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Abstract. Nowadays, the imbalanced nature of some real-world data
is receiving a lot of attention from the pattern recognition and machine
learning communities in both theoretical and practical aspects, giving
rise to different promising approaches to handling it. However, prepro-
cessing methods operate in the original input space, presenting distor-
tions when combined with kernel classifiers, that operate in the feature
space induced by a kernel function. This paper explores the notion of
empirical feature space (a Euclidean space which is isomorphic to the fea-
ture space and therefore preserves its structure) to derive a kernel-based
synthetic over-sampling technique based on borderline instances which
are considered as crucial for establishing the decision boundary. There-
fore, the proposed methodology would maintain the main properties of
the kernel mapping while reinforcing the decision boundaries induced by
a kernel machine. The results show that the proposed method achieves
better results than the same borderline over- sampling method applied
in the original input space.

1 Introduction

Imbalanced classification is one of the current challenges for machine learning [1,
2], since it has been shown to hinder the learning performance of classification
algorithms. Imbalanced classification problems are very common in many real-
world domains, such as medical diagnosis, text categorization, fraud detection
or information retrieval, contexts where usually the minority class happens to
be more interesting than the majority one, but also more difficult to model
due to the low number of available patterns. Since most traditional learning
systems have been designed to work on balanced data, they will usually be
focused on improving overall performance and be biased towards the majority
class, consequently harming the minority one [3]. To cope with this issue, several
algorithms have been designed over the years to over-sample minority samples
and to under-sample the majority ones, the Synthetic Minority Over-sampling
Technique [1] (SMOTE) being one of the most representatives for the first group,
among others.
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In the context of kernel classifiers [4], since the very first introduction of the
support vector machine paradigm (Support Vector Classifier or SVC), we have
witnessed a huge development in theory and methodologies of what is known
as kernel-based methods: advances in performance theory, different variants of
kernel classifiers and regressors, algorithms for feature selection and extraction,
all that accompanied by countless successful applications. Moreover, the success
of kernel methods can be attributed to the joint use of a robust classification
procedure (such as the large margin hyperplane principle) and a convenient and
versatile way of preprocessing the patterns (the kernel trick). However, very little
has been done in the context of imbalanced classification, and more specifically,
concerning over-sampling in the feature space. This is essentially the main aim of
this paper because when these classifiers are combined with other preprocessing
techniques which operate in the input space, some obvious distortions are found,
given that they operate in different spaces. The ideal approach would be pre-
process the training patterns in the feature space, although this is not possible
since the only information available is the dot products of their images. To deal
with this issue, this paper makes use of the notion of empirical feature space [5,
6], which preserves the geometrical structure of the original feature space, given
that distances and angles in the feature space are uniquely determined by dot
products and that the dot products of the corresponding images are the original
kernel values. This empirical feature space is Euclidean, so it provides a tractable
framework to study the spatial distribution of the mapping function &(-) [7], to
measure class separability [6] and to optimize the kernel [6, 8]. Besides, the no-
tion of empirical kernel feature space has been used for the kernelization of all
kinds of linear classifiers [9, 10], with the advantage that the algorithm does not
need to be formulated to deal with dot products.

Therefore, the main aim of this paper is to check whether the empirical fea-
ture space provides a more suitable space than the input space for performing
over-sampling. This Euclidean space is isomorphic to the feature space, hence
we hypothesize that the synthetic patterns generated will be better adapted to
the kernel machine classifier. Borderline over-sampling [11] has been chosen for
the experimentation since we consider that borderline examples are more infor-
mative for a large margin based classifier such as SVM (this borderline area is
more crucial for establishing the decision boundary) and also most prone to be
misclassified. Indeed, performing over-sampling on this area has been demon-
strated to make more benefit than performing it on the whole minority class [11,
12]. For this purpose, an efficient way of selecting informative instances from the
pool of samples is also needed, this step being usually computed in the input
space, rather than in the feature one, which is also one of the hypotheses of the
paper: that, for a kernel machine, borderline patterns will be better chosen in
the feature space that in the input space, given that the kernel machine operates

in this feature space.

