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Abstract

Individuals from Pittsburgh rule-based classifiers represent a complete solu-
tion to the classification problem and each individual is a variable-length set
of rules. Therefore, these systems usually demand a high level of computa-
tional resources and run-time, which increases as the complexity and the size
of the data sets. It is known that this computational cost is mainly due to
the recurring evaluation process of the rules and the individuals as rule sets.
In this paper we propose a parallel evaluation model of rules and rule sets on
GPUs based on the NVIDIA CUDA programming model which significantly
allows reducing the run-time and speeding up the algorithm. The results
obtained from the experimental study support the great efficiency and high
performance of the GPU model, which is scalable to multiple GPU devices.
The GPU model achieves a rule interpreter performance of up to 64 billion
operations per second and the evaluation of the individuals is speeded up of
up to 3.461x when compared to the CPU model. This provides a signifi-
cant advantage of the GPU model, especially addressing large and complex
problems within reasonable time, where the CPU run-time is not acceptable.
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1. Introduction

Evolutionary computation and its application to machine learning and
data mining, and specifically, to classification problems, has attracted the
attention of researchers over the last decade [1, 2, 3, 4, 5]. Classification is a
supervised machine learning task which consists in predicting class member-
ship of uncategorised examples using the properties of a set of train examples
from which a classification model has been inducted [6].

Rule-based classification systems are especially useful in applications and
domains which require comprehensibility and clarity in the knowledge dis-
covery process, expressing information in the form of IF-THEN classification
rules. Evolutionary rule-based algorithms take advantage of fitness-biased
generational inheritance evolution to obtain rule sets, classifiers, which cover
the train examples and produce class prediction over new examples.

Rules are encoded into the individuals within the population of the algo-
rithm in two different ways: individual = rule, or individual = set of rules.
Most evolutionary rule-based algorithms follow the first approach due to its
simplicity and efficiency, whereas the latter, also known as Pittsburgh style
algorithms, are not so usually employed because they are considered to per-
form slowly [7]. However, Pittsburgh approaches comprise other advantages
such as providing individuals as complete solutions to the problem and allow
of considering relations between the rules within the evolutionary process.

The efficiency, computational cost, and run-time of Pittsburgh rule-based
systems is a primary concern and a challenge for researchers [8, 9], especially
when seeking their scalability to large scale databases [10, 11], processing vast
amounts of data within a reasonable amount of time. Therefore, it becomes
crucial to design efficient parallel algorithms capable of handling these large
amounts of data [12, 13, 14, 15].

Parallel implementations have been employed to speed up evolutionary
algorithms, including multi-core and distributed computing [16, 17], master—
slave models [18], and grid computing environments [19, 20]. Over the
last few years, increasing attention has focused on graphic processing units
(GPUs). GPUs are devices with multi-core architectures and massive paral-
lel processor units, which provide fast parallel hardware for a fraction of the
cost of a traditional parallel system. Actually, since the introduction of the
computer unified device architecture (CUDA) in 2007, researchers all over
the world have harnessed the power of the GPU for general purpose GPU
computing (GPGPU) [21, 22, 23, 24].



The use of GPGPU has already been studied for speeding up algorithms
within the framework of evolutionary computation and data mining [25, 26,
27, 28], achieving high performance and promising results. Specifically, there
are GPU-accelerated genetic rule-based systems for individual = rule ap-
proaches, which have been shown to achieve high performance [29, 30, 31].
Franco et al. [29] reported a speedup of up to 58 using the BioHEL system.
Cano et al. [30] reported a speedup of up to 820x, considering a scalable
model using multiple GPU devices. Augusto [31] reported a speedup of up
to 100x compared to a single-threaded model and delivering almost 10x
the throughput of a twelve-core CPU. These proposals are all focused on
speeding up individual = rule approaches. However, as far as we know, there
are no GPU-based approaches to date using an individual = set of rules
representation.

In this paper we present an efficient Pittsburgh individuals evaluation
model on GPUs which parallelises the fitness computation for both rules and
rules sets, applicable to any individual = set of rules evolutionary algorithm.
The GPU model is scalable to multiple GPU devices, which allows of ad-
dressing larger data sets and population sizes. The rules interpreter, which
checks the coverage of the rules over the instances, is carefully designed to
maximize its efficiency compared to traditional rules stack-based interpreters.
Experimental results demonstrate the great performance and high efficiency
of the proposed model, achieving a rules interpreter performance of up to
64 billion operations per second. On the other hand, the individual evalua-
tion performance achieves a speedup of up to 3.461x when compared to the
single-threaded CPU implementation, and a speedup of 1.311x versus the
parallel CPU version using 12 threads.

This paper is organized as follows. In the next section, genetic rule-based
systems and their encodings are introduced, together with the definition of
the CUDA programming model on the GPU. Section 3 presents the GPU
evaluation model and its implementation in CUDA kernels. Section 4 in-
troduces the experimental study setup, whose results are given in Section 5.
Finally, Section 6 collects some concluding remarks.

2. Background

This section introduces the genetic rule-based systems and the encoding
of the individuals. Finally, the CUDA programming model on the GPU is
presented.



2.1. Genetic rule-based systems

Genetic algorithms (GAs) evolve a population of individuals which corre-
spond to candidate solutions to a problem. GAs have been used for learning
rules (Genetic rule-based systems), including crisp and fuzzy rules, and they
follow two approaches for encoding rules within a population.

The first one represents an individual as a single rule (individual = rule).
The rule base is formed by combining several individuals from the population
(rule cooperation) or via different evolutionary runs (rule competition). This
representation results in three approaches:

e Michigan: they employ reinforcement learning and the GA is used to
learn new rules that replace the older ones via competition through
the evolutionary process. These systems are usually called learning
classifier systems [32], such as XCS [33], UCS [34], Fuzzy-XCS [35],
and Fuzzy-UCS [36].

e Iterative Rule Learning (IRL): individuals compete to be chosen in
every GA run. The rule base is formed by the best rules obtained
when the algorithm is run multiple times. SLAVE [37], STA [38] and
HIDER [39] are examples which follow this model.

e Genetic Cooperative-Competitive Learning (GCCL): the whole popu-
lation or a subset of individuals encodes the rule base. In this model,
the individuals compete and cooperate simultaneously. This approach
makes it necessary to introduce a mechanism to maintain the diversity
of the population in order to avoid a convergence of all the individ-
uals in the population. GP-COACH [40] or COGIN [41] follow this
approach.

