
P18-CFQ

Functionalized Sulfonic Acid on Supported Nanocatalysts: Synthesis, Characterization and Applications in Alkylation Reactions

Somayeh Ostovar^{a,b}, Ana Franco^a, Alina M. Balu^a, Antonio A. Romero^a, Rafael Luque^a

^a Departamento de Química Orgánica, Universidad de Córdoba.
^bSistan and Balouchestan University, Iran
e-mail: Somayeh_Ostovar2266@yahoo.com

Significant efforts have been paid recently in the modification of homogeneous catalysts, used in highly selective organic transformations to address various economic and environmental issues [1]. The attachment of the functional groups on semiconducting metal oxide surfaces such as magnetic iron oxide nanoparticles (Fe_3O_4 or Fe_2O_3 NPs) has been proposed since these nanomaterials ensure the preservation of enzyme biological activity, molecular complexes and metal nanoparticles. Inherent properties of functionalized -SO3H-modified mesoporous silicas and organosilicas yield materials with different hydrophilicities include good reusabilities, and high activity [2]. In this work, we prepared magnetic nanocatalysts (Fe-SBA-15) fo9llowing a previous procedure from the group [3] followed by functionalisation with sulfonic acid groups by ball milling. The alkylation of toluene with benzyl chloride, selected as test reaction, proceed significantly more effectively on SO₃H-modified mesoporous nanocatalysts, as compared to Fe-SBA-15 magnetic mesoporous supports. The structure and texture of the materials obtained were characterised by classical methods (XRD diffraction, TEM, porosimetry, SEM and Diffuse Reflectance IR.

Scheme 1. Investigated microwave-assisted alkylation of toluene with benzyl chloride using magnetically functionalised nanocatalysts

Acknowledgments

The authors gratefully acknowledge Sistan and Balouchestan University of Iran for the financial support of the research as well as Iran Nanotechnology Initiative Council for complementary financial supports.

References

¹ Kharissova, O. V.; Dias, H. R.; Kharisov, B. I., Magnetic adsorbents based on micro-and Nana-structured materials. RSC Advances 2015, 5 (9), 6695-6719.

² Sharma, R. K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R. S.; Gawande, M. B., Fe 3 O 4 (iron oxide)supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chemistry 2016.

³ Pineda, A.; Balu, A. M.; Campelo, J. M.; Luque, R.; Romero, A. A.; Serrano-Ruiz, J. C., High alkylation activities of ball-milled synthesized low-load supported iron oxide nanoparticles on mesoporous aluminosilicates. Catalysis today 2012, 187 (1), 65-69.