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Resumen 

La obesidad y la diabetes, así como el cáncer representan graves problemas de salud 

pública en todo el mundo. Una característica común compartida por estas patologías endocrino-

metabólicas y tumorales es la alteración del proceso normal de splicing, lo cual podría conducir 

a la presencia de variantes aberrantes de ARNm. En concreto, el splicing es un proceso biológico 

esencial por el cual los intrones del pre-ARNm son escindidos para unir los exones y generar así 

ARNs maduros capaces de ser traducidos a proteínas funcionales. Concretamente, la mayoría de 

genes de organismos eucariotas pueden sufrir procesos de splicing alternativo, el cual constituye 

un proceso fisiológico que permite a estos organismos aumentar exponencialmente el número de 

transcritos generados a partir de un mismo gen. Durante el proceso de splicing alternativo, las 

regiones no codificantes y codificantes de un gen se reorganizan para generar diferentes variantes 

de ARNm. Desafortunadamente, las desregulaciones de este proceso están asociadas a la 

aparición de diversas isoformas de splicing aberrantes que pueden exhibir un fuerte potencial 

patológico. En este sentido, debe tenerse en cuenta que el control de la expresión del ARN y la 

correcta generación de variantes de splicing, así como su homeostasis, se lleva a cabo por el 

spliceosoma, una maquinaria celular compleja compuesta por ribozimas y proteínas asociadas 

(factores de splicing) que interaccionan de forma dinámica para catalizar el proceso de splicing. 

Por tanto, el funcionamiento apropiado de esta maquinaria celular es esencial para mantener la 

homeostasis celular, tisular y del organismo y, por ello, la desregulación de este proceso ha sido 

asociada al desarrollo de diferentes enfermedades, incluyendo las patologías endocrino-

metabólicas y tumorales. 

 

Por este motivo, las alteraciones en el proceso de splicing podrían representar un nuevo 

campo para el estudio y la identificación de marcadores diagnósticos, pronósticos y dianas 

terapéuticas en enfermedades tan prevalentes, como las patologías endocrino-metabólicas 

(obesidad y diabetes) y el cáncer. Para explorar esta prometedora vía de investigación, se han 

seguido diferentes enfoques experimentales y metodológicos en la presentes Tesis Doctoral. En 

primer lugar, para determinar la relación entre la desregulación de los componentes de la 

maquinaria de splicing y el desarrollo de diabetes mellitus tipo 2 (DMT2), se midieron los niveles 

de expresión de algunos componentes de esta maquinaria en células mononucleares de sangre 

periférica de pacientes en alto riesgo de desarrollar DMT2, en condiciones tanto de ayuno como 

postprandiales. Esta aproximación mostró que los niveles de expresión de algunos componentes 

clave de esta maquinaria estaban alterados en aquellos pacientes que desarrollarían DMT2 en 

comparación con aquellos pacientes control que no desarrollan la enfermedad durante los 5 años 
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que duraba el estudio. Además, la huella molecular compuesta por los niveles de expresión de 

estos componentes en ayunas y durante el postprandio, era capaz de predecir con elevada 

precisión el desarrollo futuro de DMT2 en pacientes individuales, mejorando la capacidad 

predictora de parámetros clásicos como la hemoglobina glicosilada o el test FINDRISK, lo cual 

sugería que esta huella podría representar una nueva herramienta no invasiva para la detección 

temprana del riesgo de desarrollar DMT2. 

 

En este contexto, se ha demostrado que el riesgo de desarrollar DMT2 puede reducirse o 

incluso revertirse como consecuencia de la aplicación de intervenciones dietéticas saludables; sin 

embargo, los mecanismos moleculares que subyacen a esta asociación están aún por dilucidar. 

Puesto que los resultados derivados de la presente Tesis han demostrado que el patrón de 

expresión de la maquinaria de splicing está asociado con el riesgo de desarrollar DMT2, nos 

propusimos evaluar la influencia de la intervención dietética durante 3 años en el patrón de 

expresión de la maquinaria de splicing en las células periféricas mononucleares (PBMCs, por sus 

siglas en inglés) obtenidas de este mismo grupo de pacientes en alto riesgo de desarrollar DMT2. 

En concreto, el patrón de expresión de los componentes de la maquinaria de splicing se 

determinó, tras tres años de seguimiento, en las PBMCs de todos los pacientes que desarrollaron 

DMT2 (n=107) y 108 pacientes que no desarrollaron DMT2, seleccionados aleatoriamente. Estos 

pacientes fueron asignados aleatoriamente en dos grupos dietéticos saludables, dieta 

mediterránea o dieta baja en grasa. Los resultados indicaron que la intervención dietética, 

independientemente del tipo (dieta mediterránea o baja en grasa), modula los niveles de 

expresión de componentes clave de la maquinaria de splicing (sobreexpresión de SPFQ, RMB45, 

RNU6, etc. o disminución de RNU2 o SRSF6). También se observó que algunos de estos cambios 

en los niveles de expresión de componentes de la maquinaria de splicing fueron inducidos 

diferencialmente entre aquellos pacientes que desarrollaron DMT2 y aquellos pacientes que no 

la desarrollaron tras cinco años de seguimiento. Por tanto, este estudio sugeriría que una 

intervención dietética a largo plazo podría modular los niveles de expresión de componentes 

clave de la maquinaria de splicing en células mononucleares de sangre periférica de pacientes en 

alto riesgo de desarrollar DMT2, y que dichos cambios serían claramente diferenciales en 

pacientes que terminan desarrollando DMT2 y aquellos pacientes que no la desarrollan tras cinco 

años de seguimiento, lo que podría utilizarse como en una herramienta valiosa para monitorizar 

la progresión de DMT2 
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Debido a la creciente prevalencia de la obesidad y la DMT2, la enfermedad de hígado 

graso no alcohólico (NAFLD, por sus siglas en inglés) está emergiendo rápidamente como un 

problema de salud grave en los países occidentales. Para determinar la posible relación entre la 

desregulación de la maquinaria reguladora del splicing y el desarrollo de NAFLD, se analizó el 

patrón de expresión de los componentes del spliceosoma y factores de splicing en biopsias de 

hígado de pacientes obesas con diferentes grados de esteatosis hepática que fueron sometidas a 

cirugía bariátrica. Los resultados de esta aproximación mostraron que el hígado de las pacientes 

obesas con esteatosis presentaba una alteración manifiesta pero diferencial (dependiente del 

paciente) de la maquinaria celular responsable de la regulación del proceso de splicing. 

Concretamente, el patrón de expresión de los componentes del spliceosoma y los factores de 

splicing analizados no se asoció con el grado de esteatosis hepática, pero identificó tres 

subpoblaciones de pacientes con esteatosis molecularmente definidas y caracterizadas por la 

expresión alterada de ciertos componentes del spliceosoma y factores de splicing. Cabe destacar, 

que estas subpoblaciones presentaban características clínicas específicas, así como una respuesta 

diferencial a la cirugía bariátrica después de un año de seguimiento. El hecho de que estas 

alteraciones del spliceosoma no estuvieran asociadas con el grado de esteatosis sugiere su papel 

como desencadenante del inicio de la acumulación de grasa en el hígado. De hecho, una 

aproximación in vitro indicó que las alteraciones en los componentes de la maquinaria de splicing 

podrían preceder al desarrollo de la esteatosis hepática. Estos resultados arrojan luz sobre los 

posibles mecanismos moleculares subyacentes al desarrollo de la esteatosis hepática en pacientes 

obesos y proporcionan información novedosa para explorar el desarrollo de estrategias de 

diagnóstico, pronóstico o herramientas terapéuticas eficaces para el NAFLD. 

 

Por último, para ampliar el conocimiento sobre la interacción patológica entre los 

procesos de splicing aberrantes y el cáncer, se realizó una caracterización del papel oncogénico 

del receptor truncado SST5TMD4 en patologías tumorales endocrinas. En concreto, se evaluaron 

las consecuencias funcionales del posible procesamiento proteolítico del dominio C-terminal de 

esta variante de splicing aberrante del receptor SST5 en diferentes tipos celulares representativos 

de estas patologías tumorales. Específicamente, un análisis in silico reveló la existencia de dos 

sitios de corte para metaloproteasas de matriz (MMP) en el dominio C-terminal extracelular de 

la variante de splicing SST5TMD4, que podrían ser utilizados por MMP2, 9 y 14 y/o MMP16, 

respectivamente, para generar tres péptidos con 7, 10 y 17 aminoácidos. El tratamiento con estos 

tres péptidos fueron capaces de aumentar parámetros funcionales de agresividad en diferentes 

líneas celulares derivadas de distintas patologías tumorales (tumores neuroendocrinos, cáncer de 
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mama, próstata e hígado); sin embargo, algunas de estas acciones parecían ejercer diferentes 

dinámicas, como es el caso de la proliferación celular, o, incluso, ser dependiente de la línea 

celular, como ocurrió con la migración o la formación de tumorosferas. En cualquier caso, los tres 

péptidos aumentaron de forma general las características de malignidad de dichas líneas 

celulares tumorales, probablemente a través de la activación de las rutas PI3K/AKT y/o MEK/ERK 

y la modulación de genes pro-oncogénicos clave. Este estudio sugiere que los péptidos derivados 

del receptor truncado SST5TMD4 podrían contribuir al fuerte papel oncogénico de este receptor, 

observado previamente en múltiples patologías tumorales y, por lo tanto, representan posibles 

candidatos para identificar nuevas dianas diagnósticas, pronosticas o terapéuticas en el cáncer. 

 

En conjunto, los resultados presentados en esta Tesis Doctoral constituyen una información 

novedosa y valiosa que respalda la idea de que la desregulación del proceso de splicing, tanto las 

alteraciones en los componentes del spliceosoma y los factores de splicing, como en las variantes 

resultantes de dicho proceso, está estrechamente relacionada con la instauración y/o el desarrollo 

de diversas patologías relevantes como la diabetes, el hígado graso o el cáncer. 
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Summary 

Global human health is currently threatened by highly prevalent diseases such as obesity, 

diabetes and cancer. A common hallmark shared by these endocrine-metabolic and tumor 

diseases is the consistent alteration of the normal splicing process, which leads to the presence of 

aberrant mRNA variants. Splicing represents an essential biological process by which the introns 

of an immature pre-mRNA are excised and the exons are fused to generate mature mRNAs 

capable to be translated into functional proteins. However, most eukaryotic genes can also 

undergo alternative splicing, which is a physiologic process that allows eukaryotic organisms to 

exponentially increase the number of transcripts generated from a given gene. During the process 

of alternative splicing, the coding and non-coding regions of a gene are reorganized in order to 

generate different mRNA variants. Unfortunately, dysregulations of this process are associated 

to the appearance of diverse protein isoforms that could exhibit strong pathological potential. In 

this sense, it should be noted that the control of the appropriate RNA expression and the 

generation of the correct splicing variants and their homeostasis is mainly regulated by the 

spliceosome, a complex cellular machinery comprised by ribozymes and associated proteins 

(splicing factors) that dynamically interact to catalyze the splicing process. The appropriate 

functioning of this cellular machinery is essential to maintain the cellular, tissue and body 

homeostasis and, therefore, the dysregulation of this process has been associated to different 

diseases, including endocrine-metabolic and tumor pathologies. 

 

For these reasons, alterations in the splicing process could represent a novel source for 

the identification of diagnostic, prognostic and therapeutic targets in highly prevalent and health-

threatening diseases such as endocrine-metabolic pathologies (obesity and diabetes) and cancer. 

To explore this promising research avenue, different experimental and methodological 

approaches have been implemented in the present Doctoral Thesis. First, to determine the 

relationship between the dysregulation of the splicing machinery components and the 

development of type 2 diabetes mellitus (T2DM), the expression pattern of selected components 

of this machinery was determined in the peripheral blood mononuclear cell (PBMCs) of 

individuals at high risk of T2DM development, under fasting and postprandial conditions. This 

approach showed that the expression levels of key splicing machinery components was altered 

in the PBMCs from individuals that developed T2DM compared with non-T2DM controls 

(patients that did not develop T2DM during the 5 years of follow-up). The molecular fingerprints 

comprised by the fasting and the postprandial levels of certain of these splicing machinery 

components were capable to predict the future development of T2DM in individual patients with 



 6 

high precision, outperforming the capacity of classical predictors of T2DM development, such as 

HbA1c or FINDRISK, and could become a valuable, non-invasive, new tool for early risk 

assessment of T2DM.  

 

In this scenario, it has been shown that the risk of T2DM may be reduced or even reversed 

with healthy dietary interventions; however, the molecular mechanisms underlying this 

association are still to be elucidated. Since the studies derived from this Thesis have demonstrated 

that the expression pattern of the splicing machinery is associated with the risk of T2DM 

development, we aimed to further evaluate the influence of a 3-years dietary intervention in the 

expression pattern of the splicing machinery components in PBMCs from the same group of 

individuals at high risk of T2DM development. In particular, the expression pattern of the 

splicing machinery components was determined, after 3-years of follow-up, in PBMCs from all 

patients who developed T2DM (n=107) and from 108 randomly selected non-T2DM patients. 

These patients were randomly enrolled in two healthy dietary interventions (Mediterranean or 

Low-Fat Diet). The results indicated that a long-term dietary intervention, regardless of the type 

of diet (Mediterranean or low-fat), influences the expression levels of key components of the 

splicing machinery (overexpression of SPFQ, RMB45, RNU6, etc. or decrease expression of RNU2 

o SRSF6). It was also noted that some of these changes in the expression levels of components of 

the splicing machinery were induced differentially between those patients who developed T2DM 

and those patients who did not develop T2DM after five years of follow-up. Therefore, this study 

suggest that a long-term dietary intervention could modulate the expression levels of key 

components of the splicing machinery in PBMCs of patients at high risk of developing T2DM, 

and that such changes would be clearly differential in patients who end up developing T2DM 

and those patients who do not develop T2DM after five years of follow-up, which could be used 

as a valuable tool to monitor the progression of T2DM. 

 

Due to the rising prevalence of obesity and T2DM, non-alcoholic fatty liver disease 

(NAFLD) is rapidly emerging as an important and growing health issue in western countries. In 

an attempt to determine the possible relationship between the dysregulation of the splicing 

machinery components and the development of NAFLD, the expression pattern of the 

components of the splicing machinery was measured in liver biopsies from obese patients with 

different degrees of liver steatosis that underwent bariatric surgery. This experimental approach 

shown that the liver of steatotic obese patients exhibited an overt but differential (patient-

dependent) alteration of the cellular machinery responsible for the regulation of the splicing 
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process. The expression pattern of the spliceosome components and splicing factors analyzed 

herein was not associated with the grade of hepatic steatosis but seemed to identify three discrete 

molecularly defined subpopulations of steatotic obese patients characterized by the dysregulated 

expression of certain spliceosome components and splicing factors. Remarkably, these 

subpopulations presented specific clinical characteristics and also a differential response to 

bariatric surgery after one year of follow-up. The fact that these spliceosome alterations were not 

associated with the grade of hepatic steatosis suggests their role as triggers for initiating fat 

deposition within the liver. Indeed, an in vitro approach suggested that alterations in splicing 

machinery components could precede the development of hepatic steatosis. These findings shed 

light to the possible underlying molecular mechanisms responsible for the development of 

hepatic steatosis in obese patients and provide novel information to explore the development of 

efficient screening strategies, diagnostic, prognostic or therapeutic tools for obesity-related 

NAFLD. 

 

Finally, to further expand our knowledge on the pathological interplay between aberrant 

splicing processes and cancer, a more profound characterization of the oncogenic role of the 

truncated receptor SST5TMD4 on endocrine-related cancers was performed. Specifically, the 

functional and mechanistic consequences of the SST5TMD4-specific, splicing-derived C-terminal 

domain were evaluated in different cancer cells types. First, an in silico analysis revealed the 

existence of two putative cleavage sites for matrix metalloproteases (MMPs) in the SST5TMD4 C-

terminal extracellular domain, which could be the substrate for MMP2, 9 and 14 and/or MMP16, 

respectively, to generate three derived peptides with 7, 10 and 17 aminoacids. These three 

SST5TMD4-derived peptides were capable to enhance the malignant characteristics of multiple 

cancer cell lines derived from diverse tumor pathologies (neuroendocrine tumor, breast, prostate 

and liver cancer); however, some of these actions seemed to exhibit different dynamics (i.e. 

proliferation rate) or, even, be cell-line dependent (i.e. migration or tumorosphere formation). In 

any case, this study demonstrate that the three derived peptides were able to increase tumor 

malignancy likely through the activation of PI3K/AKT and/or of MEK/ERK pathways and by the 

modulation key pro-oncogenic genes. Therefore, this study suggests that peptides derived from 

the spliced SST5TMD4 receptor could contribute to the strong oncogenic role of SST5TMD4 

previously observed in multiple tumor pathologies, and, therefore, represent potential 

candidates to identify novel diagnostic, prognostic or therapeutic targets in cancer. 
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Altogether, the results presented in this Doctoral Thesis constitute novel, valuable and 

germane information supporting the contention that the dysregulation of the splicing process, 

including the alterations in the spliceosome components, the splicing factors or the surrogate 

markers of the splicing process, is closely related to the instauration and/or development of 

several and highly prevalent pathologies such as diabetes, NAFLD or cancer.  
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Global human health is currently threatened by different relevant diseases such as 

obesity, metabolic syndrome, diabetes or tumor pathologies and cancer. The incidence and 

prevalence of these endocrine-metabolic and tumor diseases is steadily increasing (1-3) and 

represent a capital health problem for the National and International Health Systems and a 

scientific challenge for Biomedical Research. 

 

These pathologies curse with diverse and severe alterations at genetic, molecular, cellular 

and tissue levels but, importantly, a common hallmark shared by endocrine-metabolic 

dysregulations and cancers is the atypical and/or ectopic expression and the alteration and/or 

total or partial loss of relevant molecules (specially splicing variants) of certain key regulatory 

systems essential in the control of the normal physiology of the cells. In this sense, a growing 

body of evidence supports the idea of an association between the aberrant presence of alternative 

mRNA variants and the development and progression of obesity, metabolic syndrome, diabetes 

and cancers (4-7). Specifically, during the splicing process, the coding and non-coding regions of 

a gene are reorganized in order to generate different mRNA variants, a process that is associated 

to the appearance of diverse protein isoforms that could exhibit strong pathological potential (8-

10). 

 

In this sense, it should be noted that the control of the appropriate RNA expression and 

the generation of the correct splicing variants and their homeostasis is mainly controlled by 

several intricate and tightly related processes, which are precisely catalyzed and regulated by 

different cellular machineries. In particular, the splicing process is regulated by the spliceosome 

(9), a complex cellular machinery comprised by ribozymes and associated proteins (splicing 

factors) that dynamically interact to catalyze the splicing process. The appropriate functioning of 

this cellular machinery is essential to maintain the cellular, tissue and body endocrine-metabolic 

homeostasis and, therefore, the dysregulation in the expression of some components of this 

splicing machinery might be associated to the development and/or progression of different 

pathologies, including endocrine-metabolic and tumor pathologies (11,12). 