The second one represents an individual as a complete set of rules (indi-
vidual = set of rules), which is also known as the Pittsburgh approach. The
main advantage of this approach compared to the first one is that it allows of
addressing the cooperation—competition problem, involving the interaction
between rules in the evolutionary process [42, 43]. Pittsburgh systems (es-
pecially naive implementations) are slower, since they evolve more complex
structures and they assign credit at a less specific (and hence less informative)
level [44]. Moreover, one of their main problems is controlling the number
of rules, which increases the complexity of the individuals, adding compu-
tational cost to their evaluation and becoming an unmanageable problem.
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This problem is known as the bloat effect [45], i.e., a growth without control
of the size of the individuals.

One method based on this approach is the Memetic Pittsburgh Learning
Classifier System (MPLCS) [8]. In order to avoid the bloat effect, they
employ a rule deletion operator and a fitness function based on the minimum
description length [46], which balances the complexity and accuracy of the
rule set. Moreover, this system uses a windowing scheme [47] that reduces the
run-time of the system by dividing the training set into many non-overlapping
subsets over which the fitness is computed at each GA iteration.

2.2. CUDA programming model

Computer unified device architecture (CUDA) [48] is a parallel computing
architecture developed by NVIDIA that allows programmers to take advan-
tage of the parallel computing capacity of NVIDIA GPUs in a general pur-
pose manner. The CUDA programming model executes kernels as batches of
parallel threads. These kernels comprise thousands to millions of lightweight
GPU threads per each kernel invocation.

CUDA’s threads are organised into thread blocks in the form of a grid.
Thread blocks are executed in streaming multiprocessors. A stream multipro-
cessor can perform zero-overhead scheduling to interleave warps (a warp is a
group of threads that execute together) and hide the overhead of long-latency
arithmetic and memory operations. GPU’s architecture was rearranged from
SIMD (Single Instruction, Multiple Data) to MIMD (Multiple Instruction,
Multiple Data), which runs independent separate program codes. Thus, up
to 16 kernels can be executed concurrently as long as there are multipro-
cessors available. Moreover, asynchronous data transfers can be performed
concurrently with the kernel executions. These two features allow of speeding
up the execution compared to a sequential kernel pipeline and synchronous
data transfers, as in previous GPU architectures.

There are four different main memory spaces: global, constant, shared,
and local. These GPU memories are specialised and have different access
times, lifetimes, and output limitations.

e Global memory: a large long-latency memory that exists physically
as an off-chip dynamic device memory. Threads can read and write
global memory to share data and must write the kernel’s output to be
readable after the kernel terminates. However, a better way to share
data and improve performance is to take advantage of shared memory.



e Shared memory: a small low-latency memory that exists physically as
on-chip registers and its contents are only maintained during thread
block execution and are discarded when the thread block completes.
Kernels that read or write a known range of global memory with spatial
or temporal locality can employ shared memory as a software-managed
cache. Such caching potentially reduces global memory bandwidth de-
mands and improves overall performance.

e Local memory: each thread also has its own local memory space as reg-
isters, so the number of registers a thread uses determines the number
of concurrent threads executed in the multiprocessor, which is called
multiprocessor occupancy. To avoid wasting hundreds of cycles while
a thread waits for a long-latency global-memory load or store to com-
plete, a common technique is to execute batches of global accesses, one
per thread, exploiting the hardware’s warp scheduling to overlap the
threads” access latencies.

e Constant memory: this memory is specialised for situations in which
many threads will read the same data simultaneously. This type of
memory stores data written by the host thread, is accessed constantly,
and does not change during the execution of the kernel. A value read
from the constant cache is broadcast to all threads in a warp, effectively
serving all loads from memory with a single-cache access. This enables
a fast, single-ported cache to feed multiple simultaneous memory ac-
cesses.

There are some recommendations for improving the performance on a
GPU [49]. Memory accesses must be coalesced as with accesses to global
memory. Global memory resides in device memory and is accessed via 32,
64, or 128-byte segment memory transactions. It is recommended to perform
fewer but larger memory transactions. When a warp executes an instruction
which accesses global memory, it coalesces the memory accesses of the threads
within the warp into one or more of these memory transactions depending
on the size of the word accessed by each thread and the distribution of the
memory addresses across the threads. In general, the more transactions are
necessary, the more unused words are transferred in addition to the words
accessed by the threads, reducing the instruction throughput accordingly.

To maximise global memory throughput, it is therefore important to max-
imise the coalescing, by following optimal access patterns, using data types



that meet the size and alignment requirements, or padding data. For these
accesses to be fully coalesced, both the width of the thread block and the
width of the array must be a multiple of the warp size.

3. Parallel Pittsburgh evaluation on GPU

This section first introduces the encoding of the Pittsburgh individuals
on the GPU. Then, it will present the evaluation procedure of an individual’s
rules. Finally, it will describe the evaluation process of an individual’s fitness.

3.1. Pittsburgh individual encoding

Pittsburgh individuals are variable-length sets of rules which may include
a default rule class prediction, interesting when using decision lists [50] as
individual representation. Rules are one of the formalisms most often used
to represent classifiers (decision trees can be easily converted into a rule
set [51]). The IF part of the rule is called the antecedent and contains a
combination of attribute-value conditions on the predicting attributes. The
THEN part is called the consequent and contains the predicted value for the
class. This way, a rule assigns a data instance to the class pointed out by the
consequent if the values of the predicting attributes satisfy the conditions
expressed in the antecedent. Rule specification can be formally defined by
means of a context-free grammar [52] as the shown in Figure 1.

