
 1 

J. Garrido, F. Vázquez, F. Morilla, and T. Hägglund, Practical advantages of inverted decoupling, Proceedings of the 
Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering November 2011 Volume 
225, Issue 7, pp. 977-992, ISSN 0959-6518, http://dx.doi.org/10.1177/2041304110394556 
(http://pii.sagepub.com/content/225/7/977)  
 
 

PRACTICAL ADVANTAGES OF INVERTED DECOUPLING 

 

Juan Garridoa*, Francisco Vázqueza, Fernando Morillab, Tore Hägglundc 

a Department of Computer Science and Numerical Analysis, University of Córdoba, 

Campus de Rabanales, 14071, Córdoba, Spain 

* Fax: (+34)957218729; e-mail: juan.garrido@uco.es 

b Department of Computer Science and Automatic Control, UNED, Juan del Rosal 16, 

28040, Madrid, Spain 

c Department of Automatic Control, Lund University, Box 118, S-22100, Lund, Sweden 

 

Abstract 

 

This paper presents a study of the main advantages of inverted decoupling in 2x2 

processes. Two simulation examples and an experimental process are used to show 

these advantages in comparison with simplified decoupling. The study is focused on the 

following practical advantages: the apparent process is the same as that obtained if one 

loop changes to manual, bumpless transfer and anti-windup are achieved easily using a 

feedforward input in the controllers, and abnormalities of secondary loops do not affect 

the opposite loop. Thanks to them, inverted decoupling may be a good and easy way to 

improve the performance of industrial TITO processes with interaction problems (when 

it can be applied). 
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1.- Introduction 

Most industrial processes are complex and multivariable in essence [1]. They consist of 

several measurement and control signals, and there are often complicated couplings 

between them, which can cause difficulties in feedback controller design. Process 

control problems are traditionally solved using single-loop PID controllers that are 

connected through well-known couplings such as cascade control, feed-forward control, 

ratio control, etc. These decentralized approaches have traditionally evolved through 

years of experience, and they are adequate when the interactions in different channels of 

the process are modest. Nevertheless, when interactions are significant, the decoupling 

is often treated inefficiently, e.g., by detuning control loops. Commonly, the most 

important loop is tuned to give good performance, while the other loops are detuned in 

such a way that the interaction with the first loop becomes acceptable. In these cases, a 

full matrix controller (centralized control) is advisable. 

 

There are two approaches of centralized control: a pure centralized strategy [2-6] or a 

decoupling network combined with a diagonal decentralized controller [7-10]. In the 

last case, a decoupler is used to minimize interaction or to make the system diagonal 

dominant; then, the controllers are designed using some decentralized method. The 

decouplers combined with the single-loop controllers constitute the multivariable 

controller. 
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Over the years decoupling has been addressed in the literature [11-14]. Some 

approaches are static [15], and others are dynamic [9-10], [14], [16]. Static decoupling 

guarantees complete decoupling only for low frequencies. This might not be enough to 

achieve good performance. Further, cross couplings at other frequencies must be 

handled in some way during controller design. Dynamic decoupling eliminates or 

reduces the interactions in a wider range of frequencies, but the design is more difficult 

and the decoupler elements are more complex and difficult to implement.  

 

In addition, most of these methodologies focus on systems with two inputs and two 

outputs (TITO systems). They are one of the most prevalent categories of multivariable 

systems because there are real processes of this nature or because a complex process can 

be decomposed in 2x2 blocks with non negligible interactions between its inputs and 

outputs [9-10], [17-18]. 

 

Most decoupling approaches use a conventional decoupling scheme in which the 

process inputs are derived by a time-weighted combination of feedback controller 

outputs (Figure 1a). The most extended forms of conventional decoupling were termed 

ideal and simplified decoupling in [7]. This approach has received considerable 

attention in both control theory and industrial practice for several decades. However, 

this scheme presents several implementation problems that many companies are not 

willing to face up to; sometimes because of the costs of implementation or because it is 

necessary to make important changes in the control system. 

INSERT HERE FIGURE 1 

An alternative means of decoupling, called inverted decoupling, derives a process input 

as a time-weighted combination of one feedback controller output and the other process 
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inputs. It is rarely mentioned in the literature, but it is very easy to implement when it 

can be applied [19]. Inverted decoupling scheme for a 2x2 process is shown in Figure 

1b. 

 

In [8], inverted decoupling is shown to be a form of ideal decoupling which can be 

implemented using the simple elements of simplified decoupling. In [20], a comparative 

study of simplified, ideal and inverted decoupling is presented. It is demonstrated that 

robust performance and robust stability of a nominally stable control system are 

equivalent for the three decoupling methods when the controllers are tuned to obtain 

identical nominal performance. Chen et al. [21] improved upon the inverted decoupling 

technique for a class of stable linear multivariable processes with multiple time delays 

and non-minimum-phase zeros. The main practical advantages of inverted decoupling 

over both ideal and simplified conventional decouplings are mentioned in them; 

however, they are not studied or exemplified in great detail. 

 

In this work, the main practical advantages of inverted decoupling of 2x2 processes are 

explained and illustrated using several examples in comparison with simplified 

decoupling, in such a way that they can be clearly appreciated. The paper is structured 

as follows. Section 2 presents the equations of inverted and simplified decoupling, 

realizability problems, stability conditions and a brief comparison of both decouplings. 

