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Abstract: 

This paper presents a new methodology of multivariable centralized control based on the 
structure of inverted decoupling. The method is presented for general n×n processes, obtaining 
very simple general expressions for the controller elements with a complexity independent of the 
system size. The possible configurations and realizability conditions are stated. Then, the 
specification of performance requirements is carried out from simple open loop transfer 
functions for three common cases. As a particular case, it is shown that the resulting controller 
elements have PI structure or filtered derivative action plus a time delay when the process 
elements are given by first order plus time delay systems. Comparisons with other works 
demonstrate the effectiveness of this methodology through the use of several simulation 
examples and an experimental lab process. 
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1. Introduction 

Most industrial processes are inherently multivariable. They are made up of several input and 

output signals, and there are often complicated couplings between them, which may occasion 

difficulties in feedback controller design. Process control problems are traditionally solved using 

single-loop PID controllers because they are easily understood and implemented.1 These 

decentralized approaches are adequate when the interactions in different channels of the process 
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are modest.2-6 However, when interactions are important, the decoupling is often treated 

inefficiently, e.g., by detuning control loops.  Usually, the main loop is tuned to achieve good 

performance while the other loops are detuned keeping an acceptable interaction with the first 

loop. In fact, this poor decoupling of multivariable systems is considered by some leading 

manufactures of controllers as one of the principal control problems in the industry.7 In 

processes with strong interactions, a full matrix controller (centralized control) is advised. 

In literature, two approaches of centralized control are usual: a decoupling network combined 

with a diagonal decentralized controller, or a pure centralized strategy. In the first case, a 

decoupler8-16  is used to minimize interaction or to make the system diagonal dominant; then, the 

controllers are designed using some decentralized method. Figure 1a shows the general control 

scheme of this approach where G(s), D(s) and C(s) are the process matrix, the decoupling matrix 

and the decentralized control matrix, respectively. 

 

Figure 1. Centralized control approaches: (a) decoupling control system, (b) purely centralized 

control system. 

On the other hand, Figure 1b represents a pure centralized control system with K(s) being the 

n-dimensional full matrix controller. Under the paradigm of decoupling control, some 

methodologies17-24 have been developed using this scheme. Most of them propose to find a K(s) 
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in such a way that the closed loop transfer matrix H(s)=G(s)·K(s)·[I + G(s)·K(s)]-1 is decoupled 

over some desired bandwidth. This goal is achieved if the open loop transfer matrix 

L(s)=G(s)·K(s) is diagonal over that bandwidth.  

The complexity of the resultant controller elements of K(s) can be very different depending on 

the methodology. For instance, Wang20 obtains a full-dimensional non-PID from a recursive 

least square optimization problem. Liu23 develops an analytical decoupling control on the basis 

of the H2 optimal performance specifications. Other methodologies17, 21, 22 reduce the K(s) 

elements to PID controllers obtaining as result a multivariable PID control. This reduction is 

performed because PID controllers are preferred over more advanced controllers in many 

practical applications (unless PID controls cannot meet the specifications). Although model 

predictive control (MPC) is becoming the standard solution to multivariable control problems in 

the process industry, several authors12, 20, 21 assert that MPC is mostly used on a higher level to 

provide setpoints to the controllers operating with shorter sampling times on the basis level. 

There can be some difficulties in dealing with the interaction at the MPC level because the 

bandwidths of the MPC loops are limited. Therefore, the centralized control using multivariable 

PID controllers or decoupling controllers is an interesting strategy at the process industry. 

Most of the previous centralized methodologies use the conventional scheme of Figure 1b in 

which the process inputs u are derived by a time-weighted combination of the error signals e. It 

has received considerable attention in both control theory and applications for several years. In 

this case, specifying a desired diagonal matrix L(s) or H(s) as requirement in the design, the 

matrix K(s) can be calculated according to (1) or (2), respectively. 

1( ) ( )· ( )K s G s L s−=   (1) 

( ) 11 1( ) ( )· ( )K s G s H s I
−− −= −   (2) 
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Nevertheless, the requirements of properness and causality for controller implementation can 

make this direct calculation difficult, especially for systems with high dimension or time delays. 

Consequently, these methods are likely to need a burdensome numerical computation effort or, 

instead of it, some kind of approximation or reduction to simplify the calculus, even for 2×2 

systems. For instance, in process with time delays, the final controller elements could be 

complex non-rational transfer functions that should be finally approximated before 

implementation. In addition, when the size of the system increases, the complexity of the 

controller elements and calculations is increased as well. 

This work proposes a new centralized control methodology which is based on the idea of 

extrapolate the structured of inverted decoupling networks15, 25 to the centralized control scheme. 

The new scheme is called centralized inverted decoupling control and it derives a process input 

as a time-weighted combination of one error signal and other time-weighted process inputs. As a 

consequence of this structure, it is possible to achieve easily the desired requirements without 

any approximation and using very simple controller elements in K(s). In addition, in contrast to 

the conventional centralized scheme, the complexity of the transfer functions of the controller 

elements is independent of the system size, as it will be demonstrated. 

An initial version of this methodology was introduced only for 2×2 processes.26, 27 In this 

work, further research was performed focusing on stable process with possible right half plane 

(RHP) zeros and time delays. Additionally, the formulation of this new centralized control 

scheme is generalized to n×n processes. The paper is structured as follows. Section 2 presents 

this generalization of centralized inverted decoupling control for n×n systems and the different 

possible configurations. Furthermore, the 2×2 case is described in more detail and some 

expressions for 3×3 processes are given. In Section 3, the aspects related to realizability 

conditions and performance specifications are discussed. Section 4 is focused on the structure of 
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the final controller elements, its approximation to PID structure, and the particular case of 

processes in which all elements are first order plus time delay (FOPDT) systems. In Section 5, 

the performance of the proposed method is tested and compared with other techniques using 

several simulation examples and a real quadruple tank process. Finally, conclusions are 

summarized in Section 6. 

