.6%, respectively). 

Analysis by PCR (polymerase chain reaction)-based procedures confirmed VCG1A as 

D pathotype while the other VCG’s group isolates are characterized as non-

defoliating (ND, moderately severe symptoms) pathotype (see below). Furthermore, 

it was common the prevalence of a single VCG among surveyed orchards, although 

two and three VCGs were also identified, being VCG1A the prevalent VCG in the 

three most important olive-growing provinces (Córdoba, Jaén, and Seville). In 

addition, agricultural factors including irrigation management, source of irrigation 

water and planting stock plus soil cropping history were significantly associated with 

the occurrence of VCG1A compared to VCG2A (Jiménez-Díaz et al., 2011). A study 

carried out only for Granada province highlighted that prevalence (percentage of 

olive trees from which the pathogen was isolated) of VWO was higher in valleys with 

irrigated cropland history, especially those ones where herbaceous crops were 

previously cultivated in addition to saline, alkaline, and sloping soils (Rodríguez et al., 

2011). These authors stressed the relevance of using pathogen-free certified planting 
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material to avoid the spreading of the disease, a key measure for a successful 

integrated management of VWO (López-Escudero and Mercado-Blanco, 2011). Out of 

Spain, both the severity and the number of affected plants have increased markedly 

in recent years in some regions. For instance, a traditional olive producing area in 

Northwest Argentina (Department of Arauco, Province of La Rioja) was surveyed. 

Results showed that VWO incidence varied from 0 to 9% and that the disease also 

caused death of trees in some cases (Ladux et al., 2012). 

 

 
 

Figure 1.2. Distribution of Verticillium dahliae isolates in olive orchards surveyed throughout the 

Guadalquivir Valley (Southern Spain). D, Defoliating isolates; ND, non-defoliating isolates. Figure 

reproduced from López-Escudero et al., (2011), Phytopathologia Mediterranea, 49(3), 370-380, DOI 

10.14601/Phytopathol_Mediterr-3154 

 

1.4. Symptoms and causal agent of Verticillium wilt of olive  

 

1.4.1. Symptomatology  

 

Two different syndromes are traditionally recognized as induced by V. dahliae 

infections in olive, apoplexy (acute form) and slow decline (chronic form) (Figure 1.3).  

In the apoplexy syndrome, which takes place mainly in late winter to early spring, 

leaves undergo a process of chlorosis, turn color to light-brown and roll back, 

remaining bound to the branches, followed by a dieback of branches and twigs. 

Moreover, this syndrome may lead to the death of young trees (Blanco-López et al., 

1984; Rodríguez-Jurado et al., 1993; Jiménez-Díaz et al., 1998; López- Escudero and 
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Blanco-López, 2001; López-Escudero and Mercado-Blanco, 2011). In contrast, in the 

slow decline syndrome, occurring in spring and gradually progressing to early 

summer, the main symptoms are necrosis of inflorescences, mummification of fruits 

and defoliation of green or dull-green leaves excluding in some cases those at the 

distal end of the branches (López-Escudero and Mercado-Blanco, 2011). Interestingly 

enough, and regardless of the syndrome, any of these symptoms may concur in the 

same tree. Infected olive trees overcoming the disease may show the so-called 

phenomenon of natural recovery, and new healthy suckers can emerge from the 

base of the trunk or infected branches (López-Escudero and Blanco-López, 2005a; 

Markakis et al., 2009; Bubici et al., 2014) (see below).  

 

 
 

1.4.2. Ethiology of Verticillium wilt of olive  

 

The causal agent of VWO, Verticillium dahliae Kleb. (Klebahn, 1913) (Division, 

Ascomycota; Class, Sordariomycetes; Order, Phyllachorales), is a soil-borne, 

hemibiotrophic, haploid and asexually reproducing fungus (Pegg and Brady, 2002; 

Barbara and Clewes, 2003; Fradin and Thomma, 2006; Klosterman et al., 2009). 

Recently, evidence of ancestral or cryptic sexual stage has been reported (see below) 

(Milgroom et al., 2014; Short et al., 2015). Under microscopy, V. dahliae 

conidiophores possess a hyaline structure (Figure 1.4A). Conidia are produced at the 

tip of flask-shaped phialides disposed in whorls on erect and unbranched conidiopho- 

 

 

Figure 1.3. Symptoms observed in apoplexy (A) 

and slow decline syndromes (B-D) in olive trees.  

A. Die-back of twigs and branches affecting 

partially the tree.  

B. Defoliation of green or dull-green leaves.  

C. Necrosis of inflorescences.  

D. Mummification of fruits. Images reproduced 

from López-Escudero and Mercado-Blanco, 

(2011), Plant and Soil, 344(1-2), 1-50, DOI 10. 

1007/ s11104-010-0629-2 

 

Figure 1.4. Verticillium dahliae conidiophores (verticils) exhibiting 

conidia at the tips of phialides (A) and melanized microsclerotia (B). 

The fungus was grown on potato dextrose agar (PDA) plates. Scale bar 

represents 50 μm. Images reproduced from López-Escudero and 

Mercado-Blanco, (2011), Plant and Soil, 344(1-2), 1-50, DOI 10.1007/ 

s11104-010-0629-2 
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res so-called verticils. This species differentiates morphologically from other 

phytopathogenic representatives within the genus Verticillium (i.e. V. albo-atrum) by 

the generation of microsclerotia (MS) (Figure 1.4B). These are small, multicellular 

and heavily melanized resting structures (Soesanto and Termorshuizen, 2001) 

produced by V. dahliae in senescent or dead tissues of infected plants at the end of 

the parasitic phase of its life cycle or under adverse environmental conditions (see 

below). These structures of resistance may remain dormant in the soil for prolonged 

periods of time (>15 years) (Wilhelm, 1955). From a phytopathological point of view, 

this species is a remarkable member of the Verticillium genus because of its broad 

host range. It can produce severe vascular wilt diseases in many plant species (>400) 

worldwide, including economically-important herbaceous and woody crop species, 

landscape trees and weeds (Pegg and Brady, 2002; Fradin and Thomma, 2006; 

Inderbitzin et al., 2011). 

 

1.5. Diversity of Verticillium dahliae  

 

Verticillium dahliae displays a broad morphological, physiological, genetic, molecular 

and pathological variability (Pegg and Brady, 2002; Papaioannou et al., 2013; 

Papaioannou and Typas, 2014).  For instance, fungal colonies show numerous shapes 

and colors depending on the growth media used, as well as a wide diversity of 

conidiophores and MS (Pegg and Brady, 2002). Regarding to virulence, for instance,  

olive and cotton (Gossypium hirsutum L.) infecting V. dahliae isolates are traditionally 

divided into two different pathotypes (Rodríguez-Jurado et al., 1993): a) highly 

virulent isolates, usually producing defoliation of (green) leaves and drastic weight 

and height reduction in the host, are considered as belonging to the D pathotype; 

and b) isolates which provoke moderate symptoms (milder defoliation, necrosis and 

chlorosis) which are assigned to the ND pathotype (López-Escudero and Blanco-

López., 2001). Nevertheless, it is necessary to emphasize that a clear-cut division 

between these two virulence groups is not always easy to establish attending to the 

symptoms/syndrome they caused. Occasionally, D and ND isolates may show similar 

virulence degree in artificial inoculation experiments, a so-called continuum of 

virulence (Dervis et al., 2010). Overall, however, infections by the D pathotype are 

more severe, and can eventually lead to the death of the tree, while plants infected 

by ND isolates may have more probabilities to overcome the infection and recover 

from symptoms. It is worth mentioning that a correlation between cotton ND and D 

isolates with tomato races 1 and 2, respectively, has been recently reported 

(Subbarao et al., 2015).  
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Before the availability of specific molecular markers, V. dahliae isolates were 

also genetically classified according to their assignment to the so-called VCGs. Two V. 

dahliae isolates are said to belong to the same VCG (compatible isolates) if they show 

the ability to undergo hyphal anastomosis and form stable heterokaryons (Leslie, 

1993; Katan, 2000). The classification of VCGs (VCG1A, VCG1B, VCG2A, VCG2AB, 

VCG3, VCG4A, VCG4B and VCG6) has been established from V. dahliae isolate 

collections infecting diverse hosts  (see, for instance, Strausbaugh et al., 1992; Bhat 

et al., 2003; Tsror and Levin, 2003; Jiménez-Díaz et al., 2006; Omer et al., 2008). 

Nevertheless, only representatives of the VCG1A, VCG2A, VCG2B, and VCG4B have 

been so far identified among V. dahliae isolates infecting olive worldwide (Cherrab et 

al., 2002; Tsror and Levin, 2003; Collado-Romero et al., 2006; Dervis et al., 2007). 

Interestingly, VCG1A isolates correspond to the olive and cotton D pathotype (Pérez-

Artés et al., 2000; Collado-Romero et al., 2006; Dervis et al., 2010). It is worth 

mentioning that the virulence displayed by any given V. dahliae isolate (or pathotype 

or VCG representative) may vary depending on the host plant. For instance, 

cotton/olive VCG1A isolates elicit severe defoliation in cotton but not in artichoke 

(Jiménez-Díaz et al., 2006). Moreover, the use of molecular markers (see below) has 

shown V. dahliae populations as highly clonal and hence most of known VCGs 

correlate with clonal lineages (Dobinson et al., 1998; Collado-Romero et al., 2006, 

2008; Dung et al., 2013). Nonetheless, some exceptions have been found (Jiménez-

Díaz et al, 2006; Jiménez-Gasco et al., 2014). Indeed, recent reports suggest that this 

relationship is more complex and it is possible that sexual recombination might have 

occurred in the past (Milgroom et al., 2014; Short et al., 2015; Figure 1.5).  

 

 
 

A possible correlation among VCG, host specificity, virulence and 

geographical distribution may help in adopting disease control measures; for 

instance, in the prediction of the disease and/or in breeding for VWO resistance 

Figure 1.5. A neighbor-net 

network of all lineages and 

recombinant haplotypes of 

Verticillium dahliae, based on 

26,748 SNPs. Images reproduced 

from Milgroom et al., (2014), PloS 

ONE, 9(9), e106740. DOI 10.1371/ 

journal.pone.0106740 
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programs. Some studies support that an association between VCG and host 

specificity exists. Hence, prevalence of VCG4 isolates in potato (Solanum tuberosum 

L.) (Joaquim and Rowe, 1991; Strausbaugh et al., 1992; Korolev et al., 2000), VCG1A 

(D-pathotype) in cotton (Daayf et al., 1995; Zhengjun et al., 1998; Korolev et al., 

2001, 2008; Dervis et al., 2008), or VCG2A and 2B in artichoke (Cynara scolymus L.) 

(Jiménez-Díaz et al., 2006) were observed. However, other studies do not support 

this VCG-host correlation (Elena, 1999; Korolev et al., 2000, 2001). Furthermore, the 

existence of slight complementation between different VCGs deriving in 

heterokaryons, or the occurrence of hybrids from interspecific origin (Daayf et al., 

1995; Hiemstra and Rataj-Guranowska, 2003; Joaquim and Rowe, 1990; Strausbaugh 

et al., 1992), seem to suggest a continuum of genetic variation enhancing variability 

and source of evolution for this genus (Collado-Romero et al., 2010). Thus, although 

VCG classification offers valuable information about V. dahliae populations, it poses 

deficiencies to establish correlations with virulence degree or host specificity (Elena, 

1999; Korolev et al., 2000, 2001).  

 

 To better elucidate the intricate structure of V. dahliae populations more 

powerful methods such as a repertory of molecular approaches have been used. 

Thus, analysis and comparison of restriction fragment length polymorphism (RFLP) 

(Carder and Barbara, 1991; Typas et al., 1992; Carder et al., 1994; Okoli et al., 1994; 

Dobinson et al., 2000), random amplified polymorphic DNA (RAPD) (Messner et al., 

1996; Koike et al., 1996; Bhat and Subbarao, 1999; Zeise and Von Tiedemann, 2002), 

amplified fragment length polymorphism (AFLP) (Collins et al., 2003; Fahleson et al., 

2003; Radišek et al., 2003; Collado-Romero et al., 2006), DNA sequences such as the 

intergenic spacer (IGS), internal transcribed spacer (ITS) regions of genes encoding 

ribosomal RNA and repeated DNA sequences (Morton et al., 1995a,b; Subbarao et 

al., 1995; Dobinson et al., 1998; Pramateftaki et al., 2000; Jiménez-Gasco et al.,2014) 

have been used. Besides, molecularly-based methods also provide relevant 

information about phylogenetic relationships among V. dahliae VCGs (Collado-

Romero et al., 2008, 2010; Jiménez-Gasco et al., 2014). Finally, molecular markers are 

of great interest for both in planta and in soil detection/diagnosis procedures (see 

below). The variety of available markers, derived from these previous, fundamental 

studies to detect and discriminate V. dahliae isolates is now broad enough. Indeed, a 

number of VCG- or pathotype-specific primers to detect, for instance, V. dahliae 

isolates infecting olive or other hosts (see below) have been designed and 

implemented in specific, rapid and effective detection protocols (Pérez-Artés et al., 

2000; Mercado-Blanco et al., 2003b; Collado-Romero et al., 2006, 2009). 
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1.6. Verticillium wilt of olive disease cycle  

 

The life cycle of V. dahliae comprised three different phases: dormant, parasitic and 

saprophytic (Figure 1.6). In the dormant stage, MS present in infested soil are 

inhibited from germinating as a result of mycostasis or microbiostasis (Huisman, 

1982), enduring in a state of dormancy for several years (> to 15 years) (Wilhelm, 

1955). MS germination was demonstrated as non-host specific (Pegg and Brady, 

2002). It takes place under favorable environmental conditions and triggered by root 

exudates, a rich source of carbon and nitrogen (Huisman, 1982; Mol and Scholte, 

1995). Prieto et al., (2009) have described in detail the colonization and infection 

process (parasitic phase) of olive plants by a D representative of V. dahliae using 

confocal laser scanner microscopy (CLSM) and a fluorescently-tagged V. dahliae 

derivative (Figure 1.6). Thus, after MS germination (Figure 1.6A) conidia colonize 

profusely the root surface (Figure 1.6B) followed by a massive inter- and intracellular 

proliferation of the pathogen hyphae into the cortex and xylem (Figure 1.6C). Later, 

V. dahliae hyphae systemically colonize the vascular system (Figure 1.6D). Rapid 

upwards conidia transportation from the root to aerial tissues by the transpiration 

stream has been reported in other hosts, including woody species (Pegg and Brady, 

2002). Eventually, conidia are trapped in bordered pits or at vessel end walls 

germinating into new hyphae invading adjacent vessel elements leading to an 

increase in the infection (Schnathorst, 1981). The general colonization of the aerial 

tissue elicits development of disease symptoms (e.g. wilting and drying of shoots, 

defoliation of leaves, inflorescence mummification; Figure 1.6E,F), the pathogen 

entering in the saprophytic phase. The cycle is completed by the formation of new 

MS in the dying plant tissues that are released into the soil upon decomposition of 

plant debris, thereby increasing the number of infective propagules (Navas-Cortés et 

al., 2008; Figure 1.6G). 

 

1.7. Epidemiology of Verticillium wilt of olive: a brief overview 

 

A number of studies have evaluated diverse factors which, alone or in combination, 

help to explain the persistence, increase and/or dispersion of V. dahliae infecting 

propagules in the soil. On the one hand, continuous cultivation of V. dahliae-

susceptible crops can increase the number of pathogen propagules (Wilhelm and 

Taylor, 1965; Blanco-López et al., 1984; Tjamos and Botseas, 1987; Tjamos and 

Tsougriani, 1990; Bejarano-Alcázar et al., 1996; Figure 1.7B). Related to this, it is 

important to emphasize the abovementioned ability of the pathogen to colonize a 

wide range of plants, including wild flora. On the other hand, inherent  characteristics  
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Figure 1.6. Verticillium dahliae life cycle and interaction with olive tissues. CLSM images are reproduced 

from Prieto et al., (2009), Microbial Biotechnology, 2(4), 499-511, DOI 10.1111/j.1751-7915.2009. 

00105.x 
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of V. dahliae such as the ability to endure for many years in the soil in the form of MS 

(see above). Infective propagules present in soil and/or in the plant debris may be 

dispersed by, among other means, wind (Easton et al., 1969), runoff, irrigation  

(Thanassoulopoulos et al., 1981; López-Escudero and Blanco-López, 2005b; López-

Escudero et al., 2009), contaminated vehicles (Al-Ahmad and Mosli, 1993; Serrhini 

and Zeroual, 1995; Figure 1.7A) and tillage tools (López-Escudero et al., 2008), and/or 

human transport of infected plant residues or crops (Wilhelm and Taylor, 1965; 

Schnathorst and Sibbett 1971a,b; Tjamos and Botseas, 1987; Tjamos and Tsougriani, 

1990; Navas-Cortés et al., 2008). 

 

A general correlation between losses caused by the disease in several crops 

and water irrigation regimes has been observed (Ruggieri, 1948; Cirulli, 1981; 

Schnathorst, 1981; Blanco-López and DeVay, 1987; Pegg and Brady, 2002). In olive, 

lower yields can be explained by a shift from dry-farming to irrigation and/or high 

watering frequencies in orchards where the presence of pathogen propagules was 

relevant or in environments/periods favorable for V. dahliae attacks (Blanco-López et 

al., 1984; López-Escudero and Blanco-López, 2005b; López-Escudero et al., 2009). 

Thus, due to the abovementioned factors higher DI values have been reported in 

several countries in the Mediterranean Basin such as Morocco (Serrhini and Zeroual, 

1995), Syria (Al-Ahmad and Mosli, 1993) and Spain (Blanco-López et al., 1984; López-

Escudero et al., 2009; Pérez-Rodríguez et al., 2013). This situation can be exacerbated 

when olive trees are planted at high densities (Rodríguez et al., 2008). High irrigation 

regimes can boost V. dahliae inoculum density in soil. This can be due either to the 

presence of new pathogen propagules in the irrigation water or to the fact that 

higher humidity can contribute to increase the pre-existing inoculum. Besides, 

inadequate watering management may trigger VWO onset and/or its development as 

well as enhance root growth, thereby increasing the surface of contact with the 

pathogen (Huisman, 1982; Fernández et al., 1991; Xiao et al., 1998; Xiao and 

Subbarao, 2000; López-Escudero and Blanco-López, 2005b). 

 

On the other hand, with the aim to obtain early production and high yields, 

excess of nitrogen (N) fertilization has been commonly used in olive cultivation 

practices. However, it is known that an excess of N may increase the susceptibility to 

diseases (Agrios, 1997), as observed for Verticillium wilt in cotton (El-Zik, 1985). In 

contrast, several studies demonstrated that the influence of N fertilization in disease 

susceptibility is dose dependent or linked to the chemical form of the N used. Thus, 

ammonia and nitrous acid inputs were shown to produce a decrease in the number 
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of V. dahliae propagules in soil (Tenuta and Lazarovits, 2002) and, in addition, an 

increase of the biological activity of pathogen antagonists (Pegg and Brady, 2002).  

 

Tilling has also been described as a relevant mechanism for V. dahliae 

dispersion within and among cultivated plots in both herbaceous and woody hosts 

(Hiemstra and Harris, 1998; Pegg and Brady, 2002). In addition, plowing can inflict 

root damage favoring the penetration of the pathogen, as it has been reported in 

cotton (Schnathorst and Mathre, 1966) and olive (Tjamos, 1993). Then, preserving 

vegetation covers appears as a positive measure since, furthermore, it is associated 

with water conservation, protection against erosion, improvement of soil structure 

and organic matter contents in olive crop (Gómez et al., 2009; Rodríguez-Lizana et al., 

2008). However, no till farming may be a problematic issue from a phytopathological 

point of view since some weeds may act as reservoirs of the pathogen and hence the 

use of herbicides is recommended.  
 

 
 

Figure 1.7. Factors increasing V. dahliae distribution (A) and inoculum density (B). A. Use of 

contaminated vehicles. B. Cultivation of V. dahliae-susceptible crops such as cotton. Images reproduced 

from López-Escudero and Mercado-Blanco, (2011), Plant and Soil, 344(1-2), 1-50, DOI 10.1007/ s11104-

010-0629-2 

 

The use of soil amendments can also influence pathogen’s inoculum density 

in soil, either directly by eliminating pathogen propagules or indirectly by favoring 

conditions propitious to microbial antagonists development (see below). 

Nevertheless, some organic amendments can act as a pathogen inoculum source. 

This is the case of amendments based on dung from sheep fed in fields where the 

presence of V. dahliae-infected plant material had been confirmed (Al-Ahmad et al., 

1992; López-Escudero and Blanco-López, 1999; Markakis et al., 2014). 

 

The most favorable temperature for VWO development ranges from 22 to 

25°C (Garber and Presley, 1971). Severity caused by V. dahliae  attacks is stimulated 
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by air temperatures of 20-25°C during spring season, followed by summers with a 

wide thermal range but never exceeding 30-35°C (Wilhelm and Taylor, 1965; López-

Escudero and Blanco-López, 2001). Temperatures above 25°C for long periods usually 

affect negatively both pathogen colonization and symptoms development. 

Moreover, soil temperature has been suggested to influence disease progress. Thus, 

it was highlighted that infections by D and ND V. dahliae isolates are favored under 

certain soil temperatures in cv. Picual and Arbequina (Calderón et al., 2014).  

 

Edaphic characteristics are also implicated in VWO epidemiology. However, 

little knowledge is available in this regard. This disease is usually favored in neutral to 

alkaline soils (pH 6-9) as acidic pH’s (<5.5) have demonstrated to inhibit pathogen 

growth as well as diminish MS production and endurance. Likewise, accumulation of 

Mn and Al in host plant tissues at low pH produces a toxic impact in V. dahliae 

causing suppression in mycelium growth. In contrast, soils with low Ca or high K or 

Mg levels diminish disease severity (Pegg and Brady, 2002). Nevertheless, the actual 

effect of these factors on the pathogen and the disease can be further influenced by 

soil texture, rate of organic matter mineralization, soil microbiota activity, etc. 

(Gamliel et al., 2000; Lazarovits et al., 2000; Goicoechea, 2009). Finally, natural saline 

soils or saline stress induced by the recycling of salt-rich irrigation water have been 

shown to enhance the incidence and severity of Verticillium wilt in several 

herbaceous and woody hosts (Pegg and Brady, 2002). For instance, olive cultivars 

Barnea, Picual and Souri planted in a sandy-loam saline soil with high salt content 

and irrigated with saline water showed as highly susceptible to VWO (Levin et al., 

2003a,b, 2007).  

 

1.8. Olive responses to Verticillium dahliae attacks  

 

Vascular pathogens may survive and proliferate in the vascular system of their host 

plants causing vascular wilt diseases (e.g. V. dahliae). Preference of these pathogens 

to proliferate in the nutrient-poor xylem vessels could possibly be due to the fact 

that death xylem cells (tracheary elements) are more easily colonized (low osmotic 

pressure) than living cells (high osmotic pressure) of the phloem (Yadeta and 

Thomma, 2013). Currently, the most successful strategy to control vascular infections 

is the use of resistant host plants (see below). Since the pathogen can be detected in 

the above-ground organs of resistant cultivars some authors prefer to use the term 

tolerance instead of resistance (Robb, 2007) when referring to VWO. Nevertheless, 

histopathological observations and V. dahliae DNA quantification suggest that 

pathogen penetration and spreading can be actively prevented, hindered or 
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restricted in olive (Rodríguez-Jurado, 1993; López-Escudero et al., 2004; López-

Escudero and Blanco-López, 2005a; Antoniou et al., 2008; Markakis et al., 2009). 

Resistance/tolerance to VWO has been reported for several commercial cultivars and 

rootstocks (López-Escudero and Mercado-Blanco, 2011; Bubici and Cirulli, 2012; 

Trapero et al., 2013; García-Ruiz et al., 2014; Arias-Calderón et al., 2015).  

 

Under field conditions, woody hosts infected by V. dahliae may overcome the 

disease and display the so-called phenomenon of natural recovery (Shigo, 1984; 

Hiemstra, 1998; Tippett and Shigo, 1981). In olive, VWO recovery is characterized by 

a decrease in DI and development of new suckers at the base of the trunk or at 

infected brunches. Natural recovery has been observed in naturally-infected olive 

trees under field conditions as well as in artificially-inoculated, nursery-produced 

young olives under controlled conditions (Wilhelm and Taylor, 1965; Vigouroux, 

1975; Tjamos et al., 1991; Rodríguez-Jurado et al., 1993; Mercado-Blanco et al., 

2001a; Levin et al., 2003b; López-Escudero and Blanco-López, 2001, 2005a; Markakis 

et al., 2009; Bubici and Cirulli, 2014). The reduction of VWO symptoms may be 

related to responses deployed by olive trees after pathogen infection, including 

enclosure of the necrotic xylem vessels, fungus inactivation in the xylem, prevention 

of new infections, and/or increase of diverse phenolic compounds (Wilhelm and 

Taylor, 1965; Tjamos et al., 1991; Rodríguez-Jurado, 1993; López-Escudero and 

Blanco-López, 2001, 2005a; Baídez et al., 2007; Markakis et al., 2010). Moreover, 

VWO recovery is strongly influenced by several decisive factors including the level of 

resistance of the olive genotype, environmental conditions, virulence and spreading 

of the pathogen, etc (Martos-Moreno et al., 2001; López-Escudero et al., 2004; 

López-Escudero and Blanco-López, 2001, 2005a). Yet, our knowledge on olive 

resistance to VWO as well as on the mechanisms underlying the natural recovery 

phenomenon is scant.   

 

1.9. Control of Verticillium wilt of olive: the importance of an integrated disease 

management strategy 

 

The approaches used to control plant pathogens can be divided in pre-planting 

(preventive) and post-planting (palliative or curative) measures (Figure 1.8). These 

actions must be based on accurate knowledge of the pathogen, the host plant, and 

the epidemiological factors contributing to the disease. Preventive and curative 

measures must be combined within an integrated disease management (IDM) 

strategy aiming to the exclusion and/or eradication and/or reduction of the 
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pathogen, as well as to reduce the efficacy of the initial inoculum, to increase the 

resistance of the host and to delay the disease onset and potential secondary cycles 

(Agrios, 1997). This combination of control measures is particularly needed for 

diseases such as VWO since none of the available tools have so far shown effective 

when implemented individually (López-Escudero and Mercado-Blanco, 2011). 

Moreover, any integrated control program should guarantee the sustainability of the 

crop at both economic and environmental levels in addition to its durable 

effectiveness (Caballero and Murillo, 2003). The use of preventive measures is 

obviously the most plausible strategy from economical and environmental 

perspectives. It should be stressed that many of the pre-planting measures can also 

be used as palliative tools, reinforcing the efficacy of any IDM programme.  

 

1.9.1. Pre-planting control measures  

 

The use of pathogen-free propagation material is crucial in a control strategy of 

VWO. Consequently, fast and consistent in planta pathogen detection methods are 

of high importance in the management of V. dahliae (López-Escudero and Mercado-

Blanco, 2011). Traditional detection methods based on pathogen isolation have thus 

been replaced/complemented by PCR-based techniques which are less time-

consuming, more consistent (Morera et al., 2005) and, in some cases, able to 

differentiate among V. dahliae pathotypes (Mercado-Blanco et al., 2003b). 

Conventional PCR using primers based in molecular markers such as, among others, 

RAPDs (Triki et al., 2011) or AFLPs (Gharbi et al., 2015) have been developed for the 

specific detection of V. dahliae in olive. For in planta detection, nested-PCR protocols 

provide more accurate and sensitive results than approaches based on one single 

PCR (Mercado-Blanco et al., 2001a, 2002). The refinement of this technique allows to 

identify two or more V. dahliae isolates in infected tissues in a single reaction, either 

by duplex nested-PCR (Mercado-Blanco et al., 2003b) or multiplex nested-PCR 

(Collado-Romero et al., 2009). These methods are qualitative but RT(real time)-

q(quantitative)PCR approaches, in contrast, offer the advantage of quantitative, rapid 

and accurate detection of target DNA(s). Different available variants of this technique 

have been successfully used to quantitatively detect soil-borne fungal pathogens 

originating from diverse environmental samples (Schena et al., 2004b). This has been 

the case of V. dahliae in different host plants (Atallah et al., 2007; Gayoso et al., 

2007; Duressa et al., 2012; Wei et al., 2015) including olive (Schena et al., 2004a; 

Ceccherini et al., 2013; Gramaje et al., 2013), and even at the pathotype level 

(Mercado-Blanco et al., 2003a; Markakis et al., 2009). Furthermore, the sensitivity of 

RT-qPCR can be enhanced by applying a nested approach, QN(quantitative 
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nested)RT-PCR. This procedure has been used to show Verticillium wilt progress over 

time in a woody plant such as the smoke tree (Cotinus coggygria) (Wang et al., 2013), 

and can be potentially applied in olive. 

 

The evaluation of V. dahliae inoculum in soil is also important in a VWO 

integrated control framework. Similarly to detection in plant tissues, PCR-based 

methods have been developed and applied to detect and quantify V. dahliae in soil 

samples advantageously over traditional detection procedures (López-Escudero and 

Mercado-Blanco et al., 2011). Recently, a loop-mediated isothermal amplification  

(LAMP) assay using LAMP primers has been developed to detect V. dahliae 

pathotypes in soil samples without prior DNA purification (Moradi et al., 2014). 

Finally, a density flotation-based extraction of MS method followed by RT-PCR 

showed reproducible and sensitive results in the detection of diverse Verticillum 

species, including V. dahliae, in artificially and naturally infested soils (Debode et al., 

2011). 

 

Soil disinfestation prior to the establishment of a new olive orchard using 

physical, cultural, biological or chemical methods is highly recommended to eliminate 

or reduce the presence of soil-borne pathogens. Soil solarization has shown to be a 

major measure in the control of soil-borne pathogens (Katan, 2015) as well as in 

diverse Verticillium wilts of herbaceous and woody hosts (Pegg and Brady, 2002). 

This method, however, has not been widely used in olive as a pre-planting measure 

possibly due to the fact that olive groves generally cover vast areas that would need 

a high economical investment, among others limitations (López-Escudero and Blanco-

López, 2001). Regarding to the application of chemicals, although its effectiveness 

against V. dahliae has been confirmed in different crops (Goicoechea, 2009), its use is 

discouraged because of public concerns on human and animal health as well as their 

unwished effect to the environment and soil beneficial microbiota. Therefore, a dose 

reduction and/or combination with other less harmful soil disinfestation methods 

such as soil amendments derived from animal or plant organic residues (organic 

amendments, see below) are recommended (Hamblin, 1995; Goicoechea, 2009). 

