EFFECTS OF ELECTRODEPOSITED LITHIUM PHOSPHATE ON THE ELECTROCHEMICAL PROPERTIES OF SELF ORGANIZED TITANIA NANOTUBES

Marta Cabello^a, María C. López^a, Taras Chyrka^b, Gregorio F. Ortiz^a, José R. González^a, Ricardo Alcántara^a, and José L. Tirado^a

^aLaboratorio de Química Inorgánica, Universidad de Córdoba, Edificio Marie Curie, Campus de Rabanales. 14071 Córdoba – España, E-mail: z22cabbm@uco.es
^b Chem. Eng. Dep., NTUU "Kyiv polytechnic institute", 03056, Kyiv, Ukraine

Solid electrolyte interfaces are crucial for the development of lithium-ion batteries. An alternative approach is to coat the electrodes with a convenient ionic conductor that warrants lithium ion diffusion from the electrolyte. Thin film electrodes prepared directly onto current collectors are particularly suitable to this approach. The compound Li₃PO₄ is known to be a potential candidate for thin film lithium electrolyte due to its light weight, wide potential range of stability vs. lithium and also because of its thermal and mechanical stability.¹

The aim of this work is to prepare nanoarchitectured electrodes containing a thin layer of Li₃PO₄. The covering effect of Li₃PO₄ can be observed for 1 min of electrodeposition at 37.5 mA cm⁻² as the nanotubes are filled (Fig. 1). Firstly, self organized TiO₂ nanotubes are used to improve their electronic and ionic conductivity. The annealing condition allowed preparing β -Li₃PO₄ (R.T. – 300 °C) and γ -Li₃PO₄ (\ge 500 °C).² The discharge and charge plateau of Li₃PO₄-free ntTiO₂ samples were at approximately 1.75 and 1.9 V, respectively. For β -Li₃PO₄/ntTiO₂ and γ -Li₃PO₄/ntTiO₂ samples deposited 1 min at 3.75 mA cm⁻² a discharge/charge plateaus are observed at 1.78 and 1.86 V, which is ~0.1 V lower in energy as compared with uncoated samples. The best capacity value of 500 μ A h cm⁻² was achieved for TiO₂/ γ -Li₃PO₄.

The optimum parameters for electrodeposition to achieve γ -Li₃PO₄ coating on the entire ntTiO₂ array are 1 min and 3.75 μ A cm⁻². The performance of the ntTiO₂/ γ -Li₃PO₄ (LiPF₆ in EC:DEC)/ LiFePO₄ rocking-chair microbattery delivered a maximum capacity of 110 mA h g⁻¹ at 5C rate when imposing a cathode-limited active mass ratio to the electrodes.² The obtained low-voltage microbattery (<2.0 V) could fit to applications demanding small-scale electrical power.

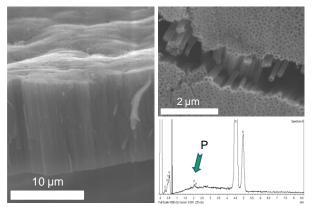


Figure 1. SEM image of nt-TiO₂ with electrodeposited Li₃PO₄.

The authors are indebted to MEC (MAT2011-22753), "Ramón y Cajal" contract (RYC-2010-05596) and "Junta de Andalucía" (FQM-288 and FQM-7206).

¹ Bates, J. B.; Dudney, N. J.; Gruzalski, G. R.; Zuhr, R. A.; Choudhury, A.; Luck, D. F.; Robertson, J. D. *J. Power Sources* **1993**, *43*, 103.

² López, M.C.; Ortiz, G.F.; González, J.R.; Alcántara, R.; Tirado, J.L. ACS Appl. Mater. Interfaces **2014**, *6*, 5669.