OR (cmp)
AND (cmp)

(
(
(
( (cmp)

(emp) — (op-num) (variable) (value)
(emp) — (op_cat) (variable) (value)
(opmum) — > > ] <| <

(opcat) — = | #

(variable) — Any valid attribute in dataset
(value) — Any valid value

Figure 1: Grammar specification for the rules
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Figure 2: Pittsburgh individual encoding

Figure 2 shows how the rules are stored in the GPU memory. Rules are
usually computed by means of a stack-based interpreter [53, 54]. Traditional
stack-based interpreters perform push and pop operations on a stack, in-
volving the operator and operands found in the rule. The rule encoding we
employ allows the interpreter to achieve maximal efficiency by minimizing
the number of push and pop operations on the stack, reading the rules from
the left to the right. Attribute—value comparisons are expressed in prefix no-
tation, which places operators to the left of their operands, whereas logical
operators are expressed in postfix notation, in which the operator is placed
after the operands. This way, the efficiency of the interpreter is increased by
minimizing the number of operations on the stack. The interpreter avoids
pushing or popping unnecessary operands and behaves as a finite-state ma-
chine. For example, the first rule represented in the individual from Figure 2
reads the first element and finds the > operator. The interpreter knows the
cardinality of the > operator, which has two operands. Thus, it directly
computes > At; V7 and pushes the result into the stack. Then, the next
element is < , it computes < Aty V5 and pushes the result. Finally, the AND
operator is found, the interpreter pops the two operands from the stack and
returns the AND Boolean computation.

This interpreter model provides a natural representation which allows
dealing with all types of logical operators with different cardinalities and
operand types while keeping an efficient performance.

3.2. FEvaluation of particular rules

Rules within individuals must be evaluated over the instances of the data
set in order to assign a fitness to the rules. The evaluation of the rules is
divided into two steps, which are implemented in two GPU kernels. The first
one, the coverage kernel, checks the coverage of the rules over the instances
of the data set. The second one, the reduction kernel, performs a reduction
count of the predictions of the rules, to compute the confusion matrix from
which the fitness metrics for a classification rule can be obtained.



3.2.1. Rule coverage kernel

The coverage kernel executes the rule interpreter and checks whether the
instances of the data set satisfy the conditions comprised in the rules within
the individuals. The interpreter takes advantage of the efficient represen-
tation of the individuals described in Section 3.1 to implement an efficient
stack-based procedure in which the partial results coming from the child
nodes are pushed into a stack and pulled back when necessary.

The interpreter behaves as a single task being executed on the Single In-
struction Multiple Data (SIMD) processor, while the rules and instances are
treated as data. Therefore, the interpreter parallelises the fitness computa-
tion cases for individuals, rules, and instances. Each thread is responsible
for the coverage of a single rule over a single instance, storing the result of
the matching of the coverage and the actual class of the instance to an array.
Threads are grouped into a 3D grid of thread blocks, whose size depends
on the number of individuals (width), instances (height), and rules (depth),
as represented in Figure 3. Thus, a thread block represents a collection of
threads which interpret a common rule over a subset of different instances,

avoiding a divergence of the kernel, which is known to be one of the major
efficiency problems of NVIDIA CUDA programming.
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The number of threads per block is recommended to be a multiple of the
warp size (a warp is a group of threads that execute together in a streaming
multiprocessor), usually being 128, 192, 256, ..., up to 1024 threads per block.
This number is important as it concerns the scalability of the model in future
GPU devices with a larger number of processors. NVIDIA recommends run-
ning at least twice as many thread blocks as the number of multiprocessors in
the GPU, and provides an occupancy calculator which reports the GPU oc-
cupancy regarding the register and shared memory pressure, and the number
of threads per block. Table 1 shows the GPU occupancy to be maximized
for different block sizes. 192 threads per block is the best choice since it
achieves 100% occupancy and provides more active thread blocks per multi-
processor to hide latency arising from register dependencies, and therefore, a
wider range of possibilities given to the scheduler to issue concurrent block to
the multiprocessors. Moreover, while the occupancy is maximal, the smaller
number of threads per block there is, the higher the number of blocks, which
provides better scalability to future GPU devices capable of handling more
active blocks concurrently. Scalability to multiple GPU devices is achieved
by splitting the population into as many GPUs as available, and each GPU
is reponsible of evaluating a subset of the population.

Table 1: Threads per block and GPU occupancy

Threads per block 128 192 256 320
Active Threads per Multiprocessor 1024 1536 1536 1280
Active Warps per Multiprocessor 32 48 48 40
Active Thread Blocks per Multiprocessor 8 8 6 4
Occupancy of each Multiprocessor 67% 100% 100% 83%

Thread accesses to global memory must be coalesced to achieve maximum
performance and memory throughput, using data types that meet the size
and alignment requirements, or padding data arrays. For these accesses to be
fully coalesced, both the width of the thread block and the width of the array
must be a multiple of the warp size. Therefore, the results array employs
intra-array padding to align the memory addresses to the memory transfer
segment sizes [30, 55]. Since the number of threads per block is said to be
192, the results array intra-array padding forces the memory alignment to
192 float values, i.e, 768 bytes. Thus, memory accesses are fully coalesced
and best throughput is achieved. Memory alignment and padding details can
be found in Section 5.3.2 from the NVIDIA CUDA programming guide.
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__global_

{

void coverageKernel (unsigned char* result, double* instancesData,
int* instancesClass , float** rules, int** consequent)

int instance = blockDim.y * blockIdx.y + threadIdx.y;
int memIndex = (blockDim.z*blockIdx.x+blockIdx.z)*nInstances+instance;

if (covers (&rules[blockIdx .x][blockIdx.z], instance, instancesData))