Cultural and biological practices that promote and activate antagonistic microbiota 

have demonstrated some success in VWO suppression (Devay and Pullman, 1984; 

López-Escudero and Mercado-Blanco, 2011).  Such practices include the retardation 

in olive grove planting along with crop rotation, cropping of non-susceptible species, 

and the use of organic amendments (biofumigation, see below) combined or not 

with BCA (Hao et al., 2011; Vitullo et al., 2013). 
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Figure 1.8. Proposed scheme for an integrated control of Verticillium wilt of olive. Based on Blanco-

López and Jiménez-Díaz, (1995), Trapero and Blanco-López, (2008) and, López-Escudero and Mercado-

Blanco, (2011). 

 

Obtaining and using VWO resistant, tolerant or low susceptible cultivars by 

means of breeding programs is probably the most economically effective and 

environmentally-friendly control measure to be implemented wherever olive is an 

important commodity. So far, however, the majority of olive cultivars inspected, the 

most economically and historically relevant ones, are susceptible to V. dahliae 

(Martos-Moreno, 2003; López-Escudero et al., 2004; Martos-Moreno et al., 2006). 

Besides, breeding for resistance is hampered when working with a woody crop such 

as olive that needs several years to produce fruits. Nevertheless, recent studies have 
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reported interesting results with the use of selected cultivars in breeding programs 

aiming to generate new olive varieties resistant to V. dahliae (Arias-Calderón et al., 

2015; Trapero et al., 2015). Another promising approach is the use of resistant olive 

rootstocks, which hamper pathogen progress to grafted scions of agronomical 

interested as observed in artificial inoculation experiments (Porras-Soriano et al., 

2003; Bubici and Cirulli, 2012) and under field conditions (Hartmann et al., 1971). 

However, mores studies are still needed to obtain WVO resistant varieties.  

 

1.9.2. Post-planting control measures 

 

Palliative measures are used when the pathogen is already established in the olive 

grove, an issue that has been extensively reviewed (López-Escudero and Mercado-

Blanco, 2011; Tsror, 2011; Jiménez-Díaz et al., 2012). Post-planting control can be 

divided in exclusion, eradication and evasive measures (Figure 1.8). Briefly, these 

measures are intended to prevent the onset and/or progress of the disease, and/or 

to diminish seasonal DI values, the severity of the symptoms and percentage of 

affected/dead plants. Accordingly, exclusion methods aim to avoid propagation and 

influx of additional propagules into established orchards by using, for instance, 

disinfested machinery, vehicles and tools. The new orchard should be established far 

from susceptible crops as well, and must avoid herbaceous V. dahliae hosts in the 

vicinity of olive groves when conducting intercropping. Eradication measures intend 

to hinder the pathogen growth and spread within/between neighboring plots using 

physical, cultural, biological and chemical methods. Cultural practices such as the 

elimination (i.e. burning) of potential V. dahliae-host weeds and infested plant parts 

(twigs, shoots, branches and, if economically affordable, fallen green leaves) are 

recommended as they are pathogen inoculum sources (Tjamos and Botseas, 1987; 

Tjamos and Tsougriani, 1990; Rodríguez-Jurado et al., 2002; Navas-Cortés et al., 

2008). Moreover, when moderate or low level of pathogen inoculum is present the 

use of soil solarization is recommended. This physical control method can obviously 

be applied as a pre-planting measure for VWO control (see above), but also as a post-

planting method for eradicating/diminishing V. dahliae MS in soils (i.e. when 

replacing dead trees at specific spots). Besides, it can be combined with other 

palliative measures such as application of BCAs and biofumigation (Tjamos and 

Paplomatas, 1987). Soil amendments based on a wide range of organic matter such 

as composted materials, green or animal manures, plant extracts and sewage sludge 

(residues or final products from wastewater treatment processes), can also be used 

as a curative measure modifying the soil physical structure, releasing chemical 
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compounds with fungicide/fungistatic properties or favoring the development of 

antagonistic microorganisms (Lazarovits et al., 2000; Bhat and Subbarao, 2001; 

Huang et al., 2006; Termorshuizen et al., 2006; Tsror et al., 2007; Avilés et al., 2011; 

Korthals et al., 2014; Neubauer et al., 2014). Chemical control of V. dahliae, both in 

soil and in planta, is problematic and has proven so far ineffective due to localization 

of the pathogen within the xylem and the endurance of MS in soil. Consequently, 

although some studies about the application of systemic fungicides to control V. 

dahliae control have been conducted, limited success was obtained (Tjamos, 1993; 

Trapero and Blanco-López, 2008). The use of microbial antagonists as a post-planting 

measure in controlling VWO has been proposed, mainly during first years after 

planting (López-Escudero and Mercado-Blanco, 2011). However, effective biological 

control under field conditions is highly difficult to accomplish, particularly when 

dealing with woody plants such as olive (e.g. long-living, large root system, etc.), 

although some promising results have been recently obtained (Markakis et al., 2015). 

In relation to escape (evasive) methods, little information is available. These means 

are aimed to decrease the effectiveness of the pathogen infection by influencing 

pathogen behavior (e.g. proper irrigation dosages and nitrogen fertilization) or 

reducing the probability of contact between the pathogen and plant roots. However, 

mechanisms underlying these strategies are still poorly understood (El-Zik, 1985; 

Blanco-López and Jiménez-Díaz, 1995; Arbogast et al., 1999). 

 

1.10. Biological control and its potential to manage Verticillium wilt of olive  

 

Biological control of plant diseases is an environmentally-friendly measure based on 

the utilization of beneficial microorganisms, ideally originating from the host plant 

and/or the target niche where they will be eventually released, that can be used as 

both pre-planting and post-planting method. Biological control relies on a fine and 

intricate equilibrium of interactions of four players: the pathogen, the BCA, the host 

plant and the environment (Fravel, 1988; Weller, 1988; Thomashow and Weller, 

1996). Besides, the beneficial effect displayed by a BCA against any phytopathogen 

involves a prior successful colonization of the niche (e.g. the rhizosphere, the inner 

plant root, etc.), reaching a specific (threshold) population size that is determined by 

various factors which are dynamically interacting, conforming the so-called 

‘rhizosphere competence’ phenomenon (Mercado-Blanco, 2015a). The success of 

any BCA in the rhizosphere is thus influenced by the soil (pH, type, temperature, 

water content and accessibility, etc.), the host plant (root exudates composition, 

genotype, etc.), the own BCA characteristics (motility, biosurfactants, antibiotics 

and/or exo-enzymes production, etc.), and the microbiome associated to the plant 
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(rhizoplane, endorhizosphere) (Berg et al., 2006; Costa et al., 2006; Mercado-Blanco, 

2015a). Therefore, it is essential to study each factor alone and in relation to the 

others as well as an in-depth knowledge of the competence occurring in the 

rhizosphere (O’Sullivan and O’Gara, 1992; Lugtenberg et al., 2001; Haas and Défago, 

2005; Mercado-Blanco and Bakker, 2007; Raaijmakers et al., 2009). 

   

The available knowledge on biological control of soil-borne pathogens 

affecting woody plants is lower compared to that on herbaceous species. One 

explanation is that research with woody hosts poses a number of difficulties which 

are consequence of factors such as the tree longevity, more complex anatomy, big 

root systems, etc. (Kawaguchi et al., 2012; Romeralo et al., 2015; Santiago et al., 

2015; Nakaew et al., 2015). Regarding to biological control of Verticillium wilts, most 

of the studies have focused on herbaceous hosts as well, and only few BCAs have 

being described, either fungi (i.e. Talaromyces and Trichoderma, and Glomus spp., 

respectively) or bacteria (i.e. Achromobacter, Bacillus, Paenibacillus, Pseudomonas, 

Serratia, Streptomyces) (see, for instance, Garmendia et al., 2004, 2005; Tjamos et 

al., 2004, 2005; Kobra et al., 2009; Erdogan and Benlioglu, 2010).  

 

Nevertheless, promising results on biocontrol of VWO have been reported. 

For instance, Serratia plymuthica strain HRO-C48 (Kalbe et al., 1996), a BCA exhibiting 

control of fungal diseases including V. dahliae in different host plants (Kurze et al., 

2001; Müller and Berg, 2008; Erdogan and Benlioglu, 2010), showed prolonged 

colonization of the olive rhizosphere and effective control of a D isolate in artificially-

inoculated (soil inoculation) olive plants (cv. Arbequina), although results varied 

depending on the infestation method (pathogen soil inoculation or root dipping) 

used (Müller et al., 2007). Various mechanisms have been proposed to be involved in 

Verticillium wilt biocontrol by S. plymuthica, such as swimming motility, production 

of antibiotics (prodigyosine and pyrrolnitrin), lytic enzymes (chitinases and 

glucanases), siderophores, small volatile organic compounds (VOCs) (sodorifen) 

and/or phytohormones (indole-3-acetic acid, IAA) (Kalbe et al., 1996; Berg, 2000; 

Frankowski et al., 2001; Kamensky et al., 2003; Weise et al., 2014). However, none of 

these traits have so far been investigated as involved in biocontrol of VWO.  

 

Trichoderma spp. is a fungus widely distributed in many ecological niches. A 

number of non-phytopathogenic strains of this genus have been used as BCA against 

numerous soil-borne plant phytopathogenic fungi (Prasad and Naik, 2008). Biocontrol 

exerted by Trichoderma spp. can be due to mechanisms such as antibiosis, nutrient 



General introduction CHAPTER 2 

 

25 

 

and space competition, and mycoparasitism (reviewed by Benítez et al., 2004). 

Bioformulations consisting of two species of Trichoderma (T. asperellum and T. 

gamsii) were tested against a D isolate of V. dahliae under controlled and field 

conditions. Results showed VWO suppression depending on the infestation method 

used (Jiménez-Díaz et al., 2009a). Other studies have shown the potential of 

combining Trichoderma with other control measures to manage V. dahliae. Thus, 

combination of organic amendments (olive oil by-products) or soil solarization with 

Trichoderma provoked a significant decrease of V. dahliae MS in soil (Lima et al., 

2007; Otero et al., 2012). 

 

A few reports have used root endophytic fungi as BCA against V. dahliae 

(Matta and Garibaldi, 1977; Narisawa et al., 2002, 2004). They can play interesting 

roles for the plant besides their suppressive effect against Verticillium wilt such as 

improving host resistance to diverse (a)biotic stresses (Arnold, 2007; Mejía et al., 

2008; Scheffer et al., 2008; Rodríguez et al., 2009). Related to this, previous inner 

colonization of olive plants by a ND isolate of V. dahliae (artificial inoculation by root 

dipping) was shown to protect the plants to some extent against further infections by 

a D isolate (Martos-Moreno, 2003).  

 

Mycorrhizal fungi have also been used to control soil-borne pathogens, 

including V. dahliae (Porras-Soriano et al., 2006), in addition to facilitate olive plant 

establishment (Estaún et al., 2003; Calvente et al., 2004; Binet et al., 2007) and 

protection against (a)biotic stresses (Castillo et al., 2006, 2010; Dag et al., 2009; 

Medda-Hamza et al., 2010; Bompadre et al., 2014). For instance, endomycorrhizal-

inoculated nursery olive plants showed better growth parameters on both the roots 

and above-ground organs (Chliyeh et al., 2014). Similarly, inoculation with Glomus 

intraradices diminished disease severity produced by Phytophthora spp. in olive 

seedlings when compared to control plants (non-inoculated) (Guerrero, 1999). On 

the contrary, the same G. intraradices suspension was not able to suppress VWO 

(Jiménez-Díaz et al., 2009b; Porras-Soriano et al., 2006). Glomus intraradices was also 

evaluated alone or together with G. mosseae regarding to their ability to improve 

olive growth and development (4-year-old plants) following the transplant into a 

saline water-irrigated, V. dahliae-inoculated soil under arid conditions (Kapulnik et 

al., 2010). Results showed that despite plant growth increased and adaptation to arid 

conditions improved after mycorrhization, olive tolerance to V. dahliae was not 

enhanced.  
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Finally, Pseudomonas spp. have been widely studied and used as effective 

BCAs of diverse plant diseases as well as plant growth promoters (O’Sullivan and 

O’Gara, 1992; Mercado-Blanco and Bakker, 2007; Weller, 2007; Höfte and Altier, 

2010; Mercado-Blanco, 2015b). Different Pseudomonas spp. strains have been 

identified and evaluated as BCA against VWO (Sanei and Razavi, 2011; Triki et al., 

2012). Even though information on the use of beneficial pseudomonads as BCA of 

VWO is scarce, some valuable information has been gathered during the last decade 

regarding to the potential of native olive rhizosphere Pseudomonas spp. strains in 

controlling infections by the D pathotype of V. dahliae in nursery-produced plants 

(see below).   

 

Considering results from available studies, the use of BCAs to control VWO 

seems a promising strategy, particularly at the nursery propagation stage or soon 

after planting. Besides, combination of a BCA with other control measures, or the 

combination of diverse BCA’s is an interesting scenario yet to be explored. For 

instance, diverse BCA’s would colonize different regions of the root system 

(rhizoplane, interior) and deploy distinct and effective biocontrol mechanisms to 

suppress the target pathogen (e.g. induction of systemic resistance and antibiosis). 

However, the design of effective bioformulations still needs of in-depth studies since 

adverse interactions among the BCAs, and between the BCA and the native beneficial 

microbiota and/or the host plant may take place in the target niche (Whipps, 2001). 

 

1.11. Olive knot disease  

 

Pseudomonas savastanoi pv. savastanoi (Psv), the causal agent of OKD, is a relevant 

pathogen in most of the important olive-growing areas (Young, 2004; Quesada et al., 

2010a). It has been also detected in commercial olive orchards in Egypt (Ahmad et 

al., 2009), Nepal (Balestra et al., 2009), Southern Australia (Hall et al., 2004), and 

Turkey (Basim and Ersoy, 2001). Although this disease causes serious problems, there 

is no precise estimation of production losses in the available bibliography (Young, 

2004; Ramos et al., 2012; Quesada et al., 2012) except for two surveys conducted in 

California (USA) and Spain. In California, Schroth et al., (1973) reported no 

differences in plant vigor in 40-year-old trees when they were artificially inoculated 

with Psv in a commercial orchard. However, a correlation between number of knots 

in branches and crop losses, as well as significant differences in fruit weight between 

lightly- and moderately-infected olive trees were found. Conversely, the vigor of 7-

year-old trees in a high-density olive grove (cv. Arbequina) in Spain was higher in 
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non-inoculated plants (control), although the presence of Psv did not significantly 

influence fruit yield (Quesada et al., 2010a). The influence of Psv infections in olive oil 

quality has also been investigated (Schroth et al., 1968, 1973; Tjamos et al., 1993) but 

further research is needed to better understand the effects of Psv on commercial 

olive production.  

 

1.12. Aetiology, symptomatology, epidemiology and control of olive knot disease: a 

brief introduction 

 

Olive knot disease is possibly the first plant disease clearly described in ancient texts. 

Theophrastus (370-286 BC) (Iacobellis, 2001) described this disease in ‘De historia et 

de causis plantarum’ as ‘olive suffers from the nail, that some other call it fungus or 

little bowl’. The causal agent of OKD was first isolated, described and named by Luigi 

Savastano as Bacillus oleae tubercolosis (1889). This bacterium is a member of the P. 

syringae complex comprising up to ten Pseudomonas species and more than 60 

pathovars (Gardan et al., 1999; Bull et al., 2010; Young, 2010). Nomenclature and 

classification of this pathogen is under revision and P. savastanoi pv. savastanoi and 

P. syringae pv. savastanoi are currently considered as synonymous. Several 

herbaceous and woody plant species have been reported as hosts (Apocinaceae, 

Fabaceae, Myrtaceae, Oleaceae and Rhamnaceae) of this pathogenic bacterium 

(Gardan et al., 1992) 

 

Infections by Psv produce the development of hyperplasic growth (called 

knots, galls or tumors) on stems (Figure 1.9) and branches, preferably on woody 

rather than herbaceous tissue and, to a lesser extent, on leaves and fruits in olive 

trees (Smith, 1920; Varvaro and Surico, 1978; Sisto and Iacobellis, 1999). Severe 

attacks in olive trees may produce death of branches and consequently an onward 

declining of the plant, resulting in loss of tree vigor (stunting) and yield (Tjamos et al., 

1993). In addition, Psv may generate a minor size and lower quality of fruits (Schroth 

et al., 1973; Young, 2004; Quesada et al., 2010a).  

 

The disease cycle, extensively described by Temsah et al., (2008), starts when 

the pathogen invades natural openings or wounds inflicted in the plant by leaf scars, 

freezing and pruning. Thereafter, Psv penetrates into the plant invading the 

intercellular spaces of the cortical parenchyma. Once therein, the bacterial pathogen 

releases primary cell walls degrading enzymes (cellobiase, cellulase, peptinase and 

xylanase) (Magie, 1963; Quesada et al., 2012), producing cavities where Psv increases 

its population (Figure 1.9C). Moreover,  Psv  synthesizes  phytohormones  such as IAA  
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Figure 1.9. An olive plant artificially inoculated with Psv (A) and external (B) and internal (C) appearance 
of an olive knot.   
A. One-year-old ‘Arbequina’ plant showing tumors 92 days after inoculation with Psv (intentional 
wounding).  
B. Magnification of one tumor showing the corked surface and the superficial cavities (yellow arrows).  
C. Longitudinal cut of the knot showing inner cavities (red arrows) and one open cavity to the exterior 
(green arrow).  

 
and cytokinin  (Smidt and Kosuge, 1978; Comai and Kosuge, 1980; Surico et al., 1985; 

Iacobellis et al., 1994) which interfere with plant endogenous signals inducing 

cambium activity of diverse host tissues increasing their size and cell division 

(hypertrophy and hyperplasia, respectively) (Surico et al., 1985; Sisto et al., 2004). 

Simultaneously, several cell tissues dedifferentiate to produce xylem elements and 

periderm (cork; Figure 1.9C). At later stages of knot development, hyperplasic 

activity breaks knot surface presenting to the exterior cavities full of bacteria (Figure 

1.9B) thus favoring Psv dissemination.  

 

The pathogen is able to endure endophytically inside the tumors across 

seasons occasionally migrating systemically (Marchi et al., 2009) and producing 

secondary knots in new wounds (Penyalver et al., 2006). Furthermore, Psv may 

survive as an epiphyte in olive. Thus, appropriate humidity conditions stimulate 
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exudate production which contains an important amount of bacteria (Wilson, 1935; 

Ercolani, 1978; Quesada et al., 2007). Furthermore, survival of this pathogen upon 

and/or inside insects and birds has been suggested although no conclusive results 

have been yet provided (Wilson, 1935; Quesada et al., 2010a). Rapid spread of Psv 

from affected to non-affected trees has been reported by Quesada et al., (2010a). 

Thus, long distance bacterial cells dispersal may occur by introducing infected 

planting material in newly-established orchards. Short distance dispersal can be 

explained by factors such as raindrop splashing, wind-blown aerosols, insects and 

cultural practices (e.g. high tree density, severe pruning and harvesting) (Horne et al., 

1912; Wilson, 1935; Tous et al., 2007).  

 

Regarding to agronomical factors affecting OKD it has been shown that this 

disease can be promoted by excess of N fertilization (Paoletti, 1933; Young, 1987; 

Baratta and Di Marco, 1981) increasing, for instance, Psv population on the olive 

phylloplane (Balestra and Varvaro, 1997). Moreover, specific range of temperature 

(22 to 25°C; Wilson, 1935) may also initiate tumor development. However, it should 

be noted that Psv may establish in olive trees with temperatures ranging from 5 to 37 

°C. Therefore, this bacterial pathogen may first colonize olive at any season to further 

elicit tumor formation when proper temperature occurs (Wilson, 1935).  

 

Effective control of OKD must rely in the implementation of pre- and post-

planting measures. Preventive measures, particularly the use of pathogen-free 

planting material, are more convenient since Psv cannot be eradicated once 

established in olive (Young, 2004; Quesada et al., 2010a,b; Ramos et al., 2012). 

Certification of pathogen-free olive propagation material is compulsory and has been 

traditionally performed by conventional detection methods (i.e. culturing and 

isolation, pathogenicity tests, biochemical or serological techniques) (Surico and 

Lavermicocca, 1989; Young and Triggs, 1994). However, PCR-based protocols are 

more sensitive and less time-consuming (Penyalver et al., 2000; Bertolini, 2003a,b; 

Bella et al., 2009; Tegli et al., 2010; Gori et al., 2012). Breeding for OKD resistance is 

the most interesting control strategy. However, information about olive cultivar 

resistance to Psv is scant and mostly derives from field observations (Wilson, 1935; 

Barranco, 1998; Trapero and Blanco, 1998) and from comparative inoculation 

experiments restricted to few cultivars (Varvaro and Surico, 1978; Panagopoulos, 

1993; Benjama, 1994; Marcelo et al., 1999; Hassani et al., 2003; Young et al., 2004; 

Catara et al., 2005). However, it is worth mentioning the detailed research conducted 

by Penyalver et al., (2006) where the influence on symptoms development of diverse 
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variables (cultivar, plant age, development of secondary knots, etc.) was assessed 

using a range of olive cultivars and Psv strains.  

 

The importance of chemical control and its inconsistency in suppression of 

OKD under field conditions have been highlighted (Quesada et al., 2012). Thus, 

copper-based chemical treatments (combined or not with organic compounds) 

showed an important reduction of epiphytic Psv populations as well as a prevention 

of Psv entry through the injuries. In addition, cases of resistance to these chemicals 

were not observed in surviving Psv bacteria. Quesada et al., (2010b) reported that 

copper-based bactericides significantly diminished pathogen population soon after 

inoculation. Finally, antibiotics and oil-water emulsion containing hydrocarbon-based 

treatments have been proposed (Scrivani and Bugiani, 1955; Ark and Thompson, 

1960; Schroth and Hildebrand, 1968; Trapero and Blanco, 1998). Nevertheless, so far, 

the use of antibiotics is banned by the EU legislation in the treatment against plant 

pathogenic bacteria.  

 

Regarding to cultural practices it is advisable to harvest and prune healthy 

trees first (Wilson, 1935), and to avoid procedures such as knocking down with 

wooden poles which can produce injuries on olive branches thereby facilitating the 

entrance of Psv (Krueger et al., 1997). It is therefore more appropriate the manual 

harvesting (milking method) or the use of mechanical vibration (Civantos et al., 

2008). To reduce Psv inoculum two approaches can be followed: the complete 

elimination of the tree (highly-affected tree) (Wilson, 1935; Penyalver et al., 1998) or 

pruning Psv-infected branches (mildly-affected tree). The removal of individual knots 

should be avoided since this action produces more wounds and hence increases the 

risk of new infections (Wilson, 1935; Quesada et al., 2010a). Similarly to VWO, Psv-

infected plant material should be eliminated, for instance by burning (Trapero and 

Blanco, 1998).  

 

Concerning to biological control methods to manage OKD, only limited 

success has been reported. For instance, P. syringae pv. ciccaronei has been shown 

to inhibit the growth and reduce the endurance of epiphytic Psv on leaves and twigs 

of artificially-infected olive plants by the production of bacteriocins (Lavermicocca et 

al., 2002, 2003).  These proteinaceous toxins are valuable candidates as natural 

products and showed to be highly specific. Similarly, a proteinaceous compound 

synthesized by Bacillus subtilis F1 isolated from olive leaves significantly reduced the 

weight of knots (Krid et al., 2010). While these bacterial strains diminish symptoms of 
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OKD, the mechanisms explaining their effectiveness against Psv are still mostly 

unknown (Lavermicocca et al., 2002; Krid et al., 2012).  

 

1.13. Bacterial endophytes and biocontrol 

 

The term endophyte derives from two Greek words (endon and phyton), and strictly 

means ‘in the plant’. Endophytes are defined as ‘bacteria and fungi that can be 

detected at any moment within the tissues of apparently healthy plant hosts without 

producing disease symptoms’ (Schulz and Boyle, 2006; Mercado-Blanco and 

Lugtenberg, 2014). It has been postulated that, most likely, all plants host microbial 

endophytes (Rosenblueth and Martínez-Romero, 2006; Mercado-Blanco and 

Lugtenberg, 2014). This association may be considered as a super-organism in which 

the plant and its associated inner microbiome work coordinately to maintain this 

outstanding ecosystem (Podolich et al., 2015). From this association, the plant can 

benefit in aspects such as growth promotion and phytopathogens control while 

endophytes live in a ‘comfortable’ niche that provides nutrients and shelter against 

(a)biotic stresses (see below) (Bacon and Hinton, 2006; Mercado-Blanco and 

Lugtenberg, 2014).  

 

A microorganism is recognized as an endophyte when recovered by 

traditional culture-dependent methods from the host tissue after surface 

sterilization. However, inner tissue re-colonization of the host as well as visualization 

by microscopy must be proven to claim true endophytism (Reinhold-Hurek and 

Hurek, 1998; Rosenblueth and Martínez-Romero, 2006; Mercado-Blanco and 

Lugtenberg, 2014). The use of culture-independent approaches has revealed that 

most bacterial endophytes are non-culturable or viable but non-culturable (VBNC), 

and that diversity of bacterial endophytes is much higher than that revealed by 

traditional culture-dependent methods (Handelsman, 2004; Hardoim et al., 2008; 

Reinhold-Hurek and Hurek, 2011; Podolich et al., 2015; Berg et al., 2014). 

 

Bacterial endophytes can colonize diverse plant organs and tissues such as 

roots, stems, leaves, flowers, fruits, seeds, ovules, tubers and the xylem sap (Berg 

and Hallmann, 2006, Rosenblueth and Martínez-Romero, 2006; Mercado-Blanco and 

Bakker, 2007; Compant et al., 2010; Malfanova et al., 2013). However, they are 

predominantly found in the roots in comparison to other plant parts (Mercado-

Blanco and Lugtenberg, 2014). The rhizosphere is considered the main entrance site 

for endophytes. However, endophytic populations are generally lower compared to 

microbial rhizosphere populations. Indeed, it is assumed that endophytes derive 
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from an active selection of plant growth promoting rhizobacteria (PGPR) by the plant 

(Rosenblueth and Martínez-Romero, 2004). The host plant attracts specific 

rhizobacteria by, for instance, root exudates production (chemotaxis), thereby 

shaping its rhizosphere-associated microbiome (Berendsen et al., 2012).  

Occasionally, some of these PGPR attach to the root surface (Lugtenberg and 

Kamilova, 2009) and gain entrance to the plant interior establishing themselves as 

endophytes (Zhang et al., 2014). The main entry points for endophytic bacteria in 

roots are wounds and breaks produced by arthropods, microbes and nematodes, or 

at the emergence sites of lateral roots. Other penetration areas can be the root 

development regions (apical, differentiation and elongation root zones), roots hairs 

and intercellular spaces of the root epidermis (Hardoim et al., 2008; Reinhold-Hurek 

and Hurek, 2011; Mercado-Blanco and Lugtenberg, 2014). Besides, this passive mode 

of entry, active penetration may be facilitated by the production of bacterial cell 

wall-degrading exo-enzymes, such as cellulases and pectinases (Reinhold-Hurek and 

Hurek, 2011).  

 

Endophytic bacteria can provide benefits to the host plant such as enhanced 

growth and protection against different (a)biotic stresses. It is plausible to assume 

that mechanisms involved in the promotion of plant growth and protection against 

phytopathogens are similar to those displayed by free-living beneficial rhizobacteria 

(Mercado-Blanco and Lugtenberg, 2014). Whilst the host plant provides to their 

associated endophytic bacteria a stable nutrient source, reduction of microbial 

competition and alleviation of (a)biotic stresses usually found in the rhizosphere 

(Bacon and Hinton, 2006), the host plant benefits from growth promotion traits 

deployed by its microbial residents (Figure 1.10). Thus, bacterial endophytes can 

directly enhance plant growth via biofertilization and phytoestimulation, providing 

essential nutrients and increasing phytohormones production respectively; or 

indirectly, for example by rhizoremediation (inactivation of pollutants) (Afzal et al., 

2014) and/or protection against abiotic stresses (e.g. drought, saline soils, etc.) 

(Hardoim et al., 2008; Yang et al., 2009; Azcón et al., 2013). Indirect plant growth can 

also be promoted by bacterial endophytes through phytopathogen suppression that 

is, exerting biological control. Biocontrol mechanisms deployed by endophytes are 

not sufficiently elucidated but it can be assumed they are similar to those observed 

for rhizosphere beneficial microbes: nutrient and niche competition, antibiosis, 

and/or elicitation of plant defense responses such as induced systemic resistance 

(ISR, see below) (Mercado-Blanco and Lugtenberg, 2014).  
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Figure 1.10. Benefits deployed by bacterial endophytes to their host plants. Based on Mercado-Blanco 

and Lugtenberg, (2014).  

 

1.14. Indigenous olive roots Pseudomonas spp. as effective biocontrol agents 

against VWO 

 

Pseudomonas spp. are a group of Gram-negative, aerobic, chemoheterotrophic, 

motile, bacillary bacteria profusely found in nature and able to colonize a wide range 

of niches due to their wide metabolic diversity and simple nutritional requirements 

(Spiers et al., 2000; Silby et al.,2011).  A number of native P. putida and P. fluorescens 

strains were previously isolated from olive root tissues. Moreover, some of them 

were confirmed as effective BCAs against V. dahliae when young nursery-produced 

olive plants cv. Picual (highly susceptible) were artificially inoculated with a 

representative isolate of the D pathotype (Mercado-Blanco et al., 2004). Several 

traits traditionally involved in biocontrol (i.e. in vitro antagonism, production of the 

siderophore pyoverdine [= pseudobactin] [Pvd], salicylic acid [SA], or hydrogen 

cyanide) (Mercado-Blanco and Bakker, 2007) were demonstrated for some of these 

strains. These phenotypes can therefore be potentially involved in suppression of V. 

dahliae in olive, although definitive proofs are still needed to elucidate the 

mechanisms implicated in VWO biocontrol. Moreover, effective colonization of olive 

roots and endurance in this organ have been shown, indicating that these BCAs are 

well adapted to the target niche (Mercado-Blanco et al., 2004). 