In Section 3, the different processes used to highlight the advantages of inverted 

decoupling are described. Section 4 shows these practical advantages using two 

simulation examples and a real quadruple tank process. Finally, conclusions are 

summarized in Section 5. 
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2.- Inverted decoupling and conventional decoupling for TITO processes 

2.1.- Decoupler design 

A decentralized control system with a decoupling matrix can be designed by combining 

a diagonal controller C(s) with a block compensator D(s) in such a way that the 

controller sees the apparent process G(s)·D(s) as a set of n completely independent 

processes. The essence of decoupling is the imposition of a calculation net that cancels 

the existing process interaction, allowing for independent control of the loops. In this 

way, as the open loop matrix G(s)·D(s)·C(s) is diagonal, the closed loop matrix 

G(s)·D(s)·C(s)·[I+ G(s)·D(s)·C(s)]-1 is decoupled too. 

 

For TITO processes, using the structure of conventional decoupling (Figure 1a), the 

design of the decoupler network is obtained from (1), generally specifying two elements 

of the decoupler D(s) or the two desired transfer functions of the apparent process Q(s).  

Two of the most extended forms are ideal decoupling and simplified decoupling. 

-1(s)= (s)· (s)D G Q      (1) 

In ideal decoupling, the goal is to make the apparent processes as simple as the diagonal 

elements of the process matrix G(s). The main inconveniences of this method are the 

complexity of the decoupler elements (2) and realizability problems. 
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On the other hand, with simplified decoupling, two elements of the decoupler, generally 

the diagonal ones, are set to unity. Decoupler network design is easier; however the 

complexity of the apparent process is greater (3) 
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Using the structure of inverted decoupling (Figure 1b), it is possible to keep the same 

apparent process Q(s) of ideal decoupling while using the simple decoupler elements of 

simplified decoupling (4), as it is demonstrated in [20]. 
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2.2.- Stability of inverted decoupling 

If the expression of the whole decoupler D(s) is studied using the structure of the 

inverted decoupling configuration, the following equivalent expression of conventional 

decoupling is obtained 

12

2112 21

1 (s)1(s) =
(s) 11 (s) (s)

d
dd d
 
 −  

D    (5) 

Using the decoupler elements in (4), it is proved that inverted decoupling is a different 

way to implement ideal decoupling in (2) with simpler decoupler elements. Assuming 

stable and realizable decoupler elements, the stability problem rests on the location of 

zeros in the equation (6), which is equivalent to the location of the zeros of the 

determinant of the transfer function matrix of the process. 
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Therefore, due to stability problems, the main disadvantage of inverted decoupling is 

the fact that it cannot be applied to processes with RHP zeros in the determinant of the 

transfer function matrix. For internal stability, these RHP zeros should appear in the 

apparent process. In a conventional decoupling structure, RHP zeros of the determinant 

of G(s) can be included in the desired equivalent open loop transfer functions Q(s). 

However, this is not possible using inverted decoupling. If the multivariable RHP zero 

is associated with a single output and is therefore included in the process transfer 

functions of the same row, inverted decoupling can be applied because the RHP zero 

will be cancelled. 

Once the stability of the decoupler has been assured, internal stability of the closed loop 

system is verified if and only if all elements in the following matrix (7) have all their 

poles in the left-half plane and there is no RHP pole-zero cancellation in G(s)·K(s) [12], 

where S(s)=[I+G(s)·D(s)·C(s)]-1 is the sensitivity transfer function matrix and 

K(s)=D(s)·C(s) represents the decentralized controller in series with the decoupler. 

1s · s s · s
s s s

− 
 
  

( + ( ) ( )) − ( ) ( )
( ) ( ) ( )

I K G K S
S G S

    (7) 

 

2.3.- Realizability for inverted decoupling 

The realizability requirement for any decoupler is that all of its elements must be 

proper, causal and stable. For processes with time delays or non-minimum-phase zeros, 

direct calculation of the decoupler can lead to elements with prediction or right-half-

plane (RHP) poles. Therefore, essential measures must be taken to deal with them. 
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Besides the configuration of Figure 1b (configuration A), there is an alternative 

configuration (configuration B) in which the apparent process and decoupler elements 

are given by (8). These decoupler elements are the inverse of the decoupler elements of 

configuration A, and the apparent process is composed by the off diagonal elements of 

the process. 
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When no configuration is realizable, it is necessary to add extra dynamics in a diagonal 

block N(s) between the system G(s) and the inverted decoupler D(s) in order to modify 

the process and to force the non-realizable elements into realizability. Then, inverted 

decoupling can be applied to the new process GN(s)=G(s)·N(s). 

There are three aspects to take into account and to be inspected for each row to choose 

the proper configuration. Next, considering stable transfer functions gij(s) with time 

delays ijθ  and relative degrees rij, these aspects are studied separately: 

1- Non-causal time delays must be avoided in decoupler elements. Using configuration 

A, according to (4), the time delays of the two decoupler elements would be 1 12 11= −θ θ θ  

and 2 21 22= −θ θ θ . Using configuration B, according to (8), the time delays of the 

decoupler elements would be the opposite ones. For realizability, the time delays of 

decoupler elements must be greater than or equal to zero. Therefore, the following cases 

can arise: 

 - 1θ  and 2θ  greater than or equal to zero: configuration A should be selected. 

 - 1θ  and 2θ  less than or equal to zero: configuration B should be selected. 