2. Centralized inverted decoupling control for n×n processes 

In order to develop the centralized inverted decoupling control for a square process G(s) with n 

inputs and n outputs, a matrix representation of K(s) is proposed as shown in Figure 2. The 

matrix K(s) is split into two blocks: a matrix Kd(s) in the direct path (between error signals e and 

process inputs u) and a matrix Ko(s) in a feedback loop (between process inputs u and error 

signals e). 

 

Figure 2. Centralized inverted decoupling control scheme. 

According to the inverted decoupling structure, in Kd(s) there must be only n elements (the 

rest of elements must be zero) which try to directly connect the error signals with the process 

inputs u. Ko(s) feedback the process inputs u toward the controller inputs in order to decouple 

the system. In contrast to Kd(s), Ko(s) must have only n zero elements, which correspond with 

the transpose non-zero elements of Kd(s) since the signal flow direction in Ko(s) is opposite that 

of Kd(s) and the relationships in Kd(s) are not required in the matrix Ko(s). For instance, in a 
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3×3 system, if element Kd(2,3) is specified as a direct connection between u2 and e3, there will 

not be feedback from u2 toward e3, and therefore, the element Ko(3,2) must be zero. 

From the controller representation given in Figure 2, the expression of the whole controller 

matrix K(s) is obtained as follows: 

( ) 1( ) ( )· ( )· ( )K s Kd s I Ko s Kd s −= − .  (3) 

If equations (1) and (3) are combined, the expression that relates the conventional centralized 

design to the Kd(s) and Ko(s) matrices of centralized inverted structure can be found. However, 

as it a complex expression, it is easier to work with its inverse, which is very simple, as follows: 

1 1( ) ( ) ( )· ( )Kd s Ko s L s G s− −− =   (4) 

The controller elements of the two matrices, Kd(s) and Ko(s), can be calculated using this last 

expression. Assuming that the open loop transfer matrix L(s) must be diagonal to achieve a 

decoupled closed loop response, the main advantage of equation (4) is its simplicity, regardless 

of the system size, because the matrix L(s) is specified to be diagonal and the resulting 

subtraction of the inverse of Kd(s) and Ko(s) is a transfer matrix with only one element to be 

calculated in each position. 

Note that Kd(s) has to be non-singular because it is inverted, and therefore, when its elements 

are selected, only one element in each row and column can be chosen. As a result, for an n×n 

process there are n! possible configurations of Kd(s). To name these possibilities, the authors 

propose a notation in which the indicated number corresponds to the column with the selected 

element. For instance, in a 3×3 system, configuration 1-2-3 means that elements Kd(1,1), Kd(2,2) 

and Kd(3,3) are selected; configuration 2-3-1 means that elements Kd(1,2), Kd(2,3) and Kd(3,1) 

are chosen, and so on. The expression of the controller elements for each configuration is 

different, which is interesting because some choices can result in non-realizable controller 
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elements. Therefore, the configuration can be selected depending on the realizability, which will 

be discussed later. 

From (4) it is possible to obtain the general expressions of the centralized inverted decoupling 

control for n×n processes. If the configuration p1-p2-…-pi-…-pn-1-pn is chosen, the non-zero 

elements of the Kd(s) and Ko(s) matrices are given by (5) and (6), respectively. The transfer 

functions of the desired open loop processes li(s) can be specified in any way that assures the 

realizability of these controller elements. In addition, it is usually preferable to chose simple 

transfer functions li(s) in such a way that the performance requirements can be specified easily. 

( )
( )

( )
;j

ij i
ji

l s
s

s
kd i j p

g
= ∀ =   (5) 

( )
( )

( )
, ;ij

ij j
i

s
s

l s
g

ko i j i p
−

= ∀ ≠  (6) 

From these general expressions, the following advantages over conventional centralized 

control are concluded: 

- Controller elements do not contain sum of transfer functions, and therefore they are easy to 

design. In some multivariable processes, even if the elements of the system have simple 

dynamics, conventional centralized control may result in complicated controller elements 

difficult to implement, as follows: 

( )( ) ( )( )
-5 -22.3 1

0.3 1 0.5 1 6 1 1
s se e

s s s s
-

+ + + +
. (7) 

- The complexity of the controller elements and open loop processes is always the same, 

independent of the system size. With conventional centralized control, these elements become 

more complex as the size of the process increases. 

Nonetheless, the proposed method presents the same important disadvantage as inverted 

decoupling: it cannot be applied to processes with RHP zeros in its determinant. To achieve 
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internal stability, these multivariable RHP zeros should be included into the open loop processes. 

In the conventional centralized control structure, these zeros can be specified in the desired 

transfer functions li(s). However, this is not possible using centralized inverted decoupling 

control because such RHP zeros would appear as unstable poles in some controller elements 

koij(s). Although the single controller elements were stable, if the multivariable RHP zeros are 

not specified in the open loop processes, the whole control structure (K) would be unstable since 

these zeros would be internally included as unstable poles in the inverse of G(s), as follows: 

1 1 1( ) ( ( ) ( )) ( ) ( )K s Kd s Ko s G s L s− − −= − = ⋅ .  (8) 

A special case arises when the multivariable RHP zero is associated with a single output and is 

therefore included in the process transfer functions of the same row. Then, centralized inverted 

decoupling control can be applied because the RHP zero will be cancelled. 

2.1. Centralized inverted decoupling control for 2×2 processes 

Next, a detailed study of the proposed methodology for 2×2 processes is performed using 

expressions (5) and (6). In this case (n = 2), there are two possible configurations to select for the 

non-zero elements of Kd(s): diagonal elements (configuration 1-2) or off-diagonal elements 

(configuration 2-1). 

Using configuration 1-2 (depicted in Figure 3), the following expressions (9) for the non-zero 

controller elements are obtained from (5) and (6). The elements l1(s) and l2(s) are the desired 

open loop transfer functions. 

