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Abstract

Lentil (Lens culinaris Medikus subsp. culinaris) is one of the most important cool season

food legumes. World production of lentil is estimated at 4.95 million tons from an estimated 4.34

million ha with an average yield of 1140 Kg/ha. Lentil production is threatened by biotic and

abiotic stresses. One of the most destructive diseases, especially in the warm and drought

conditions, is wilt disease, caused Fusarium oxysporum f.sp. lentis (Fol). Under favorable

conditions this disease can cause the complete loss of the crop. The most effective, economical

and environmentally friendly method to control the disease is the use of resistant cultivars. In this

thesis we studied different aspects of this disease.

In chapter one, 196 Spanish lentil landrace accessions were evaluated for resistance to

this disease under controlled conditions using a detailed disease scoring system. Resistant

accessions were further screened in the adult plant stage under naturally infested field conditions

in Bileh-Savar, Iran. This study identified twelve accessions showing good levels of resistance to

the disease under controlled and field conditions which could be exploited in breeding programs.

In chapter two the mechanisms of resistance acting against two different pathotypes of

FOL were studied in six lentil accessions showing different levels of resistance. After inoculation

with patothype 1, a lower number of colonies were recovered from roots of the resistant

accessions compared to the susceptible check. In the inoculation with patothype two no

differences between accessions were observed for this trait. At the hystological level, qualitative

resistance was detected in accession BGE019696 inoculated with pathotype 1. Thus, cells with

condensed areas in the cytoplasm were observed. Furthermore, the presence of phenolic

compounds was observed for this accession × pathotype interaction. This phenomenon was not

observed in any other interaction.

In chapter 3 the pathogenic variability of FOL was studied. Although differences in

aggressiveness have been observed between FOL isolates, the presence of pathotypes has not

been reported in this pathogen. The objective of chapter 3 was to check for the presence of

pathotypes in FOL. As a first step to check for the presence of isolate × genotype interaction in

Fol-lentil pathosysthem, 28 resistant lentil accessions were inoculated by six Fol isolates with

different geographic origins. A significant isolate×genotype interaction was detected. According

to this differential reaction, four accessions were selected to analyse the virulence patterns in a
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collection of 52 Fol isolates from Iran, Syria and Algeria. Seven different patterns of virulence

were identified within this population.

In chapter four the genetic structure of the Fol collection described above was analyzed

using twelve SSR markers.  Eight of these SSRs were developed in this thesis. AMOVA showed

that there is a high molecular variation both within regions and among regions, differing Iranian

populations from non-Iranian populations. Additionally, STRUCTURE and Fitch-Margoliash

analysis identified two ancestral lineages, one present in all regions and the other present only in

Iran. No significant relationship was found between phylogenic groups and virulence patterns.
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Resumen

Las lentejas (Lens culinaris) son una de las leguminosas más importantes a nivel mundial. La
producción mundial de lentejas se estima en 4,5 millones de toneladas, con una superficie cultivada 4,25
ha. El rendimiento de este cultivo se ve severamente afectado por diversas enfermedades, entre las que
destaca la fusariosis vascular, causada por Fusarium oxysporum f. sp. lentis (FOL). Este patógeno puede
causar la pérdida total de la cosecha en condiciones favorables para el desarrollo de la enfermedad.  La
resistencia genética se muestra como el método más efectivo, económico y respetuoso con el medio
ambiente para controlar la enfermedad.

En el primer capítulo de esta tesis se evaluó, en condiciones controladas, la respuesta a FOL de
196 variedades locales españolas utilizando un método detallado de evaluación desarrollado en esta tesis.
Aquellas entradas que resultaron resistentes fueron también evaluadas en condiciones de campo en Bileh-
Savar, Iran. Como resultado se han identificado 12 entradas de lenteja que muestran buenos niveles de
resistencia tanto en condiciones controladas como en campo y que pueden ser de gran utilidad como
fuentes de resistencia en programas de mejora.

En el capítulo 2 se estudiaron los mecanismos de resistencia que actúan frente a dos patotipos de
FOL en seis entradas de lenteja con distintos niveles de resistencia. Tras inocular con el patotipo 1, de las
raíces de líneas resistentes se rescataron un menor número de colonias que en el testigo susceptible. En la
inoculación con el patotipo 2 no se observaron diferencias entre líneas para este parámetro. A nivel
celular se detectaron mecanismos cualitativos de resistencia en la entrada BGE019696 inoculada con el
patotipo 1. Así, se observaron en esta línea células que mostraron áreas condensadas en su citoplasma.
Además, en esta combinación entrada-patotipo se observó la presencia de compuestos fenólicos. Este
fenómeno no se detectó en el resto de las interacciones.