 - 1θ  and 2θ  equal to zero: any configuration can be selected. 
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 - 1θ  and 2θ  are different from zero and have opposite signs. In this case no 

configuration is initially realizable. In order to force realizability it is necessary to insert 

an additional time delay in one of the diagonal elements of N(s). Suppose the diagonal 

block of extra time delays N(s)=diag( 1 2,n ns se eθ θ− − ) is proposed. Then, the new decoupler 

time delays would be given by (9) and they should be greater than or equal to zero for 

realizability. 

1 1 1 2

2 2 1 2

N
n n

N
n n

θ θ θ θ
θ θ θ θ

= − +

= + −
     (9) 

 

Since, generally, it is preferable to add the minimum extra dynamics, the additional time 

delay is the minimum absolute value between the absolute values of 1θ  and 2θ  (the 

other additional time delay will be equal to zero). Inserting this time delay in the proper 

input, the elements of the corresponding row of the new process GN(s) will have the 

same time delays and therefore, the time delay N
iθ of one of the new decoupler elements 

will be equal to zero. That corresponds to the first or second situation of the previous 

cases, which would indicate us the adequate configuration. 

Thus, if this minimum time delay iθ  is positive, the additional time delay must be 

inserted in the i-th diagonal element of N(s), that is, niθ  in (9) should be equal to iθ  and 

the other extra time delay should be zero. In this way, as niθ  in (9) has negative sign, the 

new decoupler time delay N
iθ  will be zero. The other decoupler time delay will be 

negative, because initially 1θ  and 2θ  have opposite signs and the absolute magnitude of 

iθ  is smaller. Then, the second previous case arises and configuration B is realizable.  

On the other hand, if this minimum time delay iθ  is negative, the additional time delay 

must be inserted in the alternative diagonal element of N(s), because it has positive sign 

in (9).  The time delay of the i-th diagonal element of N(s) should be zero. In this way, 
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the new decoupler time delay N
iθ  will be zero. The other decoupler time delay will be 

positive, because initially 1θ  and 2θ  have opposite signs and the absolute magnitude of 

iθ  is smaller. Then, the first previous case arises and configuration A is realizable. 

 
2- Decoupler elements must be proper. Similar to the analysis of time delays, using 

configuration A and according to (4), the relative degree of the two decoupler elements 

would be r1=r12-r11 and r2=r21-r22. Using configuration B, according to (8), the 

relative degrees of the decoupler elements would be the opposite ones. For realizability, 

the relative degree of decoupler elements must be greater than or equal to zero. 

Therefore, the following cases can arise: 

 - r1 and r2 greater than or equal to zero: configuration A should be selected. 

 - r1 and r2 less than or equal to zero: configuration B should be selected. 

 - r1 and r2 equal to zero: any configuration can be selected. 

 - r1 and r2 are different from zero and have opposite signs. In this case no 

configuration is initially realizable. In order to force realizability it is necessary to insert 

in N(s) a simple stable pole 1/λ with the adequate multiplicity rni as follows: 

( )
1

1 irsλ +
       (10) 

Following the same previous procedure for time delays, we obtain that the minimum 

multiplicity rni of the extra pole in (10) is the minimum absolute value between the 

absolute values of r1 and r2. Inserting this element in the proper input, the elements of 

the corresponding row of the new process GN(s) will have the same relative degree and 

therefore, the relative degree of one of the new decoupler elements will be equal to zero. 

Thus, if this minimum relative degree ri is positive, the additional dynamics must be 

inserted in the i-th diagonal element of N(s), and configuration B will be realizable. On 

the other hand, if this minimum relative degree ri is negative, the additional extra 
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dynamics must be inserted in the alternative diagonal element of N(s) and configuration 

A will be realizable. 

 

3- Decoupler elements with RHP poles must be avoided. When some transfer function 

gij(s) has a RHP zero, the configuration in which this gij(s) appears in the denominator 

of some decoupler element must be avoid, because this zero will become a RHP pole. 

Thus, the configuration with the decoupler element dij(s) should be selected. A special 

case that makes impossible the realizability of inverted decoupling appears when each 

one of the element of a same row has a different RHP zero. In this case, one of these 

zeros will always become an unstable pole in some decoupler element of any 

configuration, and therefore, no configuration is realizable. 

However, when the same RHP zero appears in all elements of the same row of G(s), it 

is necessary to check the zero multiplicity ijη  in each element. Similar to the analysis of 

time delays and relatives degrees, using configuration A and according to (4), the zero 

multiplicity in the two decoupler elements would be η1=η12- η11 and η2=η21- η22. Using 

configuration B, according to (8), the multiplicities in the decoupler elements would be 

the opposite ones. For realizability, the zero multiplicity in decoupler elements must be 

greater than or equal to zero. Therefore, the following cases can arise: 

 - η1 and η2 greater than or equal to zero: configuration A should be selected. 

 - η1 and η2 less than or equal to zero: configuration B should be selected. 

 - η1 and η2 equal to zero: any configuration can be selected. 