The idea of over-sampling in the feature space have been also researched in
[13], where synthetic instances were generated by using the geometric interpre-

tation of the dot products in the kernel matrix, and the pre-images of these
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synthetic instances were approximated based on a distance relation between the
feature space and the input one, since inverse mapping @(-)~! from the feature
space to input space is not available. Finally, the approximation of these pre-
images are appended to the original dataset to train a SVM. Note that in our
case, the over-sampling is performed in the empirical feature space, thus our
methodology is free of the computational cost and assumptions of this inverse
mapping approximation.

The paper is organized as follows: Section 2 shows a description of the
methodology used; Section 3 describes the experimental study and analyses the
results obtained; and finally, Section 4 outlines some conclusions.

2 Methodology

The goal in binary classification could be said to assign an input vector x € R?
to one of the classes Cy and C_ (corresponding this labelling to the output
space )). The objective is to find a prediction rule f : X — Y by using an
i.id. training sample D = {x;,y;}7, € X x Y. The methodology here proposed
is based on performing over-sampling in the empirical feature space using the
patterns on the boundary of the minority class. Consequently, the notion of
empirical feature space is firstly described. Then, we describe how to extend
the borderline SMOTE algorithm to better handle imbalanced datasets when
applying kernel classifiers.

2.1 Empirical feature space

In this section, the empirical feature space spanned by the training data is de-
fined. Let H denote a high-dimensional or infinite-dimensional Hilbert space.
Then, for any mapping of patterns @ : X — H, the inner product K(x,x’) =
(@(x), P(x")),, of the mapped inputs is known as a kernel function, giving rise to
a symmetric and positive semidefinite matrix (known as Gram or kernel matrix
K) from a given input set X. By definition, these matrices can be diagonalised
as follows:

K(mxm) = P(mxr) : M(rxr) Pl (1)

(rxm)?

where (-)T is the transpose operation, M is a diagonal matrix containing the r
positive eigenvalues of K in decreasing order, and P consists of the eigenvectors
associated to those r eigenvalues. The empirical feature space is a Euclidean
space preserving the dot product information about H contained in K. The
mapping from the input space to a r-dimensional empirical feature space can be
defined as ¢ : X — R", where r is the rank of K. This space is isomorphic to the
embedded feature space H, but presents all the advantages of being Euclidean:

D¢ x; — M~Y2.PT L (K(xi,%1), .., K(xi,xm)) T (2)
It is easy to check that the kernel matrix of the training images obtained by this
transformation is K, when considering the standard dot product [5, 6]. Note that
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this transformation corresponds to the principal component analysis whitening
step [14], although applied to the kernel matrix, instead of the covariance matrix.
Although the whole set of all r positive eigenvalues could be considered, a smaller
set (in this case, for simplicity, a 10-dimensional set) has been chosen in this
paper by choosing the p dominant eigenvalues and their associated eigenvectors.
The choice of this smaller set limits the dimensionality of the empirical feature
space and make more robust the process of over-sampling by simplifying the
space, given the concentration of spectral measures.

Fig. 1 shows the case of a synthetic dataset concerning a non-linearly sepa-
rable classification task and its transformation to the two-dimensional empirical
feature space induced by the well-known standard Gaussian kernel, which is
linearly separable.

Two-dimensional donut toy dataset Two-dimensional projection of the toy data
(non-linearly separable) by the empirical kernel map (linearly separable)

Fig. 1. Synthetic two-dimensional dataset representing a non-linearly separable classi-
fication problem and its transformation to the 2 dominant dimensions of the empirical
feature space induced by the Gaussian kernel function (linearly separable problem).

2.2 Borderline over-sampling in the empirical feature space

The main idea for the proposed method is to use the empirical feature space
to apply preprocessing algorithms, because preprocessed patterns would better
suit the kernel machine classifier later considered. In this paper, the borderline
SMOTE algorithm was selected to decrease the problems caused by imbalanced
datasets when applying a kernel classifier.

Borderline over-sampling [11] is based on the idea of generating new synthetic
patterns on the borderline between different classes, as these patterns are consid-
ered as being more probable to be misclassified. Thus, the first step corresponds
to the identification of these patterns that are “in danger” of being misclassified,
which is usually done by examining the neighborhood of the pattern considered,
e.g. if all the nearest neighbors correspond to the minority class, the pattern is
not considered as a borderline example, however, if half of the nearest neighbors
belong to the minority class and the other half to the majority one, the pattern
can be considered as a borderline one. Finally, borderline examples are the ones
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considered for generating new synthetic patterns by means of the well-known
SMOTE technique [1]. Therefore, when considering the empirical feature space
rather than the original input one, not only the process of generating new ex-
amples change as the space used is different, but also the patterns chosen as
borderline.