 

Taking into consideration all the information mentioned above, the present Doctoral 

Thesis is based on the HYPOTHESIS that the alteration of the normal, physiologic splicing 

process could be closely implicated in the development and progression of endocrine-metabolic 

diseases and cancer (Figure 1). Therefore, the main OBJECTIVE of this Thesis has been to explore 

the idea that the altered process of mRNA splicing (including alterations on the spliceosome 
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components, splicing factors and surrogate splicing variants with pathological potential) could 

represent a novel source for the identification of diagnostic, prognostic and therapeutic targets in 

highly prevalent and health-threatening diseases such as endocrine-metabolic pathologies and 

cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. At a glance overview of the Thesis rationale 

 

 

1.1. Endocrine-metabolic diseases  

Obesity and metabolic syndrome are chronic endocrine-metabolic diseases that represent 

emerging global epidemics and capital health problems for the National and International Health 

Systems since they increase the risk of developing severe endocrine, cardiovascular and tumor 

pathologies [World Health Organization (WHO) source]. Obesity and metabolic syndrome 

promote the development of multiple defects in the neuroendocrine-metabolic system, which 

cause relevant alterations in the homeostasis of the organism (e.g., dysregulation of hormones 

and growth factors, glucose/insulin homeostasis, etc.) that often favor the development of the 

serious pathologies mentioned above (e.g. endocrine disorders, cancer, etc.) (1,13). Obesity affects 

over a third of world’s population today (Figure 2) and it is estimated that, by 2030, 38% of the 

world’s adult population will be overweight and another 20% will be obese (14,15).  
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Figure 2. Percentage of obese adults worldwide in 2016. Percentage of adults aged 18+ years old who 

are defined as obese based on their body-mass index (BMI). Source: WHO, Global Health Observatory. 

 

 

The rise of obesity and metabolic syndrome is closely linked to the concomitant increase 

of Type 2 diabetes mellitus (T2DM) cases. T2DM is a complex disease, characterized by a 

combination of impaired insulin action, increased hepatic glucose production and dysfunction in 

insulin secretion (16). About 90% of T2DM cases are attributable to excess weight, likely due to 

the predisposition to insulin resistance developed in obese subjects (2,17). The risk of suffering 

T2DM (425 million of people have T2DM and it is estimated that this number will rise to 629 

millions by 2045) results from the combination of genetic factors with environmental influences 

(18). Due to the fact that T2DM is often linked to overweight and obesity, the prevalence of this 

disease is dangerously increasing in developed countries (2). One of the main problems 

associated to T2DM is the high risk of developing different related comorbidities, including 

cardiovascular disease (CVD). Indeed, patients with myocardial infarction and T2DM have 

higher risk of developing a new cardiovascular event that those without T2DM (19). Thus, early 

identification of individuals at high risk for T2DM development, especially among patients with 

CVD (20,21), is critical for prevention (22,23). Traditionally, this strategy has been based on 

biomarkers [glycated hemoglobin (HbA1c)] or predictive scores (FINDRISK); however, these 

approaches have limitations and cannot precisely predict an individual’s risk of developing 

T2DM (24,25). In this sense, the identification of key modifiers of phenotypic plasticity (i.e. the 
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difficulty to cope with stressors to maintain metabolic homeostasis) that define individual 

susceptibility to develop T2DM may hold predictive potential (26). In the context of CVD 

prevention, lifestyle and behavioral intervention have become advantage approaches that have 

less associated costs and side effects than the current medical treatments (27). In particular, 

several healthy dietary patterns can be useful tools for the managements of T2DM and reduction 

of cardiovascular risk, such as the Mediterranean Diet (MedDiet), the Dietary Approaches to Stop 

Hypertension (DASH), the vegetarian diet, and the low-fat (LF) high carbohydrates diet 

recommended by the National Cholesterol Education Program and the American Heart 

Association (AHA) (27-30).  

 

Due to the rising prevalence of obesity and T2DM, non-alcoholic fatty liver disease 

(NAFLD) is rapidly emerging as an important and growing health issue in western countries 

(31,32). NAFLD is described as a range of liver disorders characterized by fat accumulation within 

the liver (steatosis), which is not related to alcohol consumption. These disorders comprise a wide 

range of diseases, from simple steatosis to hepatic inflammation and fibrosis (non-alcoholic 

steatohepatitis or NASH), cirrhosis and hepatocellular carcinoma (HCC) (33,34). Although most 

patients with simple steatosis would remain stable, 10–15% with histologically proven NASH 

will progress to cirrhosis and HCC. Indeed, due to its high prevalence, NAFLD has emerged as 

speedily growing cause of end-stage liver disease and HCC, in addition to hepatitis C, hepatitis 

B and alcohol abuse (35,36). Unfortunately, the molecular mechanisms underlying the 

heterogeneous outcomes of NAFLD remain unclear, precluding any attempt to anticipate the 

disease progression to decompensated cirrhosis or HCC (37). Within the natural history of 

NAFLD, hepatic steatosis is the first stage, wherein an improved understanding of the 

pathogenesis of liver steatosis would have a critical prognostic impact for preventing disease 

progression (38,39). In this sense, while hepatic steatosis is closely associated with obesity, there 

is a meaningful percentage of obese people who have normal intrahepatic triglyceride content 

and appear to be resistant to developing obesity-related metabolic complications, including 

NAFLD (40). However, little is known about the mechanisms underlying the apparent resistance 

of this group of patients. 

 

1.2. Tumor pathologies and cancer 

Despite advances in recent years, tumor pathologies and cancer continue to be a critical 

problem for worldwide health population, which is associated to the lack of specific, sensitive 

and useful biomarkers for the diagnostic, prognostic and treatment of these pathologies (3). 
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Indeed, tumor pathologies are associated to leading causes of death in developed countries 

[World Health Organization (WHO) source] (Figure 3). Cancer encompasses a wide variety of 

malignancies with a variable etiology and complexity (41). Consequently, the development and 

progression of cancer is a highly heterogeneous and variable process, that is strongly influenced 

by genetics, but it is also profoundly conditioned by metabolic, nutritional, ambient and life style 

factors (42). In this sense, different components (neuropeptides, peptide hormones and/or their 

receptors) of several endocrine systems (sexual hormones, growth factors, insulin, IGF1, 

somatostatin, ghrelin, etc.) are commonly dysregulated in tumor pathologies (43-48). This 

concept is especially relevant in the so-called endocrine-related cancers, a term that classically 

refers to those hormone-related cancers such as tumor pathologies responsive to sex steroid and 

pituitary hormones but also to any cancer that exhibit certain “hormone sensitivity”, at least at 

some stages of their development and/or progression (49,50). In this context, diverse examples of 

endocrine-related cancers types could be pituitary and neuroendocrine tumor (NETs), as well as 

breast, prostate and liver cancers. Pituitary tumors and NETs constitute a highly heterogeneous 

group of neoplasms arising from the pituitary gland or from the cells of the neuroendocrine 

system that are widely distributed throughout the body (51,52). Remarkably, breast and prostate 

cancers represent the most common malignant tumor types in female and male population 

respectively, and also some of the major cancer types in terms of mortality (3), with a strong 

endocrine influence (53), while hepatocellular carcinoma (HCC), the most common type of liver 

cancer, is the sixth most prevalent cancer type, its incidence is progressively increasing and 

exhibits only 17% of survival rate after 5-years (3,54,55). Breast and prostate cancers as well as 

HCC are closely related with the appropriate function of the endocrine-metabolic system in that 

obesity, and its endocrine, metabolic and inflammatory associated alterations, elevate the risk of 

developing these tumor pathologies (56,57).  
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Figure 3. Age-Standardized Incidence and Mortality Rates in High/Very-High Human 

Development Index (HDI) Regions Versus Low/Medium HDI Regions Among (A) Men and (B) 

Women in 2018. Rates are shown in descending order of the world (W) age-standardized rate. Source: 

GLOBOCAN 2018 (58). 
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1.3. Splicing process  

As indicated above, a common hallmark shared by endocrine-metabolic dysregulations 

and cancers is the atypical and/or ectopic expression and the alteration and/or total or partial loss 

of relevant molecules of certain regulatory systems essential in the control of the normal 

physiology of the cells. Of particular relevance for this Doctoral Thesis are the dysregulations of 

the normal, physiologic splicing events, which can be associated to altered expression and 

function of the cellular machinery responsible for this process (spliceosome and splicing factors) 

and that can lead to the generation of splicing variants with pathological/oncogenic potential.  

 

In particular, splicing represents an essential biological process by which the introns of an 

immature pre-mRNA are excised and the exons are combined to generate mature mRNAs 

capable to be translated to functional proteins. Most genes in eukaryotes contain these 

intervening sequences, named introns, that are intercalated between the coding sequences or 

exons and need to be eliminated. From a biochemical perspective, the removal of introns followed 

by the ligation of the neighboring exons are two sequential trans-esterification reactions initiated 

by a nucleophilic attack of the 5’ splice site (5’SS) by the branch point (BP) of the intron to be 

spliced out. This reaction lead to the formation of the intron lariat with a 2’,5’-phosphodiester 

linkage, which is followed by another trans-esterification reaction between the 5’SS and the 3’ 

splice site (3’SS) that allow the excision of the intron lariat and the junction between exons (12) 

(Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Scheme of intron excision and exon ligation via two consecutive trans-esterification 

reactions involving the 5′-splice site (SS), a branch point sequence (BP), and the 3′SS. 
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1.3.1. Regulation of the splicing process 

The splicing process is a complex mechanism that requires recognition of RNA sequence 

elements by regulatory proteins. The cellular machinery responsible for catalyzing the processing 

and regulation of the splicing process is the spliceosome, which is an intricate ribonucleoprotein 

complex that recognizes specific sequences, both in exons and introns, defining the exact location 

of an intron. This cellular machinery responsible for mRNA splicing processing is highly 

dynamic, accurate and flexible (59).  

 

In mammals, the splicing process is catalyzed by the major and minor spliceosomes, 

which act on different types of introns [U2 type introns (which constitute the 95% of all introns) 

and U12 type introns] (12,60,61). The functional core of both spliceosomes is comprised by several 

small ribonucleoproteins (snRNPs) subunits, which dynamically interacts to regulate the splicing 

process. Specifically, the major spliceosome consists of a nucleus composed by the assembly of 5 

snRNP complexes (U1, U2, U4, U5 and U6), which are composed by small nuclear RNAs 

(snRNAs) that interact via base pairing with pre-mRNA (snRNAs: RNU1, RNU2, RNU4, RNU5 

and RNU6) and specific proteins. Similarly, the minor spliceosome is comprised by U11, U12, 

U4atac, U5 and U6atac (whose principal snRNAs are RNU11, RNU12, RNU4ATAC, RNU5 and 

RNU6ATAC).  

 

The definition of the different exons is mediated by three major sequence elements: the 

5’SS, the 3’SS and the branch point. The spliceosome recognizes these elements and is assembled 

in a stepwise manner around the nascent pre-mRNA concomitantly with its synthesis by the RNA 

polymerase II in the nucleus. In addition, the activity of the spliceosome is modulated by more 

than 300 splicing factors that specifically recognize certain sequences in exons and introns (9,62-

64). These splicing factors are continuously changing during the splicing process, modifying their 

position and activity in a coordinated orchestration and under complex regulatory systems that 

modulate the expression and function of these factors (59,65). These splicing factors regulate the 

splicing process through binding specific sequences in the pre-mRNA. The recognized sequences 

are classified as intronic splicing silencers or enhancers (ISS or ISE, respectively) and exonic 

splicing silencers or enhancer (ESS or ESE, respectively). The recognition of these sequences by 

the splicing factors has been broadly described (66-69). Finally, the activity and localization of 

these splicing factors can be modulated by kinases and phosphatases, influencing their 

functionality and ability to interact with other proteins and snRNPs and, thus, their capacity to 

bind RNA (61,70,71). 
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In particular, the identification of the splice sites is carried out by the spliceosome snRNPs 

in coordination with additional factors. Specifically, spliceosome recognition of the sequence 

elements at the 5’ and 3’ splice site and branch point is modulated by the ISE, ESE, ESS, which 

are recognized and bound by the splicing factors (72). Briefly, U1 snRNP form a base-pairing 

interaction with the 5’SS, while the splicing factor 1 (SF1) interact with the branch point and U2 

auxiliary factor (U2AF) with the 3’SS (72,73). This complex, named E complex, results in the pre-

spliceosomal A complex when U2 snRNP substitutes SF1 in the branch point. Then, U4, U5 and 

U6 form the pre-catalytic B complex associating with the formed spliceosome. When U4 is 

removed, U6 replaces U1 and interacts with U2 bringing the 5’SS and the branch point closer 

together, forming the catalytic C complex, and allowing the first reaction of trans-esterification 

(74). Finally, U5 facilitates the second trans-esterification step, approximating the two exons and 

allowing its junction and the removal of the intron lariat (75) (Figure 5B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic representation of intron identification by snRNPs and their interaction in 

order to carry out the splicing reaction. 
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1.3.2. Alternative splicing 

Around 95% of human multi-exonic genes, as well as most genes in other higher 

eukaryotes, undergo physiological processes of alternative splicing, which largely increases the 

diversity of mRNAs expressed from the genome, and at the same time, shapes the repertoire of 

specific proteins present in a given cell (7,9,69). Indeed, alternative splicing of protein-coding 

genes is an essential regulatory mechanism that increases the complexity of the transcriptome 

and the diversity and function of the proteome, having a central role forming complex organism 

(69,76). Alternative splicing occurs by reorganizing the pattern of intron and exon elements that 

are combined together to generate a mature mRNA, which implies the alteration of the mRNA 

coding sequence and the generation of alternative protein species. Among the different types of 

alternative splicing processes that have been reported hitherto, the most frequent events are 1) 

exon skipping (also known as cassette exons), which consists on the elimination of the entire 

exon in the mature mRNA transcript and constitute the most common type of alternative splicing 

in vertebrates (10); 2) intron retention, which implies the retaining of an intron in the mature 

mRNA; 3) mutually exclusive exons, that occurs when different exon combinations are selected 

to generate different mRNA splice variants; and 4) alternative 5’ (donor) or 3’ (acceptor) sites 

that leads to changes in the mRNA sequence (10,77) (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Scheme of constitutive and most common cases of alternative splicing events. 



 21 

1.4. Alternative splicing in health and disease 

Alternative splicing is a central mechanism in gene expression that increases the coding 

capacity of the human genome and impacts on the protein function. Therefore, the correct 

function of the splicing machinery (spliceosome components and splicing factors) is an essential 

mechanism to maintain normal cell physiology and whole-body homeostasis (11,41). Indeed, the 

splicing process may represent a physiologic mechanism to maintain cellular homeostasis as it 

has been suggested by different studies demonstrating that: 1) nutrients can modulate gene 

expression and, particularly, the splicing of pre-mRNAs encoding key regulatory proteins (e.g., 

insulin receptor, leptin receptor, etc.) (78); 2) alternative splicing processes are essential in the 

implementation of the adipogenic program (79); 3) a splicing variant of the peroxisome 

proliferator-activated receptor-γ (PPARγ), named PPARγ2, which is abundantly expressed in 

adipocytes, is essential in adipogenesis (80); 4) changes in the alternative splicing program during 

liver development due to alterations in the expression of splicing factors have different impact 

on the hepatic metabolism and development (6,81,82), and (5) alternative splicing is key for the 

regulation of pancreatic beta-cells differentiation and function, through the impact on glucose 

metabolism (11,83,84).  

 

However, although alternative splicing is a physiological process, a growing body of 

evidence supports the notion that aberrant alterations of this process can lead to the 

development and/or progression of human diseases. Minimal alterations in the tightly regulated 

alternative splicing process can lead to the generation of deficient proteins resulting in organs 

failures and contributing to numerous human diseases (9). In this sense, the number of diseases 

known to be associated with aberrant alternative splicing has increased in the last decades. There 

are plenty of examples that illustrate how a dysregulation in this process is the underlying cause 

of many human diseases (10,61). Specifically, the vast majority of the studies are focused on the 

discovery and description of new aberrant splice variants of proteins that lead to an alteration on 

their function and, ultimately, to pathological conditions (12). Alterations in the alternative 

splicing process can cause diseases by different ways (61,85). Mutations in the regulatory 

sequences, branch point, 3’ and 5’ splice sites, that can impede the recognition of the RNA by 

splicing factors, have been described in several pathologies conditions like muscular dystrophy 

(86), cystic fibrosis (87) or Parkinson (88). Remarkably, mutations or aberrant expression of 

splicing factors are also implicated in numerous diseases including endocrine-related diseases 

and cancer (89). 
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1.4.1. Alternative splicing in endocrine-metabolic diseases 

There is emerging evidence that under adverse endocrine-metabolic conditions (obesity, 

metabolic syndrome, insulin resistance or diabetes) the splicing process is dysregulated in a wide 

variety of tissues, such as pancreas, adipose tissue, liver, muscle or peripheral blood mononuclear 

cells (PBMCs) (5,6,90). While the precise molecular defects underlying these complications 

remain unknown, in the last years, studies exploring the impact that alternative splicing may 

exert on these pathologies are shedding light to this pathological crosstalk.  

 

1.4.1.1. Dysregulations of alternative splicing in type 2 diabetes mellitus  

T2DM is a multifactorial metabolic disease, characterized by a combination of 

progressive insulin resistance and loss of pancreatic β-cell function and/or mass. Insulin 

resistance arises when insulin receptor (INSR) signaling becomes attenuated in muscle, liver or 

adipose tissues (91). Defects in insulin signaling contribute to peripheral insulin resistance, 

including changes in INSR expression or affinity, as well as impaired phosphorylation of insulin 

receptor substrate (IRS) or glucose transporter translocation (92). The process of alternative 

splicing is a key modulator of insulin resistance, affecting the activity and sensitivity of INSR. 

Human INSR gene contains 22 exons and 21 introns (93). Alternative splicing of exon 11, which 

is responsible for the modulation of the affinity binding of insulin to the receptor (94), generates 

two isoforms of the INSR: isoform A (INSRA, without exon 11) or isoform B (INSRB, with exon 

11) (93,95). The expression profile of these isoforms can be altered in pathological situations 

including diabetes (96-100). Specifically, alterations in relative abundance of the two isoforms in 

skeletal muscle, fat, pancreas and liver, might contribute to the development of insulin resistance 

in T2DM (101-104). Indeed, weight loss induced by bariatric surgery and a very low calorie diet 

regulates the alternative splicing of INSR in adipose tissue (105). Of interest, it has been found a 

correlation in the expression levels between INSR and certain splicing factors (91,105). 

Specifically, it has been described that insulin signaling can up-regulate the expression of the 

splicing factor SRSF1 in pancreatic beta cells, inducing the alternative splicing of the gene to 

generate the INSR-B (91). The same study also found a regulation of the protein levels of the 

splicing factor MBNL1 by high glucose levels.  

 

In addition to INSR, other genetic variants generated by alternative splicing may be 

related to the development and progression of T2DM. One known example is the association 

between the alternative splicing of the transcription factor-7-like 2 gene (TCF7L2) and T2DM. 

Specifically, an association between a single nucleotide polymorphisms (SNPs), linked with a 
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higher risk of developing T2DM, and TCFL2 splicing was found in diabetic subject (106). Also, a 

short 3’-end splice variant of TCF7L2 is regulated by weight loss and associated with 

hyperglycemia and impaired insulin action in adipose tissue (107). Different adiponectin receptor 

1 (ADIPOR1) transcripts have been identified in muscle of individuals without or with T2DM. In 

adult human muscle, the ratio between ADIPOR1T3, a splice variant generated by the insertion 

of a 67-base pairs exon between exons 1 and 2 in the 5´UTR, and ADIPOR1 is decreased in muscle 

of T2DM patients compared to those with a normal glucose tolerance (108). However, the role of 

the components of the cellular machinery responsible to regulate the processes of alternative 

splicing and their implication in the development and progression of T2DM is still to be fully 

defined. 