 

One of the most promising isolates is P. fluorescens PICF7. This strain 

displayed effective control of VWO in different nursery-produced olive cultivars, 

either micro-propagated or self-rooted and under controlled (growth-chamber) or 

semi-controlled (greenhouse) growth conditions (Mercado-Blanco et al., 2004; Prieto 
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et al., 2009). Further work using CLSM, vibratome plant tissue sectioning and a 

fluorescently-tagged PICF7 derivative enabled to demonstrate that this bacterium is 

able to endophytically colonize root hairs as well as the intercellular spaces of the 

olive root cortex (Prieto and Mercado-Blanco, 2008; Figure 1.11). This lifestyle 

confers additional advantages to this BCA since strain PICF7 is adapted to the 

ecological niche where it can display its biocontrol effect against V. dahliae: the olive 

roots. Besides, superficial and endophytic colonization of undamaged roots by PICF7 

appeared to be critical for the effective biocontrol of VWO. That is, previous 

colonization of this niche by the BCA before penetration (i.e. by root injures) of V. 

dahliae into the roots seems to be essential to counteract the deleterious effects of 

the pathogen (Prieto et al., 2009). The use of the microscopy and biotechnological 

tools mentioned above evidenced that root hairs play a key role in the inner 

colonization of the roots by this BCA (Prieto et al., 2011; Figure 1.11A). More 

recently, it has been demonstrated that  strain PICF7 induces a wide range of respon- 

 

 
 

Figure 1.11. CLSM images showing endophytic colonization of a fluorescently-tagged PICF7 derivative in 

olive roots.  

A. Inner colonization of root hairs.  

B. Intercellular colonization of the spaces of the root cortex. Images reproduced from Prieto et al., 

(2011), Microbial Ecology, 62(2), 435-445, DOI 10.1007/s00248-011-9827-6 

 

ses, many of them related to defense to different stresses, both at local (roots) 

(Schilirò et al., 2012) and systemic (above-ground organs) (Gómez-Lama Cabanás et 

al., 2014) level. These responses may explain, at least to some extent, the biocontrol 
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activity exerted by strain PICF7 as well as its endophytic colonization. However, 

nothing is known yet about PICF7 traits involved in both biocontrol and endophytism, 

although the recent release of its complete genome will be a valuable tool in future 

studies (Martínez-García et al., 2015).  

 

1.15. Induced resistance mechanisms in plants against pathogens: an introductory 

summary 

 

Plant defense is multilayered, conformed as walls that the pathogen attempts to 

overthrow. Once the pathogen defeats non-specific defense mechanisms such as 

plant structural (cuticle, cell wall, etc.) and chemical barriers (antimicrobial 

chemicals) it has to cope and overcome so-called induced immune mechanisms 

deployed by the plant after pathogen recognition through highly-conserved, 

pathogen-associated signals (Pieterse et al., 2009; Boller and Felix, 2009). One of 

these defense responses is SAR (Systemic Acquired Resistance) that should not be 

confounded with ISR. While both responses enhance the basal defensive capacity of 

the plant against a wide range of microorganisms, SAR is generally triggered by 

pathogens (or insects) (Vlot et al., 2009; Spoel and Dong, 2012; Pieterse et al., 2014) 

and ISR is elicited by non-pathogenic microorganisms (bacteria and fungi), including 

rhizobacteria and endophytes (Bakker et al., 2007; Mercado-Blanco and Bakker, 

2007; Walters et al., 2013). It should be emphasized that SAR and ISR responses may 

show hormone(s)-mediated cross talk (Pieterse et al., 2009). Moreover, the redox-

regulated protein NONEXPRESSOR OF PR GENES1 (NPR1) is implicated in both 

responses (Dong, 2004). However, while this protein is a transcriptional co-activator 

of PR genes in the nucleus in SAR response, NPR1 has been detected in the cytosol 

but with an unknown function in ISR (Pieterse et al., 2014). Furthermore, SAR is SA-

dependent and activates pathogen-related (PR) genes that produce PR proteins 

related to antimicrobial activity (Gaffney et al., 1993; Sticher et al., 1997). In contrast, 

ISR is generally jasmonic acid (JA)/ethylene (ET)-dependent and does not activate PR-

genes (Pieterse et al., 2014). Several ISR-elicitors (determinants) have been proposed 

including flagella, lipopolysaccharides, exopolysaccharides, siderophores, iron-

regulated metabolites, antibiotics, biosurfactants and VOCs (De Vleesschauwer and 

Höfte, 2009, Pieterse et al., 2014). Apparently most ISR-inducing bacteria exhibit 

multiple determinants triggering ISR (Bakker et al., 2003). On the other hand, 

improvement of ISR may be carried out by combining different inducing agents 

usually showing higher ISR response in comparison to single application (Jetiyanon et 

al., 2003; Alizadeh et al., 2013).  
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Arabidopsis thaliana (L.) Heyhn (2n=10) is an annual small flowering plant 

member of the mustard family (Brassicaceae). Considered in the past as a weed, with 

no major agronomic significance, Arabidopsis was acquiring importance progressively 

in plant science becoming essential when it was the first plant with its total genome 

sequenced by the Arabidopsis Genome Initiative, (2000). Besides, this plant exhibits 

important advantages such as one of the smallest plant genomes (approx. 157 Mbp) 

(Bennett et al., 2003), rapid generation time (6 to 12 weeks), high seed production 

(several thousand per plant), and the ease for genetic manipulation. In this regard, 

the use of Agrobacterium tumefaciens as a DNA vector (Feldmann and Marks, 1987; 

Bechtold et al., 1993; Clough and Bent, 1998), among other methods, has led to the 

generation of insertion mutants for most of the genes, which converted A. thaliana 

as a valuable genetic model organism to unravel the mechanisms underlying many 

plant processes. An in-depth understanding of the interactions established between 

plants and microbes is very difficult for many crops, particularly in woody plants as 

olive with long generation time, large genome (aprox. 2200 Mb) and insufficient 

genetic knowledge (Muñoz-Mérida et al., 2013). The use of A. thaliana would 

therefore facilitate the study of the genetic and molecular bases of plant-V. dahliae-

BCA interaction (Meschke and Schrempf, 2010; Tjamos et al., 2005), as well as to 

elucidate whether ISR/SAR responses are implicated in the biological control exerted 

by the beneficial endophyte P. fluorescens PICF7 against V. dahliae.  

 

Objectives of this Thesis 

 

Considering the above, the general objectives of this thesis are to perform, for the 

first time, an in-depth study on defined bacterial traits potentially involved in the 

endophytic behavior of strain Pseudomonas fluorescens PICF7 in olive roots as well as 

on its effective biocontrol activity against the olive soil-borne pathogen Verticillium 

dahliae. The study of the involvement of selected bacterial traits will be done both in 

olive (natural host) and Arabidopsis thaliana (model plant). Moreover, the biocontrol 

range of strain PICF7 was also explored by assessing its effectiveness as BCA against 

another relevant olive pathogen: Pseudomonas savastanoi pv. savastanoi, the causal 

agent of OKD.  

 

Efforts to reach these objectives led to the publication of three articles which 

are compiled and presented in this thesis as chapters 2, 3 and 4: 

 

http://en.wikipedia.org/wiki/Flowering_plant
http://en.wikipedia.org/wiki/Genome
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Chapter 2 main objective   To evaluate the involvement of specific traits of P. 

fluorescens strain PICF7 on olive roots colonization ability and effective control of 

VWO. 

 

Sub-objectives:  

 

 Generation of a random transposon insertion mutant bank of strain PICF7 

 Identification and characterization of strain PICF7 mutants impaired in 

traits related with rhizosphere/root colonization and biocontrol activity: 

motility, siderophore production and nutritional requirements 

 Root colonization ability and biocontrol behavior of selected PICF7 mutant 

phenotypes in planta  

 

Chapter 3 main objective 2  To assess whether A. thaliana is a suitable host to 

assist in the identification of traits involved in V. dahliae biocontrol deployed P. 

fluorescens PICF7, and to investigate the possible involvement of induced systemic 

resistance responses in its biocontrol activity. 

 

Sub-objectives: 

 

 Pathogenicity and virulence exerted by V. dahliae olive pathotypes 

(defoliating and non-defoliating) in diverse A. thaliana accessions 

 Colonization and biocontrol behavior of strain PICF7 and mutant 

phenotypes previously tested in olive in several A. thaliana genotypes  

 Ability to elicit induced systemic resistance responses in A. thaliana by 

strain PICF7 against the leaf pathogen B. cinerea  

 

Chapter 4 main objective  To explore the potential biocontrol activity of P. 

fluorescens PICF7 against the olive pathogen P. savastanoi pv. savastanoi. 

 

Sub-objectives: 

 

 Assessment of an effective long-distance biocontrol of P. savastanoi upon 

inoculation of strain PICF7 in roots (natural niche)  

 Effects of the presence of strain PICF7 in olive knot development: a micro 

and macroscopic study of the interaction between P. savastanoi and PICF7  
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This chapter has been published as: 

 
Maldonado‐González, M. M., Schilirò, E., Prieto, P., and Mercado‐Blanco, J. 

(2015). Endophytic colonization and biocontrol performance of Pseudomonas 

fluorescens PICF7 in olive (Olea europaea L.) are determined neither by 

pyoverdine production nor swimming motility. Environmental Microbiology, 

(on-line first). DOI: 10. 1111/1462-2920.12725. 
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2.1. Summary 

 

Pseudomonas fluorescens PICF7 is an indigenous inhabitant of olive (Olea europaea 

L.) rhizosphere, able to display endophytic lifestyle in roots, to induce a wide range of 

defence responses upon colonization of this organ and to exert effective biological 

control against Verticillium wilt of olive (VWO) (Verticillium dahliae). We aimed to 

evaluate the involvement of specific PICF7 phenotypes in olive root colonization and 

VWO biocontrol effectiveness by generating mutants impaired in swimming motility 

(fliI) or siderophore pyoverdine production (pvdI). Besides, the performance of 

mutants with diminished in vitro growth in potato dextrose agar medium (gltA) and 

cysteine (Cys) auxotrophy was also assessed. Results showed that olive root 

colonization and VWO biocontrol ability of the fliI, pvdI and gltA mutants did not 

significantly differ from that displayed by the parental strain PICF7. Consequently, 

altered in vitro growth, swimming motility and pyoverdine production contribute 

neither to PICF7 VWO suppressive effect nor to its colonization ability. In contrast, 

the Cys auxotroph mutant showed reduced olive root colonization capacity and lost 

full biocontrol efficacy. Moreover, confocal laser scanning microscopy revealed that 

all mutants tested were able to endophytically colonize root tissue to the same 

extent as wild-type PICF7, discarding these traits as relevant for its endophytic 

lifestyle. 
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2.2. Introduction 

 

Verticillium dahliae Kleb. is a soil-borne phytopathogenic fungus causing vascular 

diseases collectively known as Verticillium wilts in a wide range of plant species (Pegg 

and Brady, 2002). A susceptible host for V. dahliae is olive (Olea europaea L.), which 

is one of the most important woody crops in the Mediterranean Basin. Olive cropping 

is threatened by diverse (a)biotic menaces of variable importance which highly 

depend on a number of factors (soil characteristics, climatic conditions, soil resident 

microbiota, agricultural practices, etc.). One of the most important biotic constraints 

for olive cultivation is V. dahliae. This disease has been steadily spreading in many 

areas where olive is a relevant commodity, causing great concern to farmers and the 

olive oil industry (López-Escudero and Mercado-Blanco, 2011).  

 

The effective control of Verticillium wilt of olive (VWO) is very difficult due to 

several factors (López-Escudero and Mercado-Blanco, 2011). Because of this complex 

scenario, an integrated disease management strategy has been proposed as the only 

plausible way to control VWO, combining physical, chemical, biological and 

agronomical measures. Within this framework, preventive measures (pre-planting) 

are mostly encouraged, although palliative actions (post-planting) are also needed to 

limit the expansion of the pathogen or to alleviate losses caused by the disease in 

established orchards (Tjamos, 1993; López-Escudero and Mercado-Blanco, 2011).  

 

The use of effective biological control agents (BCAs) is a promising tool that 

can be used both as a preventive and palliative measure. For instance, application of 

microbial antagonists in pathogen-free certified olive plants during the propagation 

process at nurseries has been proposed (Tjamos, 1993). There are only few reports 

on the identification and characterization of potential BCAs against VWO, although 

mostly preliminary or showing limited success (Müller et al., 2007; Aranda et al., 

2011; Sanei and Razavi, 2011; Mercado-Blanco and López-Escudero, 2012). 

Moreover, very little is known about the mechanisms involved in biocontrol activity 

exerted by these microbes.  

 

A well-known effective BCA against VWO is Pseudomonas fluorescens PICF7 

(Mercado-Blanco et al., 2004; Prieto et al., 2009). This strain, originally isolated from 

roots of nursery-propagated olive plants, displays an endophytic lifestyle (Prieto and 

Mercado-Blanco, 2008; Prieto et al., 2009, 2011), produces the siderophore 

pyoverdine (= pseudobactin) (Pvd) in vitro (Mercado-Blanco et al., 2004), and induces 
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a broad range of defence responses in both roots (Schilirò et al., 2012) and above-

ground organs (Gómez-Lama Cabanás et al., 2014) of olive. Nevertheless, nothing is 

known about PICF7 traits involved in both endophytic colonization and biocontrol 

effectiveness against V. dahliae.  

 

Efficient colonization and persistence on/within the targeted plant tissue 

where biocontrol pseudomonads may deploy its biocontrol activity is essential for 

successful crop protection (Lugtenberg et al., 2001; Mercado-Blanco and Bakker, 

2007). While bacterial traits involved in colonization of the rhizosphere and plant 

root surface have been studied in some detail, little is known about determinants 

implicated in the active colonization of the root interior by biocontrol endophytic 

bacteria (Hardoim et al., 2008; Reinhold-Hurek and Hurek, 2011). For instance, it is 

suggested that diverse cell wall-degrading enzymes and motility are involved in the 

endophytic colonization process (Hallmann et al., 1997; Compant et al., 2005; 

Reinhold-Hurek and Hurek, 2011). Bacterial endophytes are adapted to live within a 

protected niche, less exposed to (a)biotic stresses and relying on a constant source of 

nutrients provided by the host plant (Bacon and Hinton, 2006). In contrast, they must 

cope with the defence barriers deployed by the plant to confront this ‘non-hostile’ 

colonization (Wang et al., 2005; Conn et al., 2008; Schilirò et al., 2012). Therefore, 

beneficial bacterial endophytes effective in promoting plant growth and suppressing 

deleterious microorganisms are an excellent source of biotechnological weapons to 

be exploited in agro-ecosystems (Mercado-Blanco and Lugtenberg, 2014). For 

instance, endophytic Pseudomonas spp. have proven to provide benefits for the host 

plant in several cases (Chen et al., 1995; Nejad and Johnson, 2000; Kuklinsky-Sobral 

et al., 2004; Prieto et al., 2009). As mentioned for the colonization process, 

biocontrol mechanism(s) deployed by endophytes also remain largely unknown. 

However, since bacteria able to develop an endophytic lifestyle usually originate 

from the rhizosphere, it is plausible to assume that their beneficial effects may 

operate similarly to those described for rhizosphere-associated bacteria (Kloepper 

and Ryu, 2006; Mercado-Blanco and Lugtenberg, 2014).  

 

The present study is, therefore, aiming to shed light on determinants of PICF7 

potentially involved in superficial and endophytic colonization of olive roots and 

biocontrol activity against V. dahliae. We have particularly focused on the implication 

of motility and siderophore production. Motility is one of the most important traits 

for efficient rhizosphere colonization by specific Pseudomonas spp. strains (Navazo et 

al., 2009). Yet the actual contribution of bacterial motility in rhizosphere (and 
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endophytic) colonization may vary among plant-bacteria interactions. Thus, non-

motile derivatives or mutants with reduced motility can be impaired in competitive 

colonization of the rhizosphere by beneficial bacteria in several plants (Lugtenberg et 

al., 2001; Ormeño-Orrillo et al., 2008). In contrast, P. fluorescens Q8r1-96 exhibiting 

decreased motility was not impaired in rhizosphere colonization (Mavrodi et al., 

2006). Plant beneficial Pseudomonas spp. may synthesize a wide diversity of 

siderophores, iron (Fe3+)-chelating compounds frequently related with the 

biocontrol activity exerted by many strains of this genus (Mercado-Blanco and 

Bakker, 2007). Nevertheless, the true implication of Pseudomonas-produced 

siderophores in biological control of soil-borne pathogens is a controversial issue 

(Cornelis and Matthijs, 2002; Weller, 2007; Lemanceau et al., 2009; Bakker et al., 

2014).  

 

In order to elucidate potential mechanisms implicated in olive root 

colonization (even endophytically) and suppression of VWO by P. fluorescens PICF7, a 

mutant bank of strain PICF7 was generated by random transposon insertion. A set of 

generated mutants was mainly screened for siderophore production and swimming 

motility. Selected mutants were further characterized and assessed for their ability to 

colonize olive root tissues and for their VWO biocontrol performance. Colonization 

and disease suppression bioassays were performed under non-gnotobiotic 

conditions, a scenario closer to the environmental conditions where the interaction 

between olive roots and P. fluorescens PICF7 takes place. 

 

2.3. Material and methods 

 

2.3.1. Bacteria, culturing media and production of bacterial inocula  

 

Pseudomonas fluorescens PICF7 (Mercado-Blanco et al., 2004) and several mutants 

and fluorescently tagged derivatives of this strain were used in this study (Table 2.1). 

Tn5-tetracycline resistant (TcR) transposon insertion mutants ME419, ME424, ME589 

and ME1508 were constructed by biparental matings (see below). TcR and/or 

gentamicin resistant (GmR), green fluorescence protein (GFP)-labelled derivatives of 

strain PICF7, used to monitor olive root colonization by confocal laser scanner 

microscopy (CLSM; see below), were named as PICF7-G, ME419-G, ME424-G, ME589-

G and ME1508-G (Table 2.1). Pseudomonas strains were always grown at 25°C in 

King’s medium B (King et al., 1954) agar (KBA) plates. When needed, antibiotics were 

added at the following concentrations (mg l−1): nalidixic acid (Nal), 10; tetracycline 
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(Tc), 20; gentamicin (Gm), 10; ampicillin (Amp), 50; chloramphenicol (Chl), 13; and 

cycloheximide (Chx), 100. Escherichia coli strains (Table 2.1), S17-1 harbouring the 

suicide plasmid pJQ18 which contains transposon Tn5 (Hynes et al., 1989) and DH5α 

harbouring plasmid pLMR1, were grown at 37°C in Luria-Bertani (Miller, 1972) agar 

(LBA) amended with Tc (20 mg l-1) and Gm (50 mg l-1) respectively. Pseudomonas 

strains inocula were prepared as described in Maldonado-González and colleagues 

(2013). Bacterial cell densities required for each experiment were determined 

spectrophotometrically (A600 nm) by building up standard curves and culturing 

viable cells from serial dilution series onto KBA plates (to count PICF7 wild-type 

colonies), or KBA plates supplemented with the antibiotics Tc (for Tn5-TcR 

derivatives), Gm (for GFP-labelled PICF7 derivative) or Tc plus Gm (for GFP-labelled 

Tn5-TcR mutants).  

 

2.3.2. GFP labelling of Pseudomonas 
 

Strain PICF7 and selected Tn5-TcR insertion mutants were transformed with plasmid 

pLRM1 (GmR, GFP) (Rodríguez-Moreno et al., 2009). Electrocompetent cells of each 

bacterial strain were transformed with plasmid pLRM1 by electroporation as 

described by Prieto and Mercado-Blanco (2008). Transformation frequency 

(transformants/μg plasmid DNA) was calculated for each strain. The presence of 

plasmid pLMR1 in selected transformed derivatives was further confirmed by plasmid 

purification (FavorPrep Plasmid DNA Extraction Mini Kit, Ping-Tung, Taiwan) and 

restriction analysis with EcoRI (New England BioLabs, Beverly, MA). Plasmid pLRM1 

stability in each transformed derivative was assessed by continuous growth of 

exponential-phase cultures kept under vigorous shaking (250 rpm) without antibiotic 

(Gm) selection pressure for 6 days at 25°C (approximately 120 generations). Serial 

dilution series of these cultures were plated onto LBA plates every 24 h and 

incubated at 25°C during 48 h. Subsequently, 100 randomly selected colonies were 

individually transferred to LB agar plates amended with Gm. The number of Gm-

resistant colonies for each strain was counted and the percentage of plasmid loss 

(Gm-sensitive colonies) scored. The rate of plasmid loss/generation was calculated 

according to Durland and Helinski (1987) equation, which is percent plasmid 

loss/generation = [1 - (RN/Ri)1/N] x 100, where R is the frequency of the plasmid-

mediated resistance in the population, i is initial, and N is the number of generations 

elapsed. 
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Table 2.1. Bacterial strains and plasmids used in this study. 

 

Strains or 
plasmids 

Characteristics Reference or source 

Bacterial strains   

P. fluorescens   

PICF7 Wild-type PGPR Mercado-Blanco et al., 2004 

ME419 
PICF7 Tn5 (Tc

R
)  in vitro growth mutant derivative, 

GltA
-
 

This work 

ME424 PICF7 Tn5 (Tc
R
)  motility mutant derivative, FliI

- 
This work 

ME589 PICF7 Tn5 (Tc
R
)  siderophore 

 
mutant derivative, PvdI

- 
This work 

ME1508 PICF7 Tn5 (Tc
R
)  auxotroph Cys mutant derivative

 
This work 

PICF7-G PICF7 (Gm
R
) GFP-labeled mutant derivative This work 

ME419-G ME419 (Tc
R
 and Gm

R
) GFP-labeled mutant derivative This work 

ME424-G ME424 (Tc
R
 and Gm

R
) GFP-labeled mutant derivative This work 

ME589-G ME589 (Tc
R
 and Gm

R
) GFP-labeled mutant derivative This work 

ME1508-G ME1508 (Tc
R
 and Gm

R
) GFP-labeled mutant derivative This work 

   

Escherichia coli    

S17-1 thi pro recA hsdR hsdM RP4-2-Tc,Mu-Km, Tp
R
Sm

R
 Simon et al., 1983 

DH5α recA1 endA1 80d lacZ dam-15  (Clontech) 

Plasmids   

pJQ18 pSUP5011 derivative; carries Tn5-Mob-Tc  Alfred Pühler 

pLRM1 
pBBR1-MCS5 carrying a fusion of the PA1/04/03 
promoter to the gfpmut3* gene 

Rodríguez-Moreno et al., 
2009 

 

GltA, Type II citrate synthase; FliI, flagellum-specific ATP synthase; PvdI, putative pyoverdine non-

ribosomal peptide synthetase; Tc, tetracycline; Cys, cysteine; Gm, gentamicin; GFP, Green Fluorescence 

Protein 

 

2.3.3. Verticillium dahliae growth conditions, pathogen inoculum production and 

plant material  

 

Verticillium dahliae V937I, a highly virulent isolate representative of the defoliating 

(D) pathotype (Collado-Romero et al., 2006), was used in VWO biocontrol assays. 
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Pathogen inoculum was prepared as described in Mercado-Blanco and colleagues 

(2004). The number of conidia per millilitre was scored in a Neubauer chamber and 

adjusted to the required working concentration. Biological control assays were 

carried out using nursery-produced, 3-month-old olive plants cv. Picual, qualified as 

highly susceptible to the D pathotype (López-Escudero et al., 2004). Plants were 

originated from two different commercial nurseries located in Córdoba province 

(Southern Spain). Previous to starting the bioassays, plants were kept at least 1 

month within a controlled-growth chamber at 25 ± 1°C with a 14-h photoperiod and 

a light intensity of 65 μmol m-2 s-1 for acclimatization. Plants used for CLSM were 2-

month-old and were acclimated for 2 weeks under the same environmental 

conditions.  

 

2.3.4. Generation of a Pseudomonas fluorescens PICF7 mutant bank  

 

A random transposon insertion mutant bank of P. fluorescens PICF7 was generated 

by using a Tn5 derivative carried in the suicide plasmid pJQ18 (Simon et al., 1983) 

(Table 2.1) and biparental mating as described in Mercado-Blanco and colleagues 

(2001b). More than 9000 transconjugants were obtained, mixed and cryopreserved 

in 30% glycerol at -80°C. The percentage of auxotroph mutants in the mutant bank 

was checked by replicating a fair number (>500) of TcR colonies in both standard 

succinate medium (SSM) and LBA that were incubated at 25°C during 72 h. Mutants 

unable to grow in SSM but capable to do so in LBA were considered as auxotrophs, 

and the percentage of transposon insertions leading to auxotrophy was calculated. 

 

2.3.5. Phenotypic characterization of Pseudomonas fluorescens PICF7 mutants  

 

The screening of mutants altered in swimming motility was as follows. In a first 

round, 2000 TcR colonies previously grown overnight on KBA plates (amended with 

Tc) at 25°C were inoculated (35 mutants/plate) in square ‘swimming medium’ (SM) 

(1% tryptone, 0.5% NaCl, 0.3% agar) (Déziel et al., 2001) agar plates (12 x 12 cm) 

along with the parental strain PICF7 (used as a control). Swimming motility was 

revealed after overnight incubation at 25°C. Transconjugants showing altered 

behavior (lack, increase or decrease of swimming motility compared with the wild 

type) were further tested individually (one mutant per plate together with a colony 

of PICF7) in SM agar. This check step was repeated twice for each mutant. Other 

types of bacterial motilities, such as swarming (Overhage et al., 2007) and twitching 

(Alit-Susanta and Takikawa, 2006), were also tested in appropriate media. Data on 



Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea 

europaea L.) are determined neither by pyoverdine production nor swimming motility CHAPTER 2 

 

47 

 

colony diameter of putative mutants were subjected to analysis of variance (ANOVA), 

and means were compared with that of the parent strain (PICF7) using two-sided 

Dunnett’s multiple comparisons with a control at P < 0.05. Mutants displaying a 

significantly altered swimming motility phenotype were selected for further 

characterization and stored in 30% glycerol at -80°C.  

 

Two different culturing media were used to screen PICF7 mutants altered in 

siderophore production. In a first round, a set of 2000 transconjugants were tested in 

parallel using KBA and the universal siderophore detection medium chrome azurol S 

(CAS) agar (Schwyn and Neilands, 1987). Production of the major siderophore Pvd in 

KBA was observed as a green fluorescence when grown colonies were submitted to 

UV light. Production of iron-chelating compounds in CAS agar plates is revealed by 

the production of orange haloes around siderophore-producing colonies. A colony of 

strain PICF7 was included in all plates for comparison. Mutants (TcR colonies) 

previously grown in KBA plates (amended with Tc) (25°C, 24 h) were individually 

transferred to KBA and CAS plates (49 mutants/plate) without Tc (to allow growth of 

a colony of PICF7 used as a reference) and incubated at 25°C for 24 h. Absence, 

decrease or increase of fluorescence under UV irradiation in KBA and orange haloes 

produced on CAS plates were scored for each single mutant. A preselected set of 

colonies showing altered siderophore production phenotypes was checked in the 

same media by plating cell suspensions (5 μl) of each mutant individually, per 

triplicate, onto CAS and KBA, along with a suspension of P. fluorescens PICF7 cells 

(control). This step was repeated at least twice. Thus, fluorescence in KBA was 

checked again and the relative halo size [(halo diameter - colony diameter)/ halo 

diameter] produced in CAS media was calculated for each mutant. Relative haloes 

size data were subjected to ANOVA and means were compared with strain PICF7 

mean using two-sided Dunnett’s multiple comparisons with a control at P < 0.05.  

 

To screen for P. fluorescens PICF7 mutants potentially altered in in vitro 

antagonism against V. dahliae, the following experimental approach was carried out. 

In a first screening round, mutants (2000) and V. dahliae isolate V937I were 

confronted as follows: potato dextrose agar (PDA) medium was prepared, cooled 

down to 45°C and mixed with a conidial suspension of V937I to yield a final 

concentration of approximately 1 x 104 conidia ml-1. Once agar plates solidified, 

individual colonies (35 mutants/plate) were inoculated with a sterile toothpick and 

incubated for 4 days at 28°C. The presence of haloes around bacterial colonies 

(inhibition or retardation of the fungal growth) was checked periodically. Each plate 
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contained a colony of PICF7 as a reference. Mutants showing a different behaviour 

compared with that of the parental strain were pre-selected, and the procedure was 

repeated but each ‘candidate’ mutant was individually plated as a 5 μl drop of 

bacterial suspension together with a suspension of PICF7. This check test was 

repeated twice.  

 

Finally, selected mutants impaired in siderophore production, swimming 

motility and/or altered behavior in in vitro antagonism assay against V. dahliae were 

further tested for their ability to grow in liquid and solid SSM (pH 7.0) (Meyer and 

Abdallah, 1978) for 20 h or 48 h respectively. Mutants with the absence or decrease 

in green fluorescence (Pvd production) or unable to grow in this minimal medium 

(auxotroph) were selected. This assay was done at least twice for each mutant. 

 

2.3.6. Identification of transposon insertion sites in selected PICF7 mutants 

 

A collection of selected mutants (43) altered in one of the phenotypes mentioned 

above were analyzed to determine the gene disrupted by Tn5 transposon insertion. A 

combination of arbitrary and nested-PCR was implemented according to Caetano-

Anollés (1993). Total DNA of selected mutants was extracted and purified according 

to i-genomic CTB Extraction Mini Kit (Intron Biotechnology, European Biotech 

Network, Belgium). A first round of amplification was accomplished by using total 

DNA from each mutant as a template and two primers, one arbitrary (ARB1; 5’-

GGCCACGCGTCGACTAGTACNNNNNNNNNNGATAT-3’) and another specific to the 

internal right end of the transposon Tn5 (Tn5Ext; 5’-GAACGTTACCATGTTAGGAGGTC-

3’). The first PCR round consisted of 5 min at 95°C; 30 cycles of 30 s at 95°C, 30 s at 

55°C and 2 min at 72°C, followed by an extension period of 5 min at 72°C. The final 

volume was 30 μl (1 x Taq DNA polymerase buffer, 3 mM MgCl2, 2 mM dNTP, 0.8 μM 

of each primer, 1 U μl-1 of Taq DNA polymerase and 0.5 ng of extracted DNA). One 

microlitre of the previous reaction was submitted to a nested-PCR reaction with 

specific primers, ARB2 (5’-GGCACGCGTCGACTAGTAC-3’) and Tn5Int (5’-CGGGAAA 

GGTTCCGTTCAGGACGC-3’), the sequences of which corresponded to the conserved 

region of ARB1 and to the right end of Tn5Ext respectively. Nested-PCR conditions 

were as follows: 2 min at 95°C; 30 cycles of 30 s at 95°C, 30 s at 57°C, 2 min at 72°C, 

followed by 3 min at 72°C. Final volume was 30 μl (1 x Taq DNA polymerase buffer, 3 

mM MgCl2, 2 mM dNTP, 0.8 μM of each primer and 1 U μl-1 of Taq DNA polymerase). 