{

if (instancesClass[instance] == consequent [blockIdx.x][blockIdx.z])
result [memIndex] = 0; // TRUE POSITIVE
else
result [memIndex] = 2; // FALSE POSITIVE
}
else
{
if (instancesClass[instance] != consequent [blockIdx.x][blockIdx.z])
result [memIndex] = 1; // TRUE NEGATIVE
else
result [memIndex] = 3; // FALSE NEGATIVE
}
__device__ bool covers(float* rule, int instance, double* instancesData)

{

int sp, bufp, attribute;
float stack [MAX_STACK], opl, op2;

for(sp = 0, bufp = 0; ;)
{
switch (rule [bufpl)
{
case GREATER:
attribute = rule[bufp+1];
opl = instancesDatal[numberInstances * attribute + instancel;
op2 = rule[bufp+2];
if (opl > op2) push(1l, stack, &sp);
else push (0, stack, &sp);
bufp += 3;
break;
case AND:
opl = pop(stack, &sp);
op2 = pop(stack, &sp);
if (opl * op2 == 1) push (1, stack, &sp);
else push (0, stack, &sp);
bufp++;
break;

case END_RULE:
return pop(stack, &sp) == 1 7 true : false;

Listing 1: Rule coverage kernel and interpreter
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Threads within a warp shall request consecutive memory addresses that
can be serviced in fewer memory transactions. All the threads in a warp
evaluate the same rule but over different instances. Thus, the data set must
be stored transpose in memory to provide fully coalescing memory requests
to the threads from the warp.

The codes for the coverage kernel and the rule interpreter are shown in
Listing 1. The coverage kernel receives as input four arrays: an array of
attributes values, an array of class values of the instances of the dataset,
an array containing the rules to evaluate, and an array containing the con-
sequents of the rules. It computes the matching of the results and return
them in an array of matching results. The result of the matching of the rule
prediction and the actual class of an instance can take four possible values:
true positive (1), true negative (Tl ), false positive (Fp), or false negative
(Fy). Threads and blocks within the kernel are identified by the built-in
CUDA variables threadldz, blockldz and blockDim, which specify the grid
and block dimensions and the block and thread indexes, following the 3D
representation shown in Figure 3. Further information about CUDA threads
indices can be seen in Section B.4 from CUDA programming guide.

3.2.2. Rule fitness kernel

The rule fitness kernel calculates the fitness of the rules by means of
the performance metrics obtained from the confusion matrix. The confusion
matrix is a two dimensional table which counts the number of true posi-
tives, false positives, true negatives, and false negatives resulting from the
matching of a rule over the instances of the data set. There are many well-
known performance metrics for classification, such as sensitivity, specificity,
precision, recall, F-Measure, etc. The algorithm assigns the fitness values
corresponding to the objective or objectives to optimize, e.g, to maximize
both sensitivity and specificity at the same time.

The rule fitness kernel is implemented using a 2D grid of thread blocks,
whose size depends on the number of individuals (width) and the number of
rules (height). The kernel perform a parallel reduction operation over the
matching results of the coverage kernel. The naive reduction operation sums
in parallel the values of an array reducing iteratively the information.

Our approach does not need to sum the values, but counting the number
of Tp, Ty, Fp and Fy. O(logyN) parallel reduction is known to perform most
efficiently in multi-core CPU processors with large arrays. However, our best
results on GPUs were achieved using a 2-level parallel reduction with se-
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Figure 4: 2-level parallel reduction with sequential addressing

quential addressing using 128 threads per block, which is shown in Figure 4.
Accessing sequential memory address in parallel is more efficient than access-
ing non-contiguous addresses since contiguous data are transferred in a single
memory transaction and provides coalesced accesses to threads. Finally, the
code for the rule fitness kernel is shown in Listing 2. The input of the kernel
is the array of matching results, and returns an array of fitness values. The
2-level parallel reduction takes advantage of GPU shared memory, in which
threads within a block collaborate to compute partial counts of the confusion
matrix values. Each thread is responsible to count the results from the base
index to the top index. Therefore, contiguous threads address contiguous
memory indexes, achieving maximum throughput.
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{

__global__ void rulesFitnessKernel (float* fitness, unsigned char* result)
__shared__ int confusionMatrix[512];
int base = (blockDim.z*blockIdx.x+blockIdx.z)*numberInstances+threadIdx.y;
int top = (blockDim.z*blockIdx.x+blockIdx.z+1)*numberInstances -base;
confusionMatrix[threadIdx .y] = confusionMatrix[threadIdx.y+128] = 0;
confusionMatrix[threadIdx .y+256] = confusionMatrix[threadIdx .y+384] = O0;

// Performs the first level reduction of the thread corresponding values
for(int i = 0; i < top; i+=128)
confusionMatrix[threadIdx .y*4 + result[base + i]]++;

syncthreads () ;

if (threadIdx .y < 4)

{
// Performs the second level reduction of the half of the sums
for(int i = 4; i < 512; i+=4)

{
confusionMatrix [0] += confusionMatrixI[il]; // # true positives
confusionMatrix[1] += confusionMatrix[i+1]; // # true negatives
confusionMatrix [2] += confusionMatrix[i+2]; // # false positives
confusionMatrix [3] += confusionMatrix[i+3]; // # false negatives
}
if (threadIdx .y == 0)
{
int tp = MC[0], tn = MC[1], fp = MC[2], fn = MC[3];
float sensitivity, specificity;
sensitivity = tp / (float) (tp + fn);
specificity = tn / (float) (tn + fp);
fitness [blockIdx.z][blockIdx.x] = sensitivity * specificity;
}

Listing 2: Rules fitness kernel

3.3. FEvaluation of rule sets

Pittsburgh individuals encode sets of rules as complete solutions to the

classification problem (classifiers). Many performance measures of a classi-
fier can be evaluated using the confusion matrix. The standard performance
measure for classification is the accuracy rate, which is the number of suc-
cessful predictions relative to the total number of classifications.

