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Abstract 
 

The main objective of this work is to automatically 

design neural network models with sigmoidal basis 

units for classification tasks, so that classifiers are 

obtained in the most balanced way possible in terms of 

CCR and Sensitivity (given by the lowest percentage of 

examples correctly predicted to belong to each class). 

 We present a Memetic Pareto Evolutionary NSGA2 

(MPENSGA2) approach based on the Pareto-NSGAII 

evolution (PNSGAII) algorithm. We propose to 

augmente it with a local search using the improved 

Rprop—IRprop algorithm for the prediction of 

growth/no growth of L. monocytogenes as a function of 

the storage temperature, pH, citric (CA) and ascorbic 

acid (AA). The results obtained show that the 

generalization ability can be more efficiently improved 

within a framework that is multi-objective instead of a 

within a single-objective one. 

 

1. Introduction 
 

There are many fields of study, such as medicine 

and epidemiology, where it is very important to predict 

a binary response variable or, equivalently, the 

probability of occurrence of an event (success), in terms 

of the values of a set of explicative variables related to it. 

In this work, we discuss learning and generalization 

improvement of classifiers designed using a multi-objective 

evolutionary learning algorithm (MOEA). Specifically we 

investigate the generation of neural network classifiers based 

on two objectives: the correct classification rate, C, and the 

sensitivity, S. The basic structure of the MOEA has 

been modified by introducing an additional step, where 

each individual in the population has been enhanced 

by a local search method. For this purpose, a Memetic 

Pareto Evolutionary NSGA2 (MPENSGA2) algorithm 

has been developed. 

Our MOEA can be applied for predictive 

microbiology, a specific application of the field of 

mathematical modelling for describing the behaviour of 

pathogen and spoilage micro-organisms under a given 

set of environmental conditions. The importance of this 

application is the demand for healthier and more 

convenient food products, as scientists recognize that 

there is an increasing need to model microbial growth 

limits [1]. Growth / no-growth models or boundary 

models quantify the probability of microbial growth 

and define combinations of factors that prevent growth.  

The rest of the paper is organized as follows. In 

Section 2, background materials are covered followed 

by an explanation of accuraccy and sensitivity. In 

Section 4, our problem is described as a multi-

objective optimization. The MPENSGA2 algorithm is 

described in Section 5, followed by experimental 

design in Section 6 and the conclusions, which are 

drawn in Section 7. 

 

2. Background materials 
 

Evolutionary Artificial Neural Networks (EANNs) 

have been a key research area in Computer Science for 

the last decade. On one hand, methods and techniques 

have been developed to find better approaches for 

evolving ANNs, and more specifically, multi-layer 

feed-forward ANNs. On the other hand, finding a good 

ANN architecture has been a debatable issue as well in 

the field of Artificial Intelligence. Methods for 

network-growing denominated ―constructive algorithms‖ 

[2,3] start with a small network (usually a single neuron). 

This network is trained until it is unable to continue 

learning, then new components are added to the network. 

This process is repeated until a satisfactory solution is 

found. Destructive methods, also known as ―pruning 

algorithms‖ [4], start with a big network, that is able to 

learn but usually ends in over-fitting, and then some 
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processes are applied in order to remove the connections 

and nodes that are not useful. However, all these 

methods usually suffer from slow convergence and 

long training time. In addition, they are gradient-based 

techniques and, therefore, can easily get stuck in a local 

minimum. EANNs provide a more successful platform 

for optimizing both network performance and 

architecture simultaneously.  

Evolutionary computation has been widely used in 

the last few years to evolve neural-network 

architectures and weights. There have been many 

applications for parametric learning [5] and for both 

parametric and structural learning [6]. This may 

indicate that there is an extensive need for finding 

better ways to evolve ANN. A major advantage of the 

evolutionary approach over traditional learning 

algorithms such as BP (Backpropagation) is the ability 

to escape a local optimum. More advantages include 

robustness and ability to adapt to changing 

environments. The major disadvantage of the EANN 

approach is that it is computationally expensive, as the 

evolutionary approach is usually slow. To overcome 

this slow convergence of the evolutionary approach, 

hybrid techniques were used to speed up convergence 

by augmenting evolutionary algorithms with a local 

search technique (i.e. memetic approach), such as BP 

[7].  