 - η1 and η2 are different from zero and have opposite signs. In this case no 

configuration is initially realizable. In order to force realizability it is necessary to insert 

in N(s) an element as follows: 
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*

nis z
s z

η− + 
 + 

      (11) 

where z* is the complex conjugate of z, and ηni is the adequate multiplicity. Note that 

the relative degree of (11) is zero, and therefore, it does not affect to the previous 

conditions about relative degrees. Again, following the same previous procedure for 

time delays and relative degrees, we obtain that the minimum zero multiplicity ηni of the 

extra element in (11) is the minimum absolute value between the absolute values of η1 

and η2. Inserting this element in the proper input, the elements of the corresponding row 

of the new process GN(s) will have the same zero multiplicity and therefore, the zero 

multiplicity of one of the new decoupler elements will be equal to zero. Thus, if this 

minimum zero multiplicity ηi is positive, the additional dynamics must be inserted in 

the i-th diagonal element of N(s), and configuration B will be realizable. On the other 

hand, if this minimum zero multiplicity ηi is negative, the additional extra dynamics 

must be inserted in the alternative diagonal element of N(s) and configuration A will be 

realizable. 

For illustration, considering the following example [4] 
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s s

s s
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s
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 + + =  − ⋅ − ⋅
  + + 

G    (12) 

This process (12) has a multivariable RHP zero at s=0.5. Nevertheless, it is associated 

with a single output, the second one, and therefore, inverted decoupling can be applied. 

However, this RHP zero appears in the two process transfer functions of the second row 

with different multiplicity. According to the previous RHP zero conditions, the 

configuration B should be selected because η1=0 and η2=-1 (the second case of the 

previous analysis). However, according to the time delay conditions, no configuration is 
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realizable because 1 4θ =  and 2 5θ = − , they have different signs. Thus, in order to achieve 

realizability and according to the previous time delay analysis, an extra time delay of 4 

units has to be added in the first input, because the absolute value of 1θ  is the smallest 

one, and it is positive.  

In this case, the new process to be decoupled is given by (13), and configuration B is 

realizable. Then, using this configuration and according to (8), the decoupler elements 

are given by (14) and the apparent decoupled process is composed by off diagonal 

elements of (13). The RHP zero appears in the apparent process of the second output, 

which is necessary for internal stability. 
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( )

6 6

27 8

2 3

2 2
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e e
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   (13) 

 

( )
( )11 22

0 5 0 5
(s) = 1 (s) =

2

s. s . e
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2.4.- Advantages of inverted decoupling 

In spite of the fact that inverted decoupling can not be applied to process with RHP 

zeros in the determinant, it has many advantages compared to conventional decoupling. 

Some of them are related to implementation aspects, and they will be treated later. 

Furthermore, there are some fundamental advantages: 

 

- The apparent processes do not contain sums of transfer functions, and therefore, tuning 

of the diagonal controllers is easier. In multivariable processes with strong cross 

couplings, even if the elements of the system have simple dynamics, decoupling may 
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result in complicated diagonal apparent processes consisting of parallel coupled 

processes that may have different signs and different time delays [22]. An example of 

such a diagonal element is: 

( )( ) ( )( )
41.2 1( )

0.5 1 0.7 1 3 1 2 1
− −= −

+ + + +
s sG s e e

s s s s
   (15) 

which consists of a difference between two fairly simple transfer functions. If PID 

controllers are used to control a system with diagonal elements like (15), design 

methods that rely on simple process dynamics, like step response methods [23], are not 

appropriate. 

- Decoupler elements do not contain either sum of transfer functions, so they are easy to 

design. Using conventional decoupling, in some cases, it is possible to have decoupler 

elements with complexity similar to that of process (15), and therefore, they are difficult 

to implement. 

 

In addition, inverted decoupling also has several practical advantages over conventional 

decoupling that make this decoupling structure very interesting from an implementation 

point of view. These advantages [8] are the following: 

- The apparent process seen by each controller, when inverted decoupling is 

implemented, is the same as that obtained if there was no decoupling and the 

alternate controller were in the manual mode. 

- Inverted decoupling can often be implemented within a DCS using PID function 

blocks with feedforward inputs. This will automatically provide such features as 

initialization and bumpless transfer between manual and automatic. 

- The antireset windup feature of the PID, combined with its feedforward input, 

can be used to directly take into account the saturation of the manipulated 

variables when inverted decoupling is implemented. 
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- When decoupler outputs are used as cascade setpoints to lower level controllers, 

each decoupled control loop is immune to abnormalities (e.g., a valve at a limit 

or a secondary controller in manual) in the secondary of the opposite control 

loop. 

Although this work focuses on TITO processes, these advantages can be also extended 

to higher dimensional systems because the complexity of the decoupler elements does 

not increase. 

 

3.- Process examples 

In order to study the previous practical advantages in more detail and in order to present 

a comparison between inverted decoupling and simplified decoupling, three TITO 

processes are used for this goal. Two of them are simulation processes and the other one 

is an experimental system. They are multivariable processes with directionality 

problems and great interactions, and therefore, the use of a decoupling control structure 

is justified in all of them.  The decoupler elements calculated for each process are the 

same in both decoupling structures (inverted and simplified). A diagonal controller is 

tuned for each decoupling structure in order to obtain the same performance. The 

diagonal control consists of two PI controllers that are tuned in the frequency domain 

using phase margins or gain margins as performance specifications [24]. 