The evaluation of the classifiers is divided into two steps, which are imple-

mented in two GPU kernels. The first one, the classification kernel, performs
the class prediction for the instances of the data set. The second one, the rule
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set fitness kernel, performs a reduction count of the classifier predictions to
compute the confusion matrix, from which the fitness metrics for a classifier
can be obtained.

3.3.1. Rule set classification kernel

The rule set classification kernel performs the class prediction for the
instances of the data set using the classification rules, which are linked as
a decision list. An instance is predicted to the class pointed out by the
consequent of the first rule which satisfy the conditions of the antecedent. If
no rule covers the instance, it is classified using the default class.

In order to save time, the classification kernel reuses the matching results
from the rule coverage kernel, and therefore, the rules do not need to be
interpreted again. The classifier follow the decision list inference procedure
to perform the class prediction. Notice that the class prediction is only
triggered when the rule is known to cover the instance (true positive or false
positive).

__global__ void classificationKernel (unsigned char* result, int* Class,

int defaultClass)

{
int instance = blockDim.y * blockIdx.y + threadIdx.y;
int index = blockIdx.x * maxRules * numberInstances + instance;

for(int i = 0; i < maxRules; i++)
{
if (result [index + i*numberInstances] == 0) // TRUE POSITIVE
{
result [index] = 1; // Correctly classified
return;
}
else if(result[index + i*numberInstances] == 2) // FALSE POSITIVE
{
result [index] = 0; // Misclassified
return;
}
}

// If none of the rules covers the instance, apply the default hypothesis
if (Class [instance] == defaultClass)

result [index] = 1; // Correctly classified
else

result [index] = 0; // Misclassified

Listing 3: Rule set classification kernel
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The classification kernel is implemented using a 2D grid of thread blocks,
whose size depends on the number of individuals (width) and instances
(height). The kernel setup is similar to the rule coverage kernel. The number
of threads per block is also 192, to maximize the occupancy of the streaming
multiprocessors. Listing 3 shows the code for the classification kernel. The
input of the kernel is the array of matching results, an array with information
about the instance class and the default class, which applies when none of
the rules covers the instance (default hypothesis).

3.3.2. Rule set fitness kernel

__global_ void ruleSetFitnessKernel (float#* fitness, unsigned char* result)
{

__shared__ int shmCount [128];

shmCount [threadIdx .y] = 0;

int base = blockIdx.x*numberInstances*maxRules + threadIdx.y;
int top = blockIdx.x*numberInstances*maxRules + numberInstances - base;

// Performs the reduction of the thread corresponding values
for(int i = 0; i < top; i+=128)
{
shmCount [threadIdx .y] += result[base + i];
}

__syncthreads ();

// Calculates the final amount and the accuracy

if (threadIdx .y == 0)

{
int correctPredictions = shmCount [0];
for(int i = 1; i < 128; i++)

correctPredictions += shmCount [i];

// Compute the accuracy of the classifier
fitness [blockIdx.x] = correctPredictions / (float) numberInstances;

Listing 4: Rule sets fitness kernel

The rule set fitness kernel performs a reduction operation over the classi-
fier predictions to count the number of successful predictions. The reduction
operation is similar to the one from the rule fitness kernel from Section 3.2.2
and counts the number of correctly classified instances to compute the accu-
racy of the classifier. The settings for the kernel and the reduction operation
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are the same. The kernel is implemented using a 1D grid of thread blocks
whose length depends only on the number of individuals. The code for the
rule set fitness kernel is shown in Listing 4. The kernel receives as input
the array of prediction results from the rule set classification kernel, and re-
turns an array of fitness values which defines the accuracy of the classifiers.
Similarly than the rules fitness kernel, shared memory is employed to count
partial results and guarantee contiguous and coalesced memory accesses.

4. Experimental setup

This section describes the experimental study setup, the hardware config-
uration, and the experiments designed to evaluate the efficiency of the GPU
model.

4.1. Hardware configuration

The experiments were run on a cluster of machines equipped with dual
Intel Xeon E5645 processors running at 2.4 GHz and 24 GB of DDR3 host
memory. The GPUs employed were two NVIDIA GTX 480 video cards
equipped with 1.5 GB of GDDR5 video RAM. The GTX 480 GPU comprised
15 multiprocessors and 480 CUDA cores. The host operating system was a
GNU/Linux Rocks cluster 5.4.3 64 bit together with CUDA 4.1 runtime.

4.2. Problem domains

The performance of the GPU model was evaluated on a series of data sets
collected from the UCI machine learning repository [56] and the KEEL data
sets repository [57]. These data sets are very varied, with different degrees
of complexity. Thus, the number of instances ranges from the simplest, con-
taining 150 instances, to the most complex, containing one million instances.
The number of attributes and classes also differ significantly to represent a
wide variety of real word data problems. This information is summarized
in Table 2. The wide variety of data sets allowed us to evaluate the model
performance on problems of both low and high complexity.

4.3. Experiments

The experimental study comprises three experiments designed to evaluate
the performance and efficiency of the model. Firstly, the performance of the
rules interpreter was evaluated. Then, the times required for evaluating
individuals by CPU and GPU were compared. Finally, the efficiency of the
model was analysed regarding performance and power consumption.
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Table 2: Complexity of the data sets

| Data set | #Instances | #Attributes | #Classes |
Iris 150 4 3
New-thyroid 215 5 3
Ecoli 336 7 8
Contraceptive 1473 9 3
Thyroid 7200 21 3
Penbased 10992 16 10
Shuttle 58000 9 7
Connect-4 67557 42 3
KDDcup 494020 41 23
Poker 1025010 10 10

4.3.1. Rule interpreter performance

The efficiency of rule interpreters is often reported by means of the num-
ber of primitives interpreted by the system per second, similarly to Genetic
Programming interpreters, which determine the number of Genetic Program-
ming operations per second (GPops/s) [31, 53, 54].

In this experiment, the performance of the rules interpreter was evaluated
by running the interpreter with a different number of rules over data sets
with varied number of instances and attributes. Thus, the efficiency of the
interpreter was analysed regarding its scalability to larger numbers of rules
and instances.

