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Previously, it has been shown that background color conditions regulate the 

overall activity of the frog intermediate lobe by varying the proportions of the 

two subtypes of melanotropes existing in the gland, the highly active or 

secretory melanotropes and hormone-storage melanotropes, depending on 

melanocyte-stimulating hormone (α-MSH) requirements. However, the factors 

and mechanisms underlying these background-induced changes are still 

unknown. In the present study, we investigated whether hypothalamic factors 

known to regulate melanotrope cell function can induce changes in vitro similar 

to those caused by background adaptation in vivo. We found that the inhibitors 

apomorphine (a dopamine receptor agonist) and NPY decreased the number of 

active melanotropes and increased simultaneously that of storage 

melanotropes. On the other hand, the stimulator TRH increased the number of 

active cells and concomitantly reduced that of storage cells. Inasmuch as none 

of these treatments modified the apoptotic and proliferation rates in 

melanotrope cells, it appears that these hypothalamic factors caused actual 

interconversions of cells from a subpopulation to its counterpart. When taken 

together, these findings suggest that the hypothalamus would control 

melanotrope activity not only through short-term regulation of hormone 

synthesis and release, but also through a long-term regulation of the secretory 

phenotype of these cells whereby the activity of the intermediate lobe would be 

adjusted to fulfill the hormonal requirements imposed by background 

conditions.

Keywords: dopamine, melanotrope cell heterogeneity, NPY, secretory cycle, 

TRH.
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IN AMPHIBIANS, melanotrope cells of the intermediate lobe regulate a 

unique physiological process, the adaptation of skin pigmentation to 

background color conditions (1, 2). Thus, high plasma levels of the hormone 

produced by these cells, melanocyte-stimulating hormone (α-MSH), induces the 

dispersion of the pigment melanin in dermal melanophores causing darkening 

of the skin, whereas low level of α-MSH prompts aggregation of the pigment 

and, consequently, skin paling. In a series of studies carried out in our 

laboratory, we have demonstrated that in the frog Rana ridibunda the overall 

activity of the intermediate lobe is adjusted by the proportions of two 

melanotrope cell subtypes, named as high- (HD) and low-density (LD) 

melanotropes based in their sedimentation characteristics in Percoll density 

gradients (3-5). According to their morphofunctional characteristics, HD 

melanotropes can be defined as a hormone-storage cell subset, because they 

show high α-MSH intracellular content but low mRNA levels of the prohormone 

precursor proopiomelanocortin (POMC) as well as a low basal α-MSH secretory 

rate, whereas LD cells show opposite features, indicative of high biosynthetic 

and secretory activities, and can therefore be considered as secretory 

melanotropes. Furthermore, we have also shown that the secretory LD 

melanotrope subpopulation largely predominated over the hormone-storage HD 

subset in the intermediate lobe of black background-adapted frogs (6, 7) which 

require high plasma α-MSH levels to sustain skin darkening. In contrast, the 

proportions of the two cell subsets were balanced under conditions of lower 

hormonal demand, in white-adapted animals (6, 7). These changes in the 

proportions of secretory and storage melanotropes between the two distinct 

physiological conditions occurred in the absence of variations in the apoptotic 
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and proliferation rates of cells, which suggested that melanotropes from a 

subpopulation convert into their counterparts according to the color of the 

background (6, 7). In other words, that melanotropes can pass from a relatively 

inactive (i.e. HD cells) to an active cellular state (i.e. LD cells) in response to the 

physiological demands of α-MSH.

These results have led our group to propose that, as suggested for other 

endocrine cell types (8-14), the morphologically and functionally distinct 

subtypes or subpopulations of cells that comprise the total population of 

melanotropes are in fact the reflection of different phases that occur at a given 

point in time within a dynamic and complex secretory cycle, which would 

operate, albeit with diverse specific features, in any endocrine cell type. 