 

1.4.1.2. Dysregulation of alternative splicing in obesity and non-alcoholic fatty liver disease 

Obesity represents a global health problem with increasing incidence that has been 

largely reported to be associated to the dysregulations of the splicing of several genes linked to 

this pathology (109-112). Specifically, it has been found the existence of a mutation in intron 14 of 

the low-density lipoprotein (LDL)-receptor (LDLR) mRNA, which led to the discovery of a new 

cryptic splice site that occurred in patients with familial hypercholesterolemia (FH). In these 

patients, this new splice site consisting in a 81-bp insert in LDLR gene, encoded an in-frame 

insertion of new 27 aminoacids in the mutated protein, adding more complexity to the knowledge 

of LDLR and alternative splicing in the context of FH (113). Other known spliced variants in the 

context of obesity are the LPIN1 isoforms α and β (based on the skipping or inclusion of exon 7, 

respectively), which exhibit different roles in adipogenesis (109). Whereas LPIN1-α is necessary 

for adipocyte differentiation, the predominant effect of variant LPIN1-β is to induce lipogenic 

genes as well as adipocyte hypertrophy, leading to lipogenesis (109). In this context, it was 

described that the splicing factor TRA2B (also known as SRSF10) inhibits the inclusion of exon 7 

in LPIN1 pre-mRNA promoting the generation of LPIN1α (114,115), and that the expression of 

TRA2B is reduced in liver and muscle from obese mice and humans, contributing to enhanced 

lipogenesis (116). In this line, and supporting the importance of the splicing process in the 

development of obesity, mice lacking the splicing factor KHDRBS1 (also known as SAM68) 

presented a lean phenotype due to a decreased adipogenesis and an increase in energy 

expenditure, showing protection against obesity, insulin resistance and glucose intolerance 

induced with a high fat diet (117,118). Interestingly, genome-wide analysis in adipose tissue of 

these mice revealed an alteration in the alternative splicing of mTOR, with reduced full-length 

mTOR expression and an increase of mTORi5 isoform that retains intron 5 and exhibit a shorter 
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transcript. This reduction implies a decrease in adipocyte cell size as well as a prevention in 

weight gain (119). 

 

As expected, some splicing factors have also been previously related to liver 

development and metabolism, as it is the case of the polypyrimidine tract binding protein PTBP1 

(HNRNPI), which has been described as a regulator of the splicing of Fatty acid desaturase 2 and 

3 (FADS2 and FADS3), implicated in fatty acid elongation and desaturation (120), and multiple 

genes involved in cholesterol synthesis and uptake, including LDLR, MVK, HMGCS1, and 

PSCK9 (121). Also, studies with the splicing factor SND1 in rats have indicated that steatogenic 

conditions promote its action on low density lipid droplets (122). Furthermore, the splicing of the 

FADS3 has been observed to be modulated in the liver of baboons in response to different diets 

and in human liver HepG2 cells after treatment with polyunsaturated fatty acids (123). 

 

In this scenario, several studies have demonstrated that NAFLD development and 

progression result from a combination of environmental and genetic factors (38,124-126). Many 

of these studies have performed transcriptome profiling by microarray in humans with NAFLD 

and assessed changes in gene expression; however, most studies did not address changes in RNA 

alternative splicing (37,127-129). Microarray analysis of 19 normal, 10 steatotic and 16 NASH 

human liver identified RNA splicing as a process that may play a role in NAFLD progression 

(124). Also, studies in diet-induced obesity and NASH mouse models have shown alterations in 

the expression of splicing factors. Moreover, NAFLD and NASH are associated with changes in 

the mRNA expression of certain splicing factors in the liver of obese patients (116,124,130,131). 

However, the possible contribution of these changes in the expression of RNA splicing factors to 

the pathophysiology of NAFLD and NASH has not been yet explored. 

 

1.4.2. Alternative splicing in Cancer 

Dysregulation of alternative splicing is frequently observed in cancer and has been 

described as an important factor in several types of tumor pathologies (132). In fact, aberrant 

splicing process is becoming recognized as one common hallmark for tumor development and 

progression (41,89,133). It has been postulated that cancer cells progress by developing 

mechanisms that facilitate the adaptation to their microenvironment and, in this sense, alternative 

splicing can provide this genetic plasticity that enable cancer cells to grow and progress through 

the generation of oncogenic isoforms. Numerous abnormal splicing patterns have been reported 

and associated with tumor biology, especially, an elevated number of alternative splicing 
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isoforms have been implicated in almost all aspects of cancer development (134,135). There are 

plenty of examples of proto-oncogenes, tumor suppressor genes, or genes related with apoptosis, 

cell cycle control, invasion, metastasis or angiogenesis, whose alternative splicing is altered, 

producing isoforms that favor the transformation process, the acquisition of invasive properties 

and, in some cases, confer resistance to chemotherapies (7,77,136,137). Of special importance in 

those cancer types with an endocrine component may be the aberrant splicing processes that may 

occur in elements of key regulatory endocrine-metabolic systems, such as the somatostatin 

system. 

 

Somatostatin, a neuropeptide mainly produced in central nervous system and 

gastrointestinal tract, exerts a broad range of biological functions in endocrine and non-endocrine 

tissues, including inhibition of hormone secretions or cellular growth (43,138). Somatostatin 

binds to five G-protein coupled receptors (GPCRs) subtypes with 7-transmembrane-domains 

(7TMDs), named somatostatin receptors SST1-5, to modulate diverse downstream pathways 

(139). The five SSTs are encoded by five separated genes and exert distinct effects depending on 

the particular constellation of SSTs available on cell surface, as they can interact with themselves 

or with other receptors (140,141). Somatostatin binding to SST1-5 can trigger antitumor effects, 

inhibiting cell proliferation, angiogenesis and hormone secretion and/or inducing apoptosis 

(139,142). Consequently, somatostatin synthetic analogues (SSA), like octreotide and lanreotide, 

were developed and are used as medical therapy for different tumor pathologies including 

pituitary or NETs (139,142). Nevertheless, although SST1-5 are abundantly expressed in other 

cancers, such as prostate, breast, or hepatocellular carcinoma (HCC), their potential clinical value 

in these pathologies is still to be defined (143-145). 

 

In this scenario, several pieces of evidence have demonstrated that the somatostatin 

system is more complex than originally envisioned. Indeed, recent studies have revealed the 

existence of diverse mechanisms that increase variability of GPCRs, including the SST1-5, as is 

the case of alternative splicing processes that could generate non-canonical truncated variants of 

different regulatory systems with less than 7TMDs (146-149). These truncated forms are 

functionally active by modulating the physiology of their canonical isoforms or by exerting 

separate, independent functions (148,149). Moreover, presence of these truncated receptors is 

commonly associated to development/progression of tumor pathologies, as is the case of the 

growth hormone-releasing hormone receptor (GHRHR) (146,147), cholecystokinin receptor (150) 

or adrenergic receptors (151). In this context, our group has also identified a non-canonical 
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truncated splicing variant of SST5 that only harbors 4TMDs and was therefore named SST5TMD4 

(Figure 7). This splicing variant is generated by cryptic splice sites in the coding sequence and the 

distal, non-coding 3’UTR of the SST5 gene (140). The SST5TMD4 is barely expressed in normal 

tissues but is overexpressed in different tumor pathologies as pituitary and NETs, as well as in 

breast, prostate, and thyroid cancer (48,140,152-156). More importantly, SST5TMD4 acts as an 

oncogene in these pathologies, wherein its presence is associated to resistance of SSA and with 

malignancy features, as it correlates with clinical parameters of aggressiveness and promotes cell 

proliferation, migration, invasion and exacerbated hormone secretion (48,140,152-157). 

Remarkably, a unique feature of this truncated SST5TMD4 receptor is the presence of 4TMDs, 

which implies that its C-terminal tail is exposed to the extracellular region (140,158). In this 

regard, an increasing number of studies suggest that extracellular fragments derived from 

shedding of plasma membrane receptors can play relevant functional roles in the 

development/progression of tumor pathologies and might, therefore, provide novel 

diagnostic/therapeutic tools for these pathologies (137,159-161). Therefore, since SST5TMD4 

presents only 4 TMDs and its C-terminal tail is directed towards the extracellular matrix (ECM) 

instead of the cytoplasm (152,158), the extracellular region of SST5TMD4 may be susceptible to 

the action of proteases confined in the ECM such as metalloproteinases (MMPs), a group of zync- 

and calcium-dependent proteolytic enzymes capable to degrade the majority of ECM proteins, 

such as collagen and elastin, as well as to regulate the activity of other proteinases, growth factors 

and cell receptors (162,163). 

 

 

 

 

 

 

 

 

 

 

 



 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Structure of human SST5 (above) and its truncated variant SST5TMD4 (below). Adapted 

from (164). 
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2. Aims of the study 
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Based on the existing evidence mentioned until this point, the present Doctoral Thesis was based 

on the HYPOTHESIS that the alteration of the normal, physiologic splicing process could be 

closely implicated in the development and progression of endocrine-metabolic diseases (T2DM 

and NAFLD) and cancer. For this reason, the GENERAL AIM of this study was to explore the 

idea that the altered process of mRNA splicing (including alterations on the spliceosome 

components, splicing factors and surrogate splicing variants with pathological potential) could 

represent a novel source for the identification of diagnostic, prognostic and therapeutic targets in 

highly prevalent and health-threatening diseases such as endocrine-metabolic pathologies and 

cancer. To achieve this main aim, we have proposed the following specific objectives: 

 

OBJECTIVE 1: To determine the relationship between the dysregulation of the splicing 

machinery components and the development of T2DM. This was pursued 

through the analysis of the expression pattern of selected spliceosome components 

and splicing factors in PBMCs, at fasting and post-prandial status, of individuals 

at high risk of T2DM development that were followed during 5 years and their 

correlation with the development of T2DM, as well as through the analysis of the 

in vitro modulation of the expression of selected spliceosome components and 

splicing factors by fasting and prost-prandial serum of these patients. 

 

OBJECTIVE 2: To explore the effects of healthy dietary interventions (Mediterranean and 

Low-Fat diets) on the expression pattern of the splicing machinery in PBMCs 

from patients at high-risk of developing T2DM before and after 3 years of dietary 

intervention. The changes in the expression pattern of selected spliceosome 

components and splicing factors after the dietary interventions were analyzed 

considering the type of diet and the development or not of T2DM and were 

correlated with the medical evolution and clinical parameters of the patients. 

 

OBJECTIVE 3: To determine the relationship between the dysregulation of the splicing 

machinery components and the development of NAFLD. To do that, a novel and 

comprehensive approach to identify alterations in the expression pattern of 

spliceosome components and splicing factors that could be associated to the 

development of hepatic steatosis was implemented in liver biopsies from obese 

patients with different degrees of liver steatosis and correlated with clinical 

parameters. Furthermore, the consequences of the modulation of the expression of 
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selected spliceosome components and splicing factors on hepatic liver 

accumulation and de novo lipogenesis was explored in vitro. 

 

OBJECTIVE 4: To further expand our knowledge on the pathological interplay between 

aberrant splicing processes and cancer, through a more profound characterization 

of the oncogenic role of the truncated receptor SST5TMD4 on endocrine-related 

cancers. Specifically, the functional and mechanistic consequences of the 

SST5TMD4-specific, splicing derived C-terminal domain peptides were evaluated 

in different cancer cells types. 
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           3. Results and general discussion 
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The results generated in the present Doctoral Thesis and their discussion have been 

summarized in this section and structured in four chapters, corresponding to each objective of 

the Thesis described above and included in four scientific manuscripts directly derived from this 

Doctoral Thesis [3 accepted manuscripts in top ranking journals of the “Medicine, Research & 

Experimental”, “Endocrinology & Metabolism” and “Medical Laboratory Technology” fields, 

and a fourth manuscript that is under review in a specialized journal], which can be found at the 

end of the Thesis.  

 

3.1. Changes in Splicing Machinery Components Influence, Precede, and Early Predict the 

development of Type 2 Diabetes: From the CORDIOPREV Study (Article I) 

 

In this study, we aimed to determine the relationship between the dysregulation of the 

splicing machinery components and the development of T2DM through the analysis of the 

expression pattern of selected splicing machinery components in the PBMCs of patients at high 

risk to develop T2DM due to the presence of cardiovascular disease (CVD), using a microfluidic 

custom-made qPCR-based array. PBMCs were used since gene expression patterns in these cells 

commonly reflect and accompany disease-characteristic expression patterns (165) and may serve 

as a general sentinel, biosensor and early indicator of the instauration of metabolic disease. 

Patients included in this study were followed-up during 5-years [individuals that were included 

in the CORDIOPREV study (166)]. All the patients that developed T2DM during the 5-years 

follow-up (Incident-T2DM; n=107) and randomly-selected matched controls (non-T2DM; n=108) 

were included in the study. This approach revealed that the expression levels of key splicing 

machinery components (e.g. RNU2, RNU4 or RNU12) were significantly altered in fasting and 

postprandial PMBCs from Incident-T2DM compared to non-T2DM controls at the inclusion of 

the study (before the development of T2DM) and associated with T2DM development. Indeed, 

the molecular fingerprints comprised by the fasting and the postprandial levels of certain of these 

splicing machinery components were capable to predict the future development of T2DM in 

individual patients with high precision (AUC=0.881, TPR=0.801, TNR=0.700), after cross-

validation analysis, which even outperforms the capacity of classical predictors of T2DM 

development, such as HbA1c or FINDRISK (AUCs<0.66 in our cohort). Therefore, this splicing 

machinery-associated molecular fingerprint could become a valuable, non-invasive, new tool for 

early risk assessment of T2DM in clinical practice in order to prevent disease development. In 

addition, patients with low PBMCs expression levels of specific splicing machinery components, 

including RNU2, RNU4 or RNU12, which we have shown to be modulated by the serum of 
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Incident-T2DM patients, were at higher risk (OR>4) of T2DM development as compared with 

those patients with high PBMC levels of these components.  

 

In addition, this study demonstrates that the expression of some splicing machinery 

components is altered during the postprandial phase, which is consistent with previous results 

demonstrating a regulatory response of specific splicing variants to the postprandial 

environment (167,168). This suggests that the changes observed in the splicing machinery during 

the postprandial phase may be responsible for the regulation of the expression of particular 

splicing variants under these conditions (90,100,104), which could be essential to the appropriate 

response of the organism to metabolic challenges and disturbances. Moreover, our results also 

show that the response of key splicing machinery components to metabolic insults is altered in 

individuals who will develop T2DM (Incident-T2DM patients), but especially in those 

developing T2DM during the first two years of follow-up. Therefore, since postprandial 

alterations are closely related to the phenotypic flexibility, which is strongly linked to T2DM 

development (26), these data primarily demonstrate that the alteration in the splicing machinery 

precedes the instauration of T2DM, thereby suggesting its putative implication as a driving force 

in the development of this pathology.  

 

Based on all the information mentioned above, it is tempting to propose that the splicing 

machinery could be acting as a biosensor of the whole body metabolism to adapt cell gene 

expression to the pathophysiological conditions, and that its dysregulation could lead to an 

unbalance in the landscape of splicing variants present in a given cell at a given moment 

(90,100,169), which may be associated to the instauration of T2DM (5,170). This idea is further 

supported by two pieces of evidence presented herein. First, this study demonstrates that low 

fasting or postprandial expression levels of certain splicing machinery components drastically 

increase the relative risk of T2DM development in these patients, suggesting that a dysregulated 

expression of certain splicing machinery components could augment the risk of developing 

T2DM. Secondly, in vitro studies demonstrate that the expression of relevant spliceosome 

components, specially RNU2, RNU4 or RNU12, which are key elements responsible for the 

appropriate function of the spliceosome (171), can be modulated by baseline fasting and/or 

postprandial serum from Incident-T2DM patients. This observation might suggest the existence 

of specific factors in the serum of these patients capable to modulate the expression of relevant 

spliceosome components and, therefore, the function of the splicing machinery. In this sense, 

previous studies have found a relationship between circulating factors and the modulation of 
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splicing factors in different tissues. For example, it has been described that insulin signaling can 

up-regulate the expression of the splicing factor SRSF1 in pancreatic beta cells, inducing the 

splicing of the insulin receptor to generate the INSR-B isoform (91). The same study also found a 

regulation of the protein levels of the splicing factor MBNL1 by high glucose levels. Furthermore, 

the splicing of the Fatty acid desaturase 3 has been observed to be modulated in the liver of 

baboons in response to different diets and in human liver HepG2 cells after treatment with 

polyunsaturated fatty acids (123).  

 

Therefore, this study strongly supports the notion that altered expression of spliceosome 

components and splicing factors may be associated with the development of T2DM, preceding 

the clinical instauration of this pathology and, therefore, could likely serve as a sensor and early 

predictor for T2DM development in CVD patients.  

 

3.2. Dietary intervention modulates the expression of the splicing machinery in patients at 

high risk of type 2 diabetes development: from the CORDIOPREV study (Article II) 

 

This study, also conducted within the CORDIOPREV study framework, had the objective 

to evaluate the influence of healthy dietary interventions in the expression pattern of the splicing 

machinery components. Specifically, we evaluated the effect of the consumption of two healthy 

diets [Mediterranean (MedDiet) or low-fat (LF) diet] in the PBMCs from the same 215 patients 

included in the previous study (107 patients that developed T2DM during the 5-years follow-up 

and 108 randomly-selected matched controls), at baseline and after three years of dietary 

consumption. Specifically, our study provides primary evidence that a dietary intervention can 

distinctly alter the expression pattern of the splicing machinery, both spliceosome components 

and splicing factors, in humans at risk of T2DM. In particular, the results demonstrate that the 

consumption of two healthy diets (MedDiet and LF diet) during three years can modulate the 

expression pattern of key spliceosome components and splicing factors in PBMCs from the 

patients enrolled in the CORDIOPREV study, including the overexpression of some molecular 

components, like SPFQ, RBM45, RNU6, etc. and the downregulation of others, including RNU2 

and SRSF6. Interestingly, some of the changes observed in the expression levels of certain splicing 

machinery components were closely associated with relevant clinical features, as is the case of 

the increase in the expression levels of the splicing factor SPFQ, which was inversely correlated 

with the decrease in HOMA-IR and HIRI indexes observed in the population. The finding of a 

diet-related long-term modulation of the expression of the splicing machinery components could 
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represent a novel valuable piece of information for two reasons. First, because it unveils that the 

splicing process may represent an adaptive mechanism in response to different nutritional 

conditions, and that this mechanism could be in place not only in circulating PBMCs but may 

also operate in cell types from other tissues and organs tightly coupled to nutrient-dependent 

metabolic homeostasis (e.g. liver, pancreas, adipose tissue), an avenue that is indeed worth 

exploring. Actually, we and other have already found the delicate and important role that the 

regulation of the splicing machinery can play in those organs (6,105,172-174). Secondly, inasmuch 

as PBMCs can be an accessible and suitable sentinel to detect relevant changes related to nutrient- 

and diet-dependent metabolic homeostasis, our current results support the idea that changes in 

the expression of key splicing machinery components could provide a fine screening marker for 

the development or progression of T2DM and their diet-related dynamics. Indeed, within the 

CORDIOPREV study, the long-term intake of a MedDiet, rich in olive oil, or a LF diet improved 

insulin sensitivity and beta-cell function (175), and therefore the increase in the expression of 

specific splicing factors found herein under both diets, and their inverse correlation with insulin 

resistance indexes, strongly suggest that the molecular changes might be related to the beneficial 

consequence of the healthy diet consumption and, therefore, that they could represent a novel 

mechanism linking healthy dietary intervention and the improvement the metabolic status of the 

patients and the protection from cardiovascular complications. Given the very scarce information 

available on the functional roles and implications of many of the molecules identified in the 

present study to be altered in PBMCs (e.g. SPFQ, RBM45, RNU6, etc.) the present findings open 

novel, unexplored avenues in this field of research.  