 

3. Accuracy and sensitivity 
 

To evaluate a classifier, the machine learning 

community has traditionally used the correct 

classification rate or accuracy to measure its default 

performance. However, the pitfalls of using accuracy 

have been pointed out by several authors [8]. Actually, 

it is enough to simply realize that accuracy cannot 

capture all the different behavioral aspects found in two 

different classifiers. Even in the simplest case where 

there are only two classes, accuracy states a one-

dimensional ordering where you find two different 

types of errors. We consider traditionally-used 

accuracy C  and the minimum of the sensitivities of all 

classes S , that is, the lowest percentage of examples 

correctly predicted as belonging to each class with 

respect to the total number of examples in the 

corresponding class. The sensitivity versus accuracy 

pair ( , )S C  expresses two features associated with a 

classifier: global performance C  and the rate of the 

worst classified class S . The ( , )S C  pair tries to find 

an intermediate point between scalar measures and 

multidimensional ones based on misclassification rates, 

trying to evaluate two features of a classifier: global 

performance in the whole dataset and the performance 

in each class. 

One point in ( , )S C  space dominates another if it is 

above and to the right, i.e. it has more accuracy and 

greater sensitivity. Let us consider a Q -class 

classification problem. Let C  and S  be respectively 

the accuracy and the sensitivity associated with a 

classifier g , then   *1 1S C S p    , where *p  the 

minimum of the estimated prior probabilities is. 

Therefore, each classifier will be represented as a point 

in the shaded region in Figure 1. Several points in 

( , )S C  space are important to note. The lower left point 

(0,0)  represents the worst classifier and the optimum 

classifier is located at the  1,1  point. Furthermore, the 

points on the vertical axis correspond to classifiers that 

are not able to predict any point in a concrete class 

correctly. Note that it is possible to find among them 

classifiers with a high level of accuracy, particularly in 

problems with small *p . 

 
Figure 1. Feasible region in the two 

dimensional (S,C) space of a concrete 

classification problem. 

 

4. Multi-objective optimization in 

classification problems 
 

General multiobjective optimization problem 

(MOP) solution methods range from linear objective 

function aggregation to Pareto-based techniques. In an 

attempt to stochastically solve problems of this generic 

class in an acceptable timeframe, specific 

multiobjective evolutionary algorithms (MOEAs) were 

initially developed in the mid-eighties for application 

to the MOP domain being efficient in the evaluation of 

the Pareto-optimal set in difficult multiobjective 



optimization problems. Several MOEA have been 

suggested that are capable to deal with a population of 

points to define an approximation to the Pareto set with 

a single run. There are already a number of good 

reviews on MOEA methods [9].  

During the last few years, new methods called 

Memetic Algorithms (MAs) have been developed in 

order to improve the EAs using local optimization 

algorithms [10]. Some of the most important works in 

the literature about MOEAs and local optimizers used 

to speed up the convergence are [11-15]. 

 

5. The MPENSGA2 algorithm 
 

In this section we consider an MOEA with a local 

search, called MPNSGA2,  that tries to move the 

classifier population towards the optimum classifier 

located at the  1,1  point in the ( , )S C  space. We 

consider standard feed forward MLP neural networks 

with one input layer with independent variables, one 

hidden layer and one lineal output layer, interpreting 

the outputs of neurons on the output layer from a 

probability point of view which considers the softmax 

activation function given by the following expression: 
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where J  is the number of classes in the problem, 

 ,l lf x θ  the output of the j neuron for pattern x  

(lineal output) and  ,l lg x θ  the probability of pattern 

x  belonging to class j. Taking this consideration into 

account, it can be seen that the class predicted by the 

neuron net corresponds to the neuron on the output 

layer whose output value is the greatest. The optimum 

rule ( )C x  is the following: 

ˆ ˆ ˆ( ) , where arg max ( , ), for  1,2,...,l lC l l g l J  x x θ  

One of  the fitness functions used in this research to 

evaluate a classification model is the function of cross-

entropy error and is given by the following expression 

for J  classes:  
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where 
1( ,..., )Jθ θ θ . The advantage of using the 

error function ( )l θ  instead of (1 )CCR  is that it is a 

continuous function, which allows training to converge 

towards more optimal solutions and that the 

evolutionary algorithm to converge more slowly. Then, 

the first fitness measure to maximise is a strictly 

decreasing transformation of the entropy error ( )l θ  

given by 
1

( )
1 ( )

A g
l


 θ

, where g  is a sigmoidal 

basis function model given by the multievaluated 

function       1 1, , ,..., ,J Jg g gx θ x θ x θ .  