Nevertheless, the mechanisms that govern the acquisition of a particular state 

of cellular activity and therefore determine the conversion of cells from a 

subpopulation to the other remain to be elucidated. Inasmuch as in amphibians 

melanotrope cell activity is directly regulated by the hypothalamus (for review 

see 15), it is conceivable that hypothalamic neurohormones modulate the 

timing of this secretory cycle. Accordingly, the aim of the present study has 

been to ascertain whether known hypothalamic regulators of the frog 

intermediate lobe, such as the inhibitors dopamine (15-18) and NPY (15, 17-

23), and the stimulator TRH (15, 24-26), are able to induce the interconversion 

of cells from the two frog melanotrope subpopulations, as well as to analyze the 

relationship between the control of the dynamics of the melanotrope secretory 

cycle and background color adaptation.
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MATERIALS AND METHODS

Reagents

Leibovitz culture medium, Collagenase type V, trypsin type I, bovine 

serum albumin (BSA), Triton X-100, 5-bromo-2'-deoxyuridine (BrdU), anti-BrdU 

monoclonal antibody, biotinylated goat anti-mouse IgG, diaminobenzidine 

tetrahydrochloride (DAB), and the antibiotic-antimycotic solution were 

purchased from Sigma Chemical Co. (St Louis, MO). Percoll solution was 

obtained from Pharmacia LKB (Uppsala, Sweden). Fetal bovine serum (FBS) 

was from Gibco BRL (Grand Island, NY). Plastic 6-well culture plates and 35-

mm plates were from Costar (Cambridge, MA). Avidin-biotin peroxidase 

complex was from Vector Laboratories (Burlingame, CA). Apomorphine and 

thyrotropin-releasing hormone (TRH) were from ICN Inc. (Costa Mesa, CA). 

Frog NPY (melanostatin) was synthesized by the solid-phase method (27).

Animals

Adult male frogs (Rana ridibunda) of about 40 g body weight were 

purchased from a commercial supplier (J.R. Garcia Jardor, Mosqueiro, 

Ourense, Spain). Animals were maintained under running water at constant 

temperature (8ºC) with a 12-h light:12-h dark cycle, for at least 1 week before 

experiments started. Skin color adaptation was performed by keeping the 

animals under constant illumination on either a black or a white background for 

3 weeks. The frogs were killed by decapitation between 8:00 and 9:00 a.m. and 

the neurointermediate lobes were dissected under a microscope. Animal 

manipulations were performed according to the recommendations of the local 
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ethical committees at our institutions and under the supervision of authorized 

investigators.

Isolation of melanotrope cells

Isolated melanotrope cells were obtained using a dispersion protocol as 

previously described (3). Briefly, for each experiment, 30-40 neurointermediate 

lobes from either black or white background-adapted animals were collected 

and enzymatically dissociated by incubation at 26ºC for 45 min in culture 

medium [Leibovitz medium diluted 2:3 (to adjust to Rana ridibunda osmolality) 

and supplemented with 1 mM glucose, 0.4 mM CaCl2, and 1% antibiotic-

antimycotic solution] containing 0.2% collagenase type V and 0.2% trypsin type 

I. Then, cells were incubated sequentially in the same medium supplemented 

with 2 mM and 1 mM EDTA for 5 min each. Afterwards, cells were mechanically 

dispersed using a siliconized Pasteur pipette until a homogeneous cellular 

suspension was obtained. The total number of cells and the cellular viability 

were determined by the Trypan blue exclusion test in a Neubauer chamber.

Cell culture

Dispersed melanotrope cells from black- or white-adapted animals were 

plated at a density of 300,000 cells/200 µl culture medium into 6-well culture 

plates and allowed to attach to the plate for 60 min. Subsequently, cell cultures 

received 1,800 µl/well culture medium supplemented with 10% FBS and 0.1% 

gentamicin sulfate, containing the corresponding test substances. Specifically, 

cultures from black-adapted frogs were incubated with 10-4 M apomorphine or 

10-7 M NPY, and those from white-adapted frogs with 10-5 M TRH, at 26ºC for 

72 h. As controls, cells from either black- or white-adapted frogs were cultured 
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in medium alone under the same incubation conditions than those treated with 

the corresponding factors. In all experimental groups, treatment was renewed 

daily.