En el capítulo 3 se analizó la variabilidad patogénica FOL. Aunque se han descrito diferencias en
agresividad entre aislados de FOL (Belabid y Fortas, 2002), hasta ahora no se habían descrito patotipos.
El objetivo de este capítulo fue el estudiar si existen patotipos en FOL. Como un primer paso, para testar
la existencia de interacciónes aislado x genotipo en el patosistema lenteja-FOL, se inocularon 28
genotipos de lenteja descritos como resistentes con 6 aislados del FOL de distintos orígenes geográficos.
Los resultados mostraron una significativa interacción aislado x genotipo. En función de los resultados
obtenidos se seleccionaron cuatro entradas de lenteja que mostraron una reacción diferencial frente a los
distintos aislados para caracterizar el patrón de virulencia de una colección de 52 aislados de FOL
provenientes de Iran, Siria y Argelia. Como resultado se identificaron 7 patotipos con distinto patrón de
virulencia.

En el capítulo 4 se estudio, utilizando doce marcadores SSR, la estructura y variabilidad genética
de la colección de aislados de FOL descrita en el capítulo 3. Los análisis AMOVA mostraron que había
una gran variación genética tanto dentro de regiones como entre regiones, difiriendo las poblaciones de
Irán del resto de poblaciones. Por otro lado  los análisis realizados con el programa STRUCTURE y el
árbol de Fitch-Margoliash mostraron la existencia de dos líneas ancestrales en FOL, una que sólo estaba
presente en Irán y otra que estaba distribuida por todas las regiones estudiadas. No se encontró relación
entre los grupos filogenéticos y los patotipos.
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Objectives

The objectives of this thesis are:

1) To identify new sources of resistance to Fusarium oxysporum f.sp. lentis in a collection of

Spanish lentil landrace

2) To characterize the mechanism of resistance acting against Fusarium oxysporum f.sp. lentis at

the cellular level

3) To study Fusarium oxysporum f.sp. lentis pathogenic variability

4) To study the genetic diversity in Fusarium oxysporum f.sp. lentis
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General Introduction

1. The Host
Legumes: botany and importance

Legumes (= Leguminosae or Fabaceae) is a group of plans containing 727 genera and

19,327 species, being the third largest group of flowering plants. Legumes have been divided

into three subfamilies including Caesalpinioideae, Mimosideae and Papilionoideae which are

subdivided into groups of genera called tribes. Ecologically they coupe different ranges of

habitats, from rain forests to deserts and from lowland to alpine habitats; including giant forest

trees, shrubs, lianas, tiny annual herbs and even aquatic species (Doyle and Lukow 2003, Lewis

et al. 2005).

Legumes in combination with other products (mainly cereals) are the staple food for a

large part of the world population, especially for the low income fragments of the societies. The

seeds of legumes are sources of protein, complex carbohydrates (dietary fiber), lipids, minerals,

various active phytochemicals and vitamins, as well as several anti-nutritional compounds

(Grusak 2002, Wang et al. 2003, Prakash et al. 2007, McPhee and Muehlbauer 2014, Sánchez-

Chino et al. 2015). Furthermore grain legumes are good sources of protein for animals feeding

(Muñoz et al. 2017).

Legumes are also able to fix atmospheric nitrogen through symbiosis with bacteria.

Therefore, they reduce inputs of industrial N fertilizers, improve the sustainability of agricultural

ecosystems and increase the biomass yield of the next crop (Vance 2001, Courty et al. 2015).

The global amount of nitrogen fixed by legumes and other symbiotic plants was estimated to 40

Tons yr-1 (Galloway et al. 1995).

The legumes are the second most important crop after cereals based on area harvested

and total production. Grain and forage legumes are grown on 180 million ha, corresponding to

12 – 15% of the earth’s arable surface and provide about one-third of all dietary protein nitrogen

and one-third of processed vegetable oil for human consumption (Graham and Vance 2003).