The second objective to maximice is the sensitivity 

S  of the classifier as the minimum value of the 

sensitivities for each class  ; 1, ,iS mín S i Q   . 

The algorithm evolves architectures and connection 

weights simultaneously, each individual being a fully 

specified ANN. The neural networks are represented 

using an object-oriented approach and the algorithm 

deals directly with the ANN phenotype. Each 

connection is specified by a binary value indicating 

whether the connection exists and a real value 

representing its weight. The crossover operator is not 

considered due to its potential disadvantages in 

evolving artificial networks [16], this object-oriented 

representation does not assume a fixed order among 

between the different hidden nodes. With these 

features, the algorithms fall into the class of 

evolutionary programming. 

The MOEA  proposed is NSGA2[17], adding the 

necessary mutators to obtain new individuals in the 

evolutionary process, and the local search algorithm is 

the improved Rprop—IRprop+[18]. The local search 

algorithm is applied when we combine parent and 

offspring population in NSGA2. Then only the 

individuals of the first pareto front of this combined 

population are optimized by iRprop+, reducing the 

computational cost considerably. iRprop+ can be seen 

as a kind of life-time learning (the first objective only) 

within a generation. After learning, the fitness of each 

individual with regard to the approximation error is 

updated. In addition, the weights modified during life-

time learning are encoded back to the chromosome, 

which is known as the Lamarkian type of inheritance. 

Life-time learning occurs in the generations 2/7, 4/7 y 

6/7 of total generations. 

Mutators used in this work are divided into strutural 

mutators: add/delete neurons, add/delete connections, 

and parametric mutators: in this case a new parametric 

mutation that involves the alteration of all weights of 

the network by adding a Gaussian noise, where the 

variance of the Gauss distribution follows a geometric 

decline (for details see [19,20]). 

 

 



6. Determining the probability of growth 

for L. Monocytogenes 
 

Listeria monocytogenes have been a serious 

problem concerning food industries due to their 

ubiquity in the natural environment [21] and the 

specific growth conditions of the pathogen that lead to 

its high prevalence in different kinds of food products. 

One impetus for this research has been the problem of 

listeriosis, and different strategies have been proposed 

to limit levels of contamination at the time of 

consumption to less than 100 CFU/g (European 

Commission, [22]). 

 

6. 1. Experimental design 
 

A fractional factorial design was followed in order 

to find out the growth limits of L. monocytogenes. Data 

were collected at citric acid, CA, and ascorbic acid, 

AA, concentrations between 0 and 0.4 % (w/v) at 

intervals of 0.05 %, at 4, 7, 10, 15 and 30ºC and pH 

levels of 4.5, 5, 5.5 and 6. 539 different conditions 

were tested with 8 replicates per condition. This dataset 

was divided using a holdout cross-validation 

procedure, because in this kind of problem is difficult 

to justify the use of a k-fold cross-validation procedure. 

Thus 305 conditions were chosen for the model 

(training), and 234 for validation (generalization). 

Among the different conditions tested, there were 240 

no-growth cases and 299 growth cases. To determine 

which data belong to model training and model 

validation, the conditions of organic acids used at the 

same level of temperature and pH were selected 

alternatively, as shown in Table 1. In [23] can be seen 

the growth medium preparation, the inoculation 

procedure and the growth/no-growth evaluation.  