 

The simulation processes are the Wood and Berry binary distillation column and the 

Niederlinski process. The Wood and Berry process [25] is  

-s -3s

WB -7s -3s

12.8×e -18.9×e
16.7s+1 21s+1( )
6.6×e -19.4×e
10.9s+1 14.4s+1

 
 
 =
 
 
 

sG     (16) 
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Two PI controllers are tuned to achieve a phase margin of 60º and a gain margin of 4 in 

both loops. The PI parameters are shown in Table 1. The decoupler elements are: 

( ) ( )-2·s -4·s
12 21

1.1742· s + 0.05988 s + 0.06944
(s) = ·e (s) = 0.44945· ·e

s + 0.04762 s + 0.09174
d d   (17) 

INSERT HERE TABLE 1 

The Niederlinski process used for simulation is: 

( )( )N 2

0.5-1
1 0.1s +1(s) =

2.40.1s +1 0.2s +1 1
0.5s +1

 
 
 
  
 

G    (18) 

Two PI controllers are tuned to achieve a phase margin of 60º in both loops. The PI 

parameters are listed in Table 2. The decoupler elements are: 

12 21
5 4 8(s) = (s) =

s +10 s + 2
− .d d     (19) 

INSERT HERE TABLE 2 

The experimental process is a quadruple tank plant [26] of the lab of the department of 

Automatic Control of Lund University. It was configured in order to have interaction 

problems without multivariable RHP zeros, and then it was identified. The resultant 

model is 

( ) ( )

( ) ( )
T

1 4 0 97
14 62 1 12 52 1 8 63 1

(s)
1 09 1 15

11 96 1 9 26 1 13 7 1

 
 + + + =
 
  + + + 

. .
. ·s . ·s · . ·s

. .
. ·s · . ·s . ·s

G   (20) 

Input and output units in (18) are in V, in the range of [0-10] V. The outputs are the 

level of the lower tanks inside the range of [0-20] cm, and the inputs are flow 

references, [0-100] %, to the secondary control loops that regulate the operation of the 

pumps. The identification was carried out around the operation point with the output 

y=[7, 6.5] V (or [14, 13] cm) and the input u=[6, 6] V. 
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Two PI controllers were tuned to obtain a phase margin of 60º in both loops limiting the 

bandwidth frequency around 0.1 rad/s, where the interactions problems of the process 

are greater. The PI parameters are listed in Table 3. The decoupler elements are: 

( )
( ) ( )

( )
( ) ( )12 21

-0.6929· 14.62·s +1 -0.9478· 13.7·s +1
(s) = (s) =

12.52·s +1 · 8.63·s +1 9.26·s +1 · 11.96·s +1
d d  (21) 

INSERT HERE TABLE 3 

4.- Practical advantages of inverted decoupling 

4.1.- The apparent process 

 “The apparent process seen by each controller, when inverted decoupling is 

implemented, is the same as that obtained if there was no decoupling and the alternate 

controller was in manual mode.” 

 

For instance, if the element d12 is disabled in the inverted decoupling scheme of Figure 

1b, although both loops are in automatic mode, the second loop remains decoupled 

while the first one not. The control scheme of the second loop is similar to a 

feedforward control combined with a feedback loop (AFF mode). Thus, the apparent 

process for the second controller is g22(s) (using both inverted and simplified 

decoupling). When the first loop is decoupled, using inverted decoupling, the apparent 

process is the same, g22(s). However, using simplified decoupling, the apparent process 

changes; in this case, it is g22(s)-(g12(s)·g21(s))/g11(s). Consequently, if the same PID 

parameters are used, the performance of this output will be affected depending on the 

state (decoupled or not) of the first loop. In order to maintain the same performance, it 

would be necessary to change the PID parameters. 
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Using inverted decoupling and the same PID parameters, the performance of the 

decoupled output is the same because the apparent process does not change. 

Nevertheless, the response of the other loop can deteriorate due to the interactions; it 

depends on the specific process to control and its interactions. 

 

However, there are TITO processes in which the PID controllers of a decentralized 

control are tuned taking only into account the dynamics of the diagonal elements of the 

process, e.g., g11(s) and g22(s), and therefore, the achieved performance is poor due to 

interaction effects. In these cases, the system response could be improved easily adding 

the two decoupling elements of inverted decoupling (if the system determinant do not 

have RHP zeros). The PID parameters do not need to be changed, and it would be very 

simple to return to the old control configuration if the new one presents any problem. 

 

In the following example, the Wood and Berry process is controlled keeping decoupled 

only one output and both control loops in automatic mode, in order to show how the 

apparent process changes using simplified decoupling and it remains the same using the 

inverted decoupling. In Figure 2, the output and input responses of the Wood and Berry 

process are shown when the following experiment is carried out with both decoupling 

structures. First, both control loops are in decoupled automatic mode and there is a unit 

step change in the second reference. There are not interactions in the first loop, and both 

decoupling schemes have similar performance. At t=100 min, the element d12 is 

disconnected, and therefore, the first control loop is not decoupled (its mode changes 

from automatic mode with decoupling to automatic mode without it, AFF->A). At t=200 

min, there is another unit step change in the second reference, and there is a transitory 

response in the first loop due to the process interactions. However, in this case, using 
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simplified decoupling, the performance of the second loop is very different from that of 

the previous step change, when both control loops were decoupled. 

 

In this simulated example, it is pointed out clearly that the apparent process of the 

second loop has changed, and if the same PID parameters are used, it shows a more 

oscillatory response. On the other hand, using inverted decoupling, the same 

performance is achieved when the decoupler element d12 is disabled, and additionally, 

the interaction rejection seems to be better. 

INSERT HERE FIGURE 2 

In any case, it is not very usual to work in automatic mode keeping decoupled only one 

control loop, and alternating the other loop between decoupled mode and not decoupled 

mode. It is more common to work keeping in manual mode the not decoupled loop. 