1 12
11 12

11 1

21 2
21 22

2 22

( ) ( )( ) ( )
( ) ( )

( ) ( )( ) ( )
( ) ( )

l s g skd s ko s
g s l s

g s l sko s kd s
l s g s

−
= =

−
= =

 (9) 
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Figure 3. Centralized inverted decoupling control for 2×2 processes (configuration 1-2) 

In the configuration 2-1 (Figure 4), the general expressions for the controller elements are 

given by (10), which are obtained from (5) and (6). 

11 2
11 12

1 21

1 22
21 22

12 2

( ) ( )( ) ( )
( ) ( )
( ) ( )( ) ( )
( ) ( )

g s l sko s kd s
l s g s
l s g skd s ko s

g s l s

−
= =

−
= =

  (10) 

 

Figure 4. Centralized inverted decoupling control for 2×2 processes (configuration 2-1) 

The corresponding general expressions for conventional centralized decoupling control for 

2×2 processes that are obtained according to (1) are given by (11). It is easy to find that the 

expressions of the proposed method in both (9) and (10) are much simpler than those of the 

conventional centralized control elements in (11). 
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22 1 12 2

11 12 21 1 11 2

21 22 11 22 12 21

( ) ( ) - ( ) ( )
( ) ( ) - ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) - ( ) ( )

g s l s g s l s
k s k s g s l s g s l s

K s
k s k s g s g s g s g s

 
    = = 

 
 (11) 

2.2. Centralized inverted decoupling control for 3×3 processes 

The procedure is similar for 3×3 processes, although in this case there are six possible 

configurations according to the three elements of Kd(s) selected to be non-zero. For instance, 

using configuration 1-2-3 in (4), the equation (12) is achieved, and from it, the expressions for 

controller elements given in (13) are easily obtained, which are equivalent to those obtained 

using (5) and (6). The expressions are as simple as in 2×2 systems. 

1311 12
12 13

1 1 111

2321 22
21 23

22 2 2 2

31 32 33
31 32

33 3 3 3

g ( )g ( ) g ( )1 -ko ( ) -ko ( )
( ) ( ) ( )kd ( )

g ( )g ( ) g ( )1-ko ( ) -ko ( ) =
kd ( ) ( ) ( ) ( )

1 g ( ) g ( ) g ( )-ko ( ) -ko ( )
kd ( ) ( ) ( ) ( )

ss s
s s

l s l s l ss
ss ss s

s l s l s l s
s s ss s

s l s l s l s

 
 
 
 
 
 
 

  
  









  


  (12) 
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   (13) 

3. Design considerations 

3.1. Realizability 

The realizability requirement for the controller is that all of its elements must be proper, causal 

and stable. For systems with time delays or non-minimum phase zeros, direct calculations can 

lead to elements with prediction or RHP poles. In the proposed methodology, there are two 

issues regarding controller realizability that have to be studied: firstly, it is necessary to check 

whether it is possible to achieve realizability using the chosen configuration; and secondly, after 

confirming the previous condition, it is necessary to determine how to specify the desired open 
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loop transfer functions li(s). In this section, the conditions that a specified configuration needs to 

satisfy in order to be realizable are stated. Furthermore, the constraints on the open loop 

processes to obtain such realizability are indicated as well. 

In the controller expressions (5) and (6), each desired open loop transfer function li(s) appears 

associated to the process transfer functions gij(s) of the same row i. Therefore, there are three 

aspects to take into consideration and to be inspected for each row of the process matrix G(s): 

- Non-causal time delays must be avoided in controller elements. If gik(s) is the transfer 

function of the row i with the smallest time delay θik, the element kdik(s) of Kd(s) should be 

selected to be in the direct path between the error signals and the process inputs (it should be 

different from zero). In addition, the time delay θi of the open loop transfer function li(s) must 

fulfill: 

 min( )ik i ijj k
θ θ θ

≠
≤ ≤  (14) 

where θij is the time delay of gij(s). 

- Controller elements must be proper, that is, the relative degrees must be greater or equal than 

zero. Similarly to the previous case, if gik(s) is the transfer function of the row i with the smallest 

relative degree rik, the element kdki(s) should be different from zero. In addition, the relative 

degree ri of the open loop process li(s) must fulfill: 

min( )ik i ijj k
r r r

≠
≤ ≤ . (15) 

- When some transfer function gim(s) has a RHP zero, the element kdmi(s) of Kd(s) should not 

be selected in the direct path, in order to avoid this zero becomes a RHP pole in some controller 

element. When the zero appears in all elements of the same row, it is necessary to check its 

multiplicity in each element of the row. Again, if gik(s) is the process transfer function of the row 

i with the smallest RHP zero multiplicity ηik, the element kdki(s) should be chosen to be in the 
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direct path (it should be non-zero). This RHP zero must appear in the open loop process li(s) 

with a multiplicity ηi that fulfills (16). This condition must be fulfilled for each different 

multivariable RHP zero zx. 

min( )ik i ijj k
η η η

≠
≤ ≤  (16) 

From (14), (15) and (16), it can be deduced that there are more possibilities for selecting a 

realizable configuration when the smallest value (time delay, relative degree or RHP zero 

multiplicity) is shared by two or more transfer functions of the same row. However, in that case, 

the flexibility to specify this value (time delay, relative degree of RHP zero multiplicity) in the 

desired open loop process of that row is limited to this common smallest value. 

When two or more elements of Kd(s) must be selected necessarily in the same column to 

satisfy the previous conditions in all rows, there are no realizable configurations. Then, it is 

necessary to insert an additional diagonal block N(s) between the process G(s) and the controller 

in order to modify the system trying to force the non-realizable elements into realizability.  Then, 

the method is applied to the new process GN(s)=G(s)·N(s). 