For the determination of the apoptotic and proliferation rates of 

melanotropes in culture, 40,000 cell-aliquots from the initial cell suspension, 

obtained after the dispersion of intermediate lobes from either black- or white-

adapted frogs, were plated in 35-mm plastic dishes. These cultures received 

the same experimental treatments as those described above.

Separation of melanotrope subpopulations

After the 72-h culture period in the presence or absence of the 

corresponding test substance, cells were detached from the plates by 

sequential incubation in Leibovitz medium containing 2 mM EDTA for 20 min, 

and 1 mM EDTA plus 0.05% trypsin for 15 min. Thereafter, the medium 

containing the cells was centrifuged at 750 X g for 5 min, and the pellets were 

resuspended in 1 ml Leibovitz medium. Cells recovered from the wells that had 

received the same experimental treatment were pooled together and washed 

again with Leibovitz medium by centrifugation (750 X g for 10 min at 4ºC). The 

cellular recovery rate and viability were determined for each experimental 

group.

A 250-µl sample of the cellular suspension from each experimental group 

(500,000 cells, approximately) was carefully loaded on the top of a Percoll 

density gradient prepared as described previously (3). In brief, the hyperbolic 

gradient of Percoll was prepared by mixing 6 ml of a 50% Percoll solution with 3 

ml of a 15% Percoll solution at a rate of 0.25 ml/min. After centrifugation (3,000 
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X g for 25 min at 4ºC), 9 fractions (1 ml each) were collected manually,  

centrifuged (750 X g for 10 min at 4ºC), and pellets were resuspended in 200 µl 

fresh medium. The viability and recovery percentage of each fraction were 

determined for each experimental group. Cells in fraction 1 (bottom of the 

gradient) contained the HD or storage melanotrope cell subpopulation, whereas 

secretory or LD melanotropes separated in fractions 5 to 7 (3-7).

Determination of apoptosis

As indicated above, melanotrope cells were cultured in 35-mm dishes 

and exposed to 10-4 M apomorphine or 10-7 M NPY (for cultures from black-

adapted frogs), or to 10-5 M TRH (for cultures from white-adapted animals). 

After the 72-h treatment period, medium was removed and cells were fixed with 

ethanol:acetic acid (3:1) as described previously for the same cell model (7). 

Briefly, nuclei were stained with 4'-6-diamidino-2-phenylindole (DAPI) to reveal 

the nuclear condensation and the chromatin fragmentation characteristic of 

apoptosis (28) and fluorescence was visualized in a Universal microscope 

(Zeiss, Jena, Germany) with a Fluar X40 objective in the epifluorescence mode 

(Nikon Corp., Tokyo, Japan). Quantitative evaluation of apoptotic cells by DAPI 

staining was performed by counting about 200 cells randomly selected in at 

least two plates per treatment group and experiment.

Measurement of cell proliferation

The proliferation index of melanotropes was evaluated after the 72-h 

culture period in the absence or presence of the test substances as described 

previously (7). After removal of the medium, cells were exposed to 10-6 M BrdU 

for 2 h at 26ºC, rinsed with 0.01 M PBS (pH 7.2), and then fixed in the culture 
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dishes overnight with Bouin’s fixative. The BrdU-incorporating cells were 

identified immunocytochemically after sequential incubation in 5% H2O2 (30 

min, room temperature), 2 N HCl (30 min, 37ºC), 0.01% trypsin type I in PBS (5 

min, 37ºC), 1% BSA in PBS (30 min, room temperature), and an anti-BrdU 

monoclonal antiboby (overnight, 4ºC). Finally, cells were incubated with 

biotinylated goat anti-mouse IgG and avidin-biotin-peroxidase complex (1 h 

each, room temperature) and cell-bound peroxidase activity was revealed with 

DAB. The specificity of the immunoreaction was checked by omission of the 

primary antiserum. All controls were processed concurrently with melanotrope 

culture samples using identical protocols.

The immunostaining was visualized under a light microscope fitted with an 

X40 objective, and the proliferation rate was calculated on, at least, two plates 

per treatment group and experiment. In each plate, microscopic fields were 

randomly selected and, at least, 600 cells were examined.