 

Table 1. Experimental design followed at the 

same level of temperature and pH  

 

CA  

(%) 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

AA (%) 

0          

0.05          

0.1          

0.15          

0.2          

0.25          

0.3          

0.35          

0.4          

CA = Citric Acid; AA = Ascorbic Acid;  

Training data  Generalization data 

To start processing data, each of the input and 

output variables were scaled in the ranks [0.1, 0.9] and 

[1, 2] respectively. The new scaled variables were 

named T*, pH*, CA* and AA*, for the input variables 

and G*=G+1 for the output variable.  

As our procedures are stochastic, the MPENSGA2 

is run 30 times and presents the values of the average 

and the standard deviation obtained. The process for 

obtaining these values is as follows: Once the pareto 

front is calculated,the extreme values were chosen. 

First, (in training) the best individual belonging to the 

pareto front on Entropy (EI) is selected, after choosing 

the best insdividual in terms of sensitivity (SI). Once 

this is done, the values of CCR and sensitivity are 

obtained testing the individuals for EI and SI. 

Therefore we will have an individual 

( , )testing testing testingEI C S  and an individual 

( , )testing testing testingSI C S . This is repeated  30 times 

and then the average and standard deviation obtained 

from individuals is estimated, 

( , )testing testing testingEI C S , ( , )testing testing testingSI C S . 

The first expression is the average obtained taking 

entropy into account as their primary objective, and the 

second taking sensitivity into account as their primary 

objective. So, the opposite ends of the pareto front are 

taken in each of the executions. Hence, the first 

procedure is called MPNSGA2E (Entropy) and the 

second MPNSGA2S (Sensitivity). In Figure 2 shows 

graphically the process followed. 

 

 
Figure 2. MPNSGA2E and MPNSGA2S 

procedure 
 

Classifiers performance in several classification 

methodologies in the generalization set is presented in 

Table 2. The performance measures used are the 

correct classification rate and the sensitivity. The 

Pareto front obtained for L. Monocytogenes in training 



and the values for CCR and Sensitivity in testing are 

shown in Figure 4 and Figure 5. 
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Figure 4. Pareto front for E-S in training for L. 

Monocytogenes 
 

Of the methodologies tested, the model obtained 

using NBTree correctly predicted 87.40 % of the cases 

for the generalization set, with a sensitivity of 83.33 % 

whereas the worst model using the CART methodology 

obtained a C% of 79.25% with a sensitivity of 70.66%.  
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 Figure 5. C-S in testing for L. Monocytogenes 
 

In Table 2 presents the values of the average and the 

standard deviation of both measures; these results show 

that the best methodology is the MPENSGA2 

(HNSGA2E) with an average value of 85.95% for C 

and of 84.53% for S, the second best result being on C 

and the first on S.  

These results are in line with those obtained by 

Hajmeer and Basheer [24], who carried out hybrid 

approaches that integrate ANNs and statistical 

Bayesian conditional probability estimation, or the use 

of probabilistic neural networks in comparison to linear 

and non-linear logistic regression models. They 

observed that these new approaches outperformed 

linear and non-linear logistic regression models in 

terms of both classification accuracy and ease.  

 

Table 2. Classification table obtained for the 

growth limits of L. monocytogenes.  
 

Methodology (%)C  (%)S  

Mlogisitc 82.96±0.00 78.33±0.00 

Slogistic 81.48±0.00 76.66±0.00 

C45 85.92±0.00 78.33±0.00 

NBTree 87.40±0.00 83.33±0.00 

CART 79.25±0.00 70.66±0.00 

SVM 80.74±0.00 73.33±0.00 

HNSGA2E 85.95±1.57 84.53±1.93 

HNSGA2S 85.60±1.86 82.81±2.91 

 

C(%) = % of Correct classified rate; S(%) = 

Sensitivity 
 

7. Conclusions 
In this paper we study the improvement of the 

generalization ability of neural classifiers with multiple 

learning objectives. The inclusion of the two-objective 

( , )S C  approach reveals a new point of view for 

dealing with classification problems.  

It can be noted that the sensitivity obtained by the 

HNSGA2E model fits the data observed better than that 

obtained with other methodologies, and produced 

greater classification accuracy in generalization data 

(exception for NBTree). In conclusion, the use of the 

HNSGA2E model to determine growth probability 

under a set of conditions could constitute a valuable 

alternative method for mathematical modelling. 
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