N(s) is a diagonal transfer matrix with the necessary extra dynamics. If there are no 

realizability problems in the row i, the nii(s) element is equal to the unity. If the non-realizability 

comes from an element with a non-causal time delay, an additional time delay θii is specified in 

nii(s). If it comes from a RHP zero z, which becomes into unstable poles, this RHP zero is added 

together with its mirrored pole and the proper multiplicity ηii as in (17). If it comes from a 

properness problem, a simple stable pole with a small time constant τ and the adequate 

multiplicity rii is inserted as it is shown in (18). 

iiηs z
s z
− + 

 + 
 (17) 
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1
( 1) iirτs +

 (18) 

Generally, it is preferable to add the minimum extra dynamics. Therefore, after checking the 

necessary additional dynamics of each configuration, it is chosen that one with fewer RHP zeros 

or time delays in N(s). More detailed information about this issue is given in other works.9 

3.2. Performance specifications 

After assuring that it is possible to achieve realizability with the chosen configuration, the n 

desired open loop processes li(s) must be specified. Two aspects must be taken into account in 

order to define each transfer function li(s): the realizability of the controller elements and the 

performance specifications of the corresponding closed loop transfer function hi(s). Since the 

closed loop response must be stable and without steady state errors due to setpoint or load 

changes, the open loop transfer function li(s) must contain an integrator. Then, the following 

general expression (19) is proposed. 

(s)
(s) i i

i
k ·l

l
s

=  (19) 

The parameter ki becomes a tuning parameter to meet design specifications. The transfer 

function (s)il  takes into account the realizability conditions from (14) to (16) and consequently, 

its general expression is given by (20). Regarding condition (15) it is important to note that the 

integrator in (19) already provides an extra relative degree to li(s). 

1

1(s)
( 1)

i

i

i

ηxNz
θ s x

i r
x x

s z
l e · ·

s zτs
−

=

 − +
=  ++  

∏  (20) 

Next, it is explained how to specify the different parameters of the open loop transfer functions 

when attention is addressed to some of the three simple cases listed in Table 1. Many other cases 

can be studied; however, the three cases shown in Table 1 arise very often and direct tuning 

expressions can be obtained from them. Firstly, it is preferable to specify simple open loop transfer 
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functions so that their parameters can be easily tuned to meet the desired specifications. It also 

contributes to achieve simpler controller elements. As many industrial processes can be 

modelled by first or second order systems, the relative degrees of the process elements of the 

transfer matrix G(s) are usually one or two. Therefore, it is very common that the li(s) transfer 

functions need to be specified with relative degree one or two in order to fulfil condition (15), as 

in the cases of Table 1. Secondly, some time delay can be necessary in li(s) to fulfil condition 

(14). Although condition (16) has been developed in section 3.1, no case with RHP zeros has 

been included in Table 1 because it is not very usual to find open loop processes with RHP 

zeros. The third case is somewhat special because it is dedicated to processes that show an 

integrator associated to one output. 

Table 1. Three simple cases to define the open loop transfer function. 

Case (s)il  li(s) 

1 iθ se−  iθ sik
·e

s
−  

2 1
1

iθ s·e
λs

−

+
 

( 1)
iθ sik

·e
s· λ·s

−

+
 

3 ( )
iθ sis z

·e
s

−+  
2

( )
iθ si ik · s z

·e
s

−+  

 
3.2.1. Case 1 

In this case, it is necessary at most a time delay to achieve realizability. The corresponding 

expressions for (s)il  and li(s) are given in the first row of Table 1. The imposition of relative 

stability specifications is enough to guarantee the stability of the closed loop transfer function 

hi(s)=li(s)/(1+li(s)). It can be found that the phase margin ϕm and gain margin Am of li(s) are 

given by (21) and (22), respectively, at the corresponding frequencies ωcp and ωcg shown in (21) 

and (22) as well. 
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180
90 i i

m cp i
k θ

φ ω k
π

= − =  (21) 

2 2m cg
i i i

π πA ω
k θ θ

= =  (22) 

Both margins are related as follows: 

2090m
m

φ
A

= − . (23) 

If a phase margin less than 90º or a gain margin greater than 1 is specified, the value of ki can 

be directly calculated by means of (24) or (25), respectively. Increasing ki makes the closed loop 

response faster. However, it implies smaller values of phase margin and gain margin and 

consequently, the control system robustness is reduced. 

(90 )
180

m
i

i

π º φ
k

º·θ
−

=   (24) 

2i
m i

πk
A θ

=  (25) 

If (s)il  do not have time delay (θi = 0) so it is equal to the unity, the open loop function li(s) = 

ki/s has a phase margin of 90º and an infinite gain margin independently of the ki parameter. In 

addition, the closed loop transfer function hi(s) is a traditional first order system with time 

constant Ti=1/ki, as follows: 

1(s)
1 1

i
i

i i

k / s
h

k / s T s
= =

+ +
. (26) 

Therefore, the desired closed loop time constant Ti is proposed as specification to determine ki 

instead of relative stability margins. This situation is equivalent to one of the most common 

cases in the methodologies of IMC control28 or affine parameterization.29 

3.2.1. Case 2 
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This case arises when the lowest relative degree of the process elements gij(s) of the row i 

associated to li(s) is two. In order to obtain proper controller elements, it is necessary to include 

an extra pole in (s)il . The second row of Table 1 shows the corresponding expressions for (s)il  

and li(s). The gain margin of this transfer function li(s) is given by (27) at the frequency ωcg that 

fulfills the condition (28). In this work, it is proposed to calculate λ from (28) after specified the 

frequency ωcg. Then, ki is obtained from (27) after choosing a desired gain margin Am. 

1
( ) ( )m

i cg i cg i

A
k ·λ·tan ω θ ·sin ω θ

=  (27) 

1tan( )cg i
cg

ω θ
λ·ω

=  (28) 

If there are no time delays in li(s) (θi = 0), the gain margin specification can be replaced by 

time response specifications because the corresponding closed loop transfer function hi(s) is 

given by a second order system as follows: 

2

( · 1)(s)
11

( · 1)

i i

i
i i

k k
s λ s λh

k ks s
s λ s λ λ

+
= =

+ + +
+

.  (29) 

The poles of hi(s) in (29) are characterized by the undamped natural frequency ωn and the 

damping factor ξ given by (30). 