Concerning the proposed method, first of all, the empirical feature space
induced by a kernel function K in the training set is computed. Formally, T‘(im wr)
is the matrix generated by applying the empirical kernel map @¢ (see (2)) to
the training patterns. Then, the standard borderline SMOTE algorithm [11] is
applied over the class images of this T matrix, resulting in the generation of n
new synthetic images of patterns, arranged in the matrix anxr) (note that all
these new patterns will belong to the minority class). The new synthetic examples
will be used to complete the kernel matrix, obtaining their dot product with
respect to the rest of training patterns, i.e. Kvaj =T;-S5,1<i:<m,1<j<n,
and with respect to themselves SSij = S7-85,1 <i,j < n, where T7 is the
empirical space representation of the i-th training pattern, and S{ is the i-th
synthetic sample previously generated. Using these matrices, the over-sampled

training Gram matrix K* will be composed as follows:

K(mxm) KSt(ngn)
K?m—&-n)x(m—&-n) = e T ’
(KSGxm)  SSiuxn)

where K is the original kernel matrix. For the generalization phase, the same
steps are considered to complete the test kernel matrix, taking into account that
the empirical feature space images of the test patterns are derived using the
same P¢ transformation (considering only the training data). Fig. 2 shows the
main steps of the proposed algorithm: Borderline Kernel SMOTE (BKS).

3)

Algorithm BKS

— Input: Training patterns (Tr) and training targets (Trg).

— Output: Over-sampled training kernel matrix (K*).

Compute kernel matrix K for training patterns.

Compute the empirical kernel map &5 via K.

Map training patterns to the empirical feature space using @5 (T€).

Apply borderline SMOTE with the new representation T¢ of the training

patterns and obtain a new set S® of synthetic data.

5. Complete the over-sampled kernel matrix K* with the new synthetic patterns
and their dot product according to (3).

e e

Fig. 2. Different steps for the kernel over-sampling algorithm proposed.

Given that the over-sampling technique operates in r dimensions (kernel
matrix rank), instead of d (dimensionality of the input space), what is noteworthy
is the applicability of the proposed method to bioinformatics datasets where
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the number of features tend to be much higher than the number of samples
(r << d), and where imbalanced datasets are commonly found. Additionally,
as an advantage of the method, there is no need to treat the data attributes
differently (taking into account their nature) since all of them are real, unlike in
the original SMOTE.

As a final remark, in order to clarify the usefulness of performing the over-
sampling in the feature space, let us analyze the case presented in Fig. 3, where
a toy non-linearly separable dataset has been represented. The top part of the
figure corresponds to the synthetic dataset created and its transformation via
the empirical kernel map, while the bottom part includes information about
the 5-nearest neighbors for each pattern. From this figure, one can appreciate
that despite the fact that k-nearest neighbors is a nonlinear methodology, it
is very sensitive to the correct choice of k, in such a way that we could be
generating new synthetic patterns in an inappropriate region (as the bottom left
plot where the over-sampling is generated in the input space). However, if we
consider the empirical feature space instead (as in the right part of the figure),
the over-sampling is less sensitive to the choice of k, since, in this space, the
separation between the patterns is easier (ideally, linearly separable), which is
one of the main characteristics of the kernel trick. Note that the representation
of the empirical feature space plotted in the right part of the figure is only a
two-dimensional approximation, thus we are obviating useful information.
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Fig. 3. Toy two-dimensional non-linearly separable dataset and the transformation to
the 2 dominant dimensions of the empirical feature space induced by the Gaussian ker-
nel function. Dashed lines represent the 5-nearest neighbors of each pattern belonging
to the minority class.
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Table 1. Characteristics of the benchmark datasets used for the experimentation (num-
ber of patterns, features and imbalance ratio (IR)).