Amplicons were electrophoresed in 0.8% agarose gels, and the observed band was 

extracted from gel and purified (FavorPrepTM GEL/ PCR Purification Mini Kit). 
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Adjacent DNA region to the Tn5 insertion site of each selected mutants was 

sequenced (Sistemas Genómicos S.L., Paterna, Valencia, Spain) using primer Tn5Int. 

DNA sequences were compared against available databases (GenBank and 

Pseudomonas Genome Database) using the BLASTX and BLASTN programmes 

(Altschul et al., 1997) available at the NCBI network service, and against the complete 

PICF7 genome sequence (deposited in GenBank, CP005975) (Martínez-García et al., 

2015).  

 

2.3.7. L-Cysteine cross-feeding assay  

 

Growth of mutant ME1508 was impaired in SSM and sequence analysis revealed 

possible auxotrophy in Cysteine (Cys) biosynthesis. To check this mutant phenotype, 

a cross-feeding experiment was carried out. Bacterial suspensions of strain PICF7 

(positive control) and mutant ME1508 originating from fresh colonies grown in LBA 

were prepared in SSM and inoculated (350 μl) in 5 ml of SSM (control) and SSM 

amended with increasing (1, 2, 5, 10 and 20 mg l-1) concentrations of L-Cys (Sigma-

Aldrich, St Louis, MO) (final OD600 = 0.1). Cultures were grown in an orbital shaker at 

25°C for 48 h (150 rpm). Cell growth and restoration of Pvd production by ME1508 in 

liquid SSM upon L-Cys addition were determined as previously described (Mercado-

Blanco et al., 2004). This experiment was repeated twice.  

 

2.3.8. Verticillium wilt of olive biocontrol experiments  

 

Three independent bioassays were conducted to assess the effectiveness of four 

PICF7 mutants altered in different phenotypes to control VWO. Bioassays were 

carried according to the procedure described by Mercado-Blanco and colleagues 

(2004). The carefully washed (tap water) root systems of nursery-produced olive 

plants (cv. Picual) were dipped in suspensions of each bacterial strain (cell densities 

ranging from 5.8 x 108 to 1.7 x 109 cfu [colony-forming units]ml-1, 15 plants) or 10mM 

MgSO4·7H2O (control, 9-12 plants) for 15 min. Then plants were transplanted into 

clay pots filled with soil mixture (sand/ loam, 2:1,vol/vol) thoroughly mixed with a 

conidia suspension (ranging from 3.2 x 105 to 2.7 x 106 conidia g-1 soil) of V. dahliae D 

isolate V937I (Collado-Romero et al., 2006) or distilled sterile water (control 

treatment). Plants were kept in a growth chamber (conditions describe above) during 

at least 110 days after inoculation (DAI). Disease symptoms, such as defoliation, 

chlorosis and wilting, were scored along the bioassay using a 0-4 rating scale 

according to the percentage of affected leaves and twigs (0, no symptom; 1, 1-33%; 
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2, 34-66%; 3, 67-100%; and 4, dead plant) at weekly intervals after inoculation with 

the pathogen for the first 2 months, and thereafter every 10 days.  

 

Disease severity data were used to determine the following: (i) a disease 

intensity index (DII) defined as DII = (ΣSi x Ni)/(4 x Nt), where Si is severity of 

symptoms, Ni is the number of plants with Si symptoms severity, and Nt the total 

number of plants; (ii) final disease incidence (DI) established as the percentage of 

affected plants at the end of the bioassays; and (iii) standardized area under the 

disease progress curve of DII plotted over time (days) (SAUDPC) calculated according 

to Campbell and Madden (1990). SAUDPC data were subjected to ANOVA, which was 

calculated using Statistix (NH Analytical Software, Roseville, MN). Treatment means 

were compared using Fisher’s protected least significant difference (LSD) test at α = 

0.05.  

 

2.3.9. Olive root colonization ability of PICF7 mutants  

 

To assess whether PICF7 mutant derivatives were affected in their ability to colonize 

olive roots tissues, even endophytically, two approaches were followed. On the one 

hand, population size of introduced bacteria was checked on/in root samples from 

each biocontrol experiment approximately at 110 days after bacterization (DAB). To 

do so, root systems of three plants per treatment were kindly uprooted and 

immersed in tap water to remove the excess of soil particles at the end of each 

experiment. Subsequently, plants were deposited over filter paper and the roots 

were air-dried and weighted. Then, root tissue samples (1 g) of each plant were 

thoroughly ground using a mortar in 5 ml of 10 mM MgSO4·7H2O, and serial dilutions 

of root macerates were plated in KBA plates amended with Amp, Chl and Chx (for 

PICF7 cells counting), plus Tc (for TcR mutant cells counting). Plates were incubated at 

25°C for 24 h and cfu g-1 fresh root tissue was estimated for each strain. Data were 

subjected to ANOVA and means were compared with strain PICF7 using two-sided 

Dunnett’s multiple comparisons with a control at α = 0.05.  

 

On the other hand, to monitor both surface and inner olive root colonization 

by PICF7 and its TcR mutants, GFP (GmR) derivatives (see above), vibratome 

(Vibratome Series 1000plus, TAAB Laboratories Equipment, Aldermaston, UK) root 

sectioning and CLSM (Axioskop 2 MOT microscope, Carl Zeiss, Jena GmbH, Germany) 

were used. The GmR GFP-labelled mutants were applied to olive root systems as 

previously indicated for biocontrol assays. One to two weeks after bacteria 
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inoculation, fresh and healthy roots from two-three plants per treatment were 

manipulated, longitudinally sectioned and visualized by CLSM according to Prieto and 

Mercado-Blanco (2008). Finally, to count viable cells of each GmR GFP-labelled 

mutant, 1 g from root tissue of each plant analyzed by CLSM was ground as 

mentioned above, and serial dilutions of the macerate were plated onto KBA 

amended with Amp, Chl, Chx and Gm, and grown at 25°C during 48 h.  

 

In order to assess the possible translocation of P. fluorescens PICF7 cells from 

the roots to aerial tissues of inoculated plants, the following experimental set-up was 

followed. Two-month-old ‘Picual’ plants were carefully bacterized, avoiding cross-

contamination of above-ground organs, by watering pots with freshly prepared 

suspensions of the GFP-labelled PICF7 GmR derivative (log10 8.8- 9.7 cfu ml-1, 120 ml 

pot−1) three consecutive times (day 0, 5 and 10). Subsequent watering of bacterized 

plants and that of control, non-bacterized plants, was carried out with tap water. 

Root and stem samples of two bacterized plants were checked by CLSM (see above) 

at 14, 21, 60 and 90 DAB. Sampled plants were carefully uprooted, the roots dipped 

in tap water to remove soil excess and allow to air-dry over filter paper. Each plant 

was divided into above-ground part and root system. On the one hand, and for 

assessing PICF7 viable cells, a sample of root tissue (1 g), two segments of the stem (1 

cm each) and 4 half-leaves with their petioles originating from the basal zone of each 

sampled plant were weighted and macerated in 10 ml of 10 mM MgSO4.7H2O. Serial 

dilutions of root and basal aerial sections macerates were plated per duplicate in KBA 

amended with Amp, Chl and Chx (to count indigenous bacteria and PICF7 GmR) and 

with these antibiotics plus Gm (to count PICF7 GmR) and incubated at 25°C for 48 h. 

On the other hand, vibratome sections of roots (longitudinal), stems and petioles 

(transversal) were analyzed by CLSM as mentioned above. Mutants population size 

data were compared with strain PICF7 using Student’s t-test (α = 0.05) (Table 2.S1). 

 

2.4. Results 

 

2.4.1. Construction of a mutant library of Pseudomonas fluorescens PICF7  

 

A total of 9300 P. fluorescens PICF7 TcR colonies were obtained after biparental 

mating between Escherichia coli DH5α (pJQ18) and PICF7 (Table 2.1). Transposon 

Tn5-TcR insertion frequency was calculated as 2 × 10-5. The number of mutants thus 

obtained was theoretically enough to have more than one random insertion every 1 
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kb throughout the genome of P. fluorescens PICF7 (≈ 6.1 Mbp) (Martínez-García et 

al., 2015). The percentage of insertions leading to auxotrophy was 1.36%.  

 

2.4.2. Screening and selection of PICF7 mutants affected in swimming motility, 

siderophore production or antagonism against V. dahliae 

 

Results showed that P. fluorescens PICF7 exhibited swimming motility when tested in 

SM (Figure 2.1). Clear evidence of swarming or twitching motilities was not obtained 

for strain PICF7 under tested conditions, and thus they were not further investigated. 

A set of 2000 Tn5-TcR insertion mutants were then checked for the loss/alteration in 

(i) swimming motility, (ii) siderophore production and (iii) in vitro antagonism against 

V. dahliae D pathotype. From a preliminary screening, 55 TcR mutants affected in one 

or more of these phenotypes were finally selected for further characterization (Table 

2.S2). Screening of this subset of mutants revealed that 14 of them displayed altered 

swimming motility phenotypes compared with that of the parental strain. Five 

mutants showed no motility or less than 10% than wild-type PICF7, while nine 

mutants displayed a reduction ranging from 10% to 70% of the wild-type phenotype 

(Table 2.S2).  

 

Siderophore production by Tn5-TcR insertion mutants was assessed in 

different media (CAS, KBA and SSM). A total of 46 mutants were found to exhibit a 

modified siderophore-producing phenotype depending on the media used. For 

instance, 10 mutants were completely impaired in Pvd production, since neither 

green fluorescence nor production of an orange halo around the colonies was found 

in any of the culturing media tested in comparison to the wild-type phenotype of 

strain PICF7 (Table 2.S2). Mutants partially altered in siderophore production (i.e. 

reduced orange halo) were not considered for further characterization in the present 

study.  
 

The screening for in vitro antagonism exerted by Tn5-TcR insertion mutants 

against the V. dahliae D isolate V937I (highly virulent) was carried out in PDA 

medium. After evaluating a set of 2000 insertion mutants, none of them were 

inhibiting V. dahliae growth inhibition halo, similarly to the phenotype displayed by 

the parental strain PICF7. During this screening process, one Tn5-TcR colony showed 

reduced growth on PDA (Figure 2.1B). This altered phenotype was not observed in 

KBA, LBA and nutrient agar media (Figure 2.1). This mutant was also selected for 

further characterization (see below).  
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Figure 2.1. Phenotypes of Pseudomonas fluorescens PICF7 and selected Tn5-Tc
R
 insertion mutants in SM 

(A), PDA (B), CAS (C) and SSM (D) agar media. gltA, mutant ME419 showing in vitro growth delay in PDA; 

fliI, mutant ME424 impaired in swimming motility; pvdI, mutant ME589 impaired in pyoverdine (Pvd) 

production; and Cys Aux, mutant ME1508 (cysteine auxotroph). 

A. Individual colonies from overnight cultures of strain PICF7 and mutant derivatives grown on KBA 

plates were inoculated using a toothpick onto SM and incubated overnight at 25°C. Strains PICF7, gltA, 

pvdI and Cys Aux showed swimming motility around the inoculation point but not the fliI mutant. 

B. Five-microlitre drops of overnight cultures of each strain were deposited over PDA medium and 

incubated at 25°C for 4 days. Mutant gltA showed reduced growth compared with strain PICF7 and 

other mutants. 

C. Five-microlitre drops of fresh cell suspensions of strain PICF7 and its mutants were deposited over 

CAS medium agar plates and incubated overnight at 25°C. All mutant derivatives but mutant pvdI 

produced similar orange haloes as that observed for wild-type strain PICF7. 

D. Growth of PICF7 and its mutant derivatives on SSM after 48 h at 25°C. 

 

2.4.3. Identification of genes disrupted in selected PICF7 mutants  

 

Among the 55 pre-selected mutants, 44 were finally confirmed as affected in just one 

of the phenotypes under study. Localization of the Tn5-TcR insertion in these 44 

mutants was performed by nested-PCR analysis. Nine mutants amplified a single 

band that was eluted, purified and sequenced. Based on the altered phenotype, the 

presence of a unique amplicon after nested-PCR, and the disrupted gene identified, 

four mutants (Figure 2.1) were finally selected for evaluation in subsequent olive 

root colonization and VWO biocontrol bioassays. Mutant ME424 has completely lost 

swimming motility (Figure 2.1), and transposon insertion was located within a 

putative fliI gene homologue, coding for a flagellum-specific ATP synthase (Table 
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2.2). Mutant ME589 was totally impaired in Pvd production (no halo on CAS medium 

and no green fluorescence in KBA/SSM media) (Figure 2.1) and harbored the Tn5 

insertion in a putative pvdI gene homologue that codes  for a Pvd non-ribosomal pep- 

 
Table 2.2. Identification of genes disrupted in selected PICF7 mutants.  

 

Disrupted genes identification was carried out by obtaining amplicons of the flanking Tn5-regions in 

PICF7 Tc
R
-mutant derivatives by a combination of arbitrary and nested-PCR followed by sequence 

comparison in available databases using the BLASTX Program (see text for details). 

 

tide synthetase (Table 2.2). Mutant ME419, which displayed growth delay in PDA 

medium (Figure 2.1), carries the Tn5-TcR insertion in a putative homologue of the 

gltA gene, potentially coding for a type II citrate synthase (Table 2.2). Finally, mutant 

ME1508 was randomly selected from auxotroph mutants obtained during the 

mutagenesis process (Figure 2.1). Sequence analysis of adjacent regions to the Tn5- 

TcR insertion in this mutant revealed that the transposon was located in a gene 

coding for a putative sulfite reductase involved in Cys biosynthesis (Table 2.2). 

Indeed, in vitro cross-feeding assays showed that addition of L-Cys to SSM medium 

(up to 20 mg l-1) fully restored ME1508 growth and Pvd production ability in SSM to 

wild-type PICF7 levels (Table 2.3). Thus, in addition to pvdI (Pvd defective, ME589) 

and fliI (swimming motility defective, ME424) mutants, the gltA (reduced in vitro 

growth, ME419) and Cys auxotroph (ME1508) mutants were selected to be included 

in the in planta bioassays as examples of metabolism-altered phenotypes. Thus, in 

vitro growth delay, Cys auxotrophy, siderophore-mediated Fe3+ competition and 

Mutant 
 

Amplico
n size 

Mutant   
type 

Accession 
number 

Closest 
species/strain 

Query 
cover 

E-value 
Identity 

% 
Function 

         
 ME419 354 bp Altered in 

vitro 
growth 

AHF49667.1 Pseudomonas 
sp. 

RM12EL_44B 

87% 3e-46 74 Type II citrate 
synthase  

 ME424 426 bp Swimming 
motility 

WP_0102087
46.1 

Pseudomonas 
sp. R81 

84% 2e-145 100 Flagellum-
specific ATP 

synthase 

 ME589 185 bp Pyoverdine 
production 

1476433 Pseudomonas 
fluorescens 

A506 

49% 2e-08 64 Putative 
pyoverdine 

non-ribosomal 
peptide 

synthetase 

 ME1508 420 bp Cysteine 
auxotroph 

WP_0127238
53.1 

Pseudomonas 
fluorescens 

99% 2e-95 100 Putative sulfite 
reductase 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CWSTE5GV015&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&OLD_VIEW=false&DISPLAY_SORT=4&HSP_SORT=0
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=CWSTE5GV015&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&OLD_VIEW=false&DISPLAY_SORT=4&HSP_SORT=0
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_229589332
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_229589332
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motility were evaluated as per their potential role in rhizosphere competence, olive 

root colonization and/or biocontrol ability of strain PICF7. 

 
Table 2.3. Bacterial growth (OD600) and pyoverdine production (OD400/600) by strain PICF7 and its mutant 

derivative ME1508 in SSM supplemented with L-Cys. 

 

L-Cys 

(ng/ml) 

  Bacterial Growth (OD600)
1,3 

  Pyoverdine (OD400/600)
2,3 

    PICF7   ME1508    PICF7  ME1508 

0 0.40 ± 0.03 0.06 ± 0.01* 3.0 ± 0.15 1.5 ± 0.32* 

1 0.44 ± 0.11 0.09 ± 0.01* 2.9 ± 0.11 2.2 ± 0.27* 

 2 0.43 ± 0.14 0.15 ± 0.02* 2.7 ± 0.11 2.3 ± 0.19* 

 5 0.46 ± 0.05 0.34 ± 0.03* 2.8 ± 0.17 2.2 ± 0.09* 

 10 0.38 ± 0.04 0.42 ± 0.15 3.1 ± 0.22 2.5 ± 0.16* 

 20 0.41 ± 0.03 0.43 ± 0.04 2.9 ± 0.14 2.9 ± 0.20 

  

1
 Bacterial growth (OD600) 48 h after strain PICF7 and mutant ME1508 inoculation (5.7 x 10

8
- 1.4 x 10

9 

cfu/ml) in SSM (control) and SSM with increasing (1, 2, 5, 10 and 20) L-Cys concentration (final OD600 ≈ 

0.1).  
2
 Production of pyoverdine calculated according to Djavaheri et al., (2012).  

3 
Data are means of three repetitions performed in three independent experiments. Means in a column 

followed by asterisk are significantly different according to Fisher´s protected LSD test (P < 0.05).  

 

2.4.4. Olive root colonization ability of P. fluorescens PICF7 mutants 

 

To determine whether TcR mutant derivatives ME424, ME589, ME419 and ME1508 

colonize olive roots to the same extent as strain PICF7, three roots per treatment and 

per biocontrol assay (see below) were examined at the end of the experiments 

(approximately 110 DAB). In experiment I, population sizes of introduced bacteria 

were not significantly different (P = 0.34), although mutants always displayed lower 

population size values compared with strain PICF7 (Table 2.4). In bioassay II, 

however, a significantly (P < 0.05) lower population size was found for the Cys 

auxotroph mutant ME1508 compared with that exhibited by strain PICF7 but not 

with the other mutants (Table 2.4). Finally, in bioassay III, population sizes of fliI and 

Cys auxotroph mutants were significantly (P < 0.05) lower than that of strain PICF7 

(Table 2.4).  
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Table 2.4. Root colonization ability and Verticillium wilt of olive biocontrol performance of 

Pseudomonas fluorescens PICF7 and its Tc
R
 mutant derivatives.  

 

Experiment
1
 Treatment

2 
Disease assessment

3 
Bacterial population (log10 

cfu g
-1

 of fresh root)
4 

  SAUDPC DII DI (%) 

I Control 0.36
a
 0.59 93.33  

 P. fluorescens     

 PICF7 0.09
c
 0.24 78.57 4.3 ± 0.5

a 

 ME419 (gltA)   0.24
abc

 0.44 93.33 2.9 ± 0.8
a
 

 ME424 (fliI)  0.16
bc

 0.43 84.62 3.3 ± 0.9
a
 

 ME589 (pvdI)  0.17
bc

 0.33 78.57 3.4 ± 0.7
a
 

 ME1508 (Cys Aux)      0.34
ab

 0.51 86.67 3.1 ± 0.3
a
 

II Control  0.28
ab

 0.46 100  

 P. fluorescens     

 PICF7 0.24
b
 0.43 80 4.3 ± 0.2

a 

 ME419 (gltA) 0.20
b
 0.33 71.43  3.9 ± 0.6

ab 

 ME424 (fliI)  0.29
ab

 0.38 84.62  3.5 ± 0.8
ab

 

 ME589 (pvdI) 0.23
b
 0.35 76.92  3.9 ± 0.5

ab
 

 ME1508 (Cys Aux) 0.47
a
 0.53 100 2.9 ± 0.4

b 

III Control 0.32
a
 0.40 60  

 P. fluorescens     

 PICF7 0.05
b
 0.11 43.75 4.1 ± 0.6

a 

 ME419 (gltA)  0.15
ab

 0.31 66.67  3.5 ± 0.3
ab 

 ME424 (fliI) 0.05
b
 0.13 53.33 3.3 ± 0.2

b 

 ME589 (pvdI) 
5 

- - -  3.5 ± 0.1
ab 

 ME1508 (Cys Aux) 0.10
b
 0.23 71.43 2.6 ± 0.2

c 

 

1
Three independent experiments were carried out spanning 110 days after inoculation (DAI) 

(experiment I), 118 DAI (experiment II) and 113 DAI (experiment III). 
2
 The root system of three-month-old olive plants were dipped in bacterial suspensions (5.8 x 10

8
 - 1.7 

x 10
9
 cfu/ml) for 15 min and then transplanted into autoclaved soil for colonization assay, or 

autoclaved soil artificially infested with 3.2 x 10
5
 - 2.7 x 10

6
 conidia g

-1
of the defoliating Verticillium 

dahliae isolate V937I for biocontrol assays. Plants were grown in a growth chamber under controlled 

conditions (see text for details). 
3
 SAUDPC, standardized area under the disease progress curve of DII (disease intensity index) plotted 

over time.  DI, final disease incidence (percentage of affected plants at the end of the experiment). 

Means in a column followed by different letters are significantly different according to Fisher´s 

protected LSD test (P < 0.05). 
4
 Cell counts of Pseudomonas strains were determined on modified King´s medium B agar (PICF7) or 

on modified KBA amended with Tc (Tc
R
 PICF7 mutant derivatives).  Data are means of three root 

samples (1 g each). Means followed by different letters are significantly different according to Two-

sided Dunnett's Multiple Comparisons with a Control (PICF7) at α= 0.05.      
5 

Plants bacterized with ME589 and transplanted to soil infested with V. dahliae V937I unexpectedly 

died. However, plants treated with ME589 alone (9) showed healthy and therefore were kept and 

used for viable bacteria counts. 
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2.4.5. Root endophytic colonization ability is not affected in P. fluorescens PICF7 

mutants 

 

To visualize olive roots surface/inner colonization GFP-labelled derivatives of PICF7 

and the selected TcR mutants were generated. Transformation frequency of plasmid 

pLRM1 ranged from 4.7 x 102 to 7.6 x 103 transformants/μg plasmid DNA. 

Introduction of plasmid pLRM1 did not affect the behavior of the mutants, and all 

selected GFP-labelled clones showed similar phenotypes as their parents (Figure 2.1; 

table 2.S2). While plasmid pLRM1 revealed as not completely stable neither in PICF7 

nor in their mutants (6.14% plasmid loss/generation), the presence of a GFP-labelled 

bacterial cells within olive root tissues for each strain was clear (15 DAB). Moreover, 

population sizes of introduced bacteria at 15 DAB reached similar values for all 

strains but for mutant ME589-G (pvdI), which colonized olive roots/rhizosphere at a 

significantly (P < 0.05) lesser extent (Table 2.S1). CLSM imagery obtained from root 

tissue samples during 15 DAB showed that PICF7, as well as all mutant strains 

evaluated, were able to endophytically colonize the root interior predominantly 

among the intercellular spaces of the root cortex. Remarkably, however, GFP-labelled 

cells could also be localized within the root vascular system for all strains but for the 

fliI mutant (Figure 2.2). Taking into account this finding, an experiment aimed to 

demonstrate possible active/passive movement of PICF7 cells form root xylem 

vessels to aerial tissues was carried out. When GFP-tagged PICF7 GmR cells were 

applied to the root system of ‘Picual’ plants (irrigated three times at days 0, 5 and 10 

with a bacterial cells suspension), no tagged bacteria could be retrieved from aerial 

tissues, indicating that there was no transport to upper parts of the plants through 

the xylem vessels. In contrast, PICF7 successfully colonized the roots of the examined 

plants (average population sizes of log10 5.2 cfu g-1 of fresh root tissue).  
 

2.4.6. Biological control activity of strain PICF7 is determined neither by pyoverdine 

production nor swimming motility 

 

Three independent experiments were carried out to assess biocontrol performance 

of PICF7 mutants. Results showed, overall, that swimming motility (impaired in 

mutant ME424) and Pvd production (abolished in mutant ME589) are not needed for 

the effective biocontrol exerted by strain PICF7 against V. dahliae (Table 2.4). 

However, differences were found among experiments. Thus, in bioassay I (spanning 

110 DAI), PICF7-bacterized plants displayed a significant (P < 0.05) decrease in the 

SAUDPC in comparison to non-bacterized plants (control). Besides, a decrease in DII 

and the final DI values were observed (Table 2.4). Mutants ME424 and ME589 
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showed a similar behaviour than the parental strain, and SAUDPC was also 

significantly (P < 0.05) lower than in non-treated plants, although DII and DI values 

for ME424-treated and ME589-treated plants were higher than that for PICF7-

bacterized plants (Table 2.4). In contrast, neither P. fluorescens PICF7 nor its pvdI and 

fliI mutant derivatives displayed biocontrol activity in bioassay II (118 DAI), likely due 

to a high disease pressure scored in this experiment (i.e. 100% final DI in control 

plants) (Table 2.4). Finally, in bioassay III (113 DAI), strain PICF7 and mutant ME424 

controlled Verticillium wilt epidemics effectively. Indeed, SAUDPC decreased 

significantly (P < 0.05) in both treatments compared with non-bacterized plants 

(Table 2.4). The DII was also reduced in PICF7-treated and ME424-treated plants in 

comparison to that observed for control plants. Regarding the final DI values, no 

differences were found between PICF7 and ME424, and both treatments reduced the 

number of diseased plants at the end of the experiment in comparison to non-

bacterized plants (Table 2.4). It must be mentioned that the effect of ME589 could 

not be evaluated in this bioassay because most of the V. dahliae-inoculated plants in 

this treatment unexpectedly died after manipulation. In summary, mutations in the 

putative pvdI and fliI genes did not seem to affect biocontrol activity in mutants 

ME589 and ME419 respectively. 

 

2.4.7. Cys auxotrophy in strain PICF7 diminished its VWO biocontrol effectiveness 

 

Besides mutants impaired in swimming motility and Pvd production, two additional 

mutants, one affected in growth on PDA plates (ME419) and another showing Cys 

auxotrophy (ME1508), were included in VWO biocontrol experiments. Results also 

varied among bioassays. Overall, the behavior of mutant ME419 did not significantly 

(P > 0.05) differ from that of PICF7 for any of the disease parameters analyzed in the 

three experiments (Table 2.4). Similarly, SAUDPC, DII and final DI from ME419-

treated plants were never found to be different from that of non-bacterized plants 

(Table 2.4). Therefore, mutation in the putative gltA gene did not seem to affect 

biocontrol activity in mutant ME419, despite of the fact that growth of this mutant in 

vitro was evidently altered (Figure 2.1). On the other hand, ME1508 mutant (Cys 

auxotroph) showed a significantly (P < 0.05) higher SAUDPC than that scored for 

PICF7-treated plants in bioassays I and II. Likewise, DII (0.51 and 0.53) and final DI 

(86.7% and 100%) were higher in ME1508-treated plants than in PICF7-treated plants 

(Table 2.4). This indicated that Cys auxotrophy negatively influenced biocontrol 

performance in mutant ME1508. However, this mutant behaved similarly to PICF7, 

ME419 and ME424 in bioassay III, and no significant (P = 0.29) differences were 
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scored among treatments (Table 2.4). It is worth mentioning here that final DI in 

bioassay III was considerably lower in the control (non-bacterized; 60%) treatment 

than in bioassays I (93.3%) and II (100%).  

 

 
 

Discussion  

 

Effective control of VWO is highly difficult by a number of reasons comprehensively 

reviewed elsewhere, and must thus rely on an integrated disease management 

Figure 2.2. Confocal laser scanning microscopy 

images of longitudinal vibratome root sections (40 

μm thick) showing localization of Pseudomonas 

fluorescens PICF7 and its Tn5-Tc
R
 insertion mutant 

derivatives GFP-labelled. Images were taken from 

one to two weeks after root-dip bacterization with 

Pseudomonas-GFP. Strain PICF7 (A,B), gltA (C,D), fliI 

(E,F), pvdI (G,H) and Cys auxotroph (I,J). Pictures 

show that all strains endophytically colonize olive 

roots: vascular tissue (white arrows), and 

intercellular spaces of the cortex (red arrows). Scale 

bar represents 100 μm in A, C, E, G and I (left 

panels), and 30 μm in B, D, F, H and J (right panels); 

co, cortical cells; vt, vascular tissue. 
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strategy with emphasis in pre-planting measures (López-Escudero and Mercado-

Blanco, 2011). A promising preventive action is the use of native microbial 

antagonists able to efficiently colonize the target niche (i.e. soil, rhizosphere, roots, 

etc.). However, our knowledge on the mechanisms involved in suppression of V. 

dahliae by microbial antagonists is still very limited, not only for the particular case of 

VWO but also for many crops that can be infected by this pathogen (Alström, 2001; 

Tjamos et al., 2005; Berg et al., 2006; Antonopoulos et al., 2008; El Hadrami et al., 

2011; Meschke et al., 2012).  

 

One of the best BCA of VWO so far studied is the olive root endophyte P. 

fluorescens PICF7 (Mercado-Blanco et al., 2004; Prieto et al., 2009, 2011). Strain 

PICF7 is able to trigger a broad range of defence responses in both root (Schilirò et 

al., 2012) and aerial (Gómez-Lama Cabanás et al., 2014) tissues, pointing to a 

scenario in which VWO biocontrol by PICF7 could be mediated by induced resistance 

mechanism(s) (Pieterse et al., 2014). We have recently shown, however, that the 

presence of PICF7 cells in root tissues does not suppress olive knot disease in stems 

caused by Pseudomonas savastanoi pv. savastanoi (Maldonado-González et al., 

2013). Nothing is currently known on which PICF7 traits could be involved in 

triggering such responses or whether additional biocontrol mechanisms (i.e. 

antibiosis, competition, etc.) might be effective against V. dahliae. Likewise, 

knowledge on PICF7 phenotypes involved in olive rhizosphere colonization and 

endophytic lifestyle is absent. Therefore, the objective of the present study was to 

examine whether selected traits play a role in root colonization and VWO biocontrol 

abilities exerted by strain PICF7. The approach followed was to generate mutants in 

specific phenotypes, and to assess their colonization and biocontrol performance in 

planta under non-gnotobiotic conditions. This means that introduced bacteria faced 

a situation closer to a natural environment (i.e. nursery-produced plants carrying a 

highly-diverse microbiome) than that found in axenic systems normally used in this 

type of studies. Besides, this work has been carried out using a woody plant relevant 

in Mediterranean agro-ecosystems instead of a model plant.  