4.3.2. Individual evaluation performance

The second experiment evaluated the performance of the evaluation of
the individuals and their rules in order to compute their fitness values. This
experiment compared the execution times (these times consider in the case of
CPU cluster, data transfers between compute nodes and the GPU times, the
data transfer between host and GPU memory) dedicated to evaluate different
population sizes over the data sets. The range of population sizes varies from
10 to 100 individuals. This range of population sizes is commonly used in
most of the classification problems and algorithms, and represents a realistic
scenario for real world data. The number of rules of each individual is equal
to the number of classes of the data set, and the length of the rules varies
stochastically regarding to the number of attributes of the data set, i.e., rules
are created adapted to the problem complexity. Thus, the experiments are
not biased for unrealistic more complex rules and individuals which would
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obtain better speedups. The purpose of this experiment was to obtain the
speedups of the GPU model and check its scalability to large data sets and
multiple GPU devices. Extension to multiple GPUs is simple, the population
is divided into as many GPUs as available, and each GPU is responsible of
evaluating a subset of the population. Therefore, the scalability is guaranteed
to larger population sizes and further number of GPU devices.

4.83.3. Performance per Watt

Power consumption has increasingly become a major concern for high-
performance computing, due not only to the associated electricity costs, but
also to environmental factors [58]. The power efficiency is analysed based on
the throughput results on the evaluated cases. To simplify the estimates, it is
assumed that the devices work at their full occupancy, that is, at maximum
power consumption [31]. One NVIDIA GTX 480 GPU consumes up to 250
W, whereas one Intel Xeon E5645 consumes up to 80 W. The efficiency of
the model is evaluated regarding the performance per Watt (GPops/s/W).
The power consumption is reported to the CPU or GPU itself and it does
not take into account the base system power consumption. We followed this
approach because it is the commonly accepted way both in academia and
industry [31] to report the performance per watt efficiency.

5. Results

Table 3 shows the rule interpreter execution times and performance in
terms of the number of primitives interpreted per second (GPops/s). Each
row represents the case of a stack-based interpretation of the rules from
the population over the instances of the data sets. The number of rules
of each individual is equal to the number of classes of the data set. The
number of primitives, Genetic Programming operations (GPops), reflects the
total number of primitives to be interpreted for that case, which depends on
the variable number of rules, their length, and the number of instances,
representing the natural variable length of Pittsburgh problems.

The single-threaded CPU interpreter achieves a performance of up to 9.63
million GPops/s, whereas multi-threading with 4 CPU threads brings the
performance up to 34.70 million GPops/s. The dual socket cluster platform
allows two 6-core CPUs and a total of 12 CPU threads, which are capable of
running up to 92.06 million GPops/s in parallel.
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Table 3: Rule interpreter performance

Interpreter Time (s)

GPops/s (million)

Data set Population GPops 1 CPU 4 CPU 12 CPU 1 GPU 2GPU |1 CPU 4 CPU 12 CPU 1 GPU 2 GPU
10 88,560 12 10 8 0.0272 0.0201 7.38 8.86 11.07  3,259.72  4,406.85

Iris 25 225,450 25 12 11 0.0390 0.0276 9.02 18.79 20.50  5,774.85  8,163.75
50 458,460 49 19 15 0.0526 0.0295 9.36  24.13 30.56  8,719.95 15,522.07

100 929,340 100 34 21 0.0988 0.0491 9.29  27.33 44.25  9,410.85 18,919.79

10 126,608 15 12 10 0.0274 0.0204 8.44 10.55 12.66  4,627.49  6,211.15

New-thyroid 25 322,310 35 19 11 0.0400 0.0265 9.21 16.96 29.30  8,064.20 12,164.48
50 655,428 71 22 13 0.0505 0.0340 9.23  29.79 50.42 12,988.03 19,268.23

100 1,328,612 144 41 24 0.0967 0.0535 9.23 32.41 55.36 13,734.41 24,832.01

10 539,976 58 18 13 0.0516 0.0392 9.31 30.00 41.54 10,461.41 13,763.66

Ecoli 25 1,354,168 152 44 23 0.0972 0.0533 8.91 30.78 58.88 13,929.48 25,416.07
50 2,830,344 299 89 41 0.1813 0.1075 9.47  31.80 69.03 15,607.60 26,339.56

100 5,658,272 587 166 69 0.3471 0.1708 9.64  34.09 82.00 16,299.87 33,118.75

10 869,200 96 30 22 0.0550 0.0322 9.05 28.97 39.51 15,801.34 27,000.50

Contraceptive 25 2,212,750 243 70 32 0.1107 0.0625 9.11 31.61 69.15 19,990.88 35,424.40
50 4,499,700 499 134 102 0.1974 0.1107 9.02 33.58 44.11 22,793.91 40,640.35

100 9,121,300 989 295 112 0.3857 0.1950 9.22 30.92 81.44 23,646.97 46,773.98

10 4,250,880 488 159 74 0.1625 0.0903 8.71 26.74 57.44 26,165.06 47,089.68

Thyroid 25 10,821,600 1,204 312 153 0.3810 0.2024 8.99  34.68 70.73 28,406.13 53,474.86
50 22,006,080 2,394 703 308 0.7508 0.3780 9.19  31.30 71.45 29,308.30 58,219.61

100 44,608,320 4,824 1,403 616 1.5396 0.7536 9.25 31.79 72.42  28,974.27 59,196.14

10 22,712,032 2,422 1,001 550 0.7889 0.3928 9.38  22.69 41.29 28,789.64 57,820.86

Penbased 25 55,672,176 6,233 1,829 77T 1.9124 1.0215 8.93  30.44 71.65 29,110.43 54,498.50
50 115,617,696 12,259 3,332 1,371 3.9284 1.9120 9.43  34.70 84.33 29,431.36 60,470.52