Statistical analysis

Data are expressed as mean ± standard error of the number of 

experiments indicated in each figure. Differences in cell distribution were 

statistically analyzed by the Chi-square test. Two-way (for percentages of 

melanotrope cells) or one-way (for apoptotic and proliferation rates) analysis of 

variances (ANOVA), followed by a post hoc Duncan's test for multiple 

comparison, were applied to compare experimental treatments. Statistical 

analyses were assessed with the software Statistica for Windows (Statsoft Inc., 

Tulsa, OK). Differences were considered to be significant at P < 0.05.
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RESULTS

Recovery and viability of melanotrope cells after the experimental treatments

After dispersion of intermediate lobes from black- and white-adapted 

frogs, the cell yields were similar [47,280 ± 4,006 (n = 9 independent 

experiments) and 53,760 ± 5,133 (n = 5) cells/intermediate lobe, respectively], 

and the viability of the cells was always over 90% in both groups of animals. 

Results on the recovery of cells from the cultures by EDTA/trypsin 

treatment after treatment of melanotropes with the different test substances are 

shown in Table I. None of the treatments affected the recovery rate of cells 

from the plates except for apomorphine-treated cultures, which exhibited a 

significantly lower value than the corresponding control cultures. In contrast, 

subsequent separation of the resulting cells by density gradients did not affect 

the recovery of cells, which was similar in all the experimental groups (36.5 ± 

6.1%, 49.1 ± 9.7%, 33.2 ± 9.1%, 57.8 ± 14.5%, and 48.8 ± 20.3% for black-

background adaptation control, apomorphine-treated cells, NPY-treated cells, 

white-background adaptation control, and TRH-treated cells, respectively). 

Effects of apomorphine and NPY on cultured melanotrope cells from black-

background adapted frogs

Separation in Percoll density gradients of the total population of 

melanotrope cells from black-adapted animals after the 72-h period under 

control conditions yielded a bimodal distribution of cells through the gradient 

(Fig. 1A). Specifically, melanotropes were separated into two distinct zones of 
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the gradient, fraction 1 and fractions 5 to 7, which corresponded to the 

subpopulations of hormone-storage (HD) and secretory (LD) melanotropes, 

respectively, which have been previously characterized in detail (3-7). Cells 

separated in these fractions accounted for by 77.2% of the total number of cells 

recovered from the gradient, among which the number of secretory cells was 

approximately 6-fold higher than that of storage cells (Fig. 1B). 

Exposure of dispersed intermediate lobe cells from black background-

adapted frogs for 3 days to the dopamine receptor agonist apomorphine 

caused a significant modification of the sedimentation characteristics of the 

cells within the density gradient, which resulted in marked changes in the 

relative proportions of cells separated in each fraction (Chi-square test, P < 

0.05; Fig. 1A). As shown in Fig. 1B, apomorphine treatment reduced by almost 

20% the proportion of secretory cells with respect to control values, while it 

evoked a concomitant increase in the percentage of storage melanotropes, 

which was two-fold higher than that found under control conditions (Fig. 1B). 

Similar to that observed for apomorphine, long-term in vitro exposure of 

melanotrope cells from black-adapted frogs to NPY resulted in a shift of the cell 

population to the heavy fractions of the gradient (Chi-square test, P < 0.05; Fig. 

2A). Indeed, NPY increased by 24.3% the proportion of storage melanotropes 

and decreased by 18.5% that of secretory melanotropes when compared to the 

percentages obtained for the corresponding cell subpopulations from control 

cultures (Fig. 2B). 

We also assessed the rates of proliferation and apoptosis in cultures of 

melanotropes from black-background adapted animals exposed to medium 

alone or to the inhibitors apomorphine or NPY (Table I). This revealed that 
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neither apomorphine nor NPY modified the apoptotic rate of melanotropes in 

culture when compared to control values. Similarly, no differences were 

observed in the proliferation index between control and NPY-treated cultures, 

and although apomorphine-treated cells exhibited a lower BrdU-labeling index 

than control cells, this difference did not reach statistical significance. 