Despite these advantages, the global trend of legume cultivation has not met the expectations and

remains below that of other crops such as cereals, mainly  due to low and unstable yields, and

susceptibility to biotic and abiotic stresses (Rubiales and Mikic 2015).
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Lentil Crop

History

Recent archaeological evidences suggest that lentil was domesticated for the first time in

the Pre-Pottery Neolithic villages in ancient near east and Anatolia around 12,000 years ago,

beside other crops such as wheat, barley, legumes like pea, chickpea, bitter vetch, and flax

(Blockley and Pinashi 2011, Goring-Morris and Belfer-Cohen 2011). From this proposed center

of origin, lentil spread rapidly to the Nile Valley, Europe, India and Central Asia. After 1,500

AD the Spanish introduced lentil to South America. More recently, it has been cultivated in

Mexico, Canada, the United States, New Zealand, and Australia (Erskine et al. 2016).

Consumption

Lentil as a food is served in various forms across the world such as boiled, fried, snack,

bread, cake and soup; alone or in the mix with other foods or flours like rice or wheat. Lentil

processing includes cleaning, sizing, de-hulling, splitting, and polishing. Small-seeded red

cotyledon lentil is de-hulled and large-seeded yellow cotyledon lentil is used as a whole (Erskine

et al. 2016). Lentil seeds, like other grain legumes are a good sources of protein, carbohydrate

with starches, total dietary fibers (including both insoluble and  soluble dietary fibers), relatively

low fat and low energy content (1.4g/100g) including 16.7% saturated fatty acids, 23.7%

monounsaturated fatty acids and 58.8% polyunsaturated fatty acids; relatively high ash content

(3-5g/100g), high content of minerals such as Mg, P, Ca, and S but low content of Na and K, 7.5

mg/100g Iron,  3.2-6.3 mg/100 g Zn; and Cu, Mn, Mo and B in relatively low amounts. Lentils

are a significant source of various types of vitamins including folate (B9), thiamin (B1) and

riboflavin (B2), other water soluble vitamins such as niacin, anthithetic acid, pyridoxine, vitamin

E, vitamin K; bioactive phytochemicals such as polyphenols (flavonols, tannins, phenolic acids),

phytosterols, phytic acid, saponins and lectins, protease inhibitors; dietary fiber (mostly

insoluble), resistant starches (25g/100g) and finally high total of antioxidant capacity measured

by ferric reducing antioxidant power and total radical-trapping antioxidant parameter (Shahwar

et al. 2017).

Several evidences demonstrate that a diet rich in lentil and lentil sprouts is very useful for

prevention and management of diabetes, lowering the risk of cancers (especially colon, prostrate,
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gastric, breast, colorectal and pancreatic cancers) and Alzheimer’s disease. Body weight

regulation, lowering serum cholesterol and increasing the saturation level of cholesterol are other

effects of lentil consumption on human body health (Świeca and Baraniak 2014, Shawar et al.

2017).

Botany

Lentil is an annual herbaceous plant, generally 20-30cm tall, erect to semi-erect, showing

compact growth to much branched low bushy forms. Lentils possess slender tap-root system and

are indeterminate- acropetal plants. Their stems are thin, square and ribbed, while the pods are

oblong, laterally compressed, bulging over the seeds. Lentil leaves are alternate, compound and

pinnate with one to eight pairs of sub-sessile or sessile, ovate, elliptical or lanceolate leaflets. The

rachis is 4–5 cm in length and it may terminate in a bristle or simple. Lentil cultivars were

grouped into two intergrading clusters based on seed sizes, small-seeded (microsperma) and

large-seeded (macrosperma) (Duke 1981, Saxena and Hawtinn 1981, Muehlbauer et al. 1985,

Muehlbauer et al. 2002, Gahoonia et al. 2005, Sarker et al. 2005, Saxena 2009). The number of

seeds per plant, being an important yield attribute, is closely correlated with the number of pods

per plant. The 100-seed weight may range from 1.1 - 4g (small-seeded types) to 4 - 8.2g (large-

seeded types).

The four Lens species, as proposed by Ladizinsky (1993), are diploid (2n = 14), have a

similar karyotype of three pairs of metacentric or submetacentric chromosomes, three pairs of

acrocentric chromosomes, and one satellited pair of chromosomes.

Analyzing previous findings based on origin and spread; morphological, cytological, and

cytogenetic observations; and more recently on the basis of isozyme and molecular studies, Lens

taxonomy was reassessed. The genus now consists of seven taxa split into four species (Erskine

et al. 2016):

1. L. culinaris Medikus
ssp. culinaris
ssp. orientalis (Boiss.) Ponert
ssp. tomentosus (Ladiz.) M.E. Ferguson et al.
ssp. odemensis (Ladiz.) M. E. Ferguson et al.