1
2n i

i

ω k / λ ξ
k ·λ

= =   (30) 

3.2.1. Case 3 

This special case appears when all elements gij(s) of the row i consist of an integrator, that 

should be specified in (s)il  in order to maintain the integral action in the elements of Kd(s). 

Otherwise, the integrator would be cancelled in the corresponding Kd(s) element according to (5) 

and consequently, zero error in steady state would not be guaranteed in that loop. Because of this 
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additional integrator, the relative degree of li(s) increases one unit. If no additional degrees are 

needed, an extra zero zi can be included to keep the proper relative degree in li(s) and fulfill 

condition (15). Then, the corresponding expressions for (s)il  and li(s) are given by the third row 

of Table 1. In these conditions, the gain margin of li(s) is given by (31) at the frequency ωcg that 

fulfills condition (32). Authors propose to fix the value of the zero zi, subsequently, to calculate 

the frequency ωcg from (32) and finally, to obtain the parameter ki from (31). 

2

2 2

cg
m

i cg i

ω
A

k ω z
=

+
 (31) 

arctan 0cg
cg i

i

ω
ω k

z
 

− = 
 

  (32) 

If (s)il  do not contain time delays, the gain margin specification can be replaced again by time 

response specifications since the closed loop transfer function is given by a second order transfer 

function with a zero at s = -zi, as shown in (33). Its poles are characterized by the natural 

frequency ωn and the damping factor ξ given by (34). Therefore, fixing the value of the zero zi, it 

is possible to modify the values of ωn and ξ through the parameter ki. As a particular case, 

adjusting ki = 4·zi, a critical damping response (ξ=1) is obtained with ωn=2·zi. 

2
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( )

(s)
( )1

i i
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k s z s k s k z
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4
i

n i i
i

k
ω k z ξ

z
= =   (34) 

In the three cases explained, the parameter ki acts as a degree of freedom to modify the 

corresponding closed loop performance and to achieve new specifications almost independently 

of the other loops. 
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4. Multivariable PID control by inverted decoupling 

Replacing open loop process li(s) in (5) and (6) with the general expression (19) and using the 

configuration p1 – p2 –…– pi –…– pn-1 – pn, the following expressions (35) and (36) are 

obtained for the elements of the centralized inverted decoupling control: 

( )( ) 1( )
( )

;j jis
j

oj
ij i

oji

s
s e

s s
l

kd k i j p
g

θ θ− −= ∀ = , (35) 

( )( )
( ) · ·

· ( )
, ;ij isoij

ij j
i oi

s
s s e

l s
g

ko i j i p
k

θ θ− −= − ∀ ≠ . (36) 

where goij(s) is the delay free part of gij(s) and ( )oi sl  is the delay free part of (s)il  after extracting 

its corresponding time delays θij and θi, respectively. From (35), it can be concluded that the 

non-zero elements of Kd(s) have integral action, and consequently, they might be approximated 

to PID structure. On the other hand, the non-zero elements of Ko(s) are compensators with 

derivative action plus time delay and certain dynamics associated to the corresponding process 

element gij(s). Note that care should be taken with the derivative action. In order to avoid high 

frequency noise amplification, it is necessary to assure that this derivative action is filtered 

enough in each controller element koij(s). 

4.1. Approximation of controller elements 

The controller elements obtained from (35) and (36) are rational transfer function plus a 

possible time delay. However, if the dynamics of some process element gij(s) or desired open 

loop li(s) are too complex, some controller elements can result in a high order and their 

approximation can be advisable for implementation. This approximation can be carried out using 

different techniques like parametric approximation in the frequency domain based on least 

squares estimators30 or prediction error methods; or model reduction techniques based on 

balanced residualtization.31 
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As mentioned previously, the non-zero elements of Kd(s) can be approximated to PID 

structure. In this work, the parallel form shown in (37) is used, where KP is the proportional 

constant, KI the integral constant, KD the derivative constant and TF is the derivative filter 

constant. Although the parameters have little physical interpretation in this form, it is the most 

flexible structure that allows independency between the different control actions. 

(s)
1

PID I D
P

F

K K sk K
s T s

= + +
+

  (37) 

In this work, a parametric approximation in the frequency domain is proposed for the PID 

reduction. Instead of reducing directly the controller element, the authors propose to remove the 

integrator of the controller element kdij(s) and apply the model reduction to the inverse of this 

result m(s). The new stationary gain k0, as shown in (38), would be identified with the integral 

constant KI. 

[ ] [ ]0 0 0
(s)·s = (s)

s s
k lim kd lim m

→ →
=   (38) 

Without the integrator and after dividing by k0, the frequency response of the inverse of m(s) 

should be approximated according to (39). The resultant approximation must be identified with 

the inverse of (37) multiplied by KI/s. 

0 1
2

2 1 2

1 1
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. (39) 

In this way, the PID gains after approximation can be identified as follows 

1 1 0

0

2 0 1 1 1 0

1

( )

( )
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F
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K k
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=
=
=

. (40) 

For PI approximation, KD and TF are removed; therefore, the coefficients b1 and a2 would be 

zero. Both PI and PID approximations are obtained, the one with the best fit is chosen. 
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In a similar way, the Ko(s) elements in (36) can be approximated to the structure shown in 

(41), which consists of a filtered derivative action plus a possible time delay. Before reduction, it 

is suggested to remove the time delay and the zero in s=0 and apply the approximation to (42). In 

this way, it is obtained that KD=b0/a0 and TF=a1/a0. 

( ) ·
1

D sD

F

Ks s e
T s

k θ− 
 + 

=   (41) 

0

1 0

( )
b

s
a s a

m ≅
+

  (42) 

4.2. Application to FOPTD systems 

Most industrial processes are open loop stable without oscillatory response for unit step inputs. 

Therefore, high order processes are often simplified to FOPDT systems before the control 

system design. In this section and as a particular case, the proposed methodology is applied to 

multivariable systems in which all of its elements are modelled or simplified by FOPDT 

processes. Therefore, the process elements gij(s) are given by a transfer function as follows: 

( )
1

ij sij
ij

ij

k
g s e

T s
θ−

+
= .  (43) 

Assuming a realizable configuration and since all elements are stable, without RHP zeros and 

with the same relative degree equal to the unity, the specification of li(s) can be done according 

to the case 1 of Table 1, because time delays are the only aspect to take into account according to 

(14) in order to achieve realizability. 