 

Successful biocontrol of soil-borne phytopathogens by any given BCA must be 

preceded by the efficient colonization of the target niche (i.e. rhizosphere soil, root 

surface, root interior) (Mercado-Blanco and Bakker, 2007). A number of 

Pseudomonas spp. traits involved in rhizosphere and/or root colonization have been 

studied (Lugtenberg et al., 2001), and some have shown as key elements for the 

subsequent biocontrol efficacy exerted by specific strains (Chin-A-Woeng et al., 
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2000). Motility and chemotaxis are thus considered essential for root colonization by 

P. fluorescens strains (Lugtenberg and Bloemberg, 2004), although flagella-driven 

motility has been demonstrated to be necessary for root colonization in some cases 

(Capdevila et al., 2004; Martínez-Granero et al., 2006) but not in others (Howie et al., 

1987). The involvement of swimming motility in colonization and biocontrol has been 

proven for some pseudomonads. Thus, a triple mutant strain (KSW) of P. fluorescens 

F113 affected in kinB, sadB and wspR showed increased swimming motility and 

rhizosphere colonization ability than that of the wild-type strain, as well as improved 

biocontrol activity against Fusarium oxysporum f.sp. radicis lycopersici in tomato 

(Solanum lycopersicum Mill.) and Phytophthora cactorum in wild strawberry 

(Fragaria vesca L.). (Barahona et al., 2011). Recently, Sang and Kim (2014) have also 

suggested that biocontrol activity of Pseudomonas corrugata CCR04 and CCR80 in 

pepper (Capsicum sp.) plants against the soil-borne oomycete Phytophthora capsici 

can be mediated by successful root colonization through biofilm formation and 

swimming and swarming motilities. Our results demonstrated that P. fluorescens 

PICF7 displays swimming motility. This trait seems to contribute to the full 

colonization ability of olive rhizosphere/roots by strain PICF7. Indeed, mutant ME424 

always showed lower population sizes than that of the parental strain in all 

experiments, although it was significantly different only in bioassay III (Table 2.4). On 

the contrary, lack of swimming motility did not hinder mutant ME424 to colonize the 

root interior nor diminished its biocontrol efficiency against V. dahliae (see below).  

 

Population sizes associated with roots scored for all mutants tested were 

always lower, either significantly (i.e. mutant ME1508 in bioassays II and III) or just 

showing a trend, compared with that observed for strain PICF7 (Table 2.4). However, 

this decline in population size over time observed for mutants ME424 (fliI) and 

ME589 (pvdI) did not affect their ability to control V. dahliae. Therefore, we conclude 

that neither Pvd production nor swimming motility is implicated in VWO suppression. 

Regarding ME419 (gltA), growth problems observed in PDA medium for this mutant 

did not affect root colonization ability nor biocontrol performance compared with 

PICF7. On the contrary, Cys auxotrophy significantly affected the root colonization 

ability of mutant ME1508, which overall displayed the lowest populations sizes at the 

end of the bioassays (>100 DAI). Moreover, mutant ME1508 had lost wild-type VWO 

biocontrol phenotype.  Importance of amino acid synthesis has been earlier shown 

for the colonization of tomato roots by P. fluorescens strain WCS365 (Simons et al., 

1997). Plant roots produce exudates composed of a broad range of low-molecular 

(i.e. amino acids, organic acids, sugars, phenolics, etc.) and high-molecular [i.e. 
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mucilage (polysaccharides), proteins, etc.] weight compounds (Bais et al., 2006). Soil 

microorganisms are chemically attracted by root exudates, which serve as an 

important source of nutrients, including amino acids. Among amino acids synthesized 

by roots, Cys and cystine (oxidation of two Cys molecules covalently linked via 

disulfide bond) have been  detected in root exudates of several plant species (Gitte  

et al., 1978; Gaworzewska and Carlile, 1982; Dennis et al., 2010). A gene coding for a 

putative sulfite reductase, an enzyme related with Cys metabolism, has been 

identified in mutant ME1508. Moreover, this mutant was unable to grow in SSM in 

contrast to nutrient-rich media (i.e. LBA and KBA) where ME1508 grew normally. 

Amendment of L-Cys to SSM restored the ability of ME1508 to grow and produce 

Pvd. It is plausible to think that low availability of Cys in the olive rhizosphere makes 

it ME1508 less efficient in root/rhizosphere colonization, and consequently in VWO 

suppression effectiveness.  Nevertheless, its ability to colonize inner root tissues 

remained unaffected, in spite of the fact that rhizosphere populations of ME1508 

were overall significantly lower than that of the parental strain.   

 

Mechanisms involved in the endophytic colonization of roots by bacteria, 

including beneficial Pseudomonas spp., are mostly unknown (Hardoim et al., 2008; 

Reinhold-Hurek and Hurek, 2011). Recent comparative genomics and bioinformatics 

approaches may shed light on the identification of specific traits linked to 

endophytism by beneficial bacteria (Mitter et al., 2013; Ali et al., 2014).  So far, 

however, only a few bacterial characteristics have been shown, mostly by mutational 

studies, as truly implicated either on gaining entrance into the root interior, 

spreading to distant organs, or endurance within plant tissues (Reinhold-Hurek and 

Hurek, 2011). For instance, a pilT mutant of Azoarcus sp. BH72 unable of twitching 

motility was impaired in the endophytic colonization of rice (Böhm et al., 2007). 

Twitching and swarming motilities have not been demonstrated in strain PICF7 under 

tested conditions. While swimming motility has been shown for PICF7, our results 

indicate that this phenotype is not relevant for inner colonization of olive roots by 

strain PICF7. The same accounts for Pvd production, in vitro growth delay and Cys 

auxotrophy. Indeed, all PICF7 mutants tested in this study could be clearly observed 

colonizing the intercellular spaces of the root cortex. Interestingly enough, root 

tissue sectioning and CLSM imagery allowed to demonstrate that PICF7, ME419, 

ME589 and ME1508 were also able to colonize root xylem vessels, a location not 

detected in previous studies (Prieto and Mercado-Blanco, 2008; Prieto et al., 2009, 

2011). However, no evidence of PICF7 movement from roots to above-ground organs 

using the lumen of the xylem vessels was obtained under experimental conditions 
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used here, corroborating previous results using in vitro-propagated olive plants and a 

root-dip inoculation protocol (Maldonado-González et al., 2013).  

 

Pseudomonas spp. produce a large variety of siderophores to cope with iron-

limiting conditions (Bultreys, 2007), Pvds being the prevalent class (Meyer, 2000). In 

addition, many plant beneficial Pseudomonas spp. strains produce additional, 

secondary siderophores (Buysens et al., 1996; Mercado-Blanco et al., 2001b; Loper et 

al., 2012). The involvement of Pseudomonas-produced siderophores in biological 

control is controversial. They may act through competition of Fe3+, thereby limiting 

its availability for pathogens. Besides, disease suppression mediated by siderophores 

has been shown to play an important role in some cases (Buysens et al., 1996; 

Audenaert et al., 2002), but minor (or no involvement at all) in others (Hamdan et al., 

1991; Ongena et al., 1999; Djavaheri et al., 2012). Some Pseudomonas-produced 

siderophores have also been suggested to suppress plant diseases via induction of 

systemic resistance, although this issue is also controversial (Djavaheri et al., 2012; 

Bakker et al., 2014). Pseudomonas fluorescens PICF7 produces Pvd (Mercado-Blanco 

et al., 2004; this study), although production of additional, secondary siderophore(s) 

cannot be completely ruled out according to PICF7 genome data (Martínez-García et 

al., 2015). In fact, a large number of PICF7 mutants with altered phenotypes in iron-

chelating ability have been generated in this study. However, we focused our 

attention on a mutant fully impaired in Pvd production (ME589), a phenotype 

corroborated by cultivation of this mutant in different growing media and by the 

identification of the gene disrupted in its genome (a putative pvdI homologue). 

Mutant ME589 showed a similar behaviour than PICF7 regarding root colonization 

ability, endophytism and biocontrol performance. It can, therefore, be concluded 

that Pvd production does affect neither VWO biocontrol effectiveness nor 

endophytic colonization by strain PICF7.  

 

Finally, attention should be called here to the frequently observed biocontrol 

inconsistency/variability, a phenomenon amply referred in the literature (Lindow, 

1988; Kraus and Loper, 1992). Biocontrol/colonization assessment carried out in this 

study showed variable results among bioassays (Table 2.4), a situation previously 

found when characterizing biocontrol strains from olive roots, including PICF7 

(Mercado-Blanco et al., 2004). It is therefore compulsory, in our opinion, to present 

results from different independent biocontrol assays before to state sound 

conclusions regarding biocontrol performance of any claimed BCA. This is particularly 

true when the niche where the host plant, the pathogen, the introduced BCA and the 
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resident microbiota interact is the rhizosphere. This is a complex, highly dynamic 

scenario where a multiplicity of trophic interactions takes place, thereby influencing 

the fitness and performance of the BCA (Berg et al., 2006; Raaijmakers et al., 2009). 

In our case, this scenario poses the added experimental difficulties of dealing with a 

nursery-propagated woody host plant used under non-gnotobiotic conditions.  

 

In summary, results presented here shed light, for the first time, on the 

actual involvement of specific P. fluorescens PICF7 phenotypes in olive root 

colonization and biocontrol against V. dahliae. Mutant analysis showed that 

swimming motility and Pvd production are not implicated in VWO suppression and 

endophytic behaviour displayed by PICF7. Cys auxotrophy compromised wild-type 

phenotypes such as VWO control and root colonization ability but did not hinder 

inner colonization of olive root tissues. The availability of a PICF7 mutant library will 

allow the screening of more phenotypes in the future, aiming to unravel the 

underlying mechanisms of PICF7 biocontrol and endophytism in a woody long-living 

plant such as olive. 
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Supplementary data  

 

 

Figure 2. S1. Phenotypes displayed by Pseudomonas 
fluorescens PICF7 mutant derivatives carrying 
plasmid pLRM1 in SM (up left), PDA (up right), CAS 
(down left) and SSM (down right) agar media. As 
observed for strain PICF7 and its Tc

R
 mutant 

derivatives (results shown in Fig. 1), the GFP-labelled 
ME419 mutant (gltA-G) displayed growth delay in 
PDA. The GFP-labelled ME424 mutant (fliI-G) 
showed lack of swimming motility in SM. The GFP-
labelled ME589 mutant (pvdI-G) was impaired in 
pyoverdine (Pvd) synthesis in CAS. Finally, the GFP-
labelled ME1508 mutant (Cys Aux-G) displayed 
cysteine auxotrophy in SSM. 
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Table 2. S1. Root colonization ability of GFP-labeled (Gm
R
) Pseudomonas.  

 

Treatment
1 Bacterial population          

(log10 cfu g
-1

 of fresh root)
2 

P. fluorescens  

PICF7-G 6.2 ± 0.1
 

ME419-G 6.0 ± 0.4
 

ME424-G 5.6 ± 0.4
 

ME589-G  4.5 ± 0.2
* 

ME1508-G 6.2 ± 0.5
 

 

1
 The root system of three-month-old olive plants were dipped in Gm

R
 mutant suspensions (1.4 - 2.5 x 

10
9 

cfu/ml) for 15 min and then transplanted into autoclaved soil. Plants were grown in a growth 

chamber under controlled conditions (see text for details). 
2
 Cell counts of Pseudomonas mutants were determined on modified King´s medium B agar amended 

with Gm. Data are means of two root samples (1 g each). Means followed by asterisk are significantly 

different according to Student’s t-test (α= 0.05) 

 
Table 2. S2. Phenotypes of pre-selected Pseudomonas fluorescens PICF7 mutant derivatives. 

 

Strain 
Code

 
Swimming motility

1 
Siderophore production

2 

SM (%)
 

CAS (%)
 

KB
 

SSM
 

PICF7 + + ++ ++ 

ME75 69* + ++ ++ 

ME78 + + ++ + 

ME81 + + + ++ 

ME93 -* -* - Aux 

ME95 -* + - + 

ME98 + + ++ + 

ME150 + + + ++ 

ME173 + 119* ++ ++ 

ME177 + + + + 

ME180 + + + ++ 

ME195 + + - ++ 

ME210 + + + + 

ME302 -* 23* - Aux 

ME326 + + + ++ 

ME419
3 

+ + ++ ++ 

ME424 -* + ++ ++ 

ME432 70* + + + 

ME433 + 83* - + 

ME436 + + + ++ 

ME452 + 115* + ++ 

ME458 + 116* ++ ++ 

ME502 35* + ++ ++ 

ME503 38* + ++ ++ 

ME524 + -* - - 
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ME537 + + - - 

ME589 + -* - - 

ME670 64* + ++ + 

ME720 + + + + 

ME859 + + + ++ 

ME886 + -* - ++ 

ME1045 + + + ++ 

ME1068 + + + ++ 

ME1144 + 78* + + 

ME1157 + + + ++ 

ME1178 + + + + 

ME1186 + -* - - 

ME1255 70* + + ++ 

ME1321 + 83* + Aux 

ME1355 61* 69* + + 

ME1431 51* + ++ ++ 

ME1434 + 117* ++ ++ 

ME1508 + + ++ Aux 

ME1578 + -* - - 

ME1586 + -* - - 

ME1622 64* + + + 

ME1688 + -* - - 

ME1690 + + ++ + 

ME1694 + -* - - 

ME1726 + 62* + + 

ME1854 + -* - - 

ME1906 -* + ++ Aux 

ME1919 + 57* + + 

ME1946 + -* - - 

ME1966 + -* - - 

 
1
 Swimming motility was assessed after overnight incubation (25°C) of each mutant along with the 

parent strain PICF7 in SM (swimming motility medium) per triplicate. Percentage of swimming motility 

was calculated comparing diameter of both mutant and strain PICF7 assigning the value of 100% to the 

parental strain. Means followed by asterisk are significantly different according to Two-sided Dunnett's 

Multiple Comparisons with a Control (PICF7) at α= 0.05. +, motility similar to strain PICF7; -, no motility. 
2
 Siderophore production of pre-selected mutants (55) was observed in different media such as CAS 

(Chrome azurol S), KBA (King´s B agar) and SSM (standard succinate medium) per triplicate (see text for 

details). In CAS medium iron-chelating compounds synthesis was established as production of orange 

haloes around siderophore-producing colonies ([halo diameter - colony diameter]/halo diameter) 

expressed in percentage when compare to wild type PICF7 (100%). In KBA and SSM media siderophore 

synthesis was revealed by fluorescence under UV irradiation.  Relative haloes size data were subjected 

to analysis of variance (ANOVA) and means were compared to strain PICF7 mean using Two-sided 

Dunnett's Multiple Comparisons with a Control at P < 0.05. ++, wild type; +, reduced fluorescence; -, no 

fluorescence; Aux, auxotrophy.  
3
 This mutant was selected according to its reduced growth on PDA (see main text for details). 
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3.1. Summary 

 

The effective management of Verticillium wilts (VWs), diseases affecting many crops 

and caused by some species of the soil-borne fungus Verticillium, is problematic. The 

use of microbial antagonists to control these pathologies fits modern sustainable 

agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium 

isolated from olive roots with demonstrated ability to control VW of olive caused by 

the highly-virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, 

the study of the PICF7-V.dahliae-olive tripartite interaction poses difficulties because 

of the inherent characteristics of woody, long-living plants. To overcome these 

problems we explored the use of the model plant Arabidopsis thaliana. Results 

obtained in this study showed that: (i) olive D and non-defoliating (ND) V. dahliae 

pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 

is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in 

Arabidopsis; and (iii) strain PICF7 controls (VW) in Arabidopsis. Additionally, as 

previously observed in olive, neither swimming motility nor siderophore production 

by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy 

decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 

controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this 

strain is able to induce systemic resistance. Arabidopsis thaliana is therefore a 

suitable alternative to olive bioassays to unravel biocontrol traits involved in 

biological control of V. dahliae by P. fluorescens PICF7.  
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3.2. Introduction 

 

Verticillium spp. are soil-borne, cosmopolitan ascomycete fungi producing vascular 

wilts and severe losses in many economically-relevant crops worldwide (Pegg and 

Brady, 2002; Fradin and Thomma, 2006; Inderbitzin et al., 2011). Verticillium dahliae 

Kleb. causes most of the known Verticillium wilts (VWs; Agrios, 1997; Jiang et al., 

2005). It seriously compromises olive (Olea europaea L.) cultivation in many countries 

of the Mediterranean Basin, producing Verticillium wilt of olive (VWO). Effective 

control of this disease is difficult because of a number of contributing factors (Tsror, 

2011). In fact, none of the currently-available measures are completely successful 

when applied individually. Therefore, the implementation of an integrated disease 

management strategy is proposed as the most effective way to control VWO, with 

emphasis on preventive (pre-planting) actions (López-Escudero and Mercado-Blanco, 

2011). One of these measures is the use of antagonistic rhizobacteria as biological 

control agents (BCA), particularly in pathogen-free certified olive plants at the 

nursery-production stage (Tjamos, 1993). Beneficial rhizosphere Pseudomonas spp. 

strains have been extensively studied and used as BCA, exploiting a range of 

mechanisms including production of antibiotics, competition for nutrients and/or 

colonization sites, and induced systemic resistance (Weller et al., 2002; Haas and 

Défago, 2005; Mercado-Blanco and Bakker, 2007). Selected strains of Pseudomonas 

spp. have thus shown successful in suppressing VW in different susceptible hosts, 

including olive (Berg et al., 2006; Debode et al., 2007; Uppal et al., 2008; Erdogan and 

Benlioglu, 2010; Sanei and Razavi, 2011; Triki et al., 2012).  

 

The olive root endophyte P. fluorescens PICF7 is an effective BCA of VWO 

caused by the defoliating (D, highly virulent) pathotype of V. dahliae in nursery-

propagated olive plants (Mercado-Blanco et al., 2004; Prieto et al., 2009; Maldonado-

González et al., 2015). Upon olive root colonization, strain PICF7 elicits a broad range 

of defense responses both locally (roots) (Schilirò et al., 2012) and systemically (aerial 

organs) (Gómez-Lama Cabanás et al., 2014). Results from these studies indicated that 

systemic defense responses, either SAR (Systemic Acquired Resistance) (Durrant and 

Dong, 2004) and/or ISR (Induced Systemic Resistance) (Bakker et al., 2007), can be 

triggered in olive tissues after inoculation with PICF7. SAR and ISR are phenotypically 

similar, leading to an enhanced resistance state of the plant. While salicylic acid (SA) 

plays a major role in SAR (Gaffney et al., 1993; Sticher et al., 1997), ISR works through 

jasmonic acid (JA) and ethylene (ET) signaling pathways in most cases (Pieterse et al., 

2014), although there are exceptions (Audenaert et al., 2002). Remarkably, SA, JA 
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and ET pathways have undefined boundaries at some points and can show cross-talk 

between them (Kunkel and Brooks, 2002; Koornneef and Pieterse, 2008; Zamioudis 

and Pieterse, 2012). This situation has been observed in plant defense responses 

triggered by beneficial endophytic bacteria (Conn et al., 2008), including the 

interaction olive-P. fluorescens PICF7 (Schilirò et al., 2012; Gómez-Lama Cabanás et 

al., 2014). From a practical perspective, simultaneous triggering of the SA and the 

ET/JA signaling pathways can lead to enhanced disease suppression thereby 

improving implementation of biological control (Van Wees et al., 2000). 

 

To demonstrate ISR-mediated disease suppression the BCA and the pathogen 

need to be spatially separated throughout the experiment to rule out direct 

interaction between the microorganisms (Van Loon et al., 1998). Whether ISR is 

involved in biocontrol of V. dahliae by strain PICF7 in olive is difficult to assess since 

both microorganisms share the same ecological niche -the root system. One 

possibility would be the use of a split-root system, but this approach is complicated 

in olive. Another possibility is to evaluate PICF7 biocontrol performance against olive 

pathogens affecting above-ground organs (Maldonado-González et al., 2013). Here 

we use the model plant Arabidopsis thaliana, with a range of available mutants in 

defense signaling pathways, to unravel the involvement of induced resistance 

(Segarra et al., 2009). A. thaliana has previously been used to evaluate efficacy of 

BCAs (Meschke and Schrempf, 2010), including ISR-mediated biocontrol of V. dahliae 

(Tjamos et al., 2005).  

 

Without excluding additional mechanisms (i.e. antibiosis, competition, etc.) 

induction of plant defense response seems to explain the biocontrol activity exerted 

by strain PICF7 (Schilirò et al., 2012; Gómez-Lama Cabanás et al., 2014). However, 

little is known about PICF7 traits implicated in biocontrol efficacy. Mutant analysis 

have recently revealed that production of the siderophore pyoverdine (Pvd) and 

swimming motility are not required for control of VWO nor for endophytic 

colonization by PICF7 (Maldonado-González et al., 2015). Strain PICF7 exhibits good 

and prolonged surface and endophytic colonization abilities in different olive 

cultivars and under diverse experimental conditions (Mercado-Blanco et al., 2004; 

Prieto and Mercado-Blanco, 2008; Prieto et al., 2011). Moreover, colonization ability 

of strain PCF7 is not limited to olive root tissues since our previous studies have 

demonstrated that it can colonize and persist in olive stems (Maldonado-González et 

al., 2013) and even in the root system of sunflower (Helianthus annuus L.) 

(Maldonado-González et al., 2012). Inner and rhizoplane colonization of olive roots 
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by PICF7 seems to be crucial for VWO biocontrol efficacy of strain PICF7 (Prieto et al., 

2009). 

 

Verticillium dahliae isolates infecting olive have been classified into D and 

non-defoliating (ND, moderately virulent) pathotypes (López-Escudero and Mercado-

Blanco, 2011), which correlates with their genetic and molecular differences 

(Mercado-Blanco et al., 2003b; Collado-Romero et al., 2006). Differential virulence 

displayed by isolates that infect olive was shown also in cotton (Gossypium hirsutum 

L.) (Schnathorst and Sibbett, 1971; Dervis et al., 2010). However, D-pathotype 

isolates do not behave as the most virulent group in artichoke (Cynara scolymus L.) 

(Jiménez-Díaz et al., 2006). Pathogenicity of A. thaliana by V. dahliae has been 

demonstrated earlier (Soesanto and Termorshuizen, 2001; Veronese et al., 2003; 

Tjamos et al., 2005; Zhao et al., 2014). However, there is no information on whether 

V. dahliae olive D and ND pathotypes induce the same differential virulence in A. 

thaliana plants than that observed in olive and cotton.  

 

The main objective of this study was to assess whether the model plant A. 

thaliana can be used to identify P. fluorescens PICF7 traits involved in the control of 

V. dahliae. To achieve this, several sub-objectives were pursued: (i) to determine 

whether V. dahliae olive pathotypes (D and ND) cause differential virulence in A. 

thaliana; (ii) to assess whether P. fluorescens PICF7 colonizes and persists in the root 

system of different A. thaliana genotypes; (iii) to check whether strain PICF7 is able 

to endophytically colonize A. thaliana roots; (iv) to investigate whether strain PICF7 is 

able to control VW in different A. thaliana genotypes; (v) to determine whether 

specific PICF7 phenotypes behave in A. thaliana as previously observed in olive 

plants; and (vi) to find out if PICF7 is able to elicit an ISR response in A. thaliana using 

the leaf pathogen Botrytis cinerea. 

 

3.3. Materials and methods 

 

3.3.1. Bacterial strains, fungal isolates, growth conditions and inoculum production 

 

Pseudomonas fluorescens PICF7 (Mercado-Blanco et al., 2004; Martínez-García et al., 

2015), four Tn5-TcR (tetracycline-resistant) transposon insertion mutants 

(Maldonado-González et al., 2015), a PICF7 fluorescently-tagged derivative (Prieto 

and Mercado-Blanco, 2008) and a P. fluorescens WCS417 rifampicin-resistant 

spontaneous mutant (WCS417r) (Lamers et al., 1988) were used in this study (Table 
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3.1). Strain PICF7 mutant ME424 is impaired in swimming motility, mutant ME589 

lacks siderophore Pvd production, mutant ME419 shows growth delay in potato 

dextrose agar (PDA) medium, and mutant ME1508 is a cysteine (Cys) auxotroph 

(Maldonado-González et al., 2015; Table 3.1). To determine strain PICF7’s ability to 

colonize roots of Arabidopsis, a TcR enhanced green fluorescent protein (EGFP)-

labeled derivative (harboring plasmid pMP4655) (Bloemberg et al., 2000; Prieto and 

Mercado-Blanco, 2008) was used in confocal laser scanning microscopy (CLSM) 

experiments (see below). To evaluate possible systemic defense responses strain 

WCS417r was used. All bacterial strains were grown at 28°C on King’s medium B (King 

et al., 1954) agar (KBA) plates, when needed supplemented with antibiotics at the 

following concentrations (mg l-1): tetracycline (Tc, 20); ampicillin (Amp, 50); chloram-

phenicol (Chl, 13); natamycin (Nat, 100) and rifampicin (Rf, 50).  

 
Table 3.1. Bacterial strains and plasmids used. 

 

Strains or 

plasmids 
Characteristics Reference or source 

Bacterial strains   

P. fluorescens   

PICF7 Wild-type olive root endophyte Mercado-Blanco et al., (2004) 

ME419  PICF7 Tn5 (Tc
R
) in vitro growth mutant derivative, GltA

-
 Maldonado-González et al., (2015) 

ME424 PICF7 Tn5 (Tc
R
) motility mutant derivative, FliI

- 
Maldonado-González et al., (2015) 

ME589 PICF7 Tn5 (Tc
R
) siderophore 

 
mutant derivative, PvdI

- 
Maldonado-González et al., (2015) 

ME1508 PICF7 Tn5 (Tc
R
) auxotroph Cys mutant derivative

 
Maldonado-González et al., (2015) 

PICF7 (pMP4655) PICF7 (Tc
R
) EGFP-labeled derivative Prieto and Mercado-Blanco, (2008) 

WCS417r Spontaneous rifampicin mutant of strain WCS417 Lamers et al., (1988) 

Plasmids   

pMP4655 oriBBR1, oriVS1, oriT (p15A), lac::eGPF, Tc
R
 (Bloemberg et al., 2000) 

 

GltA, type II citrate synthase; FliI, flagellum-specific ATP synthase; PvdI, putative pyoverdine non-

ribosomal peptide synthetase; Tc, tetracycline; Cys, cysteine; EGFP, Enhanced Green Fluorescence 

Protein. 

 

Pseudomonas inoculum was prepared as described by Maldonado-González 

et al., (2013). Bacterial cell densities required for each experiment were adjusted 

spectrophotometrically (A600 nm) by building up standard curves and culturing 

viable cells from serial dilution series onto KBA plates (to count PICF7 wild type 

colonies), or KBA plates supplemented with Tc or Rf (for Tn5 mutant and EGFP-

labeled PICF7 derivatives and WCS417r, respectively). 
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Four isolates of V. dahliae, three representative of the D pathotype (V150I 

and V937I isolated from olive and V138I originated from cotton, all belonging to the 

vegetative compatibility group [VCG] 1A) and one of the ND pathotype (V789I, 

belonging to VCG4B and isolated from olive) (Collado-Romero et al., 2006), were 

used in this study. These isolates are deposited in the culture collection of the 

Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, 

Spain. Inocula of V. dahliae isolates were prepared as described by Mercado-Blanco 

and co-workers (2004). 

 

The necrotrophic fungus B. cinerea was used to carry out ISR assays. A 

conidial suspension (100 µl) of the pathogen (stored at -80°C) was inoculated on half-

strength PDA plate and grown at 22°C for one month at 9.5-h photoperiod (100 μmol 

m-2 s-1). Then, 5-10 ml of half-strength PDB was added to the plates, and conidia were 

released from the mycelium by scraping with a sterile glass rod. The conidial 

suspension was filtered through sterile glass wool and the density was adjusted with 

sterile half-strength PDB. 
 

3.3.2. Plant material and plant growth conditions 

 

Several genotypes of A. thaliana were used: wild-type Col-0 and its derivatives ein2 

(ET insensitive2, affected in the protein EIN2, central component in the ET signal 

transduction pathway and first positive regulator in the route) (Guzmán and Ecker, 

1990), jar1 (affected in jasmonyl isoleucine conjugate synthase 1, enzyme essential in 

the production of JA) (Pieterse et al., 1998), myb72 (affected in R2R3-MYB-like 

transcription factor protein, unable to elicit ISR response) (Van der Ent et al., 2008), 

sid1 (defective in a member of the MATE [multidrug and toxic compound extrusion 

transporter] family, required for SA accumulation, no SAR response) (Serrano et al., 

2013), and sid2 (isochorismate synthase mutant, unable to elicit SAR response) 

(Nawrath and Métraux, 1999). Seeds were carefully distributed over wet river sand 

supplemented with half-strength Hoagland nutrient solution contained in a small 

tray. This setup, conveniently moist, was placed within a covered tray. After 2 or 3 

weeks in a growth chamber at 21 ± 1°C, 100% relative humidity and 8-h photoperiod 

(200 μmol m-2 s-1), seedlings were used for colonization/biocontrol assays or 

pathogenicity tests. After transplanting, plant growth conditions for all experiments 

were 21°C ± 1°C, 70 % relative humidity and 8-h photoperiod of fluorescent light as 

indicated above. 
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3.3.3. Verticillium wilt development in Arabidopsis thaliana: pathogenicity tests 

 

To determine whether olive- and cotton-infecting V. dahliae isolates produce disease 

symptoms in A. thaliana plants, isolates V138I, V150I, V937I and V789I (see above), 

were tested in accession Col-0 and its mutant derivatives ein2, jar1 and sid1 (see 

above). Three-week-old Arabidopsis plants (20) of each genotype were inoculated by 

dipping their root system in a conidial suspension (7.5 x 105 - 2.9 x 10 6 conidia ml-1) 

of each V. dahliae isolate or in distilled sterile water (control treatment). Arabidopsis 

seedlings were then gently transplanted to soil (potting soil:river sand, 12:5) 

previously autoclaved twice for 20 min with a 24-h interval. Plants were grown in a 

growth chamber under controlled conditions described above. Disease incidence was 

scored as the percentage of diseased leaves of the total number of leaves infection 

according to the following scale: 0, no symptom; 1, 1-33%; 2, 34-66%; 3, 67-100%; 

and 4, dead plant. Disease score was performed twice a week after pathogen 

inoculation during the first month and, onwards, every 7 days (14, 18, 21, 25, 32 and 

39 days after inoculation [DAI]).  