2. L. ervoides (Brign.) Grande
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3. L. nigricans (M. Bieb.) Godr.
4. L. lamottei Czefr.

The International Center for Agricultural Research in Dry Areas (ICARDA) has the

global mandate for research on lentil improvement, and thus houses the world collection of Lens,

which includes around 10,800 accessions (Furman et al. 2009). Other major lentil collections

worldwide include those at the Australian Temperate Field Crops Collection (ATFCC) in the

Department of Primary Industries, Victoria, Australia (http://149.144.200.50:8080/QMWebRoot/

SiteMain.jsp) with 5,250 accessions, Pullman United States Department of Agriculture (USDA)

Agricultural Research Service (ARS) with 2,797 accessions (http://www.ars.grin.gov/), the N.I.

Vavilov All-Russian Research Institute of Plant Industry (VIR) (http://vir.nw.ru/) with 2,396

accessions, and the National Bureau of Plant Genetic Resources, India with 2,212 accessions

(Dwivedi et al. 2006).

Crop Production

The total lentil cultivated area in the world in 2014 is estimated around 4.5 million ha

with annual production and productivity of 4.8 MT and 1,080.1 kg/ha respectively, (FAOSTAT,

accessed on 29 Oct 2016, http://faostat3.fao.org/). The production of the crop is increasing

significantly from year to year through expansion of net cropped area along with productivity.

Thus, yield productivity is showing an enormous upward trend, increasing almost more than

two-fold during the last 50 years (Fig. 1). This is caused by the introduction of new cultivars and

improved management systems.
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Fig 1. Evolution of harvested area, production and yield of lentil in the world during last 50 years

Most of the production which reaches around 56% is consumed locally and only 44% of

the production is supply to the global market (Kumar et al. 2013). Canada is the leading

exporting country, while India is the leading lentil consuming and producing nation. The

continents with the bigger area harvested in 2014 were Asia, with 2.7 million ha and America

(mostly including USA and Canada) with 1.3 million ha (Fig.2). However, the biggest producer
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Fig.2. Distribution of harvested area, production and yield of lentil in the continents in 2014
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Lentil is currently an important pulse crop grown widely throughout the Indian

subcontinent, Middle East, Northern Africa and East Africa, Southern Europe, North and South

America, Australia and West Asia (Taylor et al. 2003), and is a primary component for farming

systems of those areas (Sarker and Kumar 2011).  The major lentil-growing countries of the

world are Canada, India, Bangladesh, Turkey, Australia, USA, Nepal, China, Syria, Iran, and

Ethiopia. Out of the total increased volume of global production in recent years, the main

producers are Canada and India (Figure 3).

Fig3. Top eleven lentil-producer countries in the world (2014)
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production is not sufficient to fulfill internal demand and the deficit is filled by importing lentils

mainly from EU (Iglesias and Guerrero 2015).

Barrios (2012), using an economic model based on historic yields and prices, and

considering average production costs for lentil, concluded that the relative profitability in the

Spanish Central Plateau would change if lentil yield increased by 30%. The definition of an

agronomic strategy able to achieve this yield increase would constitute a good option for Spanish

farmers to cover the interesting market now covered by imported lentils,  and the key strategy to

achieve this goal would be switching spring sown to the winter sowing (Barrios et al. 2016).

Fig4. Distribution of harvested area, production and yield of lentil in Spain during last 50 years
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Kahgiluye -BoyerAhmad) where have higher amounts of precipitation per year, a vital factor for

plant growth in dryland areas. Agro-ecologically, the northern and southern areas could be

classified as cold and warm-temperate climates, respectively. Sowing take place on spring or

late-winter (March-April) in northern areas and in autumn or early winter (October- December)

in southern areas. Lentil cultivation in different areas of the country varies, from almost fully

mechanized to completely traditional mode. In general, especially in the recent years, lentil

cultivation was limited to poor soils and marginal lands where overall production lags far behind

that of the other crops, especially cereals. However, thanks to the absence of suitable and

alternative crops in the rotation systems with cereals, its resistance to harsh climatic conditions,

such as drought and cold, and its suitability to both feed and food purposes, the crop conserves

its position in many agricultural systems in  the country.