Dataset Patterns Features IR
liver 345 6 1.38
bands 365 19 1.70
vehiclel 846 18 2.90
ecolil 336 7 3.36
ecoli2 336 7 5.46
glass6 214 9 6.38
yeast0359-78 506 8 9.12
vowel0 988 13 9.98
yeast1-7 459 8 14.30
yeast1289-7 947 8 30.57

All nominal variables are transformed into binary ones

3 Experimental results

The proposed method has been tested considering the Support Vector Classifier
(SVC) [15] and the well-known borderline SMOTE [11]. Our methodology (Bor-
derline Kernel SMOTE, BKS) is compared to the original borderline SMOTE
in the input space (BS), and to the results without over-sampling. 10 binary
benchmark datasets from the UCI repository [16] with different imbalance ratios
(proportion of majority patterns with respect to minority ones) have been tested
to analyze the performance of the methods in different situations. The charac-
teristics of these datasets can be seen in Table 1. As done in other over-sampling
state-of-the-art works [3], some multiclass datasets have also been considered by
grouping some classes, e.g. ecolil represents the ecoli dataset when considering
class 1 versus the rest, and yeast0359-78 is the yeast dataset when grouping
classes 0, 3, 5, and 9 versus classes 7 and 8 in order to obtain higher imbalance
ratio values.

A stratified 5-fold technique was performed to divide the data and the results
are taken as mean and standard deviation of the selected measures. The Gaussian
kernel was used. The kernel width and the cost parameter of SVC was selected
within the values {1072,1072,...,10%}, by means of a nested 5-fold method
applied to the training set. The number of synthetic patterns generated was
that needed to balance the distributions, i.e. after applying the over-sampling
process, the number of majority and minority patterns were the same.

The results have been reported in terms of three metrics, two of them spe-
cially designed to deal with imbalanced datasets:

1. The well-known Accuracy metric (Acc), which corresponds to the ratio of
correctly classified patterns and measures overall performance.

2. The Geometric Mean of the sensitivities (GM = /S, - Sy - 100), where S,
is the sensitivity for the positive class (ratio of correctly classified patterns
considering only this class) and S, is the sensitivity for the negative one.

3. The Minimum Sensitivity [17] (MS = min{S,, S,} - 100), which can be
defined as the minimum value of the sensitivities for each class.
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Table 2. Results achieved by the three methods considered for the different metrics.

Dataset Algorithm Acc(%) GM (%) MS(%)
SVC 71.03 + 8.05 68.28 £ 8.59 58.57 +10.41
liver BS+SVC 69.86 + 6.68 68.27 4+ 6.22 61.88 + 6.43
BKS+SVC 71.30 +£9.28 70.06 + 9.45 64.21 + 10.62
SVC 71.76 +4.61 66.46 £ 8.15 55.49 £ 14.17
bands BS+SVC 71.49 £ 5.50 65.95 + 10.25 55.33 4+ 16.50
BKS+SVC 70.11 £6.85 68.63 + 9.53 61.56 + 12.94
SVC 85.34 £ 4.13 80.35 + 7.85 72.32 + 12.68
vehiclel BS+SVC 86.05 +1.72 83.48 £1.70 78.58 £ 3.99
BKS+SVC  83.10 + 2.09 84.48 + 2.52 81.55 +1.94
SVC 90.20 + 4.94 85.38 £ 5.82 77.75 £ 8.95
ecolil BS+SVC 87.52 4+ 4.08 84.52 + 6.75 77.15 +11.51
BKS+SVC 90.18 + 2.92 86.45 + 3.76 80.38 + 7.45
SVC 94.95 £ 2.23 90.55 4+ 3.07 84.73 + 4.87
ecoli2 BS+SVC 94.94 4+ 2.26 93.03 £ 5.22 89.14 £ 7.98
BKS+SVC 97.02 +2.11 95.11 + 3.98 91.84 + 6.94
SVC 95.32 £ 2.88 85.73 +9.39 75.33 + 16.26
glass6 BS+SVC 93.44 + 5.58 86.33 £12.02 78.18 £ 18.96
BKS+SVC 95.82 +6.31 92.48 + 14.52 87.78 + 21.88
SVC 87.54 + 5.81 50.88 + 13.05 30.00 + 15.81
yeast0359-78 BS+SVC 79.05 + 3.56 64.18 +11.21 49.38 £ 15.99
BKS+SVC 70.93 + 10.35 66.72 + 7.24 57.74+ 11.86
SVC 100.00 + 0.00 100.00 £+ 0.00 100.00 + 0.00
vowel0 BS+SVC 99.90 £ 0.23 99.94 +£0.12 99.89 £ 0.25
BKS+SVC 100.00 + 0.00 100.00 £+ 0.00 100.00 + 0.00
SVC 94.12 + 1.81 48.30 £ 27.42 30.00 + 18.26
yeast1-7 BS+SVC  84.99 + 5.44  69.14 + 26.45 59.61 + 24.73
BKS+SVC 81.94 +7.44 77.07 + 12.66 67.98 + 14.47
SVC 97.25 + 0.69 45.30 £ 27.43 26.67 + 19.00
yeast1289-7 BS+SVC 81.62 + 5.60 63.55 £16.78 51.53 £ 25.12
BKS+SVC 79.39 + 7.89 69.71 + 10.66 60.60 £+ 18.80