In order to avoid time delays in the element kdij(s), the time delay of li(s) is set to the time 

delay of the associated process element gji(s) in (35). In this way, the controller elements of 

Kd(s) and Ko(s) are obtained as shown in (44) and (45), respectively. The non-zero elements of 

Kd(s) directly have PI structure, while those of Ko(s) are a filtered derivative action plus a time 

delay. 
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From (44) and (45), it can be found that the controller parameters are given by (46).  
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  (46) 

If the process elements can be fittingly approximated by FOPTD systems, authors propose to 

use the simple expressions given in (46) to calculate the controller elements of Kd(s) and Ko(s) 

after determining the gain parameters ki. However, when the process elements consist of pure 

integrators, RHP zeros, high relative degrees and so on, this approximation can work improperly. 

In this case, the controller elements should be reduced into more complex structures such as PID 

structure for Kd(s) elements or lead-lag compensators with time delay for Ko(s) elements. 

4.3. Practical considerations 

From an implementation point of view, it is important to consider how to solve practical 

problems such as wind-up, which can cause the controller to perform poorly in the presence of 

control signal constraints. When no extra dynamics N(s) is needed to guarantee the configuration 

realizability in the proposed method, the windup problem can be directly solved if the non-zero 

elements of Kd(s) already have implemented some anti-windup mechanism. When they have 

PID structure, the simple anti-windup scheme in Figure 5 can be used. This scheme, which is 

used for monovariable PID controllers, is based on back-calculations.32 It uses an input 

constraint model inside the controller. When the process input is saturated resulting in a different 

value than the PID output, the controller works in tracking mode following the saturated signal. 
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Figure 5. Anti-windup scheme for PID controllers in the proposed methodology. 

According to the scheme of the proposed method in Figure 2, the control signals are fed back 

to the controller input and added to the error signals to decouple the system. When some control 

signal is saturated, this value is, in fact, the value which is fed back through the corresponding 

elements of Ko(s) toward the corresponding error signals in order to remain the other loops 

decoupled. This value is depicted by d in Figure 5. Therefore, when saturations arise, there is an 

error conditioning29 which modifies the error vector in such a way that the control signals remain 

into allowable values. In this multivariable case, it is possible to use this simple monovariable 

scheme due to the structure of the centralized inverted decoupling control. In the conventional 

scheme of Figure 1b, it is more difficult to implement an anti-windup strategy assuring the 

decoupling performance. 

On the other hand, bumpless transfer between operation modes (manual and automatic) can be 

easily achieved if the non-zero elements of Kd(s) have implemented some monovariable strategy 

to assure this feature. Some mechanisms are based on the tracking mode of the final controller 

output.32 

In addition and similar to inverted decoupling,25 when the controller outputs are used as 

cascade setpoints to lower level controllers, each decoupled control loop is immune to 

abnormalities (e.g., a valve at a limit or a secondary controller in manual) in the secondary of the 
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other loops. To obtain this decoupling performance, it is necessary to measure the output signals 

of the secondary loops and to feed back them through the elements of Ko(s). 

5. Examples 

In this section, two simulation processes are considered to demonstrate the proposed 

methodology, and its effectiveness is also verified in a real quadruple tank plant. These processes 

do not have multivariable RHP zeros, and therefore, the proposed method can be applied. More 

simulation examples of size 2×2 can be found in previous works.26, 27 

5.1. Example 1: Vinante-Luyben distillation column 

The Vinante-Luyben distillation column8 is a multivariable system with important delays and 

it is described by the transfer matrix (47). Due to time delays, no configuration is initially 

realizable. It is necessary to insert an extra delay of 0.7 min in the second input, and therefore, 

the elements of N(s) are given by n11(s)=1 and n22(s)=e-0.7s. Then, the method is applied to (48). 

According to the conditions of Section 3, configuration 1-2 must be chosen for realizability. 
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A gain margin of 3 and phase margin of 60º are chosen as specifications in both loops. The 

gains k1 and k2 are obtained from (25) resulting the following open loop processes: 
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In addition, as the process elements are given by FOPTD systems, the expressions in (46) are 

used to calculate directly the parameters of the controller elements. The following controllers in 

(50) are achieved. They have directly structure of PI control or filtered derivative action plus 

time delay. 
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0.2381.666 0
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0.1160 1.067 +
s

2.4830
7 1( )

5.615 0
9.5 1

s
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s
sKo s

s e
s
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 − − 
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 
 

− 
 + =
 
 + 

 (50) 

Figure 6 shows the closed loop system response of the proposed methodology in comparison 

with that of the normalized decoupling,8 which is designed with the same performance 

specifications. A decentralized PI control33 is also shown. There is a unit step change in the first 

reference at t= 1 min, and at t=40 min, in the second one. At t=70 min, there is a 0.5 step in both 

process inputs as load disturbances. The IAE indices are collected in Table 2. 
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Figure 6. Outputs and control signals of the step response of Example 1. 

In the first loop, the proposed control achieves the best response with the smallest IAE values. 

The decentralized control obtains the best performance in the second loop, with fast reference 

tracking and disturbance rejection. However, this response is obtained at expense of an important 

overshoot and very large control signals. The proposed control achieves perfect decoupling, 

while the others present important interactions. The response of the proposed control is better 

than that of the normalized decoupling. In addition, another advantage of the proposed 

methodology over normalized decoupling is its direct method of carrying out the design. In the 

normalized decoupling design, the procedure is slightly more complex with the calculation of the 

normalized gain matrix, the RGA, the RNGA and the RARTA. 