Thus, only one loop is maintained in decoupled automatic mode, while the other control 

loop is in manual mode without decoupling (Figure 3). It is similar to a feedforward 

control problem. 

INSERT HERE FIGURE 3 

In Figure 4, the output and control signal responses of the Niederlinski process are 

shown when a very similar experiment as the previous one is carried out. In this case, 

both loops are initially in automatic mode with decoupling, and there is a unit step 

change in the second reference. Then, at t=5 s, the first loop changes to manual mode 

(AFF->M). At t=10 s, there is another unit step change in the second reference. Again, it 

can be appreciated that the performance of this loop in the second step change is 

different using simplified decoupling, because the apparent process changes and the PID 

parameters remain unchanged. Its response is much slower than that achieved in the first 

step change, and that obtained with inverted decoupling. In order to maintain the same 
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performance in the second loop, before the second step change takes place, the PID 

parameters should be exchanged for those used with inverted decoupling 

INSERT HERE FIGURE 4 

4.2.- Bumpless transfer 

“Inverted decoupling can often be implemented within a DCS using PID function 

blocks with feedforward inputs. This will automatically provide such features as 

initialization and bumpless transfer between manual and automatic.” 

 

One of the main practical problems of using decoupling control is to assure bumpless 

transfer between the operation modes: manual (M), automatic (A) and automatic with 

decoupling (AFF). In the examples of the previous section, the mode changes have been 

carried out with bumpless transfer. However, the system response could become 

seriously deteriorated if this problem is not taken into account in the control 

implementation. For instance, Figure 5 shows an experiment carried out with and 

without bumpless transfer using inverted decoupling in the quadruple tank process. 

 

Initially, the first loop is in manual mode and its output is 16.5 cm. The second loop is 

in automatic mode without decoupling and its output is 15.5 cm. At t=50 s, there is a 

step change in the first control signal, the first output changes and a transitory response 

appears in the second output due to the interactions. At t=250 s, the second loop 

changes from automatic mode without decoupling to automatic mode with decoupling. 

Without bumpless transfer, there is an important transient in both loops due to a sudden 

change in the second control signal. Then, at t=450 s, there is a negative step change in 

the first control signal; however, in this case, there is no transitory response in the 

second output due to interactions, because the second loop is working in automatic 
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mode with decoupling. Finally, at t=650 s, the second loop changes to manual mode and 

again, without bumpless transfer, there is a new important transitory response. A similar 

response can be obtained using simplified decoupling. 

INSERT HERE FIGURE 5 

In Figure 6, it is shown the structure of a PID controller with feedforward input (FF) 

that solves the bumpless transfer problem using inverted decoupling. In order to achieve 

bumpless transfer, the controller uses a bias which is updated when the operation mode 

changes between working with feedforward action and without it. When the 

feedforward input is enabled (FF_on), the current value of the feedforward input is 

subtracted to the bias; when it is disenabled (FF_off), the current value of the 

feedforward input in that moment is added to the bias.  

FF _ on B B FF
FF _ off B B FF

⇒ = −
⇒ = +

    (22) 

INSERT HERE FIGURE 6 

To carry out the update of the bias, the controller has a feedforward control unit 

(FFCU). This unit detects changes of operation mode through the binary input 

‘enableFF’. When this input changes, the feedforward action is enabled or disenabled 

and the bias is calculated according to the previous expressions (22). In order to achieve 

bumpless transfer in operation mode changes, both the PID and the manual control unit 

(MCU) have an integrator with tracking mode of the whole controller output [27]. 

Furthermore, these two blocks have an extra input connected to the output of the FFCU 

(bias plus feedforward input), in order to obtain bumpless transfer when the feedforward 

action is disenabled. The blocks of the PID controller in Figure 6 are depicted in more 

detail in Figure 7.  

INSERT HERE FIGURE 7 
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The block PID_FF is a PI-D controller with tracking mode and an extra input for the 

feedforward-bias input. The MCU has an integrator to track the output signal of the 

whole controller, and an extra input for the feedforward-bias action. 

 

The possible inconveniency of this implementation is the fact that the FFCU needs 

some discontinuous blocks, like hit crossing blocks to update the bias. In order to avoid 

this, a good option could be to implement the controller in a discrete form. Another 

approach that easily takes care of bumpless transfer and windup problems is to 

implement the PID controller in incremental form. See [27]. 

 

Using simplified decoupling, the bumpless transfer problem can be solved using 

simplified decoupling as well. However, in this case, the FFCU must be placed between 

the decoupler network and the process, as it is shown in Figure 8. Nevertheless, in order 

to implement an anti-windup scheme in this configuration, extra blocks are necessary 

just before the process inputs. Using inverted decoupling, anti-windup implementation 

is achieved directly with the scheme of Figure 6, thanks to the saturation model and the 

tracking mode. 

INSERT HERE FIGURE 8 

Therefore, it is possible to achieve bumpless transfer using both inverted and simplified 

decoupling. They are only different in the PID parameter tuning and the apparent 

diagonal process. Nevertheless, the implementation is much easier using inverted 

decoupling than using simplified decoupling. 