Fig. 5 illustrated that lentil cultivation in Iran during last 50 years has increased

dramatically by fivefold since 1987.  On the other hand, yield decreased from 700 kg/ha to less

than 300 kg/ha. This yield decrease was caused by the expansion of production area to marginal

and poor fertility lands, as well as the drought conditions suffered in the last decades.

Fig5. Harvested area, production and yield of lentil in Iran during last 50 years
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individually or in combination, cause the low levels of crop yield and productivity observed

across the country (Sabaghpour, 2014)

Average lentil consumption in Iran is estimated in 2.5 kg Person/Year. Iran’s production

is not able to meet this demand, and therefore the country needs to import an average of 256,000

tons annually.

Factors limiting lentil yield
Abiotic stresses

Abiotic stresses affecting lentil production are cold, drought, heat, salinity, nutrient

deficiency and nutrient toxicity. Of these stresses, drought and heat are considered the most

important worldwide (Turner et al. 2001). Cold stresses are important in West Asia and North

Africa (WANA). Salinity is an important stress factor in Indian sub-continent and to some extent

in WANA. Nutrient deficiency and nutrient toxicity is of lesser importance worldwide but

important in some specific regions (Buddenhagen and Richards 1998).

Biotic stresses

Ascochyta blight caused by Ascochyta lentis, rust caused by Uromyces viciae-fabae,

botrytis grey mould caused by Botrytis cinerea and B. fabae, anthracnose caused by

Colletotrichum truncatum, stemphilium blight caused by Stemphylium botryosum, powdery

mildew caused by Erysiphe pisi and Erysiphe trifolii, and sclerotinia stem rot (= white mould)

caused by Sclerotinia sclerotiorum, are most important foliar diseases of the crop. Fusarium wilt

caused by Fusarium oxysporum f. sp. lentis and collar rot caused by Sclerotium rolfsii are the

most important soil born fungal diseases of the crop, although some other diseases with minor

effect on the crop have been reported worldwide (Chen et al. 2009).

Ascochyta blight has worldwide occurrence and causes severe damage to lentil yield and

grain quality (Muehlbauer and Chen  2007) and is important in West Asia, Canada and high

rainfall areas of India (Chen et al. 2009). Rust is the key yield reducer of lentil in Bangladesh,

India, Nepal, Morocco and Ethiopia, with reported losses of up to 70% of yield (Negussie et al.

2005). Stemphylium blight is a major problem in Bangladesh and Nepal, and appeared in fields

in North Dakota and Saskatchewan in the recent years (Holzgang and Pearse 2001).

Anthracnose, botrytis grey mold and sclerotinia white mold are major problems in North

America (Chongo et al.  2002). Recently, powdery mildew has also been reported on lentil in
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Canada and USA (Attanayake et al. 2009). Fusarium wilt is globally widespread (except

Australia) and collar rot is also important universally, the former is more important in dry areas

while the later is more important under humid conditions.

Disease resistance, beside other control approaches such as using disease-free seeds,

biological agents, chemicals, cultural and agronomic practices is considered the most effective

control strategy. Resistance can be conferred by single, race-specific resistance genes (R genes),

usually conferring complete resistance, or by a number of minor genes resulting in a broad-

spectrum incomplete resistance. The identification of genes underlying resistance is challenging

and a detailed understanding of the interaction between plants and their pathogens at the genetic,

histological and molecular level could be helpful to reach this objective (Rubiales et al. 2015).

Resistant varieties or sources of resistance were identified for ascochyta blight (Ford et al. 1999,

Nguyen et al. 2001, Taylor and Ford 2007), rust (Basandrai et al. 2000, Tikoo et al. 2005,

Rubiales et al. 2013), botrytis grey mould (Bayaa and Erskine 1998, Davidson et al. 2004);

stemphylium blight (Chen et al. 2009); powdery mildew (Tikoo et al. 2005); fusarium wilt

(Bayaa and Erskine 1998, Stoilova and Chavdarov 2006) and Orobanche crenata (Fernández-

Aparicio et al. 2008).

2. The Pathogen
Fusarium is a genus of filamentous ascomycete fungi

(Sordariomycetes: Hypoceales: Necteriaceae) that includes many toxin-producing plant

pathogens of agricultural importance, being also human pathogens. Fusarium spp. have large

scale distribution habitat, from permafrost in the arctic to the sands of the Sahara (Di Pietro et al.