Effects of TRH on cultured melanotrope cells from white-background adapted 

frogs

The distributions of both control and TRH-treated cells obtained from 

white-background adapted animals in the density gradient are illustrated in 

figure 3A. After a 72-h culture period, melanotropes from both experimental 

groups essentially separated into the HD and LD fractions (1 and 5 to 7, 

respectively). Actually, the overall percentage of cells contained in both cell 

subsets for control and TRH-treated cultures represented 85.2% and 89.5%, 

respectively, of the total number of cells recovered from the gradient. However, 

the proportion of melanotropes separated in each density fraction was 

significantly different for each experimental group (Chi-square test, P < 0.05; 

Fig. 3A). Thus, whereas TRH increased the number of secretory cells (16.1%), 

it concurrently decreased that of storage melanotropes (11.8%) when 

compared to the corresponding values obtained from cells cultured in medium 

alone. In contrast to this effect of TRH on the balance between the two 

melanotrope cell subtypes, the tripeptide did not alter the rate of apoptosis or 

proliferation in melanotropes from white-adapted frogs in culture (Table I).
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DISCUSSION

Previous studies on skin pigmentation adaptation to background color 

have shown that the relative proportions of the two functionally distinct cell 

subsets that comprise the population of melanotrope cells of the frog 

intermediate lobe (3-5, 29) change reciprocally in strict correspondence with the 

α-MSH requirements imposed by the environment (6-7). Thus, in conditions of 

high α-MSH demand, under a black background, the highly active melanotrope 

cell subset predominates over the hormone-storage melanotrope subpopulation 

whereas similar proportions of both melanotrope cell subtypes are present in 

the intermediate lobe of animals that require low plasma α-MSH levels, i.e. 

white-background adapted animals. The results presented in these works 

suggested the existence of a functional link between the adaptation process 

and the balanced interconversions of secretory and storage melanotropes (6-7). 

In the present study, we demonstrate that the hypothalamic factors NPY, 

dopamine and TRH play a critical role in the physiological control of 

intermediate lobe function through their action on the determination and 

maintenance of the specific functional state of melanotropes.

Involvement of dopamine in the neuroendocrine regulation of skin color 

adaptation in amphibians is supported by earlier studies demonstrating that 

agents that induce catecholamine depletion in fibers reaching the intermediate 

lobe caused skin darkening (for review see Ref. 15). Accordingly, our first set of 

studies was aimed at elucidating the effects of the major cathecolaminergic 

inhibitor dopamine on melanotrope cells from animals displaying high plasma α-

MSH levels, that is, black-background adapted frogs. Thus, long-term in vitro
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treatment of intermediate lobe cells from these animals, which essentially 

correspond to secretory or LD melanotropes (6, 7), caused a significant 

modification of the sedimentation characteristics of the cells within the density 

gradient with respect to untreated controls, which resulted in marked changes 

in the relative proportions of the two cell subtypes. Specifically, apomorphine 

reduced the percentage of secretory cells and evoked a concomitant increase 

in that of storage cells. Inasmuch as these changes are reminiscent of those 

observed during adaptation of the animals in vivo to a white background (6-7), 

our results strongly suggest that an important mechanism employed by 

dopamine to regulate the adaptation process would be by inducing secretory 

melanotropes to acquire the hormone-storage phenotype. 

Since percentages of the two subtypes of melanotropes in the 

intermediate lobe are relative and depend on the total number of cells of the 

gland, we assessed the rates of proliferation and apoptosis in the cell cultures 

to ascertain whether apomorphine-induced changes resulted from true 

conversions of cells from one subpopulation (LD) into its counterpart (HD) or, 

alternatively, from an increase in proliferation of storage cells and/or a 

concomitant disappearance of secretory cells. This revealed that, in fact, the 

BrdU-labeling index in apomorphine-treated cultures was slightly, albeit not 

significantly, lower than that observed in the corresponding controls. This 

indicates that the net increase in the number of storage melanotropes induced 

by apomorphine can not be accounted for by an enhanced rate of cellular 

proliferation, and therefore that the cells that separate in this subpopulation 

after apomorphine treatment do not derive from mitosis of preexisting cells. In 

support of these findings, it has been shown that dopamine or its agonists 
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inhibit proliferation of rat melanotropes both in vivo and in vitro (30-32), as well 