Note that the case of bumpless transfer problem when the PID parameters are modified 

has not been studied. However, with the PI-D configuration in Figure 7, there should 

not be transitory responses, as long as the reference is not weighted. 
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4.3.- Anti-windup 

“The antireset windup feature of the PID, combined with its feedforward input, can be 

used to directly take into account the saturation of the manipulated variables when 

inverted decoupling is implemented.” 

 

Using inverted decoupling with the PID controller of Figure 6, antireset windup feature 

is achieved directly. It can use the input saturation model inside the PID controller or a 

reset feedback input which receives the real measured process input. In this last case, 

there is no saturation model because the real manipulated signal is measured. 

With simplified decoupling, there are several options to implement an anti-windup 

strategy. Nevertheless, it is not as easy as with inverted decoupling. In this paper, the 

scheme of Figure 8 is adopted [20]. It is necessary to measure the control action of the 

decoupler elements d21 and d12, as well as the real process inputs (or the estimated real 

inputs from input constraint models). Furthermore, the PID controllers need a reset 

signal input to work in tracking mode. This signal is obtained, subtracting from the 

saturated process input u the factor of the bias and decoupling action (B_FF) from the 

FFCU (Figure 8). The saturated process input can be calculated implementing a 

saturation model, or measuring directly the real process input. 

 

In Figure 9, the next experiment is carried out using inverted decoupling with and 

without anti-windup mechanisms. In order to show the windup problem, the first input 

is limited in the range of [0-5.75] V. The experiment starts with the references [15, 

15.5] cm (or [7.5, 7.75] V) in each loop, respectively. At t=50 s, a 1.5 cm (or 0.75 V) 
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step change is carried out in the first reference, and then, at t=600 s, there is a similar 

step change in the second one.  

 

When no anti-windup scheme is used, the second reference is lost because the 

directionality of the control signal vector is modified after the maximum limit of the 

first input signal is reached. And then, after the change of the second reference, there is 

a large transitory before it is reached. All these problems are avoided using anti-windup 

mechanisms. Similar results can be obtained using simplified decoupling; nevertheless, 

the implementation is more complex, as mentioned previously. 

INSERT HERE FIGURE 9 

4.4. Immunity to abnormalities in secondary control loops 

“When decoupler outputs are used as cascade setpoints to lower level controllers, each 

decoupled control loop is immune to abnormalities (e.g., a valve at a limit or a 

secondary controller in manual) in the secondary of the opposite control loop.” 

  

For instance, the tank process has two secondary loops for the flows provided by the 

pumps, and therefore, the measured flows can be fed back through the decoupler 

elements. If the dynamics of the secondary loops are considered fast, they can be 

neglected in the design of decoupler elements, although little interactions may appear. 

Nevertheless, the rejection of input disturbances is much better. On the other hand, if 

the dynamics of the secondary loops are non-negligible, they must be taken into account 

in the decoupler design, in order to avoid a great loss of decoupling. 

 

Figure 10a shows the comparison between decoupling using and not using the measured 

flows of the secondary loops. Initially, the references are [15, 15.5] cm (or [7.5, 7.75] 
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V) in each loop, respectively. At t=50 s, a 1.5 cm (or 0.75 V) step change is carried out 

in the first reference, and then, at t=850 s, there is a similar one in the second reference.  

 

When the measured flows are used for decoupling, there is some loss of decoupling 

performance in the first loop and the peak response is higher. The second loop has 

practically the same performance. 

INSERT HERE FIGURE 10 

Since the real input to the process is measured, inverted decoupling has another 

advantage over simplified decoupling when this signal is fed back for decoupling: each 

decoupled control loop is almost immune to input disturbances in the opposite control 

loop. That is shown in Figure 10b, where a unit step change is applied to each loop as 

an input disturbance. For instance, at t=50 s, the input disturbance in the first loop does 

not have almost effect in the response of the second loop. This cannot be achieved using 

simplified decoupling. 

 

4.5.- Loss of the practical advantages 

Sometimes, one of the elements d12 or d21 of the decoupler is not realizable because it 

has a positive time delay or the numerator degree is greater then the denominator 

degree. In this case, it can be necessary to add extra dynamics between the decoupler 

and the process. In that case, it is not correct to measure the controlled variable of the 

secondary loop or the real input of the process to feed back for decoupling, because it 

differs from the decoupler output. Therefore, the other control loop is not immune to 

abnormalities in the secondary or input disturbances in the opposite control loop. 

Although the apparent process seen by each controller, when inverted decoupling is 
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implemented, changes as well, it is still the same as that obtained if there was no 

decoupling and the alternate controller was in manual mode. 

 

If the PID controllers do not have feedforward input, the advantages of inverted 

decoupling, to implement anti-windup schemes and to solve the bumpless transfer 

problem, are lost. Then, these problems should be solved in the same way as for 

simplified decoupling. 

 

5.- Conclusions 

Inverted decoupling shows four important practical advantages over simplified 

decoupling that have been studied in this paper using several examples. In addition, 

practical results are presented since these advantages are exemplified and verified on a 

laboratory process. 

 

If one loop changes to manual or automatic mode without decoupling, the other loop 

remains decoupled with the same performance because the apparent process is the same. 

Using simplified decoupling, this apparent process is different, and therefore, using the 

same PID parameters, the performance can change much or not, depending on the 

specific process. 

 

The bumpless transfer and initialization problems are easily avoided using a 

feedforward input in the PID controllers. Although this problem can be solved using 

simplified decoupling as well, its implementation is much more complicated. 
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It is very easy to implement anti-windup strategies using inverted decoupling because 

the PID limits can be used for the saturation model. In simplified decoupling, that is 

more difficult because the decoupler outputs are not the same as the PID controller 

outputs. 