100 228,030,384 24,292 7,447 2,477 7.7361 3.9117 9.39  30.62 92.06 29,476.28 58,294.27

10 80,804,052 9,079 3,310 2,416 2.6057 1.3069 8.90  24.41 33.45 31,010.93 61,826.71

Shuttle 25 204,515,682 23,116 7,325 3,332 6.5364 3.4067 8.85 27.92 61.38 31,288.50 60,033.02
50 424,691,064 45,834 14,661 5,839  13.4832 6.5357 9.27  28.97 72.73 31,497.72 64,980.39

100 852,514,068 90,649 71,206 11,197  27.0089  13.4812 9.40 11.97 76.14 31,564.16 63,237.33

10 39,886,112 5,206 2,026 1,772 1.3552 0.7188 7.66 19.69 22.51 29,431.90 55,491.10

Connect-4 25 101,539,340 13,164 4,455 2,472 3.3903 1.7277 7.71 22.79 41.08 29,949.92 58,770.99
50 206,483,592 25,123 8,250 3,714 6.8567 3.3941 8.22 25.03 55.60 30,114.12 60,835.82

100 418,560,968 54,029 37,498 7,251 13.8397 6.8558 7.75 11.16 57.72 30,243.40 61,051.74

10 2,297,785,824 293,657 99,679 64,722  73.1540 37.1375 7.82 23.05 35.50 31,410.28 61,872.44

Kddcup 25  5,985,447,516 733,670 208,969 86,570 189.2256  96.7096 8.16  28.64 69.14 31,631.28 61,890.96
50 11,748,586,032 | 1,466,624 389,555 145,077 372.2638 189.2589 8.01 30.16 80.98 31,559.84 62,076.80

100 23,408,248,464 | 2,900,167 1,926,780 290,873 742.0416 372.2767 8.07 12.15 80.48 31,545.73 62,878.63

10  2,118,078,368 237,524 104,783 73,069  70.1586  33.9806 8.92 20.21 28.99 30,189.86 62,331.92

Poker 25  5,191,875,024 616,642 191,831 97,471 1725495  91.4097 8.42 27.06 53.27 30,089.19 56,797.84
50 10,782,273,504 | 1,222,919 376,896 162,384 356.6680 172.6337 8.82 28.61 66.40 30,230.56 62,457.54

100 21,265,654,416 | 2,404,491 1,649,626 284,182 704.3908 356.5822 8.84 12.89 74.83 30,190.13 59,637.45
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Table 4: Individual evaluation performance

Evaluation time (s)

Speedup vs 1 CPU

Speedup vs 12 CPU

Data set Population 1 CPU 4 CPU 12 CPU 1GPU 2 GPU 1 GPU 2 GPU | 1 GPU 2 GPU
10 0.0096 0.0093 0.0090 0.0010  0.0007 9.60 13.71 9.00 12.86

Iris 25 0.0135 0.0122 0.0106  0.0014  0.0009 9.64 15.00 7.57 11.78
50 0.0203 0.0200 0.0191  0.0016  0.0010 12.69 20.30 11.94 19.10

100 0.0420 0.0369 0.0247  0.0019  0.0013 22.11 32.31 13.00 19.00

10 0.0094 0.0090 0.0088  0.0008  0.0006 11.75 15.67 11.00 14.67

New-thyroid 25 0.0166 0.0129 0.0167  0.0012  0.0008 13.83 20.75 13.92 20.88
50 0.0300 0.0280 0.0188  0.0017  0.0010 17.65 30.00 11.06 18.80

100 0.0611 0.0533 0.0294  0.0027  0.0012 22.63 50.92 10.89 24.50

10 0.0323 0.0182 0.0122  0.0015 0.0013 21.53 24.85 8.13 9.38

Ecoli 25 0.0543 0.0475 0.0303  0.0021  0.0014 25.86 38.79 14.43 21.64
50 0.1026 0.0818 0.0428  0.0029  0.0025 35.38 41.04 14.76 17.12

100 0.2090 0.1596 0.0717  0.0042  0.0031 49.76 67.42 17.07 23.13

10 0.0459 0.0419 0.0328  0.0010  0.0008 45.90 57.38 32.80 41.00

Contraceptive 25 0.1002 0.0828 0.0474  0.0013  0.0010 77.08 100.20 36.46 47.40
50 0.2036 0.1774 0.1046  0.0017  0.0011 119.76 185.09 61.53 95.09

100 0.4177 0.3415 0.1617  0.0020  0.0017 208.85 245.71 80.85 95.12

10 0.2112 0.1999 0.1691  0.0010  0.0007 211.20 301.71 | 169.10 241.57

Thyroid 25 0.4933 0.4162 0.2185  0.0012  0.0010 411.08 493.30 | 182.08 218.50
50 1.0148 0.8749 0.3709  0.0015  0.0011 676.53 922.55 | 247.27 337.18

100 2.0318 1.5358 0.6768  0.0029  0.0013 700.62 1,562.92 | 233.38 520.62

10 0.7738 0.7118 0.4548  0.0017  0.0011 455.18 703.45 | 267.53 413.45

Penbased 25 2.0064 1.5883 0.7367  0.0030  0.0019 668.80 1,056.00 | 245.57 387.74
50 4.0047 3.0185 1.3909  0.0050  0.0032 800.94 1,251.47 | 278.18 434.66

100 8.5293 6.2505 2.4959  0.0094  0.0049 907.37  1,740.67 | 265.52 509.37

10 2.6452 2.7268 2.2034  0.0028  0.0018 944.71  1,469.56 | 786.93 1,224.11

Shuttle 25 7.2141 5.8981 3.4525  0.0057  0.0034 | 1,265.63 2,121.79 | 605.70 1,015.44
50 15.6694 12.8749 5.4326  0.0100  0.0057 | 1,566.94 2,749.02 | 543.26 953.09