as that of other pituitary cell types such as lactotropes (33, 34). Actually, 

dopamine and its agonists are commonly used in prolactinoma therapy to 

reduce tumor size because of their well-known antiproliferative (35) and 

cytotoxic (36) properties and we consequently expected apomorphine to 

increase apoptosis in our cultures. However, the apoptotic rate was similar in 

control and apomorphine-treated cultures. Nevertheless, at this point we should 

introduce the caveat that assessment of apoptosis might have been slightly 

underestimated if cells that progressed into later stages of apoptosis detached 

from the culture dish and were thus undetectable, as suggested by the lower 

cell recovery found in apomorphine-treated cultures. This caution 

notwithstanding, it must be emphasized that even a selective disappearance of 

secretory melanotropes caused by apomorphine could not account for the 

changes observed. Therefore, when viewed as a whole, our results strongly 

suggest that storage melanotropes appear as a result of the apomorphine-

induced conversion of secretory cells.

We also tested the effect of long-term in vitro exposure of melanotrope 

cells from black-adapted frogs to the naturally occurring hypothalamic inhibitor 

NPY (27). Results from these experiments showed that NPY caused a marked 

decrease in the number of secretory cells and a concurrent increase in that of 

storage cells, without altering the rate of either cellular proliferation or 

apoptosis. These findings indicate that, as found for apomorphine, NPY is able 

to induce the transition of melanotrope cells from a highly active secretory 

physiological condition to a storage state. Interestingly, the relative proportions 

of the two subtypes of melanotropes after culture of intermediate lobe cells 
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from black-adapted frogs in the presence of either apomorphine or NPY were 

strikingly similar to those observed in intermediate lobes of white-background 

adapted frogs (6-7). These results support the idea that these inhibitors are 

able to induce in vitro the same cellular changes that occur in vivo during white-

background adaptation. Moreover, they strongly suggest that dopamine and 

NPY play a pivotal role during this physiological process. Consistent with this 

notion, quantitative immunocytochemistry and in situ hybridization studies of  

the hypothalamus from black-background adapted Xenopus have shown that 

the levels of NPY mRNA and NPY-immunoreactivity are very low in the 

ventrolateral part of the suprachiasmatic nucleus, where NPY-producing 

neurons controlling intermediate lobe function are located (37-39). In contrast, 

high mRNA levels and NPY-immunoreactivity are found in this hypothalamic 

region in white-adapted toads (38, 39).

Having established that hypothalamic inhibitors can mimic in vitro the 

cellular changes that occur during white-background adaptation, we next asked 

whether TRH, the major hypothalamic stimulator for amphibian melanotrope 

cells (15, 24-26), could induce the cellular changes observed during adaptation 

of frogs to a black background [i.e. conversion of storage cells into secretory 

cells (6-7)]. Indeed, in the melanotrope population of white-adapted frogs, 

which comprises similar proportions of both cell subtypes (6-7), long-term in 

vitro exposure to TRH markedly increased the number of secretory 

melanotropes while it concurrently decreased that of hormone-storage cells. 

Inasmuch as TRH did not alter apoptosis or proliferation in these cultures, such 

changes in proportions are, necessarily the result of the conversion of storage 

cells into active melanotropes. Moreover, the percentages of both types of 
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melanotropes observed after treatment of intermediate lobe cells from white-

adapted animals with TRH were virtually identical to those found in animals 

physiologically adapted to a black background (6-7). Therefore, our results 

demonstrate that TRH can mimic in vitro the effects caused by black-

background adaptation on frog melanotrope cell subpopulations, and thereby 

strongly support the involvement of the tripeptide in the adaptation process.