 

One of the findings from this study that we consider most noteworthy is that the diet-

induced alterations in the splicing machinery of PBMCs was independent of the type of healthy 

diet in which CORDIOPREV participants were enrolled (MedDiet or LF Diet), except for three 

splicing factors (SNW1, SPFQ and NOVA1) that showed a more pronounced modulation in 

patients under the LF Diet. To date, and to the best of our knowledge, nothing has been reported 

regarding the influence of diet intervention in the modulation of the expression of SNW1, SPFQ 

and NOVA1. However, some of these factors have been described to contribute to the alternative 

splicing of key genes whose splicing processing changes in response to a fatty diet (174). 

Previously, several studies have shown that PBMCs gene expression pattern is influenced by the 

diet (176-179) and that this might reflect changes related to both metabolic and immune responses 

(180,181). In addition, it has been demonstrated that the splicing process of key regulatory 

proteins for metabolic homeostasis, like the receptors for insulin or leptin, can be markedly 



 39 

influenced by nutrient metabolism, directly or indirectly (78,123). Thus, it seems reasonable to 

think that those splicing-related changes would rely on upstream changes in the function of the 

machinery responsible for generating the splice variants. However, little or nothing is known in 

this regard in PBMCs, for there are no reports on how diet can influence the expression of the 

components of the spliceosome and the splicing factors, which altogether are responsible of the 

modulation of the splicing process. Nevertheless, in this context, some studies have highlighted 

that nutritional status can induce changes in the activity of serin-arginine (SR) proteins, an 

important family of splicing factors, further supporting the contention that different nutrients 

may be able to modulate the expression of metabolic genes at the level of its splicing processing. 

Specifically, it has been described that insulin signaling can up-regulate the expression of the 

splicing factor SRSF1 in pancreatic beta cells, inducing the splicing of the insulin receptor to 

generate the INSR-B isoform (91). The same study also found a regulation of the protein levels of 

the splicing factor MBNL1 by high glucose levels. In addition, other splicing factors belonging to 

the serin-arginine (SR) proteins family, SRSF2, is decreased under Vitamin E-deficient diet in the 

liver (182). Thus, although still limited, growing evidence, included the results from this study, 

points to a link between diet and nutrient and regulation of the splicing process, including its 

underlying operating machinery. 

 

Another intriguing implication of our present results relates to the predictive capacity of 

studying changes in the splicing machinery in at-risk patients. To be more specific, nutrient-

induced changes in specific splicing machinery components may provide hints on the predictive 

potential and possible functional correlation of key molecules, which had not been explored 

hitherto in this regard. Thus, within this study, regardless of the type of dietary intervention, the 

expression of some of the splicing factors studied was differentially altered in patients that 

develop T2DM after the 5 years of the study compared to non-T2DM subjects. For example, 

RNU12, a component of the minor spliceosome, showed a significant increase after the 3 years of 

dietary intervention in non-T2DM patients. Interestingly, we have previously described that the 

expression of this small nuclear RNA (snRNA), which is essential to form U12 snRNP and carry 

out the appropriate splicing of type 12 introns (183), was lower, at baseline (inclusion of the 

study), in Incident-T2DM compared to non-T2DM patients and that was associated with the risk 

of T2DM development (172). Therefore, since lower expression levels of RNU12 were associated 

with higher risk of T2DM, the dietary-induced increase in the expression of this component in 

non-T2DM may be associated to the protective effects of the healthy dietary consumption. 

Furthermore, in the same study, 4 hours incubation with baseline postprandial serum from 
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Incident-T2DM patients induced a significant reduction of RNU12 expression compared to non-

T2DM treated PBMCs from healthy patients (172). Therefore, the modulation in the expression 

of these spliceosomal components may represent a link between the dietary intervention and the 

beneficial effects on the metabolic status of the patient. Remarkably, the difference in RNU12 

expression, at year 3, between incident and non-T2DM patients, was more pronounced under LF 

Diet. Thus, although the possible mechanisms linking nutrient-induced changes in the splicing 

machinery, their functional consequences and the regulatory implications thereof are still to be 

fully elucidated, our present study provide suggestive evidence that it is worth exploring both 

the mechanistic/functional and the predictive components of this plausible link, for it may 

provide original, valuable biological knowledge as well as practical information for the patients. 

 

Altogether, this study reveals that expression of the splicing machinery components in 

PBMCs from patients at risk of T2DM can be notably and selectively influenced by long-term 

dietary intervention; also, that the two dietary interventions tested herein, MedDiet and LF Diet, 

induced remarkably similar changes on the expression of spliceosome components; and finally, 

that there are distinct, diet type-induced changes in PBMCs from both non-T2DM and incident-

T2DM patients, that may have an as yet unknown functional significance. Therefore, we propose 

that the machinery that controls and performs the alternative splicing process and is 

consequently responsible for changes in the pattern of functionally and pathologically relevant 

splice variants in the regulation of metabolic homeostasis is a plausible target to be operated by 

dietary intervention. As such, our results pave the way to explore in experimental models the 

possible mechanistic role and relevance of the splicing machinery and its components in diet-

related metabolic regulation, and the investigate the value of screening changes in specific 

splicing machinery components to monitor and early predict relevant diet-related changes in 

patients at risk of T2DM. 

 

3.3. Dysregulation of the splicing machinery is associated to the development of non-alcoholic 

fatty liver disease (Article III) 

 

The present study aimed to determine the relationship between the dysregulation of the 

splicing machinery components and the development of NAFLD, which represents a novel and 

comprehensive approximation for understanding the molecular dysregulations underlying the 

development of NAFLD in obese patients as compared to non-steatotic obese patients. 

Considering that hepatic steatosis is the first and reversible stage of NAFLD, improving the 



 41 

understanding of the pathogenesis of liver steatosis would have a critical impact for preventing 

NAFLD progression (38,39). In this study, 41 liver biopsies from non-alcoholic obese individuals 

with or without hepatic steatosis that underwent bariatric surgery were collected and the 

expression pattern of splicing machinery components was determined using a microfluidic 

custom-made qPCR-based array. This experimental approach has shown that the liver of steatotic 

obese patients exhibit an overt but differential (patient-dependent) alteration of the cellular 

machinery responsible for the regulation of the splicing process (spliceosome components and 

splicing factors). Specifically, an alteration in a representative set of splicing factors (PTBP1, 

SRRM1, SND1 or SRSF2) have been shown in the liver of obese steatotic patients. Some of these 

altered splicing factors have been previously related to liver development and metabolism, as it 

is the case of the polypyrimidine tract binding protein PTBP1 (HNRNPI), which has been shown 

herein to be increased in the liver of steatotic patients, and has been reported to regulate the 

splicing of FADS2 and FADS3, which are implicated in fatty acid elongation and desaturation 

(120), and multiple genes involved in cholesterol synthesis and uptake including LDLR, MVK, 

HMGCS1, and PSCK9 (121). Also, studies with the splicing factor SND1 in rats have indicated 

that steatogenic conditions promote its action on low density lipid droplets (122). However, it is 

also described herein a dysregulation in some elements of the spliceosome core (RNU2, RNU6, 

SF3B1, RNU6ATAC or RNU4ATAC), which are essential for the appropriate recognition of intron 

sequences and the assembly of spliceosome to initiate the splicing process (184). These results 

show that a spliceosome-associated molecular fingerprint is able to discriminate between 

steatotic and non-steatotic livers in obese patients (with AUC>0.96).  

 

Remarkably, the expression pattern of the spliceosome components and splicing factors 

analyzed herein was not associated with the grade of hepatic steatosis but seemed to identify 

three discrete molecularly defined subpopulations of steatotic obese patients characterized by the 

dysregulated expression of certain spliceosome components and splicing factors (Clusters A, B 

and C). Interestingly, these clusters were associated to specific clinical characteristics and also 

with a differential response to bariatric surgery after one year. In particular, patients included in 

the Cluster A, which were mainly characterized by altered expression of SRSF4, RBM22 and 

TRA2B compared to non-steatotic and Clusters B and C steatotic patients, presented an increase 

in glucose plasma levels, indicating a possible relationship between this splicing factors and 

glucose homeostasis. Indeed, one of the splicing factors dysregulated in this cluster of patients 

(TRA2B, also named SRSF10) has been previously described in relation to obesity, wherein 

TRA2B seems to be downregulated in liver samples from insulin resistant humans with obesity 
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(130). Similarly, patients in Cluster B were characterized by altered hepatic expression of RBM45 

and TRA2A and presented higher triglycerides and GGT levels at the diagnosis. This represents 

a very interesting finding inasmuch as hepatic TRA2A has been found to be modulated in 

response to estrogens in order to control the alternative splicing of class B scavenger receptors BI 

(SR-BI) and BII (SR-BII) (185), which are crucial player in the hepatic uptake of triglycerides (186). 

Finally, obese patients included in Cluster C presented elevated levels of insulin and 

aminotransferases and a poor evolution of biochemical parameters and of the recovery in the 

grade of steatosis after bariatric surgery. Interestingly, SND1, one of the splicing factors whose 

altered expression characterized Cluster C, is a splicing factor associated to the physiological 

function and pathological transformation of the liver (122,187). Indeed, as it has been mentioned 

in the previous articles, hepatic SND1 has been shown to be associated to different aspects of lipid 

metabolism in the liver and with the development of hepatic steatosis (122).  

 

Furthermore, the fact that these spliceosome alterations were not associated with the 

grade of hepatic steatosis, suggest their role as triggers for initiating fat deposition within the 

liver. Indeed, the in vitro results suggest that alterations in splicing machinery components could 

precede the development of hepatic steatosis in obese patients since the modulation of the 

expression of PTBP1, SRSF4, RBM22, RBM45, SND1 and RAVER1 lowered lipid accumulation in 

HepG2 cells, while an exogenous overload of oleic acid (OA) was not able to alter the expression 

of the mentioned spliceosome components and/or splicing factors. Remarkably, these results also 

indicate that the dysregulations in the expression of certain splicing machinery elements could 

have an impact on other key hepatic processes, inasmuch as silencing of RBM22 and SND1 

decreased the expression of FASN and SCD enzymes, indicating a possible connection with de 

novo lipogenesis in the liver. In fact, it has been described that the inhibition of SRPK2, a regulator 

of the splicing factors RNA-binding SR proteins, results in intron retention and mRNA instability 

of lipogenic genes (188). It is also worth noticing that, although OA treatment did not alter the 

expression of these splicing machinery components, other metabolic factors, such as glucose, 

leptin, IGF1 or PA, modulated the expression of some of these splicing factors. In this sense, 

several studies have previously shown a regulation of specific splicing factors by metabolic 

factors as it has been discussed in the above-described articles.  

 

Therefore, this study demonstrates a novel relationship between the dysregulation of 

splicing machinery and the development of NAFLD and its associated metabolic co-morbidities, 

as well as with the biochemical improvement after bariatric surgery. These findings shed light to 
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the possible underlying molecular mechanisms responsible for the development of hepatic 

steatosis in obese patients and, thus, provide novel information to explore the development of 

efficient screening strategies, diagnostic, prognostic or therapeutic tools for obesity-related 

NAFLD, which is becoming one of the main source of morbidity and mortality in developed 

countries. 

 

3.4. Peptides derived from the extracellular domain of the somatostatin receptor splicing 

variant SST5TMD4 increase malignancy in multiple cancer cell types (Article IV) 

 

This study aimed to further expand our knowledge on the pathological interplay between 

aberrant splicing processes and cancer, through a more profound characterization of the 

oncogenic role of the truncated receptor SST5TMD4 on endocrine-related cancers. SST5TMD4 

constitutes an example of the oncogenic consequences of aberrant splicing processes since this 

spliced truncated receptor is markedly overexpressed in several tumors, wherein its presence is 

associated to higher aggressiveness and/or resistance to medical treatment with SSAs (48,140,152-

155,157). Like other truncated receptors (146-148), it exhibits a preferential intracellular 

localization and disrupts the function of other SSTs, mainly SST2 and SST5 (140), and inhibits the 

ability of MCF-7 and SST2-transfected CHO-K1 cells to respond to somatostatin/SSAs (152). 

However, a substantial proportion of SST5TMD4 (140) also resides at the cell membrane, wherein 

it acts as a functional receptor capable to mediate ligand-induced intracellular responses to 

somatostatin and cortistatin (140,155,157). This unique location at the cell membrane, together 

with its distinctive feature of harboring only 4 TMDs, confers SST5TMD4 one of its most relevant 

particularities: its C-terminal tail is exposed towards the ECM, rendering this extracellular region 

as a potential substrate for MMPs, which are tightly associated to cancer angiogenesis, 

invasiveness and metastasis (163).  

 

In this study, we performed a detailed in silico analysis that revealed the existence of two 

putative cleavage sites in the unique SST5TMD4 C-terminal extracellular domain, which could 

be used by MMP2, 9 and 14 and/or MMP16, respectively, to generate three derived peptides with 

7, 10 and 17 aminoacids. MMPs are able to degrade the majority of ECM proteins, including cell 

receptors (162,163), and have been functionally linked to the aggressiveness of different tumors 

types (163,189-192). These tumor-promoting features of MMPs may be, at least in part, mediated 

by the processing of key receptors present at the cellular surface, which can generate receptor-

derived peptides with oncogenic capacity (137,160,161).  
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We next demonstrated that SST5TMD4-derived peptides are capable to enhance the 

malignant characteristics of multiple cancer cells derived from diverse tumor pathologies as 

NETs, breast, prostate and liver cancer; however, some of these actions seem to exhibit different 

dynamics (i.e. proliferation rate) or, even, be cell-line dependent (i.e. migration or tumorosphere 

formation). Certainly, SST5TMD4-derived peptides were able to drastically increase the capacity 

of the BON-1 cells to proliferate, migrate, and induce tumorsphere formation; while in the QGP-

1 cells, SST5TMD4-derived peptides clearly increased tumorsphere formation and hampered the 

cellular response to somatostatin, but exerted lesser effects on proliferation and had no effect on 

migration rate. In this sense, SST5TMD4 has been previously found overexpressed in 

gasteroenteropancreatic-NETs (GEP-NETs) and associated to aggressiveness, metastasis and 

worse prognosis. Consistent with the present results, SST5TMD4 transfected BON-1 cells showed 

an increase in proliferation rate (156), whereas SST5TMD4-transfected QGP-1 did not (156). These 

differences could relate to the distinct nature of the two NET cell models (156,193), since QGP-1 

cells have constitutive high expression of somatostatin, which imparts a constant inhibition 

pattern that might hinder the stimulatory action of the SST5TMD4-derived peptides. Similar 

divergences were found in breast and prostate cancer cell models. Thus, whereas MDA-MB-231 

cells exhibited an increase in cell proliferation, migration and tumorspheres formation in 

response to the SST5TMD4-derived peptides, in MCF-7, a stimulatory effect of the three peptides 

was only found in cell migration capacity and tumorspheres formation, these differences being 

probably attributable to the distinct origin and aggressiveness of each cell line (194). Consistent 

with these results, it was previously observed that forced overexpression of SST5TMD4 in MCF-

7 and MDA-MB-231 cells increased proliferation, cell invasion and/or tumorsphere formation 

capacity (152,155). In the case of prostate cancer cells, the bone metastasis-derived PC-3 cell line 

showed increased cell proliferation and migration in response to the treatment with the 

SST5TMD4-derived peptides. In contrast, in 22Rv1 cells, a cell line more representative of the 

early disease, exhibited a clear stimulatory effect of the three peptides only on cell proliferation 

(195,196). It should be noted that SST5TMD4 is overexpressed in prostate cancer, especially in 

metastatic disease, and has been shown to hamper the response to SSAs (48). Indeed, SST5TMD4 

has been shown to play a functional role in prostate cancer cells, wherein its overexpression 

enhanced cell proliferation, migration and promoted tumor growth in vivo (48). Of note, this 

study describes, for the first time, an increase in cell proliferation and migration in the HCC cell 

line SNU-387 in response to SST5TMD4-derived peptides. These results open a new research 

avenue in the study of this pathology in that, although the presence and putative functional role 

of the SST5TMD4 has not yet been investigated in detail, it has been reported that HCC could 
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present resistance to SSAs (143,145), an important therapeutic limitation that has been shown to 

be associated, in several instances, with the presence of the SST5TMD4 (48,153,157). Moreover, 

these data on HCC cells demonstrate that the malignancy-prone effects of the SST5TMD4-derived 

peptides could have a wide range of action across different cancer types. 

 

SST5TMD4-derived peptides could exert their function through the activation of 

different cancer-relevant signalling pathways (197-199), such as PI3K/AKT, MEK/ERK, but not 

JNK, in different cancer cell lines. In line with this, it has been also previously reported that 

SST5TMD4 exerts its functions via modulation of several pathways, including activation of 

PI3K/AKT (152) and MEK/ERK (48,152), two signalling pathways associated to malignancy 

promotion in several tumor pathologies (197-199). Interestingly, the three SST5TMD4-derived 

peptides induced a clear upregulation of the proliferation markers CCND3 and MKI67, also used 

to assess the grade and differentiation of NETs (200), the MMP2, involve in ECM degradation 

(163) and likely in the own production of SST5TMD4-derived peptides, and ACTR2/3 complex, 

closely related to cell migration and invasion (201). Furthermore, two well-accepted stem cells 

surface markers CD24 and CD44 were also increased in BON-1 cells in response to the three 

SST5TMD4-derived peptides.  

 

Altogether, this study suggests that peptides derived from the spliced SST5TMD4 

receptor could contribute to the strong oncogenic role of SST5TMD4 observed in multiple tumor 

pathologies, and, therefore, represent potential candidates to identify novel diagnostic, 

prognostic or therapeutic targets in cancer. 
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4. General conclusion 
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The results presented in this Doctoral Thesis constitute novel, valuable and germane information 

supporting the contention that the dysregulation of the splicing process, including the alterations 

in the spliceosome components, the splicing factors or the surrogate markers of the splicing 

process, is closely related to the instauration and/or development of several and diverse 

pathologies such as diabetes, NAFLD or cancer. The main conclusions associated to each 

objective/article included in the Thesis are described below: 

 

Article I 

1) The expression pattern of selected spliceosome components and splicing factors is altered 

in the PBMCs of high-risk patients with CVD that develop T2DM compared to non-

T2DM control patients. This alteration may be associated with the development of T2DM, 

preceding the clinical instauration of this pathology. 

2) The expression pattern of these splicing machinery components can be dynamically 

modulated during the post-prandial phase. 

3) The existence of a spliceosome-associated molecular fingerprint is capable to early 

predict the future development of T2DM in individual patients with CVD, with high 

precision, outperforming the capacity of classical predictors of T2DM development. This 

molecular fingerprint could become a valuable, non-invasive, new tool for early risk 

assessment of T2DM in clinical practice to prevent disease development. 