 

Data were submitted to analysis of variance (ANOVA). Disease severity data 

were used to calculate: (i) a disease intensity index (DII) defined as DII =(ΣSi x Ni)/(4 x 

Nt), where Si is severity of symptoms, Ni is the number of plants with Si symptoms 

severity, and Nt the total number of plants; (ii) the final disease incidence (final DI) 

determined as the percentage of affected plants; and (iii) the standardized area 

under the disease progress curve of DII plotted over time (days) (SAUDPC) (Campbell 

and Madden, 1990). ANOVA was calculated by means of Statistix (NH Analytical 

Software, Roseville, MN). Treatment means were compared using Fisher’s protected 

least significant difference (LSD) test at α = 0.05.  

 

3.3.4. Colonization of Arabidopsis thaliana rhizosphere by Pseudomonas 

fluorescens PICF7 and its mutant derivatives  

 

To demonstrate whether strain PICF7 is capable to colonize and persist in the 

rhizosphere/roots of A. thaliana plants, three Arabidopsis genotypes where used 

(Col-0 and its mutant derivatives myb72 and sid2). Colonization ability of PICF7 

mutants ME419, ME424, ME589 and ME1508 (Table 3.1) was also evaluated in Col-0 

plants. Prior to transplantation of 2-week-old Arabidopsis seedlings, the soil (potting 

soil:river sand, 12:5) was bacterized with a cells suspension of PICF7 or each mutant 

derivative (8.0 x 107- 2.8 x 108 cfu [colony-forming units] g-1 soil) as described by 
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Djavaheri et al., (2012). Plants were kept in a growth chamber (conditions describe 

above) for 3-4 additional weeks. Then, three root systems per bacterial treatment 

were harvested and shaken for 1 minute in 5 ml of 10 mM MgSO4·7H2O containing 

0.5 g of glass beads (Pieterse et al., 1996). For bacteria counts, 10 µl-drops from serial 

dilutions of root macerates were deposited onto the surface of KBA plates (two per 

dilution) supplemented with Amp, Chl and Nat for PICF7, plus Tc in the case of TcR 

mutant derivatives. Bacterial colonies were scored after incubation at 28°C during 24 

h. This experiment was performed three times. Data were subjected to ANOVA and 

means were compared to colonization of strain PICF7 in Col-0 plants using Two-sided 

Dunnett’s Multiple Comparisons with a Control at α = 0.05.  

 

3.3.5. Verticillium wilt of Arabidopsis thaliana biocontrol experiments 

 

Bioassays were carried out to evaluate the ability of P. fluorescens PICF7 to control V. 

dahliae in A. thaliana. Likewise, the biocontrol performance of selected PICF7 

mutants (ME419, ME424, ME589 and ME1508) was also tested. To assess whether P. 

fluorescens PICF7 and its mutants exerted biocontrol against V. dahliae, A. thaliana 

Col-0 and its mutants myb72 (no ISR response) and sid2 (no SAR response) were 

used. Two-week-old seedlings were transplanted to Pseudomonas-bacterized soil 

(potting soil:river sand, 12:5) (8.0 x 107- 2.8 x 108cfu g-1 soil) or 10 mM MgSO4·7H2O 

(control). Seedlings were grown for 1 week under controlled conditions as previously 

mentioned. After that, plants (20-25) were uprooted, rinsed with tap water and their 

root systems dipped in a conidial suspension (3.9 x 105- 4 x 106 conidia ml-1) of the 

olive D isolate V. dahliae V937I. Control plants (10) were immersed in sterile distilled 

water.  

 

Disease symptoms (chlorosis, wilting) were scored along the experiments 

twice a week according to the scale ranged from 0 to 4 previously described, and 

SAUDPC, DII and final DI were calculated (see above). Biocontrol bioassays were 

repeated three (for PICF7 evaluation) or two (for mutant derivatives assessment) 

times. SAUDPC data were subjected to ANOVA and means were compared using 

Fisher’s protected LSD test at α = 0.05.  
 

3.3.6. Botrytis cinerea ISR bioassay 

 

To assess whether P. fluorescens PICF7 was able to elicit ISR in A. thaliana the foliar 

pathogen B. cinerea was used. Two independent bioassays were carried out with A. 

thaliana Col-0 plants. Bioassays were accomplished using 7-week-old Arabidopsis 
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plants (20) previously grown either in control soil or in P. fluorescens PICF7- or 

WCS417r- (positive control) treated soil (9 x 107- 2 x 108 cfu g-1 soil) for 5 weeks. 

Then, six to eight well-developed leaves were inoculated by applying 5 μl droplets of 

a conidial suspension of B. cinerea (1.7 - 7.5 x 105 conidia ml-1 half strength PDB) 

(Djavaheri et al., 2007). Plants were then kept at 100% relative humidity for 2 to 4 

days and disease symptoms scored according to the following scale: 0, no symptoms; 

1, small non-spreading lesion; 2, small non-spreading lesion with chlorosis; 3, 

spreading lesion with chlorosis; 4, spreading lesion and leaf completely chlorotic or 

dead. Severity data were used to calculate percentage of disease leaves per plant and 

then subjected to ANOVA. Data means were compared using Fisher’s protected LSD 

test at α = 0.05.  

 

3.3.7. Confocal laser scanning microscopy  

 

In order to assess the colonization ability of P. fluorescens PICF7 in A. thaliana roots, 

experiments using in vitro- and pot-grown Arabidopsis plants (Col-0, myb72 and sid2) 

were conducted. The experiment with in vitro-propagated plants was performed 

using seeds of each A. thaliana genotype dipped in 500 µl of an EGFP-tagged PICF7 

derivative (Table 3.1) bacterial suspension (1.3 x 109 cfu ml-1), contained in microfuge 

tubes, and incubated at 25°C, 400 rpm for 4 h. Then, bacterized seeds (20) of each 

genotype were placed separately in two different lines (10 per line) on the surface of 

a square water-agar plate (12 cm x 12 cm). All plates were kept in a growth chamber 

at 23 ± 2°C in the dark. In experiment with plants grown in pots, sterile mixed soil 

(potting soil:river sand, 12:5) supplemented with half-strength Hoagland solution (70 

ml Kg-1) was inoculated with the EGFP-tagged PICF7 derivative (8.4 x 108 cfu ml-1) and 

placed into pots. Then, six 2-week-old plants per genotype were placed individually 

per pot and incubated in a growth chamber at 23 ± 2°C with a 8-h photoperiod of 

fluorescent light (65 μmol m-2 s-1), 100% relative humidity.  

 

To visualize EGFP-tagged PICF7 cells, two plants per genotype were removed 

from the corresponding substrates (water agar or mixed soil) and the aerial part 

excised. In the case of seedlings explanted from pots, roots were carefully rinsed with 

water to eliminate soil particles. Then, fresh and intact roots were visualized under 

Axioskop 2 MOT microscope (Carl Zeiss, Jena GmbH, Germany) set with a krypton 

and an argon laser, controlled by Carl Zeiss Laser Scanning System LSM5 PASCAL 

software (Carl Zeiss) at time points 12, 15, 18, 29 days after bacterization (DAB) for 

the in vitro assay and 25 DAB (final time) for the in planta experiment. CLSM captures 
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were transferred for analysis to Zeiss LSM Image Browser version 4.0 (Carl Zeiss). 

Processing of images was carried out by AdobePhotoshop CS version 8.0.1 software 

(Adobe Systems, San Jose, CA, USA). 

 

3.4. Results 

 

3.4.1. Verticillium dahliae olive D and ND pathotypes are differentially virulent on 

Arabidopsis thaliana 

 

Pathogenicity test carried out in A. thaliana Col-0 and its mutant derivatives ein2 and 

jar1, insensitive to ET and JA, respectively, and sid1 impaired in SA biosynthesis 

showed that all V. dahliae isolates tested produced VW symptoms in all A. thaliana 

genotypes. Interestingly enough, differences in symptoms appearance and severity 

(chlorosis, wilting and growth delay; Figure 3.1) were found depending on the 

infecting pathotype. Overall, disease symptoms developed earlier in plants 

inoculated with D isolates (V138I, V150I and V937I) compared to ND-inoculated 

plants (isolate V789I) (first symptoms observed at 7 and 14 DAI, respectively). Thus, 

severe to moderate disease symptoms were observed in all A. thaliana genotypes 

when inoculated with D isolates (SAUPDC values ranged from 0.43 to 0.86; DII 0.55 to 

0.96; Final DII 85-100%; Table 3.2). In contrast,  plants  inoculated  with isolate  V789I 

 

 
 

Figure 3.1. Scale of symptoms (chlorosis, wilting) produced by the defoliating isolate V937I (A) and the 

non-defoliating isolate V789I (B) of Verticillium dahliae in Arabidopsis thaliana Col-0 plants. Numbers 

represent the percentage of diseased leaves of the total number of leaves: 0, no symptom; 1, 1-33%; 2, 

34-66%; 3, 67-100%; and 4, dead plant. Severity of symptoms produced by isolate V937I (0-4; A) was 

always higher than that observed for V789I-inoculated plants (0-3; B). These symptoms were observed 

in all A. thaliana genotypes analyzed in this study (see text for details). 
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Table 3.2. Pathogenicity test of selected isolates of olive defoliating (D) and non-defoliating (ND) 

Verticillium dahliae pathotypes carried out in different Arabidopsis thaliana accessions. 

 

A. thaliana 

genotype 

V. dahliae 

isolate
 

Disease assessment 

SAUDPC DII Final DI (%) 

Col-0 V138I (D) 0.80
a
 0.95 100 

 V150I (D) 0.86
a
 0.95 100 

 V937I (D) 0.53
cd

 0.70 100 

 V789I (ND) 0.48
de

 0.39   95 

ein2 V138I (D) 0.80
a
 0.94 100 

 V150I (D) 0.83
a
 0.95 100 

 V937I (D) 0.75
ab

 0.87 100 

 V789I (ND) 0.36
ef

 0.24   80 

jar1 V138I (D) 0.74
ab

 0.89   95 

 V150I (D) 0.65
bc

 0.74   95 

 V937I (D) 0.43
d
 0.55   85 

 V789I (ND) 0.23
f
 0.19   50 

sid1 V138I (D) 0.85
a
 0.96 100 

 V150I (D) 0.74
ab

 0.93 100 

 V937I (D) 0.49
d
 0.65   85 

 V789I (ND) 0.44
d
 0.41   85 

 

Standardized area under the disease progress curve (SAUDPC) of a DII (disease intensity index) plotted 

over time and final disease incidence (DI, percentage of affected plants) were calculated at the end of 

the experiment (38 days after pathogen inoculation). Means in a column followed by different letters 

are significantly different in accordance to Fisher’s protected LSD test (P < 0.05). See Section “Materials 

and Methods” for details. 

 

(ND) always showed lower disease parameters (i.e. SAUPDC values varied from 0.23 

to 0.48; DII 0.19 to 0.41; Final DII 50-95%) than D isolates (Table 3.2). Disease 
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symptoms produced by V. dahliae V937I (D) were intermediate and, for instance, 

SAUDPC data were not significantly different from that of V789I (ND) in both Col-0 

and sid1 plants (Table 3.2). Disease severity caused by V. dahliae isolates was also 

different depending on the A. thaliana genotype tested. Thus, disease symptoms 

(SAUDPC) produced by isolate V150I (D) were significantly (P < 0.05) less severe in 

jar1 than in Col-0 and ein2 plants (Table 3.2); isolate V937I (D) induced significantly 

(P < 0.05) higher disease severity in ein2 plants (SAUDPC 0.75) than in the other 

tested genotypes; or isolate V789I (ND) was significantly (P < 0.05) less virulent in 

jar1 in comparison to Col-0 and sid2 plants (Table 3.2). Overall, V138I and V150I 

behaved as the most virulent isolates in all A. thaliana genotypes tested (Table 3.2).  

 

3.4.2. Pseudomonas fluorescens PICF7 colonizes and persists on Arabidopsis 

thaliana roots but is not endophytic  

 

Strain PICF7 was able to colonize and persist on roots of Col-0, myb72 and sid2 plants 

as bacterial counts shown after 32-40 DAB in three experiments carried out. PICF7 

population sizes observed (Table 3.3) were not significantly different (P = 0.10; P = 

0.64 and P = 0.95, respectively) among A. thaliana genotypes analyzed. Population 

sizes of native rhizobacteria found in control treatment plants were always 

significantly (P < 0.05) lower than PICF7 population sizes found in PICF7-bacterized 

plants but for sid2 plants in experiment I. Native bacteria seemed to be displaced by 

introduced PICF7 cells since population sizes of the former in PICF7-treated plants 

were negligible and/or impossible to determine (Table 3.3). 
 

In order to assess the ability of strain PICF7 to endophytically colonize A. 

thaliana plants, roots of plants from different genotypes (Col-0, myb72 and sid2), 

bacterized with an EGFP-labeled PICF7 derivative, and grown either on water agar or 

in soil (pots) conditions were analyze by CLSM. Root samples were visualized by 

CLSM at 12, 15, 18 and 29 DAB (water agar) or at 25 DAB (soil). Under these 

experimental conditions, evidence of endophytic colonization of root tissues was not 

found for any of the examined A. thaliana genotypes, nor at any observation time. 

However, the rhizoplane of bacterized plants was profusely colonized by PICF7 cells 

(Figure 3.2A,B). In contrast, PICF7 is able to colonize the intercellular spaces of the 

olive root cortex (Prieto and Mercado-Blanco, 2008) as shown for comparative 

purpose in Figure 3.2C. 
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Table 3.3. Pseudomonas fluorescens PICF7 root colonization ability and biocontrol performance of V. 

dahliae in different A. thaliana accessions.  

 

Experiment
1 A. thaliana 

genotype 
2 Treatment

 Disease assessment
3 Bacterial population   

(log10 cfu g
-1

 of fresh root)
4
 

SAUDPC DII Final DI (%) PICF7 Native 

  
    

  

1 Col-0 Control 0.56
a 

0.75 94.44 na 5.0 ± 0.1
d 

  P. fluorescens PICF7 0.25
b

 0.51 76.47 6.6 ± 0.1
ab 

- 

 myb72 Control 0.49
a 

0.74 77.78 na 5.7 ± 0.3
c 

  P. fluorescens PICF7  0.18
bc 

0.33 44.44 6.3 ± 0.3
b 

- 

 sid2 Control 0.24
b 

0.35 38.89 na 6.5 ± 0.4
ab 

  P. fluorescens PICF7 0.02
c 

0.03 5.88 6.9 ± 0.3
a 

- 

  
 

   
  

2 Col-0 Control   0.39
abc 

0.55 80.00 na 3.7 ± 0.0
b
 

  P. fluorescens PICF7  0.33
bc 

0.38 79.17 5.6 ± 0.2
a 

- 

 myb72 Control 0.54
a 

0.74 92.00 na 2.8 ± 0.8
c
 

  P. fluorescens PICF7  0.43
ab 

0.56 72.00 5.3 ± 0.4
a 

- 

 sid2 Control 0.27
c 

0.37 68.00 na 2.9 ± 0.2
bc

 

  P. fluorescens PICF7  0.33
bc 

0.47 72.00 5.5 ± 0.2
a 

- 

    
    

3 Col-0 Control 0.17
b 

0.27 58.82 na 4.3 ± 0.1
c
 

  P. fluorescens PICF7 0.14
b 

0.27 72.22 7.2 ± 0.4
a 

- 

 myb72 Control 0.14
b 

0.29 55.00 na 5.9 ± 0.5
b
 

  P. fluorescens PICF7 0.12
b 

0.27 60.00 7.0 ± 0.4
a 

- 

 sid2 Control 0.37
a 

0.64 77.78 na 5.6 ± 0.4
b
 

  P. fluorescens PICF7  0.22
bc 

0.43 63.16 7.0 ± 0.1
a 

- 

   
     

4 Col-0 Control 0.12
b 

0.22 47.37 na nd 

  P. fluorescens PICF7 0.12
b 

0.19 23.81 nd nd 

 myb72 Control  0.27
ab 

0.35 47.37 na nd 

  P. fluorescens PICF7 0.14
b 

0.23 40.00 nd nd 

 sid2 Control 0.39
a 

0.55 70.00 na nd 

  P. fluorescens PICF7 0.15
b 

0.27 42.11 nd nd 
 

1
Four independent experiments were conducted spanning 32 DAI (Experiment 1), 40 DAI (Experiments 2 

and 3) or 37 DAI (Experiment 4). 
2
 The root system of 2-week-old Arabidopsis seedlings were transplanted into PICF7-bacterized soil (8.0 

x 10
7
 - 2.8 x 10

8
 cfu g

-1
 soil) previously autoclaved for colonization assays. In biocontrol experiments, 1 

week after PICF7-treatment plants were uprooted and their root systems dipped in a V. dahliae isolate 

V937I (D pathotype) conidia suspension (3.9 x 10
5
- 4 x 10

6
 conidia ml

-1
) or distilled sterile water (control 

treatment) for 15 min. Plants were then grown in a growth chamber under controlled conditions. See 

Material and Methods for details. 
3
Standardized area under the disease progress curve of DII plotted over time. Final DI, final disease 

incidence (percentage of affected plants at the end of the assay). Means in a column followed by 

different letters are significantly different in accordance to Fisher’s protected LSD test (P < 0.05). 
4
 Strain PICF7 and native bacteria cells counts were carried out on modified King’s medium B agar.  Data 

are means of three root samples (1 g each). Means followed by different letters are significantly 
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different in accordance to Two-sided Dunnett’s Multiple Comparisons with a Control (Col-0 plants) at α = 

0.05. na, not applicable; nd, not determined in this experiment; -, native population not detected or 

negligible in PICF7-bacterized plants. 

 

 
 

Figure 3.2. Confocal laser scanning microscopy (CLSM) images of intact roots from two A. thaliana 

genotypes [Col-0 (A) and myb72 (B)] seedlings showing Pseudomonas fluorescens PICF7 (EGFP-labeled) 

cells location. Microphotographs show that PICF7 successfully colonizes the root surface of Arabidopsis 

(white arrows) but not the root interior. For comparison purposes, endophytic colonization of the root 

cortex of olive by PICF7 is also shown in (C), (see Prieto and Mercado-Blanco [2008] for technical 

details).  CLSM images were taken approximately two weeks after seed (A,B) or root-dip (C) 

bacterization with strain PICF7. Scale bar represents 50 µm in (A,B); and 15 µm in (C); co, cortical cells; e, 

epidermis; rh, root hair; vt, vascular tissue. 

 

3.4.3. Pseudomonas fluorescens PICF7 decreases Verticillium wilt symptoms in 

Arabidopsis thaliana 

 

To determine whether strain PICF7 is able to control V. dahliae in Arabidopsis 

bioassays were conducted in which both the pathogen (isolate V937I, D pathotype) 

and the BCA were root inoculated. Results from four independent experiments 

indicated that strain PICF7 showed a trend to suppress the disease, although results 

varied among bioassays (Table 3.3). Thus, PICF7 was able to significantly (P < 0.05) 

suppress the disease in all A. thaliana genotypes (Col-0, myb72, and sid2) assessed in 

Experiment 1 (Table 3.3). VW control was more consistently observed in sid2 plants 

(Experiments 1, 3 and 4) as revealed by SAUDPC values significantly (P < 0.05) lower 

in PICF7-bacterized plants compared to non-treated plants. Similarly, DII and final DI 

values were lower in these bioassays, but not in Experiment 3 (Table 3.3). Overall, 

disease parameters observed in experiments were lower in PICF7-treated plants 

compared to that in non-bacterized (control) plants, although differences were not 

statistically significant except for the cases mentioned above (Table 3.3). For 

instance, presence of PICF7 in myb72 roots/rhizosphere produced a substantial 

decrease in all disease parameters analyzed in Experiments 2 and 4 (Table 3.3).  
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3.4.4. Behavior of Pseudomonas fluorescens PICF7 mutants in Arabidopsis thaliana  

 

To assess whether A. thaliana can be used in the evaluation of PICF7 traits potentially 

involved in the biocontrol of V. dahliae, selected PICF7 mutants impaired in 

swimming motility or Pvd production, altered growth on PDA medium, or displaying 

Cys auxotrophy were used in three independent bioassays. Overall, results showed 

that neither swimming motility nor Pvd production are implicated in the effective 

biocontrol of VW in Arabidopsis by strain PICF7, but mutations affecting its growth in 

PDA (mutant ME419) or Cys auxotrophy (mutant ME1508; Table 3.4). Differences in 

biocontrol performance were found among experiments, though. For instance, 

ME1508-bacterized (Experiment 1) and ME419-treated (Experiment 2) plants showed 

a significant (P < 0.05) increase in SAUDPC compared to plants pre-treated with the 

parental strain PICF7 (Table 3.4). Furthermore, all PICF7 mutants displayed higher DII 

values than that scored for strain PICF7 in bioassays I and II (Table 3.4). Results from 

bioassay III did not show any significant difference among treatments. However, 

higher final DI percentages were observed for all mutant treatments compared to 

PICF7-treated plants (Table 3.4). Low disease pressure in this bioassay compared to 

that scored in the other two experiments could explain lack of significant differences. 

Finally, all bacterial strains colonized and persisted on roots of Col-0 plants. 

Nevertheless, some differences were found among experiments. Thus, mutant 

population sizes of all strains were not significantly different at the end of 

Experiments 1 and 2. Nonetheless, PICF7 showed a significantly (P < 0.05) larger 

population size in Experiment 3. Interestingly, mutant ME1508 (Cys auxotrophy) 

showed the lowest population size in all experiments (Table 3.4).  

 

3.4.5. Pseudomonas fluorescens PICF7 elicits systemic defense responses against 

Botrytis cinerea in Arabidopsis thaliana  

 

To determine whether P. fluorescens PICF7 can elicit systemic defense responses in 

aerial tissues upon colonization of the root system, disease development by B. 

cinerea inoculated on the leaf was determined in Col-0 plants in two independent 

experiments. Results showed that presence of strain PICF7 in roots reduced disease 

incidence caused by B. cinerea in Col-0 plants in both experiments and to the same 

extent as strain WCS417r, although this decrease was significant (P < 0.05) only in 

Experiment 2 (Table 3.5).  
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Table 3.4. Root colonization ability and V. dahliae biocontrol performance of P. fluorescens PICF7 and 

their mutant derivatives in Col-0 A. thaliana plants.  

 

Experiment
1
 Treatment

2
 

Disease assessment
3
 Bacterial population   

(log10 cfu g
-1

 of fresh root)
4 

SAUDPC DII Final DI (%) 

     
 

1 Control 0.37
ab

 0.61 73.08 nd 

 
P. fluorescens 

   
 

 
PICF7 0.25

b
 0.41 60.00 5.7 ± 0.2

 

 
ME419 (gltA) 0.33

ab
 0.60 79.17 5.5 ± 0.3

 

 
ME424 (fliI) 0.35

ab
 0.63 79.17 5.6 ± 0.1

 

 
ME589 (pvdI) 0.35

ab
 0.50 65.38 5.7 ± 0.3

 

 
ME1508 (Cys Aux) 0.45

a
 0.65 84.00 5.3 ± 0.2

 

     
 

2 Control 0.18
ab 

0.27 58.82 nd 

 
P. fluorescens 

   
 

 
PICF7 0.15

b 
0.27 72.22 7.2 ± 0.4

 

 
ME419 (gltA) 0.36

a 
0.55 84.00 6.6 ± 0.3

 

 
ME424 (fliI) 0.25

ab 
0.44 66.67 7.2 ± 0.2

 

 
ME589 (pvdI) 0.28

ab 
0.44 68.00 7.0 ± 0.4

 

 
ME1508 (Cys Aux) 0.33

ab 
0.50 65.22 6.4 ± 0.2

 

     
 

3 Control 0.13
a 

0.22 47.37 nd 

 
P. fluorescens 

   
 

 
PICF7 0.12

a 
0.19 23.81 7.5 ± 0.4

 

 
ME419 (gltA) 0.11

a 
0.20 36.36 6.5 ± 0.2

* 

 
ME424 (fliI) 0.22

a 
0.31 40.00 6.4 ± 0.1

* 

 
ME589 (pvdI) 0.22

a 
0.43 56.00 6.8 ± 0.4

* 

 
ME1508 (Cys Aux) 0.14

a 
0.24 36.00 6.0 ± 0.4

* 

 

1
Three independent experiments were performed. Experiment 1 and 3 spanned 36 days and Experiment 

2 39 days. 
2
 The root system of 2-week-old Arabidopsis seedlings were transplanted into PICF7 or Tc

R
-mutant 

derivatives bacterized soil (1.0 - 2.8 x 10
8
 cfu g

-1
 soil) previously autoclaved for colonization experiment. 

For biocontrol assays, one week after bacterization plants were uprooted and their roots dipped in a V. 

dahliae isolate V937I (D pathotype) conidia suspension (3.9 x 10
5
- 1.7 x 10

6
 conidia ml

-1
) or distilled 

sterile water (control treatment) for 15 min. Plants were grown in a growth chamber under controlled 

conditions. See Section “Materials and Methods” for details. 
3
Standardized area under the disease progress curve of DII plotted over time. Final DI, final disease 

incidence (percentage of affected plants at the end of the experiment). Means in a column followed by 

different letters are significantly different in accordance to Fisher’s protected LSD test (P < 0.05). 
4
 Pseudomonas cell counts were conducted on modified King’s medium B agar.  Data are means of three 

root samples (1 g each). Means followed by an asterisk are significantly different in accordance to Two-

sided Dunnett’s Multiple Comparisons with a Control (PICF7) at α = 0.05. nd, not determined. 
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Table 3.5. Botrytis cinerea biocontrol by P. fluorescens PICF7 and WCS417r in A. thaliana plants. 

 

Experiment
1 

Treatment
2 

 Diseased leaves (%)
3
 

1 Control 60.18
a
 

 WCS417r 50.00
b
 

 PICF7 58.55
ab

 

2 Control 76.82
a
 

 WCS417r 69.57
ab

 

 PICF7 66.90
b
 

 

1
Two independent experiments were carried spanning 7 weeks. 

2
Two-week-old Arabidopsis Col-0 seedlings were transplanted into control soil or PICF7- or WCS417r- 

bacterized soil (9 x 10
7
 - 2 x 10

8
 cfu g

-1
 soil) previously autoclaved. Five weeks later, six to eight well-

developed leaves were inoculated by applying 5 μl droplets of a conidial suspension of B. cinerea (1.7 - 

7.5 x 10
5
 conidia ml

-1
 half strength PDB). Plants were grown in growth chamber under controlled 

conditions. 
3
Percentage of diseased leaves. Means followed by different letters are significantly different in 

accordance to Fisher’s protected LSD test (P < 0.05).  

 

3.5. Discussion 

 

Control of VWO is difficult, encouraging the implementation of an integrated disease 

management strategy (López-Escudero and Mercado-Blanco, 2011; Tsror, 2011). The 

use of microbial antagonists is gaining attention as an environmentally friendly 

approach for VWO control, particularly as a preventive measure (Mercado-Blanco 

and López-Escudero, 2012). Previous studies have shed light on potential 

mechanisms of P. fluorescens PICF7 involved in V. dahliae control and the endophytic 

lifestyle this bacterium shows in olive roots (Prieto et al., 2009; Schilirò et al., 2012; 

Gómez-Lama Cabanás et al., 2014; Maldonado-González et al., 2015). However, traits 

responsible for the successful biocontrol of VWO exerted by PICF7 remain mostly 

unknown. Furthermore, they are very complex to elucidate because of, among other 

factors, the idiosyncrasy of the host plant (i.e. longevity, large size, long duration of 

bioassays, lack of mutants, etc.). Therefore, the present research aimed to explore 

whether the short-living, genetically well known, and easy-to-manipulate model 

plant A. thaliana was amenable to facilitate and expedite the search for strain PICF7 

traits implicated in VW suppression, and whether results obtained with this model 

system are similar to that observed in the natural tripartite interaction olive-P. 

fluorescens PICF7-V. dahliae. 
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Verticillium dahliae isolates infecting olive (and cotton) are classified into D 

and ND pathotypes, the former being generally more virulent than the latter 

(Schnathorst and Mathre, 1966; Mercado-Blanco et al., 2003b; López-Escudero et al., 

2004). Nevertheless, a complete correspondence between molecular/genetic/ 

pathogenic groups (Collado-Romero et al., 2006) is not always found, and a 

continuum of virulence has been reported (Dervis et al., 2010). Furthermore, they 

can differ in pathogenicity and virulence depending on the host (Jiménez-Díaz et al., 

2006). Since we aimed to assess whether A. thaliana can be used for the evaluation 

of the VWO biocontrol performance of P. fluorescens PICF7, it was necessary to 

determine the pathogenicity and virulence of selected D and ND in this model plant. 

Results showed that all D isolates originating from cotton (V138I) or olive (V150I and 

V937I) used in this study caused more severe disease symptoms than the olive ND 

pathotype (V789I). Therefore, virulence displayed by V. dahliae isolates in 

Arabidopsis plants correlated to that observed in olive. Interestingly, isolate V937I 

had an intermediate virulence and no difference was found between this D 

representative and isolate V789I in Col-0 and sid1 plants, suggesting that the 

continuum of virulence previously observed in olive (Dervis et al., 2010) is also found 

in Arabidopsis. The fact that ND and D olive isolates were pathogenic in Arabidopsis 

and that both pathotypes showed the same differential virulence in this host and in 

olive meant that the first objective of our study was accomplished. In order to avoid 

excessive disease pressure that could potentially mask disease suppression 

effectiveness by the BCA, isolate V937I was selected for subsequent biocontrol 

experiments.  

 

Efficient colonization of the target plant tissue by a BCA is a prerequisite for 

effective biocontrol (Lugtenberg et al., 2001; Mercado-Blanco and Bakker, 2007). 