2003, Leslie and Summerell  2006, Ma et al. 2013).

Traditional classification of the genus was based on morphological characters which

mainly referred to producing conidia which are clearly visible under fluorescent microscope as

light colored raised bodies on the surface of culture using fine magnification. They are long,

slender, rather pointed at both ends, dorso-ventrally curved, sickle-shaped, septated, and poses a

basal foot cell. The “macroconidia” are phialospores which are initially attached to the

conidiophores and are produced one by one, appearing apex end first, from a small opening body

at the tip of the conidiophores, named “phialids” (Smith 2007). Recently many researchers have

applied molecular approaches to the taxonomy of Fusarium species. Consequently,  the 300
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genealogically phylogenetically exclusive phytogenetic species with most important plant

pathogens resided in the four groups, including F. fujikuroi species complex, F. graminearum

species complex, F. oxysporum species complex and F. solani species complex (Watanabe et al.

2011, Aoki et al. 2014).

Fusarium spp. are soil borne pathogens that can grow in and on living or dead plants and

plant products, as well as on living and dead animals (Smith 2007). The fungus can survive in

the soil in two different growth phases: an active growth phase (when the soil environment and

the remained substrates are suitable for its growth with enough nutrients) and a survival phase

(when the soil conditions and environment are harsh with fewer nutrients) (Sungalang et al.

1995). During the survival phase the fungus will form dormant structures naming

“chlamydospores” or multi-cellular resting bodies known as “sclerotia”, while the main structure

of active phase is “macro” and “micro-conidia” (Garrett 1981, Smith 2007). Fungus development

and its activity in the soil are affected by environmental conditions such as temperature,

humidity, pH, crop rotation, fertilizers use and straw disposal (Bateman and Murray 2001,

Gonçalez et al. 2012).

The species Fusarium oxysporum, including many pathogenic forms, is the most

damaging species of the genus. This pathogen causes a series of symptoms including vascular

wilt, yellows, corm rot, root rot, and damping-off, being wilt symptom the most important one

(Agrios 1997, Smith et al. 1988, Smith 2007). Strains that are rather poorly specialized may

induce yellows, rot, and damping-off, while the more specialized strains produce severe vascular

wilt (Smith et al. 1988).

F. oxysporum produces both “macro” and “micro conidia”, “sporodochia” and

“chlamydospores”; and no perfect stage is known for this species (Di Pietro et al. 2003). Resting

spores, known as the ultimate soil-borne propagule of the species, and their rough heavy walls,

protect them from all abiotic and biotic stresses, making the fungus able to survive long periods

in the absence of the host. In the presence of fresh nutrients, such as root exudates, they come out

of resting state, germinate, produce fresh hyphae and grow toward the roots of plants. After

germination, infection hyphae adhere to the host roots and penetrate them directly. Small rifts in

the root cuticle or a root injury may facilitate the penetration procedure. The hyphae grow in the

cortex, inter and intra-cellularly and get inside the vessels.  The pathogen inside the vessel is

capable to produce micro conidia as well as hyphal extension, being capable of escaping and
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avoiding plant barriers, colonizing the entire vascular system fast. Host, on the other hand,

respond to the fungal invasion by producing callose and depositing it around paravascular

parenchyma, pits and vessel walls where the fungus may attempt to enter. Moreover, secondary

metabolites such as phytoalexins, phenolics, indole acetic acid, ethylene and other compounds

have an important role in the host defense. The pathogen to counteract these plant defenses

produces polygalacturonases, cellulases, alpha- and beta- galactosidases, and other enzymes

capable to break down gels, retarding tyloses formation and degrading stress metabolites of the

host plant. As long as the plant is alive, the vascular wilt fungus remains strictly limited to the

xylem tissues and a few surrounding cells. After the host plant is killed by the pathogen, the

fungus can invade the parenchymatous tissue, sporulate profusely on the plant surface and

release spores (Talboys 1972, Bishop and Cooper, 1983b, Beckman 1987, Rodriguez-Gálvez and

Mendgen1995, Agrios 1997, Di Pietro et al. 2001a, Di Pietro et al. 2003).

F. oxysporum has adapted to colonize different host species with more than 120 formae

speciales (ff.spp.) reported so far (Di Pietro et al. 2003, Michielse and Rep 2009). Some of the

formae specials are further divided into subgroups, named races, on the basis of differential

virulence patterns in a set of differential cultivars within the same plant species (Snyder and

Hansen 1940, Armstrang and Armstrang 1981).