The concept that the hypothalamus can control the composition of the 

population of a given pituitary cell type, i.e. the balance between its distinct 

subpopulations, raises two important questions. The first relates to the possible 

physiological relevance of such regulatory mechanism. The present results, 

together with those reported previously on amphibian melanotropes may 

provide a good example in that regard. As previously demonstrated (3-5, 29), 

frog storage melanotropes are heavily granulated and contain high intracellular 

α-MSH levels, although they show low levels of hormone biosynthesis and 

release under basal culture conditions. More importantly, storage melanotropes 

also exhibit a limited response, in terms of both POMC expression and α-MSH 

release, to in vitro short-term treatment with TRH (3-4). In addition, among the 

three major secretoinhibitors of the frog intermediate lobe (23), dopamine, 

GABA and NPY, only high concentrations of the latter are able to reduce the 

already low secretory activity of hormone-storage melanotropes (5, 29). In clear 

contrast, secretory melanotropes in culture are highly responsive in the short-

term to TRH stimulation (4), as well as to the hypothalamic inhibitors dopamine, 

GABA, and NPY (5, 29). In view of these and our present findings, it seems 

reasonable to suggest that the hypothalamus controls plasma α-MSH levels 

during the process of adaptation to background color by regulating the total 



18

activity of the intermediate lobe through two different, but interrelated 

mechanisms: 1) in the short term, by acutely controlling hormone synthesis and 

release, and 2) in the long term, by converting highly secretory cells into 

hormone-storage cells and vice versa. This process is graphically illustrated in 

Fig. 4. Thus, during white-background adaptation, dopamine and NPY would 

reduce α-MSH levels in the short term by inhibiting its release from the highly 

responsive, predominant secretory or LD subtype in black-adapted frogs. At the 

same time, dopamine and NPY would enable a more effective long-term 

reduction of α-MSH production by causing a lasting conversion of highly active 

and responsive secretory melanotropes into poorly responsive hormone-

storage cells. Conversely, during adaptation from a white to a black 

background, the required high α-MSH levels would be achieved primarily by 

TRH in the short term through stimulation of α-MSH release from highly 

responsive melanotropes. Concurrently, TRH would also induce a long-term 

conversion of the hormone-storage cells into their active counterparts. In sum, 

this system would provide the hypothalamus an additional, long-lasting 

mechanism to finely regulate the activity of the intermediate lobe in an effective 

and economical manner. 

The second question that derives from our findings is two-pronged: what 

form does the conversion of cells from one subpopulation into the other cell 

subtype take, and what precise factors and events do underlie this regulatory 

process? Regarding the first part of the question, we and others have 

previously suggested that heterogeneity within pituitary cell types, such as 

melanotropes (7), somatotropes (10), gonadotropes (8,9) and lactotropes (40), 

is in fact the reflection of cells undergoing a secretory cycle. This cellular 
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process would comprise the transition of cells from a phase or subpopulation to 

the other one due not only to a loss or increase in granule content, but also to 

changes in key functional features of the cells. In the case of melanotropes, 

such changes would include selective responsiveness to regulatory factors, as 

well as the differential regulation of the synthesis, maturation, acetylation rate, 

and secretion of α-MSH along with variations in other important components of 

the secretory pathway (41, 42). Regarding the second part of the question, the 

precise regulatory mechanisms that underlie the melanotrope cell secretory 

cycle await elucidation. One can envision a number of points at which the 

activity and responsiveness of melanotrope cells can be regulated. This might 

include from transcription factors to signaling enzymes and proteins, as well as 

membrane receptors. To give just an example, bromocriptine has been shown 

to regulate the type of G proteins (43) and dopamine receptor isoforms (44) 

expressed in rat melanotrope cells. Future studies should aim at ascertaining 

the points at which this regulation is primarily exerted, and at determining 

whether the secretory cycle is a general mechanism for the control of endocrine 

cell activity.
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Figure Legends

FIG 1: (A) Distribution through the Percoll density gradient of melanotrope cells 

from black-background adapted frogs cultured in medium alone (solid bars) or 

in the presence of 10-4 M apomorphine (open bars) for 3 days. Data are 

expressed as mean ± SE of 5 independent experiments. Statistical differences 

were assesed by Chi-square test, P < 0.05 vs. control cultures. (B) Percentage 

of cells recovered in the low density fractions of the gradient (LD, fractions 5-7), 

corresponding to secretory melanotropes, and in the high density fraction (HD, 

fraction 1), corresponding to hormone-storage melanotropes, from the 

intermediate lobe of black-background adapted frogs cultured for 3 days in the 

absence (solid bars) or in the presence of 10-4 M apomorphine (open bars). 