Furthermore, endophytic lifestyle displayed by some rhizobacteria leading to benefits 

to the plant is an interesting biotechnological potential to be explored (Mercado-

Blanco and Lugtenberg, 2014). The biocontrol strain PICF7 colonizes and persists 

on/in olive root tissues (Mercado-Blanco et al., 2004; Prieto and Mercado-Blanco, 

2008). It can also persist in olive stems after artificial inoculation (Maldonado-

González et al., 2013), and it efficiently colonizes the root system of an unrelated 

species such as sunflower (Maldonado-González et al., 2012). Results from this 

present study demonstrated that strain PICF7 is also able to colonize and persist on 

roots of A. thaliana genotypes, indicating that this BCA has a wide host colonization 

range. This apparent broad colonization ability makes it strain PICF7 as an excellent 

candidate to be studied as a model bacterium in plant-microbe interactions. 
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However, no evidence of endophytic colonization was found under experimental 

conditions used. Indeed, while PICF7 is able to internally colonize the root hairs 

(Prieto et al., 2011), the intercellular spaces of the root cortex (Prieto and Mercado-

Blanco, 2008; Figure 3.2C), and the root vascular tissue (Maldonado-González et al., 

2015) of olive, endophytic lifestyle of PICF7 seems to be hindered in Arabidopsis 

(Figure 3.2A,B).   

 

Pseudomonas fluorescens PICF7 is able to induce a multiplicity of defense 

responses in olive root tissues upon root inoculation (Schilirò et al., 2012). Recently, 

defense responses were shown to be also induced systemically, and it has been 

hypothesized that both SA- and JA/ET-mediated signaling responses can be involved 

in biocontrol exerted by PICF7 (Gómez-Lama Cabanás et al., 2014). However, actual 

implication of ISR and/or SAR responses in suppression of VWO has not yet been 

demonstrated. This is hampered because both strain PICF7 and V. dahliae share the 

same niche (roots). Spatial separation of the pathogen and the BCA is needed to 

prove ISR. Our previous works have aimed to assess the effectiveness of systemic 

defense responses mediated by PICF7 against another olive pathogen affecting 

above-ground organs (Pseudomonas savastanoi pv. savastanoi; Psv) and producing 

olive knot disease (Ramos et al., 2012). However, root colonization by PICF7 did not 

impair development of tumors in Psv-inoculated olive stems (Maldonado-González et 

al., 2013). Thus, even though PICF7 triggers a wide range of systemic defense 

responses (Gómez-Lama Cabanás et al., 2014), they do not seem to be effective 

against Psv. Arabidopsis has been earlier used to prove the involvement of ISR 

against V. dahliae mediated by the BCA Paenibacillus alvei K165 (Tjamos et al., 2005). 

Moreover, A. thaliana has also served to prove that an endophytic strain (P. 

fluorescens FPT9601-T5) originating from tomato (Solanum lycopersicum Mill) is able 

to trigger systemic defense responses effective against Pseudomonas syringae pv. 

tomato (Wang et al., 2005). Consequently, two different approaches were followed. 

On the one hand, to evaluate whether presence of PICF7 in Arabidopsis roots can 

control disease caused by the foliar necrotrophic fungus B. cinerea. On the other 

hand, to assess whether PICF7 biocontrol performance against VW was affected in A. 

thaliana mutants unable to trigger ISR (myb72) or SAR (sid2). In the first approach, 

spatial separation of the BCA and the pathogen is guaranteed particularly because no 

evidence of endophytic colonization of Arabidopsis tissues by PICF7 was obtained. 

Therefore, mechanisms such as competition and/or antagonism can be excluded in 

this case. Despite the fact that results varied between bioassays, PICF7 was able to 

significantly decrease symptoms caused by B. cinerea to the same extent as P. 
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fluorescens WCS417r (Table 3.5), as previously demonstrated for this strain (Van der 

Ent et al., 2008). This suggests that an effective systemic defense response is induced 

by PICF7 when present on Arabidopsis roots, corroborating previous findings found in 

olive aerial tissues (Gómez-Lama Cabanás et al., 2014). In addition, the use of 

Arabidopsis mutants revealed that strain PICF7 has the capability to control V. 

dahliae in different A. thaliana genotypes, although VW suppression was more 

consistently observed in sid2 plants (Table 3.3). This may suggest that low levels of 

SA may help to increase the biocontrol performance of PICF7. Nevertheless, results 

from these bioassays were not consistent enough and VW biocontrol in Arabidopsis 

by PICF7 may rely on mechanisms and/or abilities (i.e. root endophytic colonization) 

that are not operative in this host in contrast to olive (Prieto et al., 2009). Moreover, 

mechanisms other than induced resistance could also be involved in suppression of 

V. dahliae since in Arabidopsis mutants impaired in either ISR or SAR disease control 

was still observed. 

 

An additional objective of this study was to evaluate whether the use of the 

study system here developed can facilitate the identification of bacterial traits 

involved in VW biocontrol by strain PICF7. The colonization and VWO biocontrol 

abilities of PICF7 mutants affected in swimming motility (ME424), Pvd production 

(ME589), in vitro growth delay in PDA (ME419), or Cys auxotrophy (ME1508) were 

previously analyzed in olive (Maldonado-González et al., 2015). Here we examined 

the behavior of these mutants in A. thaliana Col-0. Population sizes of mutants did 

not significantly differ from that of strain PICF7 but in one experiment, stressing the 

variability also scored in bioassays carried out with olive plants. Interestingly, the Cys 

auxotroph mutant ME1508 always displayed the lowest population sizes, a similar 

behavior found in olive. Regarding to biocontrol performance, swimming motility and 

Pvd production of strain PICF7 seemed not to be crucial for VW suppression in A. 

thaliana, as also found in olive (Maldonado-González et al., 2015). However, both 

ME419 and ME1508 mutants did not control VW in some of the experiments (Table 

3.4), suggesting that the nutritional requirements affected in these mutants can play 

a role in both colonization and biocontrol. An important outcome is that, overall, the 

behavior of the PICF7 mutants was similar to that previously reported in olive. 

 

We conclude that the model plant A. thaliana provides a suitable and 

complementary approach to study P. fluorescens PICF7 traits involved in biocontrol 

of V. dahliae. In Arabidopsis the D and ND pathotypes of the pathogen showed a 

behavior similar to that in olive. PICF7 colonizes and persists in the Arabidopsis 
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rhizosphere, and it decreases VW symptoms in this model plant. Moreover, the 

behavior of four selected PICF7 mutants affected in different traits was similar to that 

previously demonstrated in olive. These findings encourage the use of A. thaliana 

both for pathogenicity and virulence assessment of V. dahliae isolates and for the 

evaluation of large numbers of PICF7 mutant phenotypes related with biological 

control, saving time and space. In contrast, since we have not been able to 

demonstrate endophytism of strain PICF7 in A. thaliana, bacterial traits involved in 

this lifestyle cannot be evaluated in this plant. However, the different behavior that 

PICF7 displays in olive and Arabidopsis offers good opportunities to unravel 

mechanisms underlying endophytism by this bacterium.  
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4.1. Summary 

 

Olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi, is one of the 

most important biotic constraints for olive cultivation. Pseudomonas fluorescens 

PICF7, a natural colonizer of olive roots and effective biological control agent (BCA) 

against Verticillium wilt of olive, was examined as potential BCA against olive knot 

disease. Bioassays using in vitro-propagated olive plants were carried out to assess 

whether strain PICF7 controlled knot development either when co-inoculated with 

the pathogen in stems or when the BCA (in roots) and the pathogen (in stems) were 

spatially separated. Results showed that PICF7 was able to establish and persist in 

stem tissues upon artificial inoculation. While PICF7 was not able to suppress disease 

development, its presence transiently decreased pathogen population size, produced 

less necrotic tumors, and sharply altered the localization of the pathogen in the 

hyperplasic tissue, which may pose epidemiological consequences. Confocal laser 

scanning microscopy combined with fluorescent tagging of bacteria revealed that 

when PICF7 was absent the pathogen tended to be localized at the knot surface. 

However, presence of the BCA seemed to confine P. savastanoi at inner regions of 

the tumors. This approach has also enabled to prove that the pathogen can moved 

systemically beyond the hypertrophied tissue. 
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4.2. Introduction 

  

Pseudomonas savastanoi pv. savastanoi (Psv) (Gardan et al., 1992; Sisto et al., 1999) 

is the causal agent of olive (Olea europaea L.) knot disease (Kennelly et al., 2007; 

Ramos et al., 2012) and an unorthodox member of the Pseudomonas syringae 

complex, encompassing at least 60 pathovars and several other Pseudomonas 

species (Gardan et al., 1999; Bull et al., 2010; Young, 2010). Infection of olive by Psv 

results in overgrowth formation (tumors, galls or knots) on the stems and branches 

of the host plant and, occasionally, on leaves and fruits. Olive knot is worldwide 

distributed and it is considered one of the most important diseases of this woody 

crop. Although losses caused by olive knot are difficult to assess and greatly depend 

on geographical location and olive cultivar, tree vigour, growth and yield have been 

reported to be moderately or severely reduced in infected trees, as well as the size 

and quality of fruits (Schroth et al., 1973; Young, 2004; Quesada et al., 2010a). The 

pathogen does not survive for long in soil, and is normally found as an epiphyte and 

also endophytically (Ercolani, 1978; Penyalver et al., 2006; Quesada et al., 2007), 

being able to move over short distances within olive orchards through dissemination 

of epiphytic bacteria (Quesada et al., 2010a). Natural isolates of Psv are 

phenotypically and genotypically heterogeneous, exhibiting broad virulence diversity 

(Penyalver et al., 2006) as well as variation in size and morphology of induced tumors 

(Pérez-Martínez et al., 2007). Psv NCPPB 3335, a highly virulent strain both in adult 

trees (Pérez-Martínez et al., 2007) and in micropropagated olive plants (Rodríguez-

Moreno et al., 2008, 2009), is being used as a model organism for the study of the 

molecular basis of the disease onset and development (tumor formation) in woody 

hosts. The draft genome sequence of NCPPB 3335 (Rodríguez-Palenzuela et al., 2010) 

and the closed sequence of its three native plasmids (Bardaji et al., 2011) have been 

recently obtained.  

 

Olive knot cannot be eradicated once established in plants, and its control 

must therefore be based on preventive measures (Young, 2004; Quesada et al., 

2010a,b; Ramos et al., 2012). However, from an integrated disease management 

strategy perspective only a few control measures have proved to be effective. For 

instance, olive cultivars completely resistant to the pathogen are not yet available 

(Penyalver et al., 2006). Thus, chemical control involving regular application of 

copper compounds has been traditionally used to manage the disease (Teviotdale 

and Krueger, 2004; Young, 2004; Quesada et al., 2010b), posing environmental risks 

and enhancing the likelihood of pathogen resistance. Regarding to biological control 

of olive knot disease, antagonistic bacteria against Psv have been isolated, 
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comprising a bacteriocin-producing P. syringae pv. ciccaronei strain (Lavermicocca et 

al., 2002), a collection of fluorescent Pseudomonas strains isolated from the 

rhizosphere of different plants (Rokni-Zadeh et al., 2008), including a Pseudomonas 

putida isolate producing a salicylate-containing antibiotic (Vlassak et al., 1992; Li et 

al., 2011), and several P. fluorescens and Bacillus subtilis strains isolated from olive 

knots and from leaves of Psv-infected trees (Krid et al., 2010). Although some of 

these strains have shown to reduce olive knot symptoms (Lavermicocca et al., 2002; 

Krid et al., 2012), little is known about the in planta community interplay between 

these antagonistic bacteria and the pathogen in the development of the disease.  

 

Pseudomonas fluorescens PICF7 is a natural inhabitant of the olive 

rhizosphere isolated from roots of nursery-propagated olive plants (cv. Picual) 

(Mercado-Blanco et al., 2004). This strain has been shown to be an effective 

biological control agent (BCA) against Verticillium wilt of olive (Mercado-Blanco et al., 

2004; Prieto et al., 2009), a disease caused by the soil-borne fungal pathogen 

Verticillium dahliae Kleb., and currently considered one of the most important biotic 

constraints for this woody crop (López-Escudero and Mercado-Blanco, 2011). Strain 

PICF7 has also been shown to develop an endophytic lifestyle within olive root 

tissues under diverse experimental conditions (Prieto and Mercado-Blanco, 2008; 

Prieto et al., 2009, 2011). Recent functional genomics analysis has revealed that root 

colonization by PICF7 induces a broad range of defence responses in olive root 

tissues as well as the activation of diverse transcription factors known to be involved 

in systemic defence responses (Schilirò et al., 2012). This depicts a scenario where 

PICF7 might be an effective BCA against other pathogens infecting olive, although 

additional biocontrol mechanisms (i.e. antibiosis) deployed by PICF7 and operating in 

planta cannot be completely ruled out.  

 

In this study we evaluate the potential of P. fluorescens PICF7 to be used as a 

BCA against olive knot disease both in in vitro-propagated explants and in lignified, 

pot-acclimated plants. We tested the hypothesis whether PICF7, a natural inhabitant 

of olive roots, can be effective against a pathogen which affects above-ground organs 

of the same host under two different situations: (i) the BCA applied to the roots (its 

natural niche) and the pathogen inoculated into the stems, and (ii) both 

microorganisms co-inoculated in artificially produced wounds on the favourable, 

natural environment of the pathogen (stems). We assessed strain PICF7’s ability to: 

(i) colonize and persist in olive stem tissues; (ii) influence the establishment of the 

pathogen on/in its target niche; and (iii) affect olive knot development. The 
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interaction between P. fluorescens PICF7 and Psv NCPPB 3335 was investigated in 

planta at both macro- and microscopic levels. 

 

4.3. Material and methods  

 

4.3.1. Bacterial strains, growth conditions and inocula production  

 

Pseudomonas fluorescens strain PICF7 (Mercado-Blanco et al., 2004), Psv strain 

NCPPB 3335 (Pérez-Martínez et al., 2007) and their fluorescently tagged derivatives- 

PICF7 carrying plasmid pMP4662 (Bloemberg et al., 2000), which harbours the red 

fluorescent protein (RFP) marker (Prieto and Mercado-Blanco, 2008), and NCPPB 

3335 transformed with the plasmid pLRM1 harbouring the green fluorescent protein 

(GFP) marker (Rodríguez-Moreno et al., 2009), were used in this study. Growth 

conditions for P. fluorescens and Psv strains, and assessment of the stability of 

plasmids pMP4662 and pLRM1 in their respective hosts, have been earlier described 

by Prieto and Mercado-Blanco (2008) and Rodríguez-Moreno and colleagues (2009) 

respectively. Bacterial inocula were prepared from cultures previously grown on 

King’s B Agar (KBA; King et al., 1954) or Luria-Bertani Agar (LBA; Miller, 1972) plates 

at 25-28°C for 24 h. Bacterial cells were resuspended in 10 mM MgSO4·7H2O by 

scraping bacterial lawns off with a sterile rod, washed twice (4500 rpm, 10 min) and 

resuspended in sterile 10 mM MgSO4·7H2O. Bacterial cell densities required for each 

experiment were established spectrophotometrically (A600 nm) by building up 

standard curves and culturing viable cells from serial dilution series onto KBA or LBA 

media (wild type) or KBA supplemented with the antibiotics tetracycline (20 mg l-1) 

(PICF7-RFP) or gentamicin (10 mg l-1) (NCPPB 3335-GFP). 

 

4.3.2. Plant material and plant growth conditions: in vitro propagated and lignified, 

pot-acclimated plants 

 

Olive plants were micropropagated and rooted in Driver-Kuniyuki walnut (DKW) 

medium (Driver and Kuniyuki, 1984) from an in vitro germinated seed originated 

from a cv. ‘Arbequina’ plant (Rodríguez-Moreno et al., 2008) at the Instituto de 

Formación Agraria y Pesquera de Andalucía (IFAPA, Junta de Andalucía, Churriana, 

Málaga, Spain). Explants were transferred to sterile glass tubes with DKW without 

hormones and grew for at least 2 weeks in a growth chamber at 25 ± 1°C with a 16-h 

photoperiod. The length of plants used at the time of the bioassays was 80-100 mm 

long, with stems of 1-2 mm in diameter and always displaying 3-5 internodal 

segments.  
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For assays carried out with lignified plants (1 and 2 years old), plants were 

granted by the Instituto de Formación Agraria y Pesquera de Andalucía (IFAPA, Junta 

de Andalucía, Churriana, Málaga, Spain). 

 

4.3.3. In vitro antagonism of P. savastanoi NCPPB 3335 by P. fluorescens PICF7 

 

To demonstrate whether P. fluorescens PICF7 exhibits in vitro antagonism against 

Psv, four drops (5 µl, 108 cfu [colony-forming units]ml-1) of strain PICF7 were placed 

on the surface of KBA, LBA and Potato Dextrosa Agar (PDA) media plates previously 

inoculated with 100 μl of bacterial suspensions of strain NCPPB 3335 (ranging from 

105 to 108 cfu ml-1). Two series of plates (two per assayed media) were incubated at 

25 and 28°C, respectively, and after 72 h growth inhibition halos around PICF7 

colonies were scored. Relative size of inhibition haloes was calculated according to 

the formula (halo diameter - colony diameter)/halo diameter. The experiments were 

carried out twice. 

 

4.3.4. Assessment of the colonization ability of Pseudomonas fluorescens PICF7 

on/in tissues of in vitro-propagated Arbequina plants 

 

To determine whether P. fluorescens PICF7 colonizes and persists on/in roots of in 

vitro-propagated ‘Arbequina’ explants, 36 plants in total were uprooted from the 

DKW medium and their root systems dipped in a P. fluorescens PICF7 cells suspension 

(3.8 x 108 cfu ml-1) (24 plants) or 10 mM MgSO4·7H2O (control treatment) (12 plants) 

for 15 min (Mercado-Blanco et al., 2004). After that, bacterized and non-treated 

roots were placed on top of several sheets of sterile filter paper 3 min to remove the 

excess of bacteria suspension or 10 mM MgSO4·7H2O.  

 

To assess colonization and persistence on/in stems, drops (2 µl) of a PICF7 

cells suspension (8.3 x 107 cfu ml-1) were applied to intentional wounds made after 

removing a petiole of one intermediate leaf per plant (24 plants per treatment) with 

a sterile scalpel (Pérez-Martínez et al., 2010). After treatment, plants were placed 

again into sterile glass tubes containing DKW medium.  

 

PICF7 populations on/in plant tissues were determined throughout both 

experiments by sampling three plants at 0, 3, 5, 7, 15, 30, 40 and 60 days after 

inoculation (DAI). Thus, three root samples (100 mg) and three stem fragments 
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(spanning 1 cm above and below from the inoculation point) from six independent 

plants were crushed in 1 ml of 10 mM MgSO4·7H2O under sterile conditions.  

 

In addition, to verify whether PICF7 cells translocate from artificially 

bacterized roots to the stems, 12 plants were processed as described above. Root 

systems were dipped in a PICF7 cells suspension (4.0 x 108 cfu ml-1) for 15 min. Then, 

plants were placed into sterile wide-mouthed bottles containing water agar medium 

to avoid PICF7-contamination of stems. Roots and stems of each plant were 

separately analyzed at 15, 30, 40 and 50 DAI. Thus, the root system of each plant was 

removed and the stem was divided into three segments (i.e. basal, intermediate and 

apical sections). Subsequently, roots and stem segments were crushed in 1 ml of 10 

mM MgSO4·7H2O. Serial dilutions of tissue macerates were plated onto KBA and 

incubated at 25°C for 48 h. After that, PICF7 colonies were counted and bacterial 

populations were determined along time. This assay was performed twice.  

 

Manipulation of plants during bacteria inoculation, sampling and cell 

counting procedures were always conducted under sterile conditions within a 

laminar air flow cabinet. 

 

4.3.5. Olive-Pseudomonas fluorescens-Pseudomonas savastanoi in vitro bioassays 

 

Two different types of bioassays (I and II) were conducted to investigate whether P. 

fluorescens PICF7 control olive knot disease of in vitro-propagated ‘Arbequina’ plants. 

On the one hand, P. fluorescens PICF7 and Psv NCPPB 3335 were applied separately 

in different tissues (roots and stems respectively) to explore the possibility that the 

BCA could elicit a defence systemic response in ‘Arbequina’ plants against the 

pathogen (type I bioassays). On the other hand, the BCA and the pathogen were 

simultaneously inoculated (cells suspension mix) in intentionally produced wounds in 

the stems (type II bioassays).  

 

For type I bioassays, 48 explants (24 per treatment) were carefully uprooted 

from the growth media and dipped for 15 min in a bacterial suspension of strain 

PICF7 (3.8 x 108 cfu ml-1) (BCA treatment) or 10 mM MgSO4·7H2O (control treatment), 

according to Mercado-Blanco and colleagues (2004). All plant manipulations were 

performed as indicated above except that, to avoid accidental contamination of 

stems with the BCA after root dip inoculation, bacterized plants were gently 

introduced in wide-mouthed bottles containing sterile water-agar (7 g agar l-1 

distilled water) where they remained for the rest of the bioassay. One week after 
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PICF7 treatment, stems were wounded once by excision of an intermediate leaf with 

a sterile scalpel and, immediately, a drop (2 µl) of a Psv suspension (7.7 x 107 cfu ml-1) 

was applied to the wound under sterile conditions (Pérez-Martínez et al., 2010). 

Population size of strain NCPPB 3335 was assessed along the experiment, sampling 

stem fragments spanning 1 cm above and below the pathogen inoculation point at 0, 

3, 5, 7, 15, 30, 40 and 60 DAI in control and PICF7-treated plants. Tissue manipulation 

was performed as indicated above. In addition, population of P. fluorescens PICF7 

was also monitored in bacterized roots at the same time-points. For that purpose, 

root tissue samples (100 mg) were sampled and manipulated as previously indicated. 

Three independent plants were examined at each sampling time-point. Bacteria 

counts were performed as indicated for colonization assays (see above). The assay 

was performed twice.  

 

In type II bioassays a drop (2 µl) of a bacterial suspension containing a 

mixture of P. fluorescens PICF7 (6.8 - 107 cfu ml-1) and Psv NCPPB 3335 (2.86 x 107 cfu 

ml-1) were applied to intentional wounds made on the stems of 24 in vitro-

propagated ‘Arbequina’ plants as previously indicated (see above). A group of 24 

additional plants were inoculated only with a suspension of  Psv cells (9.4 x 107 cfu 

ml-1) (control treatment). As in type I bioassays, population size of NCPPB 3335 was 

evaluated at 0, 3, 5, 7, 15, 30, 40 and 64 DAI in both control plants (only inoculated 

with NCPPB 3335) and plants co-inoculated with the BCA (PICF7) and the pathogen 

(NCPBB 3335). Population size of strain PICF7 was also score at the same time-points. 

Stem tissue segments (1 cm above and below the inoculation point) were crushed in 

1 ml of 10 mM MgSO4·7H2O under sterile conditions. Serial dilutions of macerates 

were plated onto KBA and incubated at 25°C for 48 h as describe in colonization 

assay. This bioassay was performed four times.  

 

Mean values of population size of Psv scored throughout experiments I and II 

in absence and presence of PICF7 were compare using Student’s t-test (α = 0.05) 

along the experiments.  

 

Development of knot disease symptoms on in vitro ‘Arbequina’ plants were 

captured with a digital camera (Panasonic FS 42, Lumix) and processed using 

PHOTOSHOP 4.0 software (Adobe Systems, San Jose, CA, USA).  

 

For all bioassays involving in vitro-propagated ‘Arbequina’ plants, glass tubes 

or wide-mouthed recipients containing explants were always kept within controlled-
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growth chambers at 25 ± 1°C with a 16-h photoperiod and a light intensity of 65 µmol 

m2 s-1. 

 

4.3.6. Epifluorescence and confocal laser scanning microscopy 

 

Epifluorescence and confocal laser scanning microscopy (CLSM), combined with 

fluorescent tagging of bacteria, were used to examine presence of the BCA, the 

pathogen and their potential interactions in in vitro-propagated ‘Arbequina’ plant 

tissues. Thus, in order to confirm changes in Psv NCPBB 3335 population levels in the 

presence of the BCA (see Results section), a specific bioassay was designed. Drops (2 

µl) of suspensions of either GFP-tagged NCPPB 3335 alone (final cell density 4.8 x 107 

cfu ml-1) or a mix of GFP-tagged NCPPB 3335 (final cell density 1.3 x 108 cfu ml-1) and 

strain PICF7 (final cell density 3.5 x 107 cfu ml-1) were applied to intentionally made 

wound performed on the stems of in vitro-propagated plants as indicated above. 

Twelve plants per treatment were used. Development of knots was observed along 4 

weeks after inoculation. Two plants were examined at 2, 3, 6, 8, 13 and 27 DAI using 

a stereoscopic fluorescence microscope (Leica MZ FLIII, Leica Microsystems, Wetzlar, 

Germany) equipped with a 100 W mercury lamp and a GFP2 filter (excitation, 480/ 40 

nm). In addition, progress of knot symptoms was photographed with visible light 

using the same equipment. All images (epifluorescence and visible) were captured 

using a high-resolution digital camera (Nikon DXM 1200, Nikon Corporation, Tokyo, 

Japan) attached to the stereoscopic fluorescence microscope and processed using 

PHOTOSHOP 4.0 software (Adobe Systems).  

 

Since knots generated on in vitro-propagated plants were found to differ at 

the macroscopic level (see Results section) depending on the presence or not of 

PICF7 cells in the inoculation mix, CLSM was used to examine at the microscopic level 

whether: (i) inner appearance of tumors may differ upon inoculation of Psv alone or 

Psv and PICF7 together; (ii) localization and/or distribution of NCPPB 3335 in the 

generated tumor cells may be influenced by the presence of PICF7; and (iii) Psv cells 

could be found beyond the inoculation point and the hyperplasic area and whether 

this potential pathogen spread may or not be influenced by the presence of the BCA. 

Tissue samples used for CLSM were obtained from ‘Arbequina’ in vitro-propagated 

plants inoculated with a suspension of NCPPB 3335-GFP cells (3.7 x 106 cfu ml-1) or a 

mix containing NCPPB 3335-GFP (7.9 x 106 cfu ml-1) and PICF7-RFP (3.0 x 107 cfu ml-1) 

cells. Bacteria were inoculated according to the procedure previously described. 

Eight plants were used per treatment and two tumors were analyzed each time-

point. This bioassay was performed twice and sampling times were 4, 5, 7 and 9 
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weeks after inoculation for the first assay, and 1, 2, 4 and 6 weeks for the second 

one. In vitro ‘Arbequina’ plants were kept within controlled-growth chambers as 

indicated above. Transverse and longitudinal sections (40-60 mm thick) from stems 

at the inoculation site (initial stages of knot development) or from visible knots were 

obtained using a Vibratome Series 1000plus (TAAB Laboratories Equipment, 

Aldermarston, UK) as previously described (Prieto et al., 2007; Prieto and Mercado-

Blanco, 2008). Tissue samples were always observed at the moment of sampling with 

an Axioskop 2 MOT microscope (Carl Zeiss, Jena GmbH, Germany) equipped with a 

krypton and an argon laser, controlled by Carl Zeiss Laser Scanning System LSM5 

PASCAL software (Carl Zeiss). In addition, stem fragments containing the inoculation 

site (1 cm long) were sectioned longitudinally to assess the possible spread of Psv 

from the hyperplasic tissue, regardless the presence or absence of strain PICF7. Two 

plants per treatment were evaluated at 14, 30 and 42 DAI. GFP-tagged bacterial cells 

were excited with the 488 nm Argon laser line and were detected in the 500-520 nm 

window. RFP-tagged bacterial cells were excited with the 568 nm laser line and 

detected in the 580-620 nm window. Data were recorded and transferred for analysis 

to Zeiss LSM Image Browser version 4.0 (Carl Zeiss). Final figures were processed with 

PHOTOSHOP 4.0 software (Adobe Systems). 

 

4.3.7. Olive-Pseudomonas fluorescens-Pseudomonas savastanoi bioassays using 

lignified, pot-acclimated plants  

 

Two bioassays (I and II) were carried out to determine whether co-inoculation of 

strains Psv and PICF7 influenced the onset and/or development of knot disease in 1 

and 2-year-old lignified ‘Arbequina’ plants, already acclimated in pots under 

greenhouse conditions. In bioassay I, three 2-year-old plants were wounded with a 

sterile scalpel at five sites along the main stem. Artificial wounds, 0.5 cm long, were 

made from the surface to the cambial area without removing the tab generated with 

the cut, and as described by Pérez-Martínez and colleagues (2007). Then, one drop 

(10 µl) of a bacterial suspension of PICF7 (6.5 x 108 cfu ml-1), NCPPB 3335 (2.8 x 108 

cfu ml-1) or a mix of PICF7 (8.1 x 108 cfu ml-1) and Psv (2.4 x 108 cfu ml-1) were applied 

to each incision. Control plants were inoculated with 10 mM MgSO4·7H2O and three 

plants were used per treatment. In bioassay II, four 1-year-old plants per treatment 

were inoculated as describe above, although only three wounds per plant were 

generated in this case. As in experiment I, 10 µl drops were applied to the artificial 

wounds, containing bacterial suspensions of strain PICF7 (4.8 x 108 cfu ml-1), Psv (4.1 
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x 108 cfu ml-1) or a mix of PICF7 (5.0 x 108 cfu ml-1) and Psv (3.3 x 108 cfu ml-1). Control 

plants were inoculated with 10 mM MgSO4·7H2O.  

 

Inoculated wounds were covered with their tabs, enveloped with parafilm 

and plants were bagged in order to increase relative humidity to 100%. Bacterized 

plants were kept within controlled-growth chambers at 25 ± 1°C with a 16-h 

photoperiod and a light intensity of 65 µmol m-2 s-1. After 7 days plants were remove 

from bags. Along experiment measures of disease symptoms were recorded 

according to the scale: 0, no symptoms, to 10, the biggest developed tumor. Tumor 

necrosis was also held into account. Thus, (-), no necrosis; (+), moderate necrosis; 

and (++), severe necrosis were scored for each developed knot. At the end of the 

experiments (92 DAI) all tumors were photographed with a digital camera (Panasonic 

Fs 42 Lumix) and measures of knots fresh weight and volume, calculated by scoring 

their length, width and depth (Hosni et al., 2011), were recorded. To examine 

whether presence of PICF7 produced inner alterations in tumors, four knots per 

experiment (two per treatment) were sectioned by hand with a blade, photographed 

and macerated (1 g) in 2 ml of 10 mM MgSO4·7H2O. Serial dilutions of knots 

macerates were spotted on KBA plates supplemented with ampicillin (50 mg l-1), 

chloramphenicol (13 mg l-1) and cycloheximide (100 mg l-1) and KBA with nitrofuran-

toin (100 mg l-1) to score population of Psv. 