 

Article II 

4) The expression pattern of the splicing machinery components in PBMCs from patients at 

risk of T2DM can be notably and selectively influenced by long-term dietary 

intervention. 

5) The two dietary interventions tested herein, Mediterranean Diet and Low Fat Diet, 

induced remarkably similar changes on the expression of spliceosome components. 

6) There are distinct, diet type-induced changes in PBMCs from both non-T2DM and 

incident-T2DM patients, that may have an as yet unknown functional significance.  

 

Article III 

7) The expression pattern of selected spliceosome components and splicing factors is 

dysregulated in the liver of steatotic obese patients compared to non-steatotic patients. 

8) This alteration is not associated with the grade of hepatic steatosis but seems to identify 

three discrete molecularly defined subpopulations of steatotic obese patients 



 50 

characterized by the dysregulated expression of certain spliceosome components and 

splicing factors and associated with specific metabolic co-morbidities, as well as with the 

biochemical improvement after bariatric surgery.  

9) The dysregulation in the expression of the splicing machinery components could play a 

role in the initiation of fat deposition within the liver, wherein these alterations in splicing 

machinery components could precede the development of hepatic steatosis, shedding 

light to the possible underlying molecular mechanisms responsible for the development 

of hepatic steatosis in obese patients.   

 

Article IV 

10) The extracellular SST5TMD4 C-terminal domain presents two MMPs cleavage sites that 

could lead to the release of three derived peptides. 

11) The three SST5TMD4-derived peptides are capable to enhance the malignant 

characteristics (proliferation, migration and tumorspheres formation) of cancer cells 

derived from diverse tumor pathologies (neuroendocrine tumors, breast, prostate and 

liver cancer), and blunted the anti-proliferative response to somatostatin in QGP-1 cells. 

12) The three SST5TMD4-derived peptides could increase malignancy likely through the 

activation of PI3K/AKT and/or of MEK/ERK pathways and by the modulation key pro-

oncogenic genes.  

13) The peptides derived from the SST5TMD4 extracellular domain could have important 

biological activities and pathological implications since they could contribute to the 

strong oncogenic role of SST5TMD4 previously reported in multiple tumor pathologies.  

 

Altogether, these results demonstrate that the alteration of the splicing process could 

contribute to the development and pathogenesis of different endocrine-metabolic and tumor 

pathologies and also provides novel information to explore the development of efficient 

screening strategies, diagnostic, prognostic and potential therapeutic targets that could be of 

potential utility in clinical practice. 
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Background: Type-2 diabetes mellitus (T2DM) is a major health problem with increasing incidence, which
severely impacts cardiovascular disease. Because T2DM is associated with altered gene expression and aberrant
splicing, we hypothesized that dysregulations in splicing machinery could precede, contribute to, and predict
T2DM development.
Methods:A cohort of patientswith cardiovascular disease (CORDIOPREV study) andwithout T2DMat baseline (at
the inclusion of the study) was used (n=215). We determined the expression of selected splicing machinery
components in fasting and 4 h-postprandial peripheral blood mononuclear cells (PBMCs, obtained at baseline)
from all the patients who developed T2DM during 5-years of follow-up (n= 107 incident-T2DM cases) and
108 randomly selected non-T2DM patients (controls). Serum from incident-T2DM and control patients was
used to analyze in vitro the modulation of splicing machinery expression in control PBMCs from an independent
cohort of healthy subjects.
Findings: Expression of key splicing machinery components (e.g. RNU2, RNU4 or RNU12) from fasting and
4 h-postprandial PBMCs of incident-T2DM patients was markedly altered compared to non-T2DM controls.
Moreover, in vitro treatment of healthy individuals PBMCs with serum from incident-T2DM patients (compared
to non-T2DM controls) reduced the expression of splicing machinery elements found down-regulated in inci-
dent-T2DM patients PBMCs. Finally, fasting/postprandial levels of several splicing machinery components in
the PBMCs of CORDIOPREV patientswere associated to higher risk of T2DM(Odds Ratio N 4) and could accurately
predict (AUC N 0.85) T2DM development.
Interpretation: Our results reveal the existence of splicing machinery alterations that precede and predict T2DM
development in patients with cardiovascular disease.
Fund: ISCIII, MINECO, CIBERObn.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Type 2 diabetes mellitus (T2DM) is a major health problem [1]
closely associated to cardiovascular disease (CVD), wherein patients
with myocardial infarction and T2DM have a higher risk of developing
a new cardiovascular event than those without T2DM [2]. Thus, early
identification of individuals at high risk for T2DM development, espe-
cially among patients with CVD [3,4], is critical for prevention [5,6]. Tra-
ditionally, this strategy has been based on biomarkers [glycated
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hemoglobin (HbA1c)] or predictive scores (FINDRISK); however, these
approaches have limitations and cannot precisely predict an individual's
risk of developing T2DM [7,8].

T2DM development is critically affected by the loss of phenotypic
flexibility (i.e. the difficulty to copewith stressors tomaintainmetabolic
homeostasis), wherein the identification of keymodifiers of phenotypic
plasticity that define individual susceptibility to develop T2DM may
hold predictive potential [9]. Particularly, there is emerging evidence
that under adverse metabolic conditions (obesity, insulin resistance,
etc.) the splicing machinery is markedly dysregulated in most tissues
[10–12], including peripheral blood mononuclear cells (PBMCs); and
that dysregulations in splicing processes are associated with develop-
ment of several pathologies [10,13,14]. Specifically, splicing process is
catalyzed by the minor and major spliceosomes, which act on different
types of introns [15]. The spliceosome is an intricate macromolecular
complex, whose functional core is comprised by several small nuclear
ribonucleoproteins (snRNPs) subunits, which dynamically interact to
regulate the splicing process. In addition, the activity of the spliceosome
is modulated by N300 splicing factors (SFs) that specifically recognize
certain sequences in exons and introns. Consequently, the dysregulation
of the expression and/or function of certain spliceosomal components
may drive the aberrant alteration of the normal splicing process [16]. In-
deed, correct function of the splicing machinery, i.e. spliceosome com-
ponents and SFs, is an essential mechanism to maintain whole body
homeostasis [11,12,17,18]. Therefore, perturbed splicing may play a
major role as a pathogenic factor for and may serve as a predictive
marker of the development of T2DM [12,19].

In this sense, since gene expression patterns in PBMCs commonly re-
flect and accompanydisease-characteristic expression patterns [20], the
hypothesis of this study is that the pattern of expression of certain splic-
ing machinery elements in the PBMCs, especially during the post-pran-
dial response, when changes in phenotypic flexibility are more evident,
could be associated with the risk and could early predict the develop-
ment of T2DM. To test this idea, we took advantage of the CORDIOPREV
study (CORonary Diet Intervention with Olive oil and cardiovascular
PREVention), an ongoing, prospective and randomized trial that in-
cludes the follow-up of patients with CVD and, therefore, with high
risk to develop T2DM.

2. Material and methods

2.1. Study cohort

This work has been conducted in the context of the CORDIOPREV
study (Clinical Trials Registry NCT0092493741) [21]. The study protocol
was approved by the Human Investigation Review Committee of the

Research in context

Evidence before this study

Early identification of individuals at high risk of type 2 diabetes
mellitus (T2DM) development, especially among patients with
cardiovascular disease (CVD), is critical for prevention. Tradition-
ally, the identification strategy has been based on biomarkers
such as glycated hemoglobin (HbA1c) or predictive scores like
FINDRISK. However, these approaches have limitations and can-
not precisely predict an individual's risk of developing T2DM. In
this context, the identification of keymodifiers of phenotypic plas-
ticity that define individual susceptibility to develop T2DM may
hold predictive potential. Particularly, there is emerging evidence
that under adverse metabolic conditions, including obesity and
T2DM, the splicing process and, consequently, the generation of
splicing variants is markedly dysregulated in most tissues. How-
ever, until the present study, the association between potential
changes in the regulatory machinery governing the splicing pro-
cess and alterations in phenotypic plasticity —which is essential
to maintain whole body homeostasis, and therefore, to prevent
the development of metabolic pathologies— was still unknown.
In this context, we took advantage of the emerging evidence
showing that gene expression pattern of peripheral blood mono-
nuclear cells (PBMCs) commonly reflects and accompany dis-
ease-characteristic expression patterns, and may thus serve as a
general sentinel, biosensor and early indicator of the instauration
ofmetabolic disease. Until now, itwas not knownwhether the ex-
pression of the splicing machinery components is dysregulated in
PBMCs under conditions of loss of phenotypic plasticity and,
therefore, if it could be associated with the subsequent develop-
ment of T2DM.

Added value of this study

We took advantage of the CORDIOPREV study (CORonary Diet In-
terventionwith Olive oil and cardiovascular PREVention), an ongo-
ing, prospective, randomized trial that includes the 5-year follow-
up of patients with CVD, but without T2DM at the inclusion of the
study (baseline), to show, for the first time, that striking changes
in the expression of key splicingmachinery components of PBMCs
precede and can early predict the development of T2DM. More-
over, our study demonstrates that expression pattern of the splic-
ing machinery components can be dynamically modulated during
the post-prandial phase. These rapid changes likely reflect the
phenotypic flexibility of these patients in response to a metabolic
challenge, and,most importantly, were clearly altered at the inclu-
sion of the study in patients that developed T2DM during the 5-
year follow-up. In particular, the fasting/postprandial expression
levels of a set of bioinformatically-selected splicing machinery
components in the PBMCs of CORDIOPREV patients were associ-
ated to higher risk of T2DM (Odds Ratio N 4) and could accurately
predict (AUC N 0.85) diabetes development in this cohort, which
is significantly higher than the current standard procedures
(HbA1c and FINDRISK exhibited AUCs b 0.66 in our cohort). Fi-
nally, incubation of PBMCs with serum from patients that devel-
oped, or not, T2DM revealed a potential causal relationship in
that the latter was able to reproduce some of the changes ob-
served in the expression of key splicing machinery components.

Implications of all the available evidence

Altered expression of splicing machinery components may be as-
sociatedwith the development of T2DM, preceding the clinical in-
stauration of this pathology, and could serve as a sensor and early
predictor for T2DM development in CVD patients. Our data dem-
onstrate the existence of a splicingmachinery-associatedmolecu-
lar fingerprint capable to predict the future development of T2DM
in individual patients with high precision, which even outperforms
the capacity of classical predictors of T2DM development. There-
fore, this splicing machinery-associated molecular fingerprint
could become a valuable, non-invasive, new tool for early risk as-
sessment of T2DM in clinical practice to prevent disease
development.
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Reina Sofia University Hospital (HURS, Cordoba, Spain), according to in-
stitutional and Good Clinical Practice guidelines. The CORDIOPREV
study is a prospective, randomized, controlled trial that includes 1002
coronary heart disease (CHD) patients, who had their last coronary
event over six months before joining the study. Details of the study, in-
cluding inclusion and exclusion criteria and cardiovascular risk factors
of the patients have been published elsewhere [21]. Briefly, patients
aged 20–75 years, with established CHD but without clinical events in
the last six months with no other serious illnesses and a life expectancy
of at least five yearswere eligible, with the intention of following a long-
term monitoring study. In addition to conventional treatment for CHD,
subjects were randomized in two different dietary models (Mediterra-
nean and low-fat diets). The intervention phase is still in progress, and
will have a follow up of seven years. Specifically, 462 of those patients
were non-T2DM at the inclusion of the study (baseline) [22] and, from
those, 107 patients developed T2DM (Incident-T2DM cases) after a
mean follow-up of 60 months, according to all the American Diabetes
Association (ADA) diagnosis criteria, evaluated on the basis of glucose
tolerance tests performed each year (Supplementary Fig. 1). T2DM
was diagnosed if one or more of following criteria were present in the
study subjects: fasting plasma glucose (FPG) concentration ≥ 126 mg/
dL, impaired fasting glucose (IFG); FPG ≥200 mg/dL after 2 h of oral glu-
cose test (OGTT), impaired glucose tolerance (IGT); glycated hemoglo-
bin (HbA1c) ≥6.5%. Specifically, among the 107 incident-T2DM
patients, 43 subjects were diagnosed during the first year of follow-
up, 24 during the second year, 11 during the third year, 19 during the
fourth year and 10 during the fifth year (Supplementary Fig. 1). The re-
maining 355 subjects did not develop T2DM during the study period. In
the present study, all the incident-T2DMcases (n=107)were included
together with 108 matched, randomly selected controls, who did not
develop T2DMduring the follow-up (non-T2DMsubjects) (Supplemen-
tary Table 1). The random selection of the non-T2DM subjects was per-
formed using computational stratified sampling from the 355 non-
T2DM subjects of the CORDIOPREV study according to the following
clinical, anthropometric and biochemical variables: diet, age, gender,
fasting plasma glucose, bodymass index, LDL-cholesterol and HDL-cho-
lesterol. To implement this type of sampling, the target population was
first divided into separate strata and then, samples were randomly se-
lected within each stratum through simple automatic sampling by
using the R software.

2.2. Metabolic study design

Oral glucose tolerance test (OGTT) and fat-rich meal tests were im-
plemented in all patients to dynamically determine the metabolic sta-
tus of the patient, as previously reported [21]. Briefly, OGTT (75 g
dextrose monohydrate in 250 ml water, NUTER. TEC GLUCOSA,
Subra, Toulouse, France) was started at 8:00 am, and plasma samples
were collected at 0, 30, 60, 90 and 120 min to determine plasma glu-
cose and insulin levels. Fat-rich meal test (0.7 g fat and 5 mg choles-
terol per kg body weight with 12% saturated fatty acids, 10%
polyunsaturated fatty acids, 43% monounsaturated fatty acids, 10%
protein, and 25% carbohydrates) was performed at 8:00 am. Blood
samples were collected before the meal and after 4 h. Biochemical de-
termination of metabolic parameters and calculation of insulin resis-
tance and sensitivity indexes were performed as previously reported
[21]. Further details are provided in Supplementary Material and
Methods.

2.3. Blood sampling and processing to isolate PBMCs

Venous blood from the participants (12 h overnight fast) was col-
lected in tubes containing EDTA during the fat-rich meal test, at 0 and
4 h. PBMCs were isolated as previously described [21,23].

2.4. RNA extraction, quantification and reverse transcribed

Total RNA from PBMCs was isolated using Direct-zol RNA kit (Zymo
Research, Irvine, CA, USA) following manufacturer's instructions. The
amount of RNA recovered was determined and its quality assessed by
the NanoDrop2000 spectrophotometer (Thermo Fisher). Specifically,
all the RNA samples passed the quality controls, being the 260/280
and 230/260 absorbance ratios among 1.8–2.0. One μg of RNA was re-
verse transcribed (RT) to cDNA using random hexamer primers with
the First Strand Synthesis Kit (Thermo Fisher).

2.5. In vitro culturing and treatment of PBMCs

PBMCs from n=7 healthy subjects (Supplementary Table 2) were
extracted as described above, and then cultured in serum-freeRPMIme-
dium (Lonza). 500,000 cells/well from each subject were seeded on
ultra-low attachment multi 12-well plates (Corning Costar, Sigma)
and treated per duplicate with 10% baseline fasting and postprandial
serum derived from control and incident-T2DM patients (specifically,
we used serum form individuals that developed T2DM during the first
two years of follow-up). After the incubation periods (4 and 24 h),
PBMCs were centrifuged and RNA was extracted and isolated using
TRI-reagent (Sigma) [23].

2.6. Analysis of splicing machinery components by qPCR dynamic array
based on microfluidic technology

A 48.48 Dynamic Array based on microfluidic technology (Fluidigm,
San Francisco, CA, USA) was implemented to determine the expression
of 48 transcripts in 48 samples, simultaneously. Specific primers for
human transcripts including components of the major (n = 13) and
minor spliceosome (n= 4), associated SFs (n= 28) and three house-
keeping genes were specifically designed (Supplementary Table 3).
The panel of splicing machinery components was selected on the basis
of two main criteria: 1) the relevance of the given spliceosome compo-
nents in the splicing process (such as the components of the
spliceosome core) and 2) the demonstrated implication in the regula-
tion of splicing variants implicated in the pathophysiology of T2DM
(as is the case of the 28 splicing factors selected in this study).

Primerswere selected using Primer3 softwarewith selection param-
eters set to identify primer pairs that: 1) span an intron (when possi-
ble), 2) differ by no more that 1 °C in annealing temperature, 3) are at
least 20 bp in length, 4) have a GC content between 45 and 55%, but
5) exclude primers thatmay form primer-dimers. Sequences of selected
primers were used in BLAST (NCBI) searches to check for potential ho-
mology to sequences other than the designated target. Initial screening
of primer efficiency using real-time detection was performed by ampli-
fying 2-fold dilutions of RT products,where optimal efficiencywas dem-
onstrated by a difference of one cycle threshold between dilutions and a
clear melting peak followed by a graded temperature-dependent disso-
ciation to verify that only one productwas amplified. The thermocycling
profile consisted of: 1) 95 °C for 1 min; 2) 35 cycles of denaturing (95 °C
for 5 s) and annealing/extension (60 °C for 20s); and 3) a last cycle
where final PCR products were subjected to graded temperature-de-
pendent dissociation (60 °C to 95 °C, increasing 1 °C/3 s). PCR products
were then column-purified (FAVORGEN Biotech, Vienna, Austria) and
sequenced to confirm target specificity. After confirmation of primer ef-
ficiency and specificity, the concentration of purified products was de-
termined, and PCR products were serial diluted to obtain standards
containing 1, 101,102, 103, 104, 105, and 106 copies of the synthetic tem-
plate. Standards were then amplified by qPCR, and standard curves
were generated using Stratagene Mx3000p software. The slope of a
standard curve for each template examined was approximately −3.33
(R2≈ 1), indicating that the efficiency of amplification of our primers
was 100%, meaning that all templates in each cycle were copied.
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Preamplification, exonuclease treatment and qPCR dynamic array
based on microfluidic technology were implemented following manu-
facturer's instructions using the Biomark System and the Real-Time
PCR Analysis Software (Fluidigm). Additional details are provided in
SupplementaryMaterial andMethods. Finally, in the case of PBMC sam-
ples from non-T2DM and Incident-T2DM patients, the expression level
of each transcript was adjusted by a normalization factor (NF) obtained
from the expression levels of two different housekeeping genes [Beta-
actin (ACTB) and Glyceraldehyde-3-Phosphate Dehydrogenase
(GAPDH)] using Genorm 3.3 [24], while ACTB was the housekeeping
gene used to normalize the expression level of each transcript in the
in vitro experiment. This selection was based on the stability of these
housekeeping genes among the experimental groups to be compared,
wherein the expression of these housekeeping genes was not signifi-
cantly different among groups.

2.7. Statistical and bioinformatical analysis

Data were evaluated for heterogeneity of variance using the Kolmo-
gorov–Smirnov test and are expressed as mean ± SEM. Statistical anal-
ysis was carried out using unpaired t-test, MannWhitney U test or one-
way ANOVA followed by Dunnett's test. Significant correlations were
studied using bivariate Spearman correlation methods. The odds ratio
(OR) was calculated by logistic regression analysis by comparing T1
vs. T3. The subjects were categorized into tertiles of expression levels
as low (T1), intermediate (T2) and high (T3). Predictive models were
constructed by logistic regression (first with the SPSS software and
later validated with the R language), Random Forest and C4.5 (both
with R language) algorithms and followed by cross-validation studies
by using the full-dataset of variables or a selection of them (obtained
by feature ranking processes) as described in Supplementary Material
and Methods. AUCs from ROC curves were compared by DeLong test
[25]. P-values smaller than 0.05were considered statistically significant.
When appropriate, analyses were adjusted for age, diet, gender, BMI,
glycated hemoglobin, HDL and triglycerides. Statistical analyses were
carried out with GraphPad Prism 6 (La Jolla, CA, USA) and SPSS 17.0
(IBM).