The best method is in bold face and the second one in italics

Table 3. Mean and ranking values obtained for each methodology and measure.

SvVC BS+SVC BKS+SVC
Measure Mean Rank Mean Rank Mean Rank
Acc 88.75 1.45 84.88 2.4 83.98 2.15
GM 72.12 2.55 77.84 2.4 81.07 1.05
MS 61.08 2.65 70.06 2.8 75.36 1.05

The best method is in bold face and the second one in italics

The measure considered during the hyperparameter selection was GM , given its
robustness for imbalanced datasets. All the test results of these experiments can
be seen in Table 2 and the mean and rankings of these results in Table 3.
From the results obtained, several conclusions can be drawn. Firstly, the good
performance of the proposed method can be seen analyzing GM and M S mea-
sures, where it can be seen that the application of the over-sampling technique in
the empirical feature space outperforms the results achieved when applying it in
the original input space. Indeed, the ranking of these measures for the SVC and
BS+SVC algorithms are similar, indicating that the use of an over-sampling tech-
nique in the original input space may not incorporate enough useful information
for a kernel machine. Furthermore, although standard deviations corresponding



to GM and MS are high, due to the drastic nature of these measures, in most
of the cases, standard deviations of BKS are lower than the ones associated with
BS. Concerning Acc, the proposed method achieves comparable results to those
obtained by the other methods (especially for low IR values). However, one can
appreciate that in some cases deteriorating the classification of the majority class
(and therefore the overall performance) is needed in order to classify correctly
the minority one (this is the case of the datasets yeast0359-78, yeast1-7 and
yeast1289-7). With concern to very low IR values (the case of liver and bands
datasets), the over-sampling proposed algorithm do not deteriorate the SVC so-
lution and is even able to obtain better values for GM and MS. Finally, for
the vowel0 dataset, it can be seen that the application of BS is not successful,
since the original SVC obtains an optimal solution that is not found when per-
forming the over-sampling in the input space. However, when performing the
over-sampling in the feature space induced by the kernel, the performance of the
classifier is not deteriorated.

To quantify whether a statistical difference exists among the algorithms
compared, the non-parametric Friedman’s test [18] (with @ = 0.05) has been
applied to the mean rankings for the three measures considered, rejecting the
null-hypothesis that all algorithms perform similarly for GM and M S, and ac-
cepting it for Acc. The confidence interval was Cy = (0, F(a—0.05) = 3.55), and
the corresponding F-value was 2.88 € Cy, 19.35 ¢ Cy and 21.77 ¢ Cy for Ace,
GM and MS, respectively. Furthermore, the Nemenyi test has also been ap-
plied concluding that there are statistically significant differences for a = 0.05
in GM and M S (the Nemenyi critical difference being 1.04782) when comparing
BKS+SVC with SVC (with ranking differences of 1.5 and 1.6, respectively) and
with BS+SVC (with ranking differences of 1.35 and 1.25, respectively).

4 Conclusions and future work

This paper explores the idea of performing over-sampling in the class bound-
ary of the empirical feature space related to a kernel function. We focus on the
imbalanced binary classification paradigm, and the proposed method has been
tested with the standard Support Vector Classifier and the borderline SMOTE
algorithm, achieving better results than when applying the same preprocess-
ing in the original input space, specially for metrics designed for imbalanced
classification. As future work, the performance of different kernel functions for
performing kernel over-sampling could be studied to analyze the kernel function
to use according to the nature of the data. Furthermore, in the same vein as this
paper, an analytical methodology [19] could be used to compute the number of
relevant dimensions for the empirical feature space (note that in our case this
value was prefixed for the sake of simplicity).
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