100 32.1477 24.6465 9.8108  0.0200  0.0111 | 1,607.38 2,896.19 | 490.54 883.86

10 2.2684 1.9459 1.2467  0.0020  0.0014 | 1,134.20 1,620.29 | 623.35 890.50

Connect-4 25 4.9263 4.2588 2.3661  0.0034  0.0021 | 1,448.91 2,345.86 | 695.91 1,126.71
50 10.3063 8.4253 4.7221  0.0064  0.0036 | 1,610.36 2,862.86 | 737.83 1,311.69

100 21.8092 16.0537 5.6394  0.0116  0.0063 | 1,880.10 3,461.78 | 486.16 895.14

10 84.7511 78.6884 31.2643  0.0515  0.0267 | 1,645.65 3,174.20 | 607.07 1,170.95

Kddcup 25 | 208.7099 161.4730 73.0745  0.1236  0.0646 | 1,688.59  3,230.80 | 591.22 1,131.18
50 | 426.7217 291.6318 123.8365 0.2471 0.1246 | 1,726.92 3,424.73 501.16 993.87

100 | 841.4498 578.6901 213.8102  0.4850  0.2447 | 1,734.95 3,438.70 | 440.85 873.76

10 74.0020 69.8736 46.0978  0.0494  0.0277 | 1,498.02 2,671.55 | 933.15 1,664.18

Poker 25 | 193.5917  162.2887 81.8815  0.1203  0.0648 | 1,609.24 2,987.53 | 680.64 1,263.60
50 | 385.2833 293.4088 126.4694  0.2325  0.1189 | 1,657.13  3,240.40 | 543.95 1,063.66

100 | 818.7177 591.6098 229.6941  0.4749  0.2390 | 1,723.98 3,425.60 | 483.67 961.06




On the other hand, the GPU implementation obtains great performance
in all cases, especially over large scale data sets with a higher number of in-
stances. One GPU obtains up to 31 billion GPops/s, whereas scaling to two
GPU devices enhances the interpreter performance up to 64 billion GPops/s.
The best scaling is achieved when a higher number of instances and individ-
uals are considered, i.e., the GPU achieves its maximum performance and
occupancy when there are enough threads to fill the GPU multiprocessors.
Figure 5 shows the GPops/s scaling achieved by the GPU model regarding to
the number of nodes to interpret. The higher number of nodes to interpret,
the higher the occupancy of the GPU and thus, the higher efficiency.
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Figure 5: GPU model GPops/s scaling

Table 4 shows the evaluation times and the speedups of the GPUs ver-
sus the single-threaded and 12-threaded CPU implementations. The GPU
model has high performance and efficiency, which increase as the number
of individuals and instances increase. The highest speedup over the single-
threaded CPU version is achieved for the Connect-4 data set using 100 indi-
viduals (1.880x using one GPU and 3.461 x using two GPU devices). On the
other hand, compared to the parallel 12-threaded CPU version, the highest
speedup is 933x using one GPU and 1.311x using two GPUs. The evalua-
tion times for the Poker data set using 100 individuals are reduced from 818
seconds (13 minutes and 38 seconds) to 0.2390 seconds using two NVIDIA
GTX 480 GPUs. Since evolutionary algorithms perform the evaluation of the
population each generation, the total amount of time dedicated to evaluate
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individuals along generations becomes a major concern. GPU devices allow
greatly speeding up the evaluation process and save much time.

Figure 6 shows the speedup obtained by comparing the evaluation time
when using two NVIDIA GTX 480 GPUs and the single-threaded CPU eval-
uator. The figure represents the speedup over the four largest data sets with
the higher number of instances. The higher number of instances, the more
number of parallel and concurrent threads to evaluate and thus, the higer
the occupancy of the GPU.

3.500,00

3.000,00

2.500,00

2.000,00 A

Speedup

1.500,00

1.000,00 7 Shuttle

Connect-4
Kddcup
Poker

500,00

0,00 T T
25 50 75 100

Population

Figure 6: Model speedup using two GPUs

Finally, Table 5 shows the efficiency of the model regarding the com-
puting devices, their power consumption, and their performance in terms
of GPops/s. Parallel threaded CPU solutions increase their performance as
more threads are employed. However, their efficiency per Watt is decreased
as more CPU cores are used. On the other hand, GPUs require many Watts
but their performance is justified by a higher efficiency per Watt. Specifically,
the single-threaded CPU performs around 0.7 million GPops/s/W whereas
using two GPUs increases its efficiency up to 129.96 million GPops/s, which
is higher than the efficiency reported in related works [31], which achieve a
performance up to 52.7 million GPops/s per Watt.
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Table 5: Performance per Watt

Compute device Watts GP.OI.)S/ N GPops./ S/ W

(million) (million)
Intel Xeon E5645 / 1 CPU / 1 core 125 W 9.63 0.77
Intel Xeon E5645 / 1 CPU / 4 cores 50 W 34.70 0.69
Intel Xeon E5645 / 2 CPU / 12 cores 160 W 92.06 0.58
NVIDIA GTX 480 / 1 GPU 250 W 31,631.28 126.52
NVIDIA GTX 480 / 2 GPU 500 W 64,980.39 129.96

6. Conclusions

In this paper we have presented a high-performance and efficient eval-
uation model for individual = rule set (Pittsburgh) genetic rule-based al-
gorithms. The rule interpreter and the GPU kernels have been designed
to maximize the GPU occupancy and throughput, reducing the evaluation
time of the rules and rule sets. The experimental study has analysed the
performance and scalability of the model over a series of varied data sets
with different numbers of instances. It is concluded that the GPU imple-
mentation is highly efficient, scalable to multiple GPU devices. The best
performance was achieved when the number of instances or the population
size was large enough to fill the GPU multiprocessors. The speedup of the
model was up to 3.461x when addressing large scale classification problems
with two GPUs, significantly higher than the speedup achieved by the CPU
parallel 12-threaded solution. The rule interpreter obtained a performance
above 64 billion GPops/s and even the efficiency per Watt is up to 129 million
GPops/s/W.
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