F. oxysporum f.sp. lentis (Fol) is one of the most destructive diseases of the lentil crop

worldwide (except Australia), causing complete yield loss especially under drought and warm

conditions. Symptoms of disease can be observed at both seedling and adult plant stages as seed

rot and damping off, stunting of plants, wilt of top leaves, shrinking and curling of leaves which

start from the lower parts of plant and move up progressively; leading to complete yellow and

die back (Khare 1981). The symptoms are intensified with warm and drought conditions. The

pathogen can survive in the soil for several years saprophytically, or as a chlamydospore without

access to suitable host.

Although there are some reports on variation in Fol in term of genetic diversity,

differences in in vitro growth patterns and aggressiveness (Khare et al. 1975, Belabid and Fortas

2002, Belabid et al. 2004, Taheri et al. 2010, Datta et al. 2011, Mohammadi et al. 2011), races or

pathotypes have not been reported in the Fol-lentil pathosysthem.

Use of resistant varieties is the most effective, economic and eco-friendly method to

control this disease (Bayaa et al. 1995, Kraft et al. 2000) and a number of sources of resistance as
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well as several resistant cultivars are available (Pandya et al. 1980, Bayaa et al. 1995, Bejiga et

al. 2001, Sarker et al. 2001, El-Ashkar et al. 2003, ICARDA 2003, El-Ashkar et al. 2004a, El-

Ashkar et al. 2004b, ICARDA 2004, Machleb et al. 2007, Mohammdi et al. 2012).
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lentis
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CHAPTER IV

Genetic diversity and structure of Fusarium oxysporum f.sp.
lentis isolates from Iran, Syria and Algeria
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Summary: In this study the genetic structure of a collection of Fol isolates from  Iran, Syria and

Algeria, was analyzed using twelve SSR markers.  Eight of these SSRs were developed in this

thesis. AMOVA showed that there is a high molecular variation both within regions and among

regions, differing Iranian populations from non-Iranian populations. Additionally, STRUCTURE

and Fitch-Margoliash analysis identified two ancestral lineages, one present in all regions and the

other present only in Iran. No significant relationship was found between phylogenic groups and

virulence patterns.
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General conclusions

1. The new detailed scoring system developed in this thesis was very efficient to detect
different levels of resistance to Fol at seedling stage.

2. Promising sources of resistance to Fol, showing resistance under seedling, and adult plant
stage under field conditions, were identified within Spanish lentil landraces.

3. The main courses of infection of lentil accessions with Fol are: (i) attachment of hyphae to
the root surface, penetration through epidermis and colonization of the cortex cells within
0-2 dai, (ii) hyphal penetration through endodermis layer and invasion of vascular tissues
within 2-4 dai, (iii) colonization of all plant root tissues by the pathogen, including
horizontal and lateral spreading; and presence of different gum-like substances inside the
xylem vessels from 4-15 dai; and (iv) development of tylosis and accumulation of mucilage
inside the vessels, colonization of the hypocotyls and stem, and finally phenotypic
expression (yellowing and/or wilt) at 15-30 dai.

4. Uniform xylem occlusion with gum-like substances or continues degree of colonization of
all host accessions by the pathogen is contributing to quantitative resistance.

5. Secretion of phenolic compounds in the cortex in an early stage (0-4 dai) might be observed
in specific interactions (i.e. accession BGE01969 challenged with pathotype 1 only) leading
to a lower colonization as well as a lower disease index.

6. There are significant Fol isolate×lentil accession interactions, suggesting different patterns
of virulence: seven pathotypes were identified within a Fol population formed by 52
isolates from Iran, Argelia and Syria. This is the first report of existence of pathotypes in
this Fol.

7. SSRs constitute a valuable resource for molecular studies in Fol. We developed 8 new
SSRs that ad to the only 9 previously existing ones.

8. In the collection of Fol isolates studied, a high molecular variation within regions was
observed, although variation among regions also exists, with Iranian populations differing
significantly from non-Iranian ones, having some private alleles.

9. Our results suggest the presence of two ancestral Fol lineages, being one present
exclusively in Iran and closely related to F. oxysporum f. sp. pisi, while the other was
distributed across all the regions studied

10. No clear relationship was observed between Fol ancestors and pathotypes.