 

The abnormalities of secondary control loops do not affect the opposite loop. In 

addition, since the real input to the process can be measured, each decoupled control 

loop is almost immune to input disturbances in the other control loop. This is not the 

case when simplified decoupling is used, because the decoupler signals are generated 

from signals in previous points to the disturbance inputs. Note that care should be taken 

in the dynamics of the secondary loops. If they are not very fast in comparison with 

system dynamics, inverted decoupling can lose some decoupling performance and 

obtain a worse response. In addition, note that some of these advantages can be lost due 

to realizability problems of the decoupler elements. 

 

Many industrial TITO processes are controlled by decentralized PID controllers that 

were tuned without taking the interactions into account. As the apparent process is the 

same using inverted decoupling for such processes, their performance could be easily 

improved simply adding two decoupling blocks (lead-lags plus time delay blocks). This 

is important, because it means that inverted decoupling can be used in most modern 

DCS systems using the standard blocks that are already available in their function block 

library. Thanks to the easiness of implementation and achieving bumpless transfer, it 

would be easy to alternate between a decentralized or centralized control without 

modifying the PID parameters. For this reason, inverted decoupling may be a good and 
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easy way to improve the performance of industrial TITO processes with interaction 

problems. 
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Appendix 

Notation 

A automatic mode 

AFF automatic mode with decoupling 

B (scalar) bias action (equation (22)) 

C(s) (transfer function matrix) diagonal controller 

D(s) (transfer function matrix) decoupler network (equation (1)) 

d11(s) (scalar transfer function) element (1,1) of D(s) (equation (8)) 

d12(s) (scalar transfer function) element (1,2) of D(s) (equation (4)) 

d21(s) (scalar transfer function) element (2,1) of D(s) (equation (4)) 

d22(s) (scalar transfer function) element (2,2) of D(s) (equation (8)) 

FF (scalar) feedforward action (equation (22)) 

FF_off disenabling feedforward action (equation (22)) 

FF_on enabling feedforward action (equation (22)) 

G(s) (scalar transfer function) monovariable process (equation (15)) 

G(s) (transfer function matrix) multivariable process (equation (1)) 

GN(s) (transfer function matrix) multivariable Niederlinski process (equation (18)) 

GT(s) (transfer function matrix) multivariable quadruple tank process (equation (20)) 

GWB(s) (transfer function matrix) multivariable Wood & Berry process (equation 

(16)) 

g11(s) (scalar transfer function) element (1,1) of G(s) (equation (2)) 

g12(s) (scalar transfer function) element (1,2) of G(s) (equation (2)) 

g21(s) (scalar transfer function) element (2,1) of G(s) (equation (2)) 
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g22(s) (scalar transfer function) element (2,2) of G(s) (equation (2)) 

K(s)  (transfer function matrix) decentralized controller in series with the decoupler 

(equation (7)) 

M manual mode 

N(s) (transfer function matrix) extra dynamics to force realizability 

Q(s) (transfer function matrix) apparent process (equation (1)) 

rij (scalar) relative degree of the element gij(s) (equation (10)) 

S(s) (transfer function matrix) sensitivity function (equation (7)) 

t (scalar) time signal 

u (vector) control signal 

y (vector) system output 

z (scalar) value of a zero RHP (equation (11)) 

λ (scalar) time constant of an extra pole (equation (10)) 

θij (scalar) time delay of the element gij(s) 

ηij (scalar) RHP zero multiplicity of the element gij(s) (equation (11)) 

 

 



Tables 

 
Method Kp1 Kp2 Ti1 Ti2 

Inverted 0.491 -0.095 8.673 11.107 

Simplified 0.179 -0.044 2.615 3.230 

 

Table 1 - PI parameters for the Wood and Berry process 

 

 
Method Kp1 Kp2 Ti1 Ti2 

Inverted -1.207 1.207 0.423 0.423 

Simplified -0.722 0.722 0.741 0.741 

 

Table 2 - PI parameters for the Niederlinski process 

 

 
Method Kp1 Kp2 Ti1 Ti2 

Inverted 0.54 0.59 4.8 4.4 

Simplified 0.57 0.61 2.5 2.3 

 

Table 3 - PI parameters for the quadruple tank process 

 

 

Tables



Figure Captions 

 

Figure 1 – Decoupling control system of a TITO process: (a) conventional decoupling; 

(b) inverted decoupling 

Figure 2 – Wood and Berry process outputs and control signals (one output decoupled, 

both loops in automatic mode) 

Figure 3 – One output decoupled, the alternate input in manual mode 

Figure 4 – Niederlinski process outputs and control signals (one loop decoupled, 

alternate loop in manual mode) 

Figure 5 – Tank process outputs and control signals with and without bumpless transfer 

(inverted decoupling) 

Figure 6 – PID control with feedforward input and bumpless transfer 

Figure 7– Blocks of the PID controller with feedforward input 

Figure 8 – Simplified decoupling with FFCU to get bumpless transfer 

Figure 9 – Tank process outputs and control signals with and without anti-windup 

(inverted decoupling) 

Figure 10 – Tank process outputs and control signals using and not using the measured 

flows of secondary loops in the inverted decoupling scheme: (a) tracking references, (b) 

rejecting disturbances 
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