 

4.4. Results 

 

4.4.1. Pseudomonas fluorescens PICF7 antagonizes Pseudomonas savastanoi NCPPB 

3335 in vitro and colonizes roots and stems of in vitro-propagated olive plants  

 

In order to assess whether the indigenous, olive roots inhabitant P. fluorescens PICF7 

has potential as a BCA against Psv, its effectiveness to antagonize the pathogen in 

vitro and to colonize stems (and roots) of in vitro-propagated olive plants were first 

evaluated. In vitro antagonism assays using different culturing media (PDA, KBA, and 

LBA) showed that strain PICF7 strongly inhibited the growth of Psv NCPPB 3335 in 

PDA plates (Figure 4.S1). However, inhibition haloes in KBA and LBA media were 

negligible or restricted to the very proximal region surrounding the BCA colony. The 

relative size of growth inhibition haloes on PDA plates varied depending on the 

concentration of Psv and on the incubation temperature. For instance, PDA plates 

harbouring 105 cfu ml-1 of Psv yielded inhibition haloes with average relative sizes of 

0.8 ± 0.03 (at 25°C) and 0.8 ± 0.02 (at 28°C). On the contrary, when the pathogen 
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population on PDA plates increased up to 108 cfu ml-1, relative size of inhibition 

haloes were 0.6 ± 0.03 (at 25°C) and 0.4 ± 0.08 (at 28°C). 

 

The ability of P. fluorescens PICF7 to colonize roots and aboveground tissues 

of in vitro-propagated olive explants was confirmed as well. When the BCA was 

applied to the root system, colony counts from roots macerates showed that 

population size of strain PICF7 was stably maintained along the experiment [8.8 ± 0.4 

(mean log10 cfu g-1 fresh root/stem tissues ± SD) at 0 DAI and 8 ± 1.4 at 60 DAI]. 

Moreover, GFP-tagged PICF7 colonized endophytically root tissues, and root hairs 

were found to be important in this process (data not shown). On the contrary, when 

the BCA was inoculated in the stems, population size of PICF7 increased over time in 

the segment containing the inoculation point (3.2 ± 0.4 and 5.9 ± 0.6 at 0 and 60 DAI 

respectively). On the other hand, the possible translocation of PICF7 cells from roots 

to stems was also examined. Results showed that movement of strain PICF7 from 

inoculated roots to stems was not evident (12 out of 20 plants examined) or, at most, 

it remained restricted to the basal segment of the stems (six plants) and with a highly 

variable population scored (2.4-7.3 at 50 DAI). Only in two plants PICF7 cells were 

detected in the upper segment of the stems (4.1 and 6 at 50 DAI). Nevertheless, 

cross-contamination during plant manipulation could not be completely ruled out for 

these cases. No bacteria were detected in roots and stems of non-inoculated 

(control) plants at any time. 

 

4.4.2. Pseudomonas fluorescens PICF7 applied to roots does not suppress olive knot 

development 

 

Bioassays designed to assess the ability of P. fluorescens PICF7 to control the onset 

and development of olive knot disease by means of systemic defence response(s) 

showed that PICF7 was not able to suppress the disease under the experimental 

conditions used despite its ability to colonize the root system. Thus, when the BCA 

and the pathogen were spatially separated (roots of in vitro-propagated olive 

explants bacterized with PICF7 1 week prior to Psv inoculation in stems), 

development of knots and their anatomy did not differ regardless the presence or 

absence of PICF7 (data not shown). Moreover, population sizes of strain NCPPB 3335 

scored in hyperplasic tissues of PICF7-bacterized (3.1 ± 0.5 at 0 DAI and 6.5 ± 1.2 at 

60 DAI) and control (3.8 ± 0.6 at 0 DAI and 7.1 ± 0.2 at 60 DAI) plants were not 

significantly (P > 0.05) different along the experiment. 
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4.4.3. Presence of Pseudomonas fluorescens PICF7 in stems affects pathogen 

population and knot development 

 

Results showed that when P. fluorescens PICF7 was inoculated into the stems along 

with the pathogen, population size of NCPPB 3335 sharply decreased and was 

significantly (P < 0.05) lower during the first 2 weeks after bacterization, compare 

with that scored in plants only inoculated with Psv (control treatment). However, this 

fall in the pathogen population was only transitory and Psv counts recovered later on 

and did not differ significantly (P > 0.05) between treatments until the end of the 

bioassays (64 DAI) (Figure 4.1). Population sizes of PICF7 did not significantly differ (P 

> 0.05) regardless the presence (3.3 ± 0.2 at 0 DAI and 6.4 ± 0.4 at 60 DAI around the 

inoculation points and developed tumors respectively) or absence (segments 

containing the inoculation point, see above) of the pathogen. Interestingly enough, 

co-inoculation of PICF7 with Psv significantly altered the macroscopic appearance of 

the tumors. Thus, less necrotic knots (discolored, whitish tumors) developed when 

PICF7 was co-inoculated with the pathogen (Figure 4.2A,C) in comparison with knots 

developed in plants inoculated with Psv alone (Figure 4.2B,D).  
 

 
 

Figure 4.1. Population size of Pseudomonas savastanoi NCPPB 3335 recovered from inoculation sites or 

developed knots from a 63 days bioassay performed with in vitro-propagated olive plants co-inoculated 

( ) or not (ο) with Pseudomonas fluorescens PICF7 (see text for details). Each score time-point is the 

mean from three independent samples. Error bars represent standard deviation. Mean values 

significantly different (P < 0.05) according to t-student test are marked by asterisks. Results shown are 

from a representative bioassay. This experiment was repeated three times with similar results. 
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To further check that transient decrease of Psv population and modification of 

tumor’s macroscopic appearance were due to the presence of strain PICF7, 

epifluorescence microscopy combined with fluorescent tagging of Psv NCPPB 3335 

with GFP (Psv-GFP) was used. In agreement with results from previous bioassays, a 

decrease of Psv NCPPB 3335 population in tumors developed in plants co-inoculated 

with the BCA was visualized during the first 14 days. Lower population of the 

pathogen was revealed as a depletion of the green fluorescence at the inoculation 

points and within the hyperplasic tissue developed in Psv/PICF7 co-inoculated plants 

(Figure 4.3A, 2-13 DAI),  compared  with  those  ones  only inoculated with  Psv alone 

 

 
 

Figure 4.3. Epifluorescence microscopy images showing the presence of GFP-tagged Pseudomonas 
savastanoi NCPPB 3335 (Psv) at the inoculation point and tumors developed on in vitro-propagated olive 
plants during a time-course experiment (27 days). Stems were inoculated with the pathogen alone (B) or 
mixed with Pseudomonas fluorescens PICF7 (A) (see text for details). Two plants were analyzed per each 
sampling time-point with similar results. Green fluorescence reveals the presence of living Psv-GFP cells. 
Plants co-inoculated with Psv-GFP and PICF7 exhibited no detectable fluorescence (3 days after 
inoculation [DAI]) or less fluorescent areas (6, 8, 13 DAI) compared with plants inoculated with Psv-GFP 
alone. At the end of the experiment (27 DAI), tumors differ neither in size nor in fluorescence between 
treatments.  

Figure 4.2. Tumors produced on in vitro-propagated olive plants by 

Pseudomonas savastanoi NCPPB 3335 (Psv) in the presence (A) or in 

the absence (B) of Pseudomonas fluorescens PICF7 at 58 Days After 

Inoculation (DAI). Tumors developed in a different experiment upon 

inoculation with Psv-GFP in the presence (C) and in the absence (D) of 

PICF7 were also observed at 27 DAI. Presence of PICF7 in the 

inoculation mix produced tumors with reduced or no necrosis (A,C) 

regardless the presence of Psv or its GFP-tagged derivative (see text 

for details). Panels B and D show tumors with symptoms of necrosis. 
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(Figure 4.3B, 2-13 DAI). As in previous bioassays, NCPPB 3335 population in 

Psv/PICF7 co-inoculated plants recovered over time, and tumors from both 

treatments reached similar levels of fluorescence (Figure 4.3A,B, 27 DAI). Population 

size of Psv recovered from knots along the experiment confirmed that the observed 

fluorescence fluctuation correlated to a decrease in Psv colony counts 

(approximately 1.5 order of magnitude lower) at all times except at 27 DAI (6.8 ± 0.3, 

for Psv alone and 6.5 ± 0.1, for Psv/PICF7 coinoculated plants), as shown in previous 

bioassays (see above). Finally, macroscopic appearance of tumors developed in this 

assay differed depending on the presence or not of the BCA (Figure 4.2C,D), 

confirming previous observations. 

 

4.4.4. Co-inoculation of Pseudomonas fluorescens PICF7 alters the localization and 

distribution of Psv in tumors 

 

To assess whether differences observed in the external, macroscopic anatomy 

between tumors developed in Psv-inoculated and Psv/PICF7 co-inoculated plants 

could correlate to changes in pathogen distribution mediated by PICF7 presence, 

fluorescent tagging of bacteria (Psv-GFP and PICF7-RFP), vibratome-sectioning of 

knot and stem tissues and CLSM were used. By combining these microscopy and 

biotechnological tools we aimed to explore the inner anatomy of tumors as well as 

the localization and distribution of the BCA and the pathogen on and within knots in 

vivo, without implementing further tissue manipulation, fixation and/or staining 

procedures. Overall, sectioning of knots from plants co-inoculated with Psv and PICF7 

was more difficult, as they presented spongy consistency compared with tumors 

generated by single inoculation of Psv. CLSM images showed that, in co-inoculated 

plants, both bacteria could be found mixed within vascular vessels of the stem at 

early stages of the knot development (Figure 4.4A,B, 7 DAI). However, from 2 weeks 

after artificial inoculation of bacteria until the end of the experiments (6-9 weeks), 

each bacterial species tended to be allocated in different regions of the tumors in 

most of the observations (Figure 4.4C). Indeed, while both fluorescently tagged 

Pseudomonas could be found mixed at any place within the knot, particularly at the 

beginning of the knot development (Figure 4.4A,B), PICF7-RFP cells were 

predominantly visualized at the knot surface or in outer regions of the tumor (Figure 

4.4C,D). In contrast, Psv-GFP cells were mainly found at the inner regions of the 

hyperplasic tissue, particularly at later times of the experiment (Figure 4.4C; Figure 

4.5B,D,F). Remarkably, localization of Psv colonies greatly differed depending on the 

presence of strain PICF7. Results showed that when strain NCPPB 3335 was 
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inoculated alone the pathogen predominantly colonized the surface of the tumor 

(Figure 4.5A,C,E). 

 

 
 

Figure 4.4.  Confocal laser scanning microscopy images of transversal vibratome tumor sections (40 µm 

thick) showing localization of Pseudomonas savastanoi (Psv-GFP, green) and Pseudomonas fluorescens 

(PICF7-RFP, red). Images were taken at one (A,B) and four (C,D) weeks after inoculation with Psv-GFP 

and PICF7-RFP. 

A. Vibratome transversal section of a representative stem one week after inoculation. Fluorescence 

located inside xylem vessels is due to the presence of intermixed Psv-GFP and PICF7-RFP cells (inset).  

B. Inset in (A) showing Psv-GFP and PICF7-RFP cells intermixed inside the vascular vessel cells.  

C. Tumor sampled four weeks after inoculation showing events of inner (arrowed) and surface (inset) 

localization of Psv-GFP and PICF7-RFP cells, respectively.  

D. inset in (C) showing PICF7-RFP cells at the surface of the knot and a small individual colony of Psv-GFP 

cells in a different focus plane and not mixed with PICF7-RFP cells (visible as weak green fluorescence at 

the bottom of the panel).  

Scale bar represents 100 µm in A, 20 µm in B, 150 µm in C and 25 µm in D. e, epidermis; s, sclereids; p, 

parenchyma; ph, phloem; x, xylem. 
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Figure 4.5. Confocal laser scanning microscopy images showing the time course of colonization of in 

vitro-propagated olive tissues by GFP-tagged Pseudomonas savastanoi NCPPB3335 (Psv-GFP) in the 

absence (A,C,E) or in the presence (B,D,F) of Pseudomonas fluorescens PICF7. Transversal vibratome 

tumor sections (40 µm thick) were made to show inner colonization. Each panel is a composition of 

several images to show the whole knot and from two different bioassays. In the absence of P. 

fluorescens PICF7, Psv-GFP is visualized predominantly and profusely at the knots surface (arrowed) at 2 

(A), 6 (C) and 9 (E) weeks after inoculation. In the presence of Pseudomonas fluorescens PICF7, Psv-GFP 

is visualized in inner cavities of the tumor (arrowed) at 2 (B), 7 (D) and 9 (F) weeks after inoculation. 

Scale bar represents 500 µm in all panels except in (A and B) where it represents 125 µm. 
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4.4.5. Systemic movement of Pseudomonas savastanoi NCPPB 3335 along olive 

stems  

 

An interesting finding from CLSM experiments was the repeated observation of Psv-

GFP colonies in stem tissues outside the hyperplasic region. Thus, CLSM imagery 

revealed that the pathogen could move from the inoculation point to healthy areas 

of the stem, colonizing the xylem vessels (Figure 4.6). Psv-GFP cells were first 

observed 2 weeks after inoculation in xylem vessels close to the tumor (data not 

shown). At later times after inoculation (4 weeks) Psv-GFP cells were visualized either 

within the xylem vessels nearby the tumor (node) (Figure 4.6B,E) or beyond the 

hyperplasic tissue (internode) (Figure 4.6A,D). Finally, presence of strain PICF7 did 

not interfere with Psv movement outside the hyperplasic region and throughout the 

vascular system since the pathogen was also found in stems of Psv/PICF7 co-

inoculated plants 2 weeks after inoculation (Figure 4.6C,F). 

 

 
 

Figure 4.6. Confocal laser scanning microscopy images of in vitro-propagated olive plants showing the 

translocation of GFP-tagged Pseudomonas savastanoi NCPPB 3335 (Psv-GFP) from the hyperplasic tissue 

to the olive stems. Vibratome longitudinal sections of stems (40 µm thick) were made to show Psv-GFP 

internal colonization of olive vascular vessels (white arrows) away from the knot (A) and close to it (B, 

tumor marked by a red arrow) 6 weeks after pathogen inoculation. C. Presence of Psv-GFP in olive 

vascular vessels (white arrow) by the knot (red arrow) in a plant co-inoculated with Pseudomonas 

fluorescens PICF7.  D, E and F are magnifications of A, B and C, respectively, showing details of olive 

stem vascular vessels profusely colonized by the fluorescently-tagged pathogen. Scale bar represents 

200 µm in A and B, 65 µm in C, 5 µm in D and 20 µm in E and F. 
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4.4.6. Pseudomonas fluorescens PICF7 decreases Pseudomonas savastanoi-induced 

necrosis of olive knots in woody olive plants  

 

To finally check whether the inoculation of PICF7 induced the same effects in lignified 

olive plants than those observed on in vitro micropropagated explants, bioassays 

using pot-acclimated olive plants of two ages (1- and 2-year-old) and with lignified 

stems were carried out. Results showed that Psv/PICF7 co-inoculation did not 

significantly suppress olive knot disease onset and development in these plants. No 

significant differences (P > 0.05) were observed between plants treated or not with 

the BCA in volume, weight and density of analyzed tumors in both experiments 

(Figure 4.S2). However, a trend towards an average decrease in volume and fresh 

weight was observed for Psv/PICF7 co-inoculated olive plants of both ages (Figure 

4.S2). In addition, transverse section of knots induced by Psv/PICF7-treated plants 

showed a reduced necrosis of the internal tissues in comparison to control knots 

induced in plants inoculated with Psv alone, suggesting a delay in the maturation 

process of knots induced by the presence of the BCA. This effect was more evident in 

2-year-old (Figure 4.S3) than in 1-year-old (data not shown) plants, probably due to 

the higher susceptibility to Psv infection of younger plants (Penyalver et al., 2006; 

Pérez-Martínez et al., 2010). 
 

4.5. Discussion 

 

Successful management of olive knot disease is a complicated undertaking. The most 

frequent control measure (i.e. continuous application of copper-based bactericides), 

entails undesirable effects such as high costs, phytotoxicity and increasing risk of 

pathogen resistance (Krid et al., 2012). On the other hand, breeding for resistance 

has no current way of successful implementation since Psv-resistant cultivars are not 

yet available (Penyalver et al., 2006). Therefore, the use of BCAs appears as a 

promising control tool overcoming the adverse effects of chemical treatments and 

fitting modern sustainable agriculture criteria. Biological control of olive knot disease 

has been poorly explored, and only few studies have evaluated the effectiveness of 

diverse BCAs against Psv with variable results (Lavermicocca et al., 2002; Krid et al., 

2012). The present study has examined the in planta interaction between P. 

fluorescens PICF7, an olive root endophyte effective against Verticillium wilt of olive 

(Mercado-Blanco et al., 2004; Prieto et al., 2009), and the causal agent of olive knot 

disease. 

 



 

CHAPTER 4 

 

112 

 

Results have proved that P. fluorescens PICF7: (i) inhibits the growth of Psv in 

vitro to a degree; (ii) colonizes and persists in stems of in vitro-propagated olive 

plants when artificially introduced; (iii) induces a transient decrease of Psv population 

on/in inoculated stem tissues; (iv) modifies the external macroscopic appearance of 

the tumors produced by the pathogen (less necrotic) on in vitro-propagated olive 

plants; (v) decreases the maturation process of Psv-induced tumors in woody olive 

plants (less internal necrosis); and (vi) alters the localization of the pathogen on/in 

tumors, that one being predominantly confined to internal regions of the knots. 

However, despite these consistent effects, PICF7 was not able to impair knot 

development under the experimental conditions here reported.  

 

Pseudomonas fluorescens PICF7 is able to colonize and persist in both stems 

and roots of in vitro-propagated ‘Arbequina’ plants. Successful endophytic root 

colonization of in vitro-propagated olive explants by PICF7 has been corroborated 

even though plant material utilized in this present work differed in source, phenology 

and root system morphology than that used in a previous study (Prieto and Mercado-

Blanco, 2008). Therefore, this BCA is able to endophytically colonize and persist in 

root tissues of different olive cultivars under diverse experimental conditions (Prieto 

et al., 2009, 2011; this study). On the other hand, this is the first study where an 

indigenous olive root inhabitant has been demonstrated to be successfully 

established in olive stem tissues after artificial inoculation, maintaining high 

population levels along time. Therefore, PICF7 can endure in different olive organs, 

opening new and interesting perspectives for its application as either preventive or 

palliative BCA in olive. Movement of PICF7 cells from roots to above-ground organs 

throughout the vascular system could not be faithfully assessed. Previous works 

using fluorescently tagged PICF7 discarded the presence of this bacterium neither 

within the xylem vessels of the roots nor in aerial tissues (Prieto and Mercado-

Blanco, 2008; Prieto et al., 2011). Therefore, PICF7 cells occasionally found in stem 

tissue macerates could be explained by stem contamination during the bacterization 

process.  

 

Strain PICF7 effectively antagonized Psv NCPPB 3335 in vitro, although 

nothing is known on what bacterial trait(s) could be responsible for such inhibitory 

effect. However, in vivo bioassays did not show an effective long-term control of Psv 

but a transitory drop of the pathogen population size (Figures 4.1, 4.3). Nevertheless, 

a clear modification of the macroscopic appearance of developed tumors (Figure 

4.2), and a definitive alteration of the pathogen localization in knots (Figures 4.4, 4.5) 
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were observed when the BCA was present. Whether these phenomena are due to 

effective antibiosis mechanism(s) deployed by PICF7 in planta remain to be 

elucidated. The fall of pathogen population at early times after co-inoculation with 

the BCA was consistently observed in independent bioassays. This could be related to 

biosynthesis of inhibitory compounds by PICF7 affecting the pathogen, to a faster 

growth rate of the BCA compared with that of the pathogen, or to competition for 

space and nutrients inside olive tissues between the two bacteria. Regardless the 

mechanism involved, the transient drop of Psv population seemed to have a dramatic 

influence on the allocation of the pathogen on/in the tumor structure, a situation 

that could be observed either at macroscopic (Figure 4.3) and microscopic (Figures 

4.4, 4.5) levels. Thus, whereas NCPPB 3335 predominantly colonized the surface of 

the tumor in the absence of the BCA (Figure 4.5A,C,E), the former was predominantly 

restricted to inner cavities of the tumor (Figure 4.5B,D,F). This shift in Psv localization 

may explain the different external appearance of knots when PICF7 was present 

(Figure 4.2B,D). Moreover, despite the fact that PICF7 could not effectively control 

knot development, changes observed when the BCA was present may pose 

important epidemiological consequences. Quesada and colleagues (2010a) 

demonstrated dissemination of epiphytic Psv cells over short distances within olive 

orchards, a phenomenon perhaps related to transportation of the pathogen in 

aerosols (Young, 2004). Indeed, the release of pathogen cells through knot exudates, 

which could serve as new inoculum source, has been previously related to the 

localization of Psv cells at the knot surface (Rodríguez-Moreno et al., 2009). 

Therefore, presence of PICF7 reducing the number of Psv cells located at the surface 

of the tumor could imply a decrease in the dissemination of the pathogen through 

knot exudates.  

 

Some beneficial Pseudomonas spp., native colonizers of the rhizosphere of 

diverse plants, can elicit a specific systemic defence response against pathogens in 

their host plants, a phenomenon known as induced systemic resistance (ISR) (Bakker 

et al., 2007; Mercado-Blanco and Bakker, 2007). Recent functional genomics studies 

have demonstrated that colonization by P. fluorescens PICF7 induced a broad set of 

defensive responses in olive root tissues. For instance, the establishment of the  BCA 

on/in roots of ‘Arbequina’ plants produced the differential  expression of genes 

involved in, among others  processes, plant hormones and phenylpropanoids 

biosynthesis,  pathogen-related proteins synthesis and  several transcription factor 

involved in systemic defensive  responses, including ISR (Schilirò et al., 2012). 

Considering this antecedent, the olive-Psv interaction offered an excellent study 

system to examine whether PICF7 could trigger an effective systemic defence 
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response against olive knot disease, since the pathogen and the BCA can be applied 

spatially separated after artificial inoculation (Van Loon et al., 1998). Results showed 

that despite the fact that strain PICF7 effectively colonized the roots of in vitro-

propagated plants, even endophytically, knot development on stems was not 

suppressed or altered, and populations of the pathogen in hyperplasic tissues were 

similar in both PICF7 root-bacterized and control plants.  Therefore, while PICF7 is 

able to trigger a broad array of  defensive responses in olive roots, including genes  

involved in ISR and systemic acquired resistance (SAR)  responses (Schilirò et al., 

2012), control of olive knot  disease was not observed under experimental conditions  

assayed. A possible explanation would be that high virulence of the Psv strain used in 

this study (Rodríguez-Moreno et al., 2008) could overcome any potential systemic 

response from roots.  

 

Invasion of newly formed xylem vessels inside olive knots induced by Psv 

strain NCPPB 3335 has been previously reported; however, pathogen cells could not 

be detected outside the knot area (Rodríguez-Moreno et al., 2009). An additional and 

interesting finding here performed was the demonstration that strain NCPPB 3335 is 

able to move from the inoculation site (and from developed tumors) through the 

xylem vessels. This phenomenon has been hardly evidenced before, particularly using 

a methodology that does not imply tissue fixation or staining procedure. Systemic 

invasion of oleander (Nerium oleander L.) plants through laticifers and, less 

frequently, through xylem vessels has been reported for P. savastanoi pv. nerii 

(Wilson and Magie, 1964). On the other hand, movement of Psv cells through the 

xylem vessels has been related to the formation of secondary knots in olive stems 

(Penyalver et al., 2006). Visualization of Psv cells within xylem cells in stained stem 

sections has been earlier reported (Marchi et al., 2009). However, the present study 

has clearly showed living GFP-tagged Psv cells directly visualized beyond the 

inoculation point. 

 

In conclusion, by implementing powerful biotechnological and microscopy 

tools we have been able to uncover phenomena taking place during the interaction 

between a native bacterial endophyte of olive roots and a pathogen naturally 

occurring in above-ground tissues of the same plant host. This basic knowledge may 

have interesting practical information from an epidemiological point of view. Thus, 

although P. fluorescens PICF7 was not able to control olive knot disease, this BCA was 

demonstrated to colonize and establish in aerial olive tissues and to modify the 

colonization behaviour of the pathogen in tumors which, in addition, developed 
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abnormally. Findings here reported can also be of interest to unravel the complex 

interplay that this pathogen could maintain with the microbiological consortia 

residing within olive knots (Hosni et al., 2011). Finally, Psv was undoubtedly and in 

vivo visualized migrating from the tumors to areas far beyond the hyperplasic 

regions, using the xylem vessels to do so. 
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Supplementary data  

 

 
Figure 4.S1. Growth inhibition haloes generated by colonies of Pseudomonas fluorescens PICF7 (5 μl 

droplets, 10
8
 cfu ml

-1
) grown on PDA plates previously inoculated with Pseudomonas savastanoi NCPPB 

3335 (100 μl, 10
5
 cfu ml

-1
). Plates were incubated at 25°C (A) and 28°C (B) during 72 h. 

 

 

Figure 4.S2. Volume, fresh weight and density 
of knots developed on 1- (A) and 2-year-old (B) 
in vitro olive plants when Pseudomonas 
savastanoi NCPPB 3335 was inoculated in the 
presence (+PICF7) or the absence (−PICF7) of 
Pseudomonas fluorescens PICF7 at 92 days after 
inoculation. Error bars represent standard error. 
Mean values [n (tumors analyzed) = 12, in 1-
year-old plants, and n = 15, in 2-year-old plants] 
were not significantly different (P > 0.05) 
according to Student's t-test. 
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Figure 4.S3. Transversal section of representative knots produced by Pseudomonas savastanoi NCPPB 

3335 when inoculated in the absence (A) or presence (B) of Pseudomonas fluorescens PICF7 (92 days 

after inoculation). 
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1. The generation of a random transposon insertion mutant library of Pseudomonas 
fluorescens PICF7 will allow, in combination with other biotechnological tools 
already available, the search for bacterial phenotypes related with biological 
control effectiveness, endophytic lifestyle, and/or other relevant ecological, 
environmental or metabolic traits of this biological control agent (BCA) (Chapter 
2). 

   
2. Pyoverdine production and swimming motility are not needed for biocontrol of 

Verticillium wilt of olive. On the contrary, Cys auxotrophy diminished the ability of 
strain PICF7 to colonize and establish in the olive rhizosphere and reduced its 
effectiveness to suppress the disease. Therefore, low availability of Cys in the 
olive rhizosphere would explain why mutant ME1508 was less efficient in 
root/rhizosphere colonization and consequently in VWO suppression. However, 
the ability of this mutant to colonize the root interior remained unaffected even 
though rhizosphere populations of ME1508 were significantly lower than that of 
the parental strain. These results encourage future studies on the importance of 
olive root exudates, and their composition, in both colonization and disease 
suppression abilities of strain PICF7 (Chapter 2). 

 
3. Current knowledge of bacterial traits implicated in endophytism is scant. Results 

from this thesis allow to conclude that production of the siderophore pyoverdine 
and swimming motility are not involved in endophytic colonization of olive roots 
by strain PICF7. Moreover, mutants altered in metabolic pathways (i.e. gltA and 
Cys auxotrophy) colonized inner tissues of olive roots to the same extent than the 
wild type, discarding also these phenotypes as needed for the endophytic lifestyle 
of strain PICF7 (Chapter 2). 

 
4. Strain PICF7 mutants assessed in this thesis behaved similarly in olive and 

Arabidopsis. This outcome encourages the use of A. thaliana as a suitable 
alternative and/or complementary tool for the identification of PICF7 traits 
involved in the biocontrol of Verticillium dahliae (Chapters 2 and 3). 

 
5. Strain PICF7 colonizes and persists on Arabidopsis thaliana roots. However, no 

evidence of endophytic colonization was obtained under the experimental 
conditions used in this thesis. The inability of PICF7 to colonize the root interior of 
this model plant in contrast to the endophytic lifestyle  displayed in its natural 
host can help to understand what are the mechanisms underlying inner 
colonization ability by this bacterium (Chapters 2 and 3). 

 
6. The similar behavior displayed by the defoliating (highly virulent) and non-

defoliating (moderately virulent) olive pathotypes of V. dahliae in A. thaliana and 
olive support the use of the model plant to assess  pathogenicity and virulence of 
V. dahliae isolates infecting olive, thereby saving the time and space usually 
required   for pathogenicity tests performed with this woody host (Chapter 3). 
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7. The control of the foliar necrotrophic fungus Botrytis cinerea upon application of 
strain PICF7 to Arabidopsis roots suggests that this BCA is able to induce systemic 
resistance in the aerial tissues of the model plant. This result supports previous 
findings demonstrating that systemic defense responses are triggered in olive 
aerial tissues after root inoculation with strain PICF7 (Chapter 3). 

 
8. However, the absence of effective  suppression of  olive knot disease (OKD) after 

P. fluorescens PICF7 colonization of olive roots indicates that this  bacterium  is 
unable to mount a systemic defense response successful against  P. savastanoi pv. 
savastanoi (Psv), at least under the experimental conditions used in this thesis 
(Chapter 4).  

 
9. In contrast, strain PICF7 is able to alter the macroscopic appearance of the tumors 

when co-inoculated with Psv into the stems. This phenomenon could be explained 
by the transient decrease of the pathogen population size and by the altered 
localization of Psv cells within the hyperplasic tissue, moving from the knot 
surface to the inner regions of the tumor when the BCA was present. These 
changes may pose important epidemiological consequences deserving further 
studies since the confinement of Psv towards the knot interior as a consequence 
of the presence of PICF7 may reduce pathogen dissemination from knot exudates.  
(Chapter 4).  
 

10. Bacterial cells of Psv are able to migrate from the inoculation site and/or 
developed tumors to areas far beyond the hyperplasic regions through the stem 
xylem vessels. This finding, hardly evidenced in the past by the use of 
methodologies such as tissue fixation or staining, has been undoubtedly proved 
using CLSM and in vivo visualization of Psv cells in fresh stem tissues (Chapter 4). 
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