The data represent the mean ± SE of 5 independent experiments. Statistical 

differences were assessed by two-way ANOVA followed by the Multiple 

Comparison Duncan’s test. *; P < 0.05 vs. control cultures.

FIG 2: (A) Distribution through the Percoll density gradient of melanotrope cells 

from black-background adapted frogs cultured in medium alone (solid bars) or 

in the presence of 10-7 M NPY (open bars) for 3 days. Data are expressed as 

mean ± SE of 5 independent experiments. Statistical differences were assesed 

by Chi-square test, P < 0.05 vs. control cultures. (B) Percentage of cells 

recovered in fractions 5-7 of the gradient (low density –LD- or secretory 

melanotropes), and in fraction 1 (high density –HD- or hormone-storage 

melanotropes), from the intermediate lobe of black-background adapted frogs 

cultured for 3 days in the absence (solid bars) or in the presence of 10-7 M NPY 

(open bars). The data represent the mean ± SE of 5 independent experiments. 
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Statistical differences were assessed by two-way ANOVA followed by the 

Multiple Comparison Duncan’s test. *; P < 0.05 vs. control cultures.

FIG 3: (A) Distribution through the Percoll density gradient of melanotrope cells 

from white-background adapted frogs cultured in medium alone (solid bars) or 

in the presence of 10-5 M TRH (open bars) for 3 days. Data are expressed as 

mean ± SE of 3 independent experiments. Statistical differences were assesed 

by Chi-square test, P < 0.05 vs. control cultures. (B) Percentage of cells 

recovered in fraction 1 and fractions 5-7, corresponding to hormone-storage 

(HD cells) and secretory melanotropes (LD cells), respectively, from the 

intermediate lobe of white-background adapted frogs cultured for 3 days in the 

absence (solid bars) or in the presence of 10-5 M TRH (open bars). The data 

represent the mean ± SE of 3 independent experiments. Statistical differences 

were assessed by two-way ANOVA followed by the Multiple Comparison 

Duncan’s test. *; P < 0.05 vs. control cultures.

FIG 4: Representation of the secretory cycle exhibited by frog melanotrope 

cells. Black-background adaptation (black arrow) would induce the conversion 

of hormone-storage melanotropes into highly active secretory melanotropes via

an increase in stimulatory hypothalamic inputs (i.e. enhanced TRH secretion 

and, likely, blockade of inhibitory inputs), in order to increase hormone 

production. Conversely, during white adaptation (open arrow), in which a lower 

amount of hormone is required, an inverse process would occur, mediated by 

an increase in inhibitory hypothalamic inputs (i.e. increased dopamine and NPY 

release). Small vesicles represent the secretory granule content; undulating 

lines indicate the amount of the α-MSH precursor transcripts; and gray arrows 

represent the secretory activity of α-MSH.



Table I: Apoptotic and proliferation rates in cultures of intermediate lobe cells 

from black- and white-adapted frogs after a 3-day culture period in the absence 

(control) or the presence of various test substances.

Black-adapted frogs White-adapted frogs

Control Apomorphine 

(10-4 M)

NPY

(10-7 M)

Control TRH

(10-5 M)

Cell recovery after 

culture (%)
51.6 ± 7.4 28.8 ± 5.2* 44.3 ± 9.7 56.0 ± 6.8 51.8 ± 9.7

Apoptotic index 

(%)
2.55 ± 0.71 1.30 ± 0.19 2.85 ± 1.52 2.56 ± 1.00 1.55 ± 0.36

Proliferation rate 

(%)
0.87 ± 0.32 0.10 ± 0.14 0.80 ± 0.25 0.73 ± 0.59 0.60 ± 0.12

Data are expressed as percentages and represent the mean ± SE of 3 

independent experiments. Statistical differences were analyzed by one-way 

ANOVA followed by the Multiple Comparison Duncan’s test. *; P < 0.05 vs.

corresponding control.
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