Table 2. IAE values and robustness indices for each method in Example 1. 
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Method IAE Tracking Interaction Disturbance Total µRS µRP 

Proposed 
loop 1 2.14 2·10-4 0.94 3.08 

0.28 1.04 
loop 2 2.25 0.001 1.47 3.72 

Normalized 
loop 1 2.43 0.47 0.9 3.80 

0.61 1.7 
loop 2 3.62 2.44 2.22 8.28 

Decentralize
d 

loop 1 2.63 0.95 1.8 5.38 
0.67 1.63 

loop 2 1.03 0.81 0.82 2.66 
 

To evaluate the robustness of the proposed controllers, a μ-analysis is performed in the 

presence of diagonal multiplicative input uncertainty. To achieve robust stability, the necessary 

and sufficient condition31 is  

 [ ]RS I I-W (s)T (s) 1= < ∀µ µ ω    (51) 

where μ is the structured singular value (SSV) and TI(s) (equal to K(s)·G(s)·(I+K(s)·G(s))-1) is 

the input complementary sensitivity function. WI(s) and WP(s) are the diagonal weights for 

uncertainty and performance, respectively. To evaluate whether the closed loop system will 

respect the desired performance even in the presence of diagonal multiplicative input 

uncertainty, the necessary and sufficient condition31 is 

RP

- ( ) ( ) - ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )
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In this example, the selected weights are 
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s
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+
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. (53)

 

 

The weight wI(s) can be loosely interpreted as the process inputs increase by up to 40% 

uncertainty at high frequencies and by almost 15% uncertainty in the low frequency range. The 

performance weight wP(s) specifies integral action and a maximum peak for σ( S )  of MS = 2.6. 

Figure 7 shows the SSV for robust stability (RS) and robust performance (RP) for the different 
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controllers under conditions (51) and (52). The RS is smaller than one for all frequencies, 

indicating that the systems will remain stable in spite of an uncertainty of 15% on each process 

input. The peak values are shown in Table 2. The proposed controller has the smallest value. The 

RP analysis shows that the proposed method is the only one that almost satisfies the RP 

condition (52) with a very little peak value of 1.04 around 1 rad/min. For the other controllers, 

the performance will deteriorate around this frequency, where the peaks appear. These values are 

also collected in Table 2. The decentralized controller has a good RS and the best RP for low 

frequencies; however, it shows a bad RP for frequencies higher than 1 rad/min. 

 

Figure 7. SSV for RS and RP in Example 1. 

Next, a simulation is performed with input constraints in order to show the windup problem 

and test the anti-windup (AW) scheme of Figure 5. The process inputs are limited in the range of 

[-0.7, 0.7]. At t=1 min, there is a unit step change in the first reference, and then, at t= 50 min, 

there is a similar step change in the second one. The proposed controller is tested assuming two 

cases: without anti-windup mechanism and using the proposed anti-windup scheme. Figure 8 

shows the simulation results. The response of the decentralized control is also obtained using the 

anti-windup mechanism of Figure 5 without the d input signal. 
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After the first reference change, the first control signal u1 should be out of range to track this 

reference. However, its lower limit of u1 is reached and the first reference cannot be achieved. In 

the first case, without anti-windup mechanism, this fact provokes windup in this signal and after 

the second reference change, at t= 50 min, u1 does not change until 20 min later. Consequently, 

the time to reach the new references is very late. In addition, after the first reference change, the 

second reference is also lost because the directionality of the control signal vector is modified 

after the lower limit of u1 is reached and interactions arise. 

This response is improved significantly over the implementation of the anti-windup scheme of 

Figure 5. Using this mechanism in the Kd(s) elements, the first reference is not reached at the 

beginning; however, the second reference is not lost. When u1 is limited, the control signal u2 is 

automatically limited due to the inverted decoupling structure, in such a way that the second loop 

remains decoupled. Additionally, the windup effect has been avoided, the control signal u1 reacts 

very quickly after the second reference step, and all references are reached sooner. The responses 

of the decentralized controller show some interaction and the settling time of the second loop is 

greater. 
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Figure 8. Outputs and control signals of the step response of Example 1 with input constraints. 

5.2. Example 2: 3×3 Tyreus distillation column 

This second system is a sidestream column separating a ternary mixture.34 Its transfer matrix is 

given by (54), where the controlled and manipulated variables are y1 (toluene impurity in the 

distillate); y2 (benzene impurity in the sidestream); y3 (toluene impurity in the bottom); u1 

(reflux ratio); u2 (sidestream flow rate); u3 (reboil duty). Due to time delays, there are no 

realizable configurations for this process. Thus, it is necessary to include an additional block 

N(s) with delays. To achieve realizability by adding the minimum quantity of delays, the only 

choice is configuration 1-2-3 with n11(s)=e-0.09s, n22(s)=1 and n33(s)=e-0.26s. The new augmented 

process G(s)·N(s) to be decoupled is given by (55). 
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The process elements of the first and third rows are FOPTD systems, and consequently, the 

corresponding open loop processes l1(s) and l3(s) can be chosen according to case 1 of Table 1. 

On the other hand, the process elements of the second row have relative degree equal to two, and 

therefore, the associated open loop process l2(s) must be defined according to the second case of 

Table 1. A gain margin of 10 is chosen as specification in the three loops. The gains k1 and k3 

are calculated by means of (25). In the second open loop process l2(s), the time constant λ of the 

extra pole is obtained from (28) after specifying ωcp=0.63 rad/min. Then, the gain k2 is 

calculated according to (27). The resulting open loop processes are given by: 

0.8 0.68 1.850.196 0.152 0.085( ) , ,
s s·(3.476 1) s

s s sL s diag e e e
s

− − − 
=  + 

. (56) 

After selecting the configuration 1-2-3 and defining the desired open loop transfer functions, 

the controller elements are obtained according to (12) without approximations, as follows: 
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The closed loop system responses (outputs and control signals) are shown in Figure 9. There 

are unit step changes at t=5 min in the first reference, at t= 200 min, in the second one, and t= 

400 min, in the third one. For comparison, other control techniques are also shown in this figure: 

the high order centralized control of Wang7 and the decentralized PID controller of He.35  

 

Figure 9. Outputs and control signals of the step response of Example 2. 