3. Results

3.1. Description of the cohort

The group of patients who developed T2DM during the study (Inci-
dent-T2DM; n = 107) presented higher weight, BMI, HbA1c levels,
fasting insulin and TGs at baseline compared to non-T2DM controls
(n= 108) (Table 1). HOMA-IR, HIRI, DI and ISI were also significantly
different at baseline between both groups (Table 1). Remarkably, the
cohort of n = 108 randomly selected non-T2DM patients showed com-
parable levels of all the parameters determined except for age and DI
compared to the total population (n= 355) of non-T2DM individuals
(Supplementary Table 1).

3.2. Expression of splicing machinery components is different between inci-
dent-T2DM and non-T2DM patients

The expression pattern of several spliceosome components and SFs
was dysregulated in the PBMCs of incident-T2DM compared to non-
T2DM patients at baseline (Fig. 1a). Specifically, PBMCs of incident-
T2DM patients exhibited significantly lower levels of RNU2, RNU4,
RNU6ATAC, SNRNP200, ESRP1, SRSF1 and SRSF5 (Fig. 1b).

Most notably, expression of many of these spliceosome components
and SFs was dynamically, and differentially, regulated in the PBMCs of
these individuals during a fat-rich meal test (a stress condition that
challenges phenotypic flexibility, enabling its analysis) (Supplementary
Fig. 2). Specifically, some spliceosome components and SFs were selec-
tively altered during the post-prandial phase compared to the baseline

state in a specific group of patients (e.g. RNU12 was increased in non-
T2DM patients, whereas SNRNP70 was increased in incident-T2DM pa-
tients), leading to the appearance of significant differences between
both groups of patients (Supplementary Fig. 2a). Interestingly, several
of the changes observed at baseline (RNU2, RNU4, RNU6ATAC, ESRP1
and SRSF1) were also evident in the postprandial state, while others
did not (SNRNP200 and SRSF5) (Supplementary Fig. 2B and C,
respectively).

Comparison between the expression profiles of PBMCs from non-
T2DM and incident-T2DM patients at post-prandial state revealed a
drastic dysregulation of many spliceosome components and SFs after
this meal challenge (Fig. 2a). Specifically, expression levels of RNU2,
RNU4, RNU6, RNU4ATAC, RNU6ATAC, RNU12, NOVA1, ESRP1 and SRSF1
were lower, whereas those of SNRNP70 were higher in PBMCs from in-
cident-T2DM patients vs. non-T2DM during the post-prandial phase
(Fig. 2b). Remarkably, these fasting and postprandial changes observed
between non-T2DM and incident-T2DM patients were also observed
when only considering the male population, which were age and BMI
matched (data not shown).

3.3. Expression of splicing machinery components is different according to
the year of T2DM diagnosis

Subjects diagnosed of T2DM in the first 2-years of follow-up exhib-
ited more pronounced changes in the expression pattern of
spliceosome components and SFs as compared to non-T2DM controls
and subjects diagnosed in subsequent years, at both baseline fasting
and post-prandial states (Supplementary Figs. 3 and 4). Specifically,
fasting RNU4, and post-prandial RNU4, RNU4ATAC and RNU6ATAC ex-
pression levels were altered in patients who developed T2DM during
the first and second years of follow-up compared to non-T2DM pa-
tients (Supplementary Figs. 3 and 4). In contrast, fasting RNU2,
SNRNP200, RNU6ATAC and SRSF5 and post-prandial RNU2, RNU6,
NOVA1, ESRP1 and SRSF1 expression levels were lower only in patients

Table 1
Baseline characteristics of subjects who did not develop T2DM (Non-T2DM) vs subjects
who developed T2DM (Incident-T2DM) after a median follow-up of 5 years.

Variables Non-T2DM Incident-T2DM p-value

n 108 107
Sex (male; female) 93; 15 89; 18 0.550
Diabetes family history n (%) 35 (32.4) 41 (38.3) 0.220
Age (years) 60.30 ±0.806 58.75 ±0.873 0.191
Waist circumference (cm) 102.48 ±0.958 105.28 ±1.08 0.053
Weight (kg) 81.92 ±1.194 85.69 ±1.47 0.047
BMI (kg/m2) 30.16 ±0.362 31.39 ±0.466 0.038
Glucose (mg/dl) 94.4 ±0.952 96.18 ±1.403 0.208
HbA1c (%) 5.88 ±0.032 6.03 ±0.033 0.001
Insulin (mU/l) 8.07 ±0.514 10.5 ±0.656 0.004
TG (mg/dl) 109.24 ±4.699 132.60 ±6.608 0.004
Total cholesterol (mg/dl) 159.55 ±3.027 164.97 ±3.409 0.235
c-LDL (mg/dl) 91.20 ±2.38 93.4 ±2.657 0.538
c-HDL (mg/dl) 44.58 ±0.899 43.52 ±1.039 0.440
NEFA (mmol/L) 0.286 ±0.015 0.317 ±0.016 0.174
Apo A1 (mg/dl) 133.5 ±2.093 135.15 ±2.312 0.596
Apo B (mg/dl) 71.57 ±1.934 76.22 ±1.835 0.083
hs-CRP (mg/dl) 2.428 ±0.32 2.878 ±0.292 0.300
HOMA-IR 2.5424 ±0.126 3.3734 ±0.302 0.012
HIRI 1024.55 ±50.85 1370.214 ±120.93 0.009
MISI (x102) 0.021 ±0.002 0.019 ±0.002 0.402
DI 0.8948 ±0.041 0.7685 ±0.041 0.030
ISI 4.0815 ±0.256 3.2758 ±0.186 0.012
IGI 1.0646 ±0.103 0.6633 ±0.294 0.200

Values expressed as mean ± SEM. BMI: Body mass index; HbA1c: Glycated hemoglobin;
TG: Triglycerides; c- LDL: Low density lipoprotein; c-HDL: High density lipoprotein;
NEFA: Non-esterified fatty acids; Apo A1: Apolipoprotein A1; Apo B: Apolipoprotein B;
hs-CRP:High sensitivity C-reactive protein;HOMA-IR:Homeostasismodel assessment- in-
sulin resistance; HIRI: Hepatic insulin resistance index; MISI: Muscle insulin sensitivity
index; DI: Disposition index; ISI: Insulin sensitivity index; IGI: Insulinogenic index.
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that developed T2DM during the first year of follow-up compared to
non-T2DM patients (Supplementary Figs. 3 and 4). Also, post-prandial
expression levels of RNU1 and RNU12 were significantly altered during
the second year of follow-up in patients that developed T2DM com-
pared to non-T2DM patients (Supplementary Fig. 4).

3.4. Baseline expression of splicing machinery components was correlated
with key clinical parameters

Baseline expression of several spliceosome components and SFs
was correlated with clinically relevant parameters, thus suggesting a
potential pathophysiological role. Although the baseline fasting or
postprandial expression levels of the splicing components were not
associated with BMI, baseline fasting levels of ESRP1, SRSF1 and
RNU4 was directly correlated with fasting c-HDL and NEFA levels. Fur-
thermore, fasting levels of SRSF1 and RNU4 were directly correlated
with postprandial NEFA levels and fasting levels of SNRNP200 were

directly correlated with postprandial glucose. Fasting SRSF5 expression
levels were directly correlated with fasting and postprandial c-HDL,
postprandial Apo A1 and ISI values, and inversely correlated with
fasting HbA1c and postprandial triglycerides and C-reactive protein.
Additionally, baseline postprandial expression levels of ESRP1, RNU4,
RNU6 and NOVA1 were inversely correlated with HbA1c levels, while
postprandial levels of RNU2 were directly correlated with DI and post-
prandial RNU12 levels inversely correlated with ISI. Finally, postpran-
dial SRSF1 levels were directly correlated with postprandial NEFA
levels (Supplementary Table 4).

3.5. Expression of some splicing machinery components was associated to
the risk of developing T2DM

The possible association between the expression of the components
of the splicingmachinery and the risk of developing T2DMwas assessed
by logistic regression analysis (odds ratio, OR). This analysis revealed

Fig. 1. Baseline expression pattern of the selected spliceosome components and splicing factors in the PBMCs of Incident-T2DM and control non-T2DM patients. a) Fold-change levels
between Incident-T2DM and non-T2DM subjects, represented in red (increase) or blue (decrease). Specific spliceosome components or splicing factors significantly altered are
highlighted in bold. b) mRNA expression levels [adjusted by a normalization factor (NF) calculated from the expression level of GAPDH and ACTB] of specific spliceosome components
(first row) and splicing factors (second row) in the PBMCs from non-T2DM and Incident-T2DM subjects. Values represent the mean± SEM. Asterisks indicate values that significantly
differ from non-T2DM patients (t-test: *, p b .05).
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that low baseline fasting expression levels of RNU4 and RNU2, as well as
low baseline postprandial levels of RNU4ATAC, NOVA1, RNU6ATAC,
RNU6, RNU12, SRSF1 and RNU4 were strongly associated to the relative
risk of T2DM development when adjusting by age, gender, diet, BMI,
HbA1c, c-HDL and TG levels (Table 2).

3.6. Alterations in the expression of the splicingmachinery components pre-
dict the development of T2DM

In our cohort, incident-T2DM and non-T2DM patients exhibited dif-
ferent baseline characteristics (Table 1); however, HbA1c and/or

Fig. 2. Baseline expression pattern of the selected spliceosome components and splicing factors in the PBMCs of incident-T2DM and control non-T2DM patients during the postprandial
state. a) Fold-change levels between Incident-T2DM and non-T2DM subjects, represented in red (increase) or blue (decrease). Specific spliceosome components or splicing factors
significantly altered are highlighted in bold. b) mRNA expression levels [adjusted by a normalization factor (NF) calculated from the expression level of GAPDH and ACTB] of specific
spliceosome components and SFs in the PBMCs of non-T2DM and Incident-T2DM subjects. Values represent the mean ± SEM. Asterisks indicate values that significantly differ from
non-T2DM patients (t-test: *, p b .05; **, p b .01; ***, p b .001).
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FINDRISK, the classic predictors of T2DM development, exhibited low
predictive potential (HbA1c: AUC= 0.643, p b .001, TPR= 0.669, TNR
= 0.565; FINDRISK: AUC = 0.548, p = .231, TPR = 0.622, TNR =
0.393; HbA1c and FINDRISK: AUC= 0.643, p b .001, TPR= 0.651, TNR
= 0.606) (Table 3). In this sense, although the expression levels of
spliceosome-associated elements altered in PBMCs of incident-T2DM
compared to non-T2DM patients generated significant but low (b0.65)
AUCs in ROC curves (Supplementary Table 5), the combination of all
these elements led to more significant and accurate ROC curves. Specif-
ically, the fingerprints comprised by the baseline expression of
spliceosome components and SFs during fasting, post-prandial or their
combination generated significant ROC curves with AUC N 0.85 using
different algorithms (Table 3 and Supplementary Table 6), which was
validated (AUCs ranging 0.65–0.81) by cross-validation analysis (Sup-
plementary Table 6). In particular, the fingerprint comprised by the
fasting and postprandial expression of spliceosome components and
SFs presented an AUC = 0.813 (TPR = 0.802, TNR = 0.689) in the
cross-validation analysis (Fig. 3a – green line), which was significantly
higher than the capacity of the clinically-relevant HbA1c and FINDRISK

to predict T2DMdevelopment (Fig. 3a), as demonstrated byDeLong test
comparing the AUCs (p b .05 vs. HbA1c or FINDRISK).

More remarkably, a subset of splicing machinery elements selected
by computational approaches (feature ranking analysis) exhibited
even higher predictive capacity compared to thewhole dataset. Indeed,
a predictivemodel comprised by fasting expression levels of RNU4ATAC,
SRSF3, SRSF6, SRSF10, TRA2B, PTBP1, SF3B1 and post-prandial levels
of RNU4, RNU6, RNU4ATAC, RAVER1, NOVA1, and PRPF8 exhibited AUC
= 0.881 (TPR = 0.801, TNR = 0.700) in cross-validation analysis
(Fig. 3b – green line), which was validated by different modeling
methods, clearly outperformed the capacity of the classic predictors of
T2DM development (p b .001 by DeLong test vs. HbA1c or FINDRISK
AUCs) (Fig. 3 b).

Finally, the capacity of splicing machinery alterations to predict
T2DM development was even superior when considering only the pa-
tients that developed T2DM during the first 2 years of follow-up. In-
deed, the fasting and/or postprandial baseline fingerprints comprised
by spliceosome components and SFs generated ROC curves with AUC
ranging 0.630–0.851 by cross-validation analysis (Fig. 3c and Supple-
mentary Table 6),whichwere again clearly higher than those generated
by HbA1c or FINDRISK (p b .05 by DeLong test in all cases). Similarly,
models generated after selection of the most relevant elements exhib-
ited AUCsN0.8 when predicting T2DM development in the first two
years of follow-up (Fig. 3d), which were clearly higher than those gen-
erated by HbA1c or FINDRISK (p b .001 by DeLong test in all cases).

3.7. Incident-T2DM patient serum altered spliceosome components expres-
sion in PBMCs of healthy patients

To test whether changes in the expression of spliceosome compo-
nents and SFs in PBMCs could be caused by the metabolic dysregulation
occurring in incident-T2DM patients, PBMCs from healthy subjects
(Supplementary Table 1) were incubated with serum from non-T2DM
and incident-T2DMpatients. Remarkably, 24 h incubationwith baseline
fasting serum from Incident-T2DMpatientsmarkedly reduced RNU4 ex-
pression compared to the serum from non-T2DM patients (Fig. 4a);
whereas expression of other spliceosome components and SFs altered
at fasting baseline was not significantly modulated (Supplementary
Fig. 5). More strikingly, 4 h incubation with baseline postprandial
serum from Incident-T2DM patients induced a significant reduction of
RNU4 and RNU12 expression and a non-significant reduction trend of
RNU2 (p = .09) compared to non-T2DM treated samples (Fig. 4b). It
should be noted that PBMCs survival was evaluated to assess the possi-
ble effect of human sera and that after 24 h of culture with baseline
fasting and postprandial serum derived from control and incident-
T2DM patients, the survival of the PBMCs was minimally affected
(N95% of cell survival in all cases) by the different sera used and that
there were not significant changes among the different types of serum
(data not shown).

4. Discussion

In this study, we analyzed the expression pattern of selected splicing
machinery elements in PBMCs from non-T2DM patients with CVD and,
therefore, with high risk to develop T2DM, who were followed-up dur-
ing 5-years (individuals that suffered a cardiovascular event and were
included in the CORDIOPREV study [21]). This revealed, for the first
time, that PMBCs expression levels of certain splicing machinery com-
ponents were significantly altered in Incident-T2DM at the inclusion
of the study (before the development of T2DM) and associated with
T2DM development. Indeed, the molecular fingerprints comprised by
the fasting and, especially, by the postprandial levels of certain of
these splicing machinery components were able to differentiate be-
tween patients who subsequently developed T2DM (Incident-T2DM)
from those patients who did not develop the disease with an AUC N

0.8 after cross-validation analysis, which is significantly higher than

Table 2
Association between the PBMC expression of the components of the splicing machinery
and the relative risk of developing T2DM by logistic regression analysis of relative risk
(odds ratio, OR).

OR 95% C.I. p-value

Inferior Superior

Fasting RNU4 2.521 1.117 5.688 0.026
Fasting RNU2 2.283 1.012 5.153 0.047
Postprandial RNU4ATAC 4.456 1.821 10.903 0.001
Postprandial NOVA1 4.099 1.836 9.154 0.001
Postprandial RNU6ATAC 3.762 1.706 8.298 0.001
Postprandial RNU6 3.762 1.706 8.298 0.001
Postprandial RNU12 2.274 1.041 4.967 0.039
Postprandial SRSF1 2.204 1.007 4.825 0.048
Postprandial RNU4 2.109 0.963 4.619 0.062

Subjects were categorized in tertiles according to the expression level of each spliceosome
component or splicing factor as follows: low expression levels (T1), medium expression
levels (T2) and high expression levels (T3), and the OR estimated between T1 and T3 for
each element of interest. OR: Odds Ratio; C.I.: Confidence intervals.

Table 3
Capacity of the molecular fingerprint comprised by baseline fasting and/or postprandial
levels of spliceosome components and splicing factors as T2DM predictive models by lo-
gistic regression and ROC curve analysis.

Model AUC p-value

Splicing machinery components baseline expression during
fasting

0.894 0.000

Splicing machinery components baseline expression during
postprandial phase

0.853 0.000

Splicing machinery components baseline expression during
fasting and postprandial phase

1 0.000

HbA1c 0.643 0.000
FINDRISK 0.548 0.231
HbA1c + FINDRISK 0.643 0.000
Splicing machinery components baseline expression during
fasting + HbA1c

0.898 0.000

Splicing machinery components baseline expression during
postprandial phase + HbA1c

0.867 0.000

Splicing machinery components baseline expression during
fasting and postprandial phase + HbA1c

1 0.000

Splicing machinery components baseline expression during
fasting + FINDRISK

0.895 0.000

Splicing machinery components baseline expression during
postprandial phase + FINDRISK

0.856 0.000

Splicing machinery components baseline expression during
fasting and postprandial phase + FINDRISK

1 0.000

Logistic regression models considering the fasting and/or postprandial baseline levels of
the measured elements, alone or in commination with the classic predictors of T2DM
(HbA1c and FINDRISK). AUC: Area under curve; HbA1c: Glycated hemoglobin.
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the current standard procedures (HbA1c and FINDRISK exhibited
AUCsb0.66 in our cohort). In addition, patients with low PBMCs expres-
sion levels of specific splicing machinery components, including RNU2,
RNU4 or RNU12, which we have shown to be modulated by the serum
of Incident-T2DM patients, were at higher risk (OR N 4) of T2DM devel-
opment as comparedwith those patientswith high PBMC levels of these
components.

In line with our findings, previous reports have indicated that under
adverse metabolic conditions (e.g. obesity, insulin resistance, etc.) the
splicing machinery is markedly altered in most tissues [10–12] and

associated with the development of several pathologies [10,13,14]. Ac-
tually, alternative splicing seems to reside at the crossroad between
hyperinsulinemia, insulin resistance, obesity and T2DM [11,12,17],
and, consequently, the correct function of the splicing machinery
(spliceosome components and SFs) is essential to maintain whole
body homeostasis [18]. However, we provide herein novel, primary ev-
idence demonstrating that the alteration in the expression of certain
spliceosome components and SFs precedes the development of T2DM
in CVD patients and, most notably, our results provide the first indica-
tion that the expression of certain spliceosome components and SFs in

Fig. 3. Spliceosome components and splicing factors-based predictivemodels generated by Random Forest computational algorithm and ROC curve analysis. ROC curves parameters were
calculated for the predictivemodels generated by Random Forest algorithmconsidering the expression of all the splicingmachinery elements determined at fasting (orange), postprandial
(blue) or their combination (green) in non-T2DM and Incident-T2DM patients (a) or using a selection of the most relevant and discriminatory splicing machinery components (b).
Specifically, the subset of specific splicing machinery components were RNU4ATAC, TIA1, KHDRBS1, SRSF10, PTBP1, RAVER1, RNU2, RNU5, SRSF9, U2AF2, RBM45, SRSF4, RBM3 for baseline
fasting, RNU4ATAC, RNU6ATAC, RAVER1, SF3B1, SRSF3, NOVA1, SRM160, SRSF6, ESRP1, U2AF1 for baseline postprandial and fasting SRSF3, SRSF10, SRSF6, TRA2B, PTBP1, SF3B1 and
postprandial RNU4ATAC, RAVER1, RNU4ATAC, NOVA1, RNU4, RNU6, PRPF8 for combined analysis. The same ROC curves were calculated considering the patients that developed T2DM
during the first two years of follow-up (c and d). In this case, the subset of specific splicing machinery components were RNUU4ATAC, PTBP1, TRA2A, RM17, RNU12, TIA1, SRSF5, RNU2
for baseline fasting, RNU4ATA, PTBP1, MAGOH, SRSF9, RAVER1, PRP8, PRPF40A, SRRM1, SRSF6, SNRNP200, TIA1, RNU2 for baseline postprandial, and baseline fasting RNU4ATAC, TRA2A,
SRSF5, RBM17, SRSF10, SRSF3, RNU2 and postprandial RNU4ATAC, RNU4, RNU6ATAC, MAGOH, RAVER1, PRPF40A, RBM4, U2AF2, SRSF10, RNU11 TRA2B, SND1 for combined analysis. ROC
curves of HbA1c and FINDRISK were also estimated. HbA1c: glycosylated hemoglobin; AUC: Area under the curve; TPR: True positive ratio; TNR: True negative ratio; p: p value.
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PBMCs can bedynamicallymodulated, according to themetabolic status
of the individual, and specially under stress conditions as those ob-
served during the post-prandial response, thus suggesting an adaptive
capacity of the splicing machinery in order to respond to metabolic
disturbances.

In particular, this study demonstrated that the expression of some
splicing machinery components is altered in control individuals during
the postprandial phase, which is consistent with previous results dem-
onstrating a regulatory response of specific splicing variants to the post-
prandial environment [26,27]. Therefore, these data suggest that the
changes observed in the splicing machinery during the postprandial
phase may be responsible for the regulation of the expression of partic-
ular splicing variants under these conditions [12,19,28], which could be
essential to the appropriate response of the organism tometabolic chal-
lenges and disturbances. Moreover, our results also demonstrate for the
first time that the response of key splicing machinery components to
metabolic insults is altered in individuals whowill develop T2DM (Inci-
dent-T2DM patients), but especially in those developing T2DM during
the first two years of follow-up. Therefore, since postprandial alter-
ations are closely related to the phenotypic flexibility, which is strongly
linked to T2DM development [9], our data primarily demonstrate that
the alteration in the splicing machinery precedes the instauration of
T2DM, thereby suggesting its putative implication as a driving force in
the development of this pathology. Based on all the information men-
tioned above, it is tempting to propose that the splicing machinery
could be acting as a biosensor of the whole body metabolism to adapt
cell gene expression to the pathophysiological conditions, and that its
dysregulation could lead to an unbalance in the landscape of splicing
variants present in a given cell at a given moment [12,28,29], which
may be associated to the instauration of T2DM [10,30]. This idea is fur-
ther supported by two pieces of evidence presented herein. First, we
have demonstrated that low fasting or postprandial expression levels
of certain splicing machinery components drastically increase the rela-
tive risk of T2DM development in these patients, suggesting that a dys-
regulated expression of certain splicing machinery components could
augment the risk of developing T2DM. Secondly, our in vitro studies
demonstrate that the expression of relevant spliceosome components,
specially RNU2, RNU4 or RNU12, which are key elements responsible
for the appropriate function of the spliceosome [31], can be modulated
by baseline fasting and/or postprandial serum from Incident-T2DM pa-
tients. This observationmight suggest the existence of specific factors in
the serum of these patients capable to modulate the expression of rele-
vant spliceosome components and, therefore, the function of the splic-
ing machinery. In this sense, previous studies have found a
relationship between circulating factors and the modulation of SFs in
different tissues. For example, it has been described that insulin signal-
ing can up-regulate the expression of the splicing factor SRSF1 in pan-
creatic beta cells, inducing the splicing of the insulin receptor to

generate the INSR-B isoform [32]. The same study also found a regula-
tion of the protein levels of the splicing factor MBNL1 by high glucose
levels. Furthermore, the splicing of the Fatty acid desaturase 3 has
been observed to be modulated in the liver of baboons in response to
different diets and in human liver HepG2 cells after treatment with
polyunsaturated fatty acids [33]. Obviously, further studies will be re-
quired to attain a more comprehensive understanding of the changes
in the splicing process and the contribution of the dysregulation in the
splicing machinery to the generation of alternative spliced isoforms
bearing pathological implications; aswell, additional, andmore detailed
and refined experiments will be needed to assess the specific contribu-
tion of each blood cell subset to the effects observed herein. Ultimately,
all of this information would help to elucidate the nature of the ele-
ments causing the changes in the splicing machinery.

In conclusion, although this studywas implemented in CVD patients
from the CORDIOPREV study [21], which limits our findings to people
with these characteristics, and precludes generalization to healthy peo-
ple, the data presented herein strongly support the notion that altered
expression of spliceosome components and SFs variants may be associ-
ated with the development of T2DM, preceding the clinical instauration
of this pathology and, therefore, could likely serve as a sensor and early
predictor for T2DM development in CVD patients. Certainly, our data
demonstrate the existence of a spliceosome-associated molecular fin-
gerprint capable to predict the future development of T2DM in individ-
ual patients with high precision (AUC = 0.881, TPR = 0.801, TNR =
0.700), which even outperforms the capacity of classical predictors of
T2DMdevelopment, such asHbA1c or FINDRISK. Therefore, this splicing
machinery-associated molecular fingerprint could become a valuable,
non-invasive, new tool for early risk assessment of T2DM in clinical
practice to prevent disease development.
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364 M.D. Gahete et al. / EBioMedicine 37 (2018) 356–365



00031, TIN2017-83445-P, PI13/00023, AGL2012/39615, AGL2015–
67896-P, CTS-525, CVI-7450.

The following funding sources were essential for data collection,
analysis, and interpretation: CP15/00156, PI16/00264, BFU2016–
80360-R, BIO-0139, CTS-1406, PI17/002287, PI-0541-2013.

The corresponding authors declare that they had full access to all the
data in the study and had the final responsibility for the decision to sub-
mit for publication.

Conflicts of interest

The authors declare that they have no conflict of interest.

Authors contributions

Manuel D. Gahete contributed to the conception and design of the
work, literature search, acquisition, analysis, and interpretation of the
data, drafting andrevising thework andfinal approval of themanuscript.

Mercedes del Rio-Moreno contributed to the design of thework, liter-
ature search, acquisition, analysis, and interpretation of the data,
drafting and revising the work and final approval of the manuscript.

Antonio Camargo contributed to the conception and design of the
work, analysis and interpretation of the data, drafting and revising the
work and final approval of the manuscript.

Juan F Alcala contributed to the conception and design of the work,
acquisition and analysis of the data andfinal approval of themanuscript.

Emilia Alors-Perez contributed to the acquisition and analysis of the
data, drafting the work, and final approval of the manuscript.

Javier Delgado-Lista contributed to the conception and design of the
work, acquisition of the data and final approval of the manuscript.

Oscar Reyes contributed to the analysis and interpretation of the
data, drafting the work and final approval of the manuscript.

Sebastian Ventura contributed to the analysis and interpretation of
the data, revising the work, and final approval of the manuscript.

Pablo Perez-Martinez contributed to the conception and design of the
work, literature search and interpretation of the data; revising thework
and final approval of the manuscript.

Justo P. Castaño contributed to the conception and design of the
work, literature search and interpretation of the data, revising the
work and final approval of the manuscript.

Jose Lopez-Miranda contributed to the conception and design of the
work, literature search and interpretation of the data, revising the
work and final approval of the manuscript.

Raúl M. Luque contributed to the conception and design of the work,
literature search and interpretation of the data, drafting and revising the
work and final approval of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.10.056.

References

[1] World Health Organization. World Health Organization: Global Status Report on
Noncommunicable Diseases. Geneva: World Health Organization; 2014.

[2] Martin-Timon I, Sevillano-Collantes C, Segura-Galindo A, Del Canizo-Gomez FJ. Type
2 diabetes and cardiovascular disease: have all risk factors the same strength?
World J Diabetes 2014;5(4):444–70.

[3] Blanco-Rojo R, Perez-Martinez P, Lopez-Moreno J, Martinez-Botas J, Delgado-Lista J,
Van-Ommen B, et al. HDL cholesterol efflux normalised to apoA-I is associated with
future development of type 2 diabetes: from the CORDIOPREV trial. Sci Rep 2017;7
(1):12499.

[4] Camargo A, Jimenez-Lucena R, Alcala-Diaz JF, Rangel-Zuniga OA, Garcia-Carpintero
S, Lopez-Moreno J, et al. Postprandial endotoxemia may influence the development
of type 2 diabetes mellitus: from the CORDIOPREV study. Clin Nutr 2018 [in press].

[5] Abbasi A, Peelen LM, Corpeleijn E, van der Schouw YT, Stolk RP, Spijkerman AM,
et al. Prediction models for risk of developing type 2 diabetes: systematic literature
search and independent external validation study. BMJ 2012;345:e5900.

[6] Collins GS, Mallett S, Omar O, Yu LM. Developing risk prediction models for type
2 diabetes: a systematic review of methodology and reporting. BMC Med 2011;
9:103.

[7] Cohen RM, Haggerty S, Herman WH. HbA1c for the diagnosis of diabetes and predi-
abetes: is it time for a mid-course correction? J Clin Endocrinol Metab 2010;95(12):
5203–6.

[8] Brodovicz KG, Dekker JM, Rijkelijkhuizen JM, Rhodes T, Mari A, AlssemaM, et al. The
Finnish Diabetes Risk score is associated with insulin resistance but not reduced
beta-cell function, by classical and model-based estimates. Diabet Med 2011;28
(9):1078–81.

[9] Stroeve JHM, vanWietmarschen H, Kremer BHA, van Ommen B,Wopereis S. Pheno-
typic flexibility as a measure of health: the optimal nutritional stress response test.
Genes Nutr 2015;10(3):13.

[10] Dlamini Z, Mokoena F, Hull R. Abnormalities in alternative splicing in diabetes: ther-
apeutic targets. J Mol Endocrinol 2017;59(2):R93-107.

[11] Webster NJG. Alternative RNA Splicing in the Pathogenesis of Liver Disease. Front
Endocrinol (Lausanne) 2017;8:133.

[12] Mercader JM, Liao RG, Bell AD, Dymek Z, Estrada K, Tukiainen T, et al. A Loss-of-
Function Splice Acceptor Variant in IGF2 is protective for Type 2 Diabetes. Diabetes
2017;66(11):2903–14.

[13] Lee SC, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med 2016;
22(9):976–86.

[14] Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensao-Ferreira M,
Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : the
key role of alternative splicing in human biological systems. Hum Genet 2017;136
(9):1015–42.

[15] Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet 2016;17(1):
19–32.

[16] Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol 2014;
15(2):108–21.

[17] Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: pathogenesis and treat-
ment. Lancet 2008;371(9631):2153–6.

[18] Juan-Mateu J, Villate O, Eizirik DL. MECHANISMS IN ENDOCRINOLOGY: Alternative
splicing: the new frontier in diabetes research. Eur J Endocrinol 2016;174(5):
R225–38.

[19] Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, et al. Insulin
Receptor Isoforms in Physiology and Disease: an Updated View. Endocr Rev 2017;
38(5):379–431.

[20] Burczynski ME, Dorner AJ. Transcriptional profiling of peripheral blood cells in clin-
ical pharmacogenomic studies. Pharmacogenomics 2006;7(2):187–202.

[21] Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Alcala-Diaz JF, Perez-Caballero AI,
Gomez-Delgado F, et al. CORonary Diet intervention with Olive oil and cardiovascu-
lar PREVention study (the CORDIOPREV study): Rationale, methods, and baseline
characteristics: A clinical trial comparing the efficacy of a Mediterranean diet rich
in olive oil versus a low-fat diet on cardiovascular disease in coronary patients.
Am Heart J 2016;177:42–50.

[22] Blanco-Rojo R, Alcala-Diaz JF, Wopereis S, Perez-Martinez P, Quintana-Navarro
GM, Marin C, et al. The insulin resistance phenotype (muscle or liver) interacts
with the type of diet to determine changes in disposition index after 2 years of
intervention: the CORDIOPREV-DIAB randomised clinical trial. Diabetologia
2015;59(1):67–76.

[23] Gahete MD, Luque RM, Yubero-Serrano EM, Cruz-Teno C, Ibanez-Costa A, Delgado-
Lista J, et al. Dietary fat alters the expression of cortistatin and ghrelin systems in
the PBMCs of elderly subjects: putative implications in the postprandial inflamma-
tory response. Mol Nutr Food Res 2014;58(9):1897–906.

[24] Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accu-
rate normalization of real-time quantitative RT-PCR data by geometric averaging of
multiple internal control genes. Genome Biol 2002;3(7).

[25] Delong ER, Delong DM, Clarke-Pearson DL. Comparing the areas under two or more
correlated receiver operating characteristic curves: a nonparametric approach. Bio-
metrics 1988;44(3):837–45.

[26] Pfaffenbach KT, Nivala AM, Reese L, Ellis F, Wang D, Wei Y, et al. Rapamycin inhibits
postprandial-mediated X-box-binding protein-1 splicing in rat liver. J Nutr 2010;140
(5):879–84.

[27] Fruhbeck G, Gomez-Ambrosi J, Martinez JA. Pre- and postprandial expression of the
leptin receptor splice variants OB-Ra and OB-Rb in murine peripheral tissues. Phys-
iol Res 1999;48(3):189–95.

[28] Escribano O, Beneit N, Rubio-Longas C, Lopez-Pastor AR, Gomez-Hernandez A. The
Role of Insulin Receptor Isoforms in Diabetes and its Metabolic and Vascular Compli-
cations. J Diabetes Res 2017;2017:1403206.

[29] Gortan Cappellari G, Barazzoni R, Cattin L, Muro AF, Zanetti M. Lack of Fibronectin
Extra Domain a Alternative Splicing Exacerbates Endothelial Dysfunction in Diabe-
tes. Sci Rep 2016;6:37965.

[30] Newman JRB, Conesa A, Mika M, New FN, Onengut-Gumuscu S, Atkinson MA, et al.
Disease-specific biases in alternative splicing and tissue-specific dysregulation re-
vealed by multitissue profiling of lymphocyte gene expression in type 1 diabetes.
Genome Res 2017;27(11):1807–15.

[31] Shi Y. Mechanistic insights into precursor messenger RNA splicing by the
spliceosome. Nat Rev Mol Cell Biol 2017;18(11):655–70.

[32] Malakar P, Chartarifsky L, Hija A, Leibowitz G, Glaser B, Dor Y, et al. Insulin receptor
alternative splicing is regulated by insulin signaling andmodulates beta cell survival.
Sci Rep 2016;6:31222.

[33] Reardon HT, Hsieh AT, Park WJ, Kothapalli KS, Anthony JC, Nathanielsz PW, et al. Di-
etary long-chain polyunsaturated fatty acids upregulate expression of FADS3 tran-
scripts. Prostaglandins Leukot Essent Fatty Acids 2013;88(1):15–9.

365M.D. Gahete et al. / EBioMedicine 37 (2018) 356–365

https://doi.org/10.1016/j.ebiom.2018.10.056
https://doi.org/10.1016/j.ebiom.2018.10.056
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0005
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0005
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0010
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0010
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0010
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0015
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0015
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0015
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0015
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0020
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0020
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0020
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0025
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0025
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0025
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0030
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0030
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0030
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0035
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0035
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0035
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0040
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0040
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0040
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0040
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0045
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0045
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0045
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0050
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0050
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0055
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0055
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0060
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0060
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0060
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0065
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0065
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0070
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0070
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0070
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0070
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0075
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0075
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0080
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0080
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0085
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0085
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0090
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0090
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0090
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0095
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0095
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0095
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0100
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0100
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0105
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0105
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0105
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0105
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0105
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0105
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0110
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0110
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0110
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0110
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0110
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0115
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0115
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0115
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0115
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0120
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0120
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0120
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0125
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0125
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0125
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0130
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0130
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0130
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0135
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0135
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0135
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0140
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0140
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0140
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0145
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0145
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0145
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0150
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0150
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0150
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0150
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0155
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0155
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0160
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0160
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0160
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0165
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0165
http://refhub.elsevier.com/S2352-3964(18)30479-1/rf0165


 

 1 

Supplementary Material and Methods 
 
Calculation of Insulin resistance and sensitivity indexes 
The Matsuda insulin sensitivity index (ISI) was calculated from the OGTT using the following formula: ISI = 10.000 ÷ 
√([fasting plasma glucose X fasting plasma insulin] X [mean glucose in OGTT X mean insulin in OGTT]) 1. HOMA-IR 
was calculated as previously described Song, Y., et al 2. Insulin secretion was measured by the insulinogenic index (IGI): 
IGI= [30 min insulin−fasting insulin (pmol/l)]/[30 min glucose−fasting glucose (mmol/l)] 3. Beta-cell function was 
estimated by calculating the disposition index (DI) as follows: DI=ISI×[AUC30 min insulin / AUC30 min glucose], where 
AUC30 min is the area under the curve between baseline and 30 min of the OGTT for insulin (pmol/l) and glucose (mmol/l) 
measurements, respectively, calculated by the trapezoidal method 4. The indices used to determine tissue-specific IR were: 
the hepatic insulin resistance index (HIRI) and the muscle insulin sensitivity index (MISI), which were calculated as 
described in previous work by our group 5, following the methods described by Matsuda and DeFronzo for HIRI and Abdul-
Ghani et al for MISI 1,6. The FINDRISC score was calculated as previously defined 7. 

 
Biochemical determinations of metabolic parameters 
Glucose levels were determined by the hexokinase method. The hs-C-Reactive Protein (hs-CRP) was determined by ELISA 
(BioCheck, Inc., Foster City, CA, USA). Insulin concentrations were measured by microparticle enzyme immunoassay 
(Abbott Diagnostics, Matsudo-shi, Japan). Lipid variables were assessed with the modular auto analyzer DDPPII Hitachi 
(Roche, Basel, Switzerland) using specific reagents (Boehringer-Mannheim, Mannheim, Germany). Measurements of total 
cholesterol (TC) and triglycerides (TG) levels were made by colorimetric enzymatic methods 8,9, high density lipoprotein-
cholesterol (HDL-c) by colorimetric assay 10 and low density lipoprotein (LDL-C) concentration was calculated by the 
Friedewald equation, using the following formula: LDLc = CT- (HDL + TG / 5). Non-esterified fatty acid concentrations 
were measured by enzymatic colorimetric assay (Roche Diagnostics, Penzberg, Germany). ApoA-1 and ApoB 
concentrations were determined by immunoturbidimetry. 
 
Analysis of splicing machinery components by qPCR dynamic array based on microfluidic technology 
A 48.48 Dynamic Array based on microfluidic technology (Fluidigm, San Francisco, CA, USA) was implemented to 
determine the expression of 48 transcripts in 48 samples, simultaneously. Specific primers for human transcripts including 
components of the major (n=13) and minor spliceosome (n=4), associated SFs (n=28) and three housekeeping genes were 
specifically designed with the Primer3 software and StepOne™ Real-Time PCR System software v2.3 (Applied 
Biosystems, Foster City, CA, USA) (Supplementary Table 3). Following manufacturer’s instructions, 12.5ng of cDNA of 
each sample were pre-amplified using 1µL of PreAmp Master Mix (Fluidigm) and 0.5µL of all primers mix (500nM) in a 
T100 Thermal-cycler (BioRad, Hercules, CA, USA), using the following program: 1) 2 min at 95ºC; 2) 15 sec at 94ºC and 4 
min at 60ºC (14 cycles). Then, samples were treated with 2µL of 4U/µL Exonuclease I solution (New England BioLabs, 
Ipswich, MA, USA) following manufacturer’s instructions. Then, samples were diluted with 18µL of TE Buffer (Thermo 
Scientific), and 2.7µL were mixed with 3µL of EvaGreen Supermix (Bio-Rad) and 0.3µL of DNA Binding Dye Sample 
Loading Reagent (Fluidigm). Primers were diluted to 5µM with 2X Assay Loading Reagent (Fluidigm). Control line fluid 
was charged in the chip and Prime script program was run into the IFC controller MX (Fluidigm). Finally, 5µL of each 
primer and 5µL of each sample were pipetted into their respective inlets on the chip and the Load Mix script in the IFC 
controller software was run. After this program, the qPCR was run in the Biomark System (Fluidigm) following the thermal 
cycling program: 1) 95ºC for 1min; 2) 35 cycles of denaturing (95ºC for 5sec) and annealing/extension (60ºC for 20sec); 
and 3) a last cycle where final PCR products were subjected to graded temperature-dependent dissociation (60ºC to 95ºC, 
increasing 1ºC/3 sec). Data were processed with Real-Time PCR Analysis Software 3.0 (Fluidigm). 
 
Bioinformatical analysis 
1. Data preprocessing 
Before conducting the computational study, the dataset was preprocessed as follows: 1) An univariate analysis of outliers 
was conducted and those values that lie outside 1.5 times the inter-quartile range were removed; 2) All genes with more 
than 70% of missing values were eliminated; 3) All missing values and outliers were replaced by the median of the variable 
in each group of patients; 4) All variables with zero variance were removed; 5) All variables were centered by means of 
subtracting the original values by the mean, and then, they were scaled by means of dividing by the standard deviation. By 
this way, all variables had the same impact and, therefore, the posterior estimation of the variables’ relevance was not 
biased by those variables with extreme values. 
 
2. Construction of predictive models with all variables 
In this work, we aimed to analyze the effectiveness of the considered variables at predicting T2DM development in the 
population of non-T2DM patients. A logistic regression model was constructed with the SPSS software, and later validated 
with the R language; the aim was to confirm the high AUC values obtained by SPSS. Also, Random Forest and C4.5 
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models were constructed with R, serving as a point of comparison to determine the effectiveness of the aforementioned 
logistic regression model. 
Two scenarios were considered in this work. First, the capacity of the model to memorize the data distributions and 
properties was studied by means of assessing the models with the same data used to construct them (SPSS implements this 
type of evaluation by default). Secondly, the capacity of generalization of the models was studied by means of assessing the 
models in a data partition that has not been seen previously (Cross-validation studies). This last scenario was performed in 
R language by repeating three times a 10-fold cross validation to construct the models, using the same seed to partition the 
database, so allowing the replication of the computational study. A single 10-fold cross-validation procedure was carried out 
as follows: (I) the database was partitioned in 10 parts; (II) in each fold execution the model was trained over the union of 
nine data partitions, and then it was tested on the remaining partition that was not used at training the model; (III) the 
predictive performance of the model was averaged across all fold executions. 
 
3. Estimation of the variables’ relevance 
So far, the predictive models were constructed by considering all the variables of the database. However, it is well-known 
that a better predictive performance can be attained if redundant, noisy and interacting variables are removed at the time of 
constructing models 11,12. In this work, several well-known feature-weighting algorithms 13 were used to compute the 
relevance of variables. The variables were ordered from higher to lower relevance according to a weight that represents the 
ability to distinguish between Incident-T2DM and non-T2DM patients. To avoid possible biases in the process of estimating 
the variables’ relevance, five well-known feature estimation methods were used, namely Correlation-Feature-Selection 
(CFS), Correlation-Attribute-Evaluation (CAE), Gain-Ratio (GR), Information-Gain (IG), and Relief-F (RF) 14,15. These 
algorithms are filter methods that evaluate the usefulness of a variable (or a set of variables) through measures of distance, 
dependency, information or correlation on data 11,12, so they are not influenced by classification algorithms in the feature 
estimation process. The use of these supervised feature weighting methods can lead to a superior estimation of the variables’ 
relevance, having as main advantages: (I) consideration of the expert knowledge unlike of several traditional approaches, 
such as Principal Component Analysis (PCA), that do not exploit the a priori classification of patients; (II) detection of 
redundant information; (III) detection of interacting features. 

In this work, the five feature-weighting methods were assessed by repeating three times a 10-fold cross-validation, and 
the process was implemented in the R language. In the case of RF method, it was executed with a set of number of nearest 
neighbors equal to 11. The five estimation methods returned ranking of variables and, therefore, an average ranking can be 
computed as presented in Figure 1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
3.1. Construction of predictive models with subsets of relevant variables 
Subsequently, it was also determined the subset of variables that can best predict the development of T2DM. To determine 
the best subset of variables by means of a final ranking of variables, we implemented a method previously published by our 
group 12, which provides a heuristic for searching on feature rankings. The number of possible subsets of variables is of 
exponential size but through a series of steps that are performed for each sub-ranking (Figure 2), the best subset of variables 
is selected as this one that produces the best classifier at predicting whether a patient will develop T2DM or not. 

Figure 1. Workflow describing the five estimation methods used for ranking of variables 
and their integration to obtain the average ranking 
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Supplementary Tables 
 
Supplementary Table 1  
 

 
 
Supplementary table 1. Baseline characteristics of total non-T2DM patients vs randomly selected non-T2DM 
patients cohort included in the study. Values expressed as mean ± SEM. BMI: Body mass index; HbA1c: Glycated 
hemoglobin; TG: Triglycerides; c- LDL: Low density lipoprotein; c-HDL: High density lipoprotein; NEFA: Non esterified 
fatty acids; Apo A1: Apolipoprotein A1; Apo B: Apolipoprotein B; hs-CRP: High sensitivity C-reactive protein; HOMA-
IR: Homeostasis model assessment of insulin resistance;  HIRI: Hepatic insulin resistance index; MISI: Muscle insulin 
sensitivity index; DI: Disposition index; ISI: Insulin sensitivity index; IGI: Insulinogenic index. 
 
 
 
 
 
 
 
 
 

Variables Total Non-T2DM Randomly selected
Non-T2DM

p- value

n 355 108
Sex (male; female) 304; 51 93; 15
Age (years) 57.33 ±	0.504 60.30 ±	0.806 0.002
Waist circumference (cm) 101.73 ± 0.575 102.48 ±	0.958 0.525
Weight (kg) 82.45 ± 0.717 81.92 ±	1.194 0.577
BMI (kg/m2) 29.87 ± 0.221 30.16 ±	0.362 0.522
Glucose (mg/dl) 92.59 ± 0.531 94.4 ±	0.952 0.099
HbA1c (%) 5.86 ± 0.018 5.88 ±	0.032 0.551
Insulin (mU/l) 8.34  ± 0.305 8.07 ±	0.514 0.66
TG (mg/dl) 119.45 ±3.239 109.24 ±	4.699 0.112
Total cholesterol (mg/dl) 160.65 ±	1.612 159.55 ±	3.027 0.744
c-LDL (mg/dl) 91.1 ± 1.332 91.20 ±	2.38 0.971
c-HDL (mg/dl) 44.58 ± 0.535 44.58 ±	0.899 0.999
NEFA (mmol/L) 0.278 ± 0.009 0.286 ±	0.015 0.894
Apo A1 (mg/dl) 133.36 ± 1.144 133.5 ±	2.093 0.952
Apo B (mg/dl) 72.15 ± 0.939 71.57 ±	1.934 0.773
hs-CRP (mg/dl) 2.51 ±	0.186 2.428 ±	0.32 0.826
HOMA-IR 2.58 ± 0.091 2.5424 ±	0.126 0.825
HIRI 1052.27 ± 36.783 1024.55 ±	50.85 0.702
MISI (x102) 0.02 ± 0.001 0.021 ±	0.002 0.855
DI 1.01 ± 0.07 0.8948 ±	0.041 0.02
ISI 4.3 ± 0.142 4.0815 ±	0.256 0.449
IGI 1.12 ± 0.072 1.0646 ±	0.103 0.675
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Supplementary Table 2 
 

 
 
Supplementary Table 2. Clinical characteristics of the healthy subjects (n=7) that donated PBMCs to test the 
modulation of the expression of the spliceosome components and splicing factors by metabolic dysregulations 
associated to T2DM patients. Values are expressed as mean ± standard error. BMI: Body mass index; HbA1c: Glycated 
hemoglobin; TG: Triglycerides; c-LDL: Low density lipoprotein; c-HDL: High density lipoprotein; NEFA: Non esterified 
fatty acids; Apo A1: Apolipoprotein A1; Apo B: Apolipoprotein B; hs-CRP: High sensitivity C-reactive protein. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables Healthy Subjects

Age (years) 24.7 ± 1.32

Waist circumference (cm) 0.87 ± 0.01

Weight (kg) 81.57 ± 3.77

BMI (kg/m2) 23.53 ± 1.059

Glucose (mg/dl) 93.2 ± 2.97

HbA1c (%) 5.18 ± 0.13

Insulin (mU/l) 8.14 ± 0.62

TG (mg/dl) 74 ± 6.46

Total cholesterol (mg/dl) 169 ± 5.97

c-LDL (mg/dl) 93.2 ± 7.32

c-HDL (mg/dl) 60 ± 7.82

Apo A1 (mg/dl) 128 ±6.22

Apo B (mg/dl) 62.4 ±3.2

hs-CRP (mg/dl) 0.68 ± 0.42
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Supplementary Table 3 
 

 
 
Supplementary Table 3. Specific primers for human transcripts used in this study, including components of the major 
and minor spliceosomes, associated splicing factors and three housekeeping genes (Hk) that were specifically designed and 
used in qPCR-based microfluidic assays. NCBI accession number, primers sequences, product sizes and nucleotide 
positions for the genes studied are included.  
 
 
 

Gene Accession
Number Primer Sequence (Sense. Se) Primer Sequence (Antisense. As) Product Size Nucleotide Position

Sp
lic

eo
so

m
e 

C
om

po
ne

nt
s

PRPF40A NM_017892.3 GCTCGGAAGATGAAACGAAA TGTCCTCAAATGCTGGCTCT 130 Se 2459; As 2288
PRPF8 NM_006445.3 TGCCCACTACAACCGAGAA AGGCCCGTCCTTCAGGTA 139 Se 2373; As 2511
RBM22 NM_018047.2 CTCTGGGTTCCAACACCTACA GGCACAGATTTTGCATTCCT 137 Se 133; As 269
RNU11 NR_004407.1 AAGGGCTTCTGTCGTGAGTG    CCAGCTGCCCAAATACCA    108 Se 4; As 111
RNU12 NR_029422.1 ATAACGATTCGGGGTGACG    CAGGCATCCCGCAAAGTA    106 Se 26; As 149
RNU2 NR_002716.3 CTCGGCCTTTTGGCTAAGAT TATTCCATCTCCCTGCTCCA 116 Se 8; As 123
RNU4 NR_003925.1 TCGTAGCCAATGAGGTCTATCC AAAATTGCCAGTGCCGACTA 103 Se 21; As 132

RNU4atac NR_023343.1 GTTGCGCTACTGTCCAATGA CAAAAATTGCACCAAAATAA 85 Se 19; As 103
RNU6 NR_004394.1 CGCTTCGGCAGCACATATA AAAATATGGAACGCTTCACGAA 101 Se 6; As 106

RNU6atac NR_023344.1 TGAAAGGAGAGAAGGTTAGCACTC CGATGGTTAGATGCCACGA 112 Se 9; As 120
SF3B1 NM_012433.3 CAGTTCCGTCTGTGTGTTCG GCTGCCTTCTTGCCTTGA 101 Se 65; As 165

SF3B1 tv1 NM_012433.3 GCAGACCGGGAAGATGAATA TTTTCCCTCCATCTGCAAAA 88 Se 431; As 518
SNRNP70 NM_001301069.1 TCTTCGTGGCGAGAGTGAAT    GCTTTCCTGACCGCTTACTG    114 Se 821; As 934

SNRNP200 NM_014014.4 GGTGCTGTCCCTTGTTGG CTTTCTTCGCTTGGCTCTTCT 103 Se 249; As 351
TCERG1 NM_006706.3 GAGGAGCCCAAAGAAGAGGA CACCAGTCCAAACGACACAC 112 Se 1550; As 1661
U2AF1 NM_006758.2 GAAGTATGGGGAAGTAGAGGAGATG TTCAAGTCAATCACAGCCTTTTC 120 Se 424; As 543
U2AF2 NM_007279.2                  CTTTGACCAGAGGCGCTAAA TACTGCATTGGGGTGATGTG 130 Se 1246; As 1375

Sp
lic

in
g 

Fa
ct

or
s

CELF1 NM_006560.3 AACAGAAGAGAATGGCCCAGC TGCTGAAGGAGTGCTAAATACTG 121 Se 837; As 957
CELF4 NM_020180.3 CCCCAGCAGCAGAGAGAA GAAGCCGAAAGGGAGGAA 108 Se 1627; As 1734
ESRP1 NM_020180.3 TTTTGGGATCACTGCTGGGG TGTCCCACCTTCTTGTTGGC 108 Se 216; As 323
ESRP2 NM_024939.2 AGAGCCCAGCAGTCAATTGTT GTCTCACTGTCCACCACATCAG 96 Se 833; As 928

KHDRBS1 NM_006559.2 GAGCGAGTGCTGATACCTGTC CACCAGTCTCTTCCTGCAGTC 106 Se 774; As 879
MAGOH NM_002370.3 GCCAACAACAGCAATTACAAGA TTATTCTCTTCAGTTCCTCCATCAC 88 Se 265; As 352
NOVA1 NM_002515.2 TACCCAGGTACTACTGAGCGAG CTGGTTCTGTCTTGGCCACAT 124 Se 592; As 715
PTBP1 NM_002819.4 TGGGTCGGTTCCTGCTATT CAGATCCCCGCTTTGTAC 111 Se 45; As 155

RAVER1 NM_133452.2 GTAACCGCCGCAAGATACTG CGAAGGCTGTCCCTTTGTATT 126 Se 298;  As 423
RBM17 NM_032905.4 CAAAGAGCCAAAGGACGAAA TACATGCGGTGGAGTGTCC 107 Se 345; As 451
RBM3 NM_006743.4 AAGCTCTTCGTGGGAGGG TTGACAACGACCACCTCAGA 98 Se 253; As 350
RBM45 NM_152945.3 CCCATCAAGGTTTTCATTGC TTCCCGCAGATCTTCTTCTG 123 Se 415; As 537
SFPQ NM_005066.2 TGGTAGGGGGTGAAAGTG TTAAAAACAAGAAATGGGGAAATG 125 Se 2873; As 2997
SND1 NM_014390.3 ACTACGGCAACAGAGAGGTCC GAAGGCATACTCCGTGGCT 101 Se 2679; As 2779
SNW1 NM_001318844.1 ATGCGTGCCCAAGTAGAGAG TCCCCATCCTCTTTTTCCA 134 Se 937; As 1070

SRRM1 NM_001303448.1 GTAGCCCAAGAAGACGCAAA TGGTTCTGTGACGGGGAG 108 Se 733; As 840
SRRM4 NM_194286.3 CCTTCACCACCTCCTCAC TTCGGCACATTCCAGACA 113 Se 1386; As 1498
SRSF1 NM_006924.4 TGTCTCTGGACTGCCTCCA TGCCATCTCGGTAAACATCA 98 Se 580; As 658

SRSF10 NM_006625.5 CTACACTCGCCGTCCAAGAG CCGTCCACAAATCCACTTTC 103 Se 343; As 445
SRSF2 NM_003016.4 TGTCCAAGAGGGAATCCAAA GTTTACACTGCTTGCCGATACA 113 Se 835; As 947
SRSF3 NM_003017.4 TAACCCTAGATCTCGAAATGCATC CATAGTAGCCAAAAGCCCGTT 117 Se 155; As 271
SRSF4 NM_005626.4 GGAACTGAAGTCAATGGGAGAA    CTTCGAGAGCGAGACCTTGA    110 Se 857; As 966
SRSF5 NM_001039465.1 GCAAAAGGCACAGTAGGTCAA  TTTGCGACTACGGGAACG 92 Se 723; As 814
SRSF6 NM_006275.5 AGACCTCAAAAATGGGTACGG CTTGCCGTTCAGCTCGTAA 82 Se 263; As 344
SRSF9 NM_003769.2 CCCTGCGTAAACTGGATGAC AGCTGGTGCTTCTCTCAGGA 87 Se 628; As 714
TIA1 NM_022037.2 TAAATCCCGTGCAACAGCAGA TATGCAGGAACTTGCCAACCA 124 Se 2806; As 2929

TRA2A NM_013293.4 TCAAAGGAGGCTATGGAAAGG TGTGTGCGCTCTCTTGGTTA 90 Se 734; As 823
TRA2B NM_004593.2. GATGATGCCAAGGAAGCTAAAG AGGTAGGTCTCCCCATGTAAATTC 130 Se 784; As 913

H
k

ge
ne

s ACTB NM_001101 ACTCTTCCAGCCTTCCTTCCT CAGTGATCTCCTTCTGCATCCT 176 Se 864; As 1039
GAPDH NM_002046 AATCCCATCACCATCTTCCA AAATGAGCCCCAGCCTTC 122 Se 402; As 423
HPRT NM_000194.2 CTGAGGATTTGGAAAGGGTGT TAATCCAGCAGGTCAGCAAAG 157 Se 252; As 409
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 Supplementary Table 4 

 

Supplementary table 4. Spearman correlation between the PBMC expression levels of baseline fasting and 
postprandial spliceosome components and splicing factors, and relevant T2DM related parameters. c-HDL: 
cholesterol high density lipoprotein; NEFA: non-esterified fatty acids; HbA1c: glycated hemoglobin; TG: Triglycerides; 
hs-CRP: High sensitivity C-reactive protein; Apo A1: Apolipoprotein A1; ISI: insulin sensitivity index; DI: disposition 
index. Non significative correlations are not depicted. 

 
 
 
 
 
 
 
 
 
 

Fasting Postprandial
ESRP1 SRSF1 SRSF5 RNU4 SNRNP200 ESRP1 SRSF1 RNU4 RNU6 NOVA1 RNU2 RNU12

Fasting c-HDL 
(mg/dl)

r2 0.246 0.155 0.179 0.236

p 0.001** 0.038* 0.