The proposed design and Wang’s control obtain almost perfect decoupling performance, while 

the decentralized control presents important interactions in the first and third outputs and very 

large control signals. Although the control signals of the proposed controller are rather 
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oscillatory, the resulting closed loop responses have smaller settling times than those of obtained 

with the Wang’s control. The IAE values of the three methods are listed in Table 3 as 

performance indices. Although the smallest IAE values for tracking are achieved by the 

decentralized controller, the proposed control obtains the smallest total ones. 

Table 3. IAE values and robustness indices for each method in Example 2. 

Method IAE Tracking Interaction Total μRS μRP 

Proposed 
loop 1 5.3 1.2 6.5 

0.45 1.05 loop 2 7.5 1.5 9 
loop 3 11.9 0.1 12 

Wang 
loop 1 35.6 2.2 37.8 

0.15 1.09 loop 2 30.7 0.3 31 
loop 3 35.1 2.4 37.5 

Decentralize
d 

loop 1 2.5 5.7 8.2 
0.96 3.08 loop 2 5.5 3.5 9 

loop 3 13 36 49 
 

To investigate the robustness of the three controllers, a μ-analysis similar to the previous 

example is performed. The selected weights are given by (59). Figure 10 shows the SSV for RS 

and RP for the different controllers. The RS is satisfied by all of them; however, the smallest 

values are obtained by Wang’s controller. The other peak values are collected in Table 3. The RP 

condition (52) is almost satisfied by the proposed control and Wang’s controller with peak 

values lower than 1.1. The decentralized controller shows the worst robust performance at 

frequencies above 0.1 rad/min, due to the strong interactions. 
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Figure 10. SSV for RS and RP in Example 2. 

5.3. Example 3: Experimental quadruple tank system 

This experimental process is a quadruple tank plant36 in the lab of the Computer Science 

Department of the University of Cordoba. The outputs are the level of the lower tanks, which are 

between 0 and 35 cm; the inputs are the flow references of the secondary control loops that 

regulate the operation of the pumps, which are between 0 and 200 cm3/s. The plant was 

configured in order to show interaction problems without having multivariable RHP zeros. The 

process was identified around the operation point h = [20 20] cm and u = [138 135] cm3/s. the 

resultant model is given by (60) and it has a relative gain array of 2.29. 

( )( )

( )( )

0.3284 0.2454
184.5 1 184.5 1 535.1 1

( )
0.2457 0.3378

185 1 503.2 1 185 1

Q

s s s
G s

s s s

 
 + + + =
 
  + + + 

  (60) 

Because of the relative degrees, configuration 1-2 must be chosen for realizability without 

adding extra dynamics. In addition, the two open loop transfer functions l1(s) and l2(s) can be 

defined according to the case 1 of Table 1, and since there are no time delays, the closed loop 

transfer functions h1(s) and h2(s) are given by (24). Therefore, a closed loop time constant of 

300 s is chosen as specifications in both loops. Consequently, the parameters k1 and k2 are 
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calculated as the inverse of this time constant. As a result, the desired open loop transfer 

functions are defined by l1(s) = l2(s) = 1/(300·s).  

After specifying the functions li(s), the controller elements are obtained from (9) as follows: 

( )( )

( )( )

1 -73.62s( ) 1.873 + (s) =
98.52s 184.5s+1 535.1s+1
-73.71s 1(s) = (s) = 1.825 +

185s+1 503.2s+1 101.34s

11 12

21 22

kd s = ko

ko kd
. (61) 

Figure 11 shows the resultant response of the proposed control for a step of 2 cm in both 

references. For comparison, the response of a multi-loop PI controller given by (62) is also 

shown. This decentralized controller is tuned according to an iterative method2 using a phase 

margin of 90º and an infinite gain margin as specifications in both loops.  

 

Figure 11. Outputs and control signals of the step response of the quadruple tank system. 
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11 22
1 1( ) 3.44 ( ) 3.35

54.323 55.93
k s k s

s s
= + = +   (62) 

The proposed control obtains a better response with a very good decoupling performance and a 

smaller settling time in both loops. The multi-loop PI controller reaches the references later, and 

the rejection of the interactions is very slow. The IAE values for both methods are listed in Table 

4 as performance indices. The proposed control obtains the smallest total IAE values. 

Table 4. IAE values for each method in Example 3. 

Method IAE Tracking Interaction Total 

Proposed 
loop 1 732 307 1039 
loop 2 773 227 1000 

Multiloop 
loop 1 716 451 1167 
loop 2 733 422 1155 

 

6. Conclusions 

A new methodology of multivariable centralized control based on the structure of inverted 

decoupling is developed in this work. The problem is approached from a compact matricial 

formulation obtaining generalized expressions for n×n processes. From them, it is demonstrated 

that the controller elements are very simple and they can be calculated very easily in comparison 

with other methods based on the conventional centralized scheme in which complicated elements 

are often achieved and approximations are usually necessary. Furthermore, it is found that the 

complexity of the controller elements is independent of the system size. This is a great advantage 

over the conventional scheme. Additionally, the structure of the proposed centralized scheme 

allows for dealing with other practical problems, such as anti-windup or bumpless transfer, in the 

same way as in the monovariable case. These practical issues are not solved so easily with the 

conventional centralized scheme. Therefore, it is concluded that the proposed methodology has 
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important advantages that makes it very easy to apply when the process does not have 

multivariable RHP zeros. 

The possible configurations and the realizability conditions for applying the method were 

discussed. In addition, three common cases to select performance specifications from simple 

open loop transfer functions are explained. As a particular case, the controller parameter 

expressions when all of the process elements are given by FOPTD systems were obtained. In this 

case, the controller elements have PI structure or filtered derivative action plus a time delay. The 

method has been illustrated with two simulation examples. Comparisons with other methods 

have demonstrated that the proposed methodology achieves similar or better performance. In 

addition, an experimental quadruple tank process was used to verify the effectiveness of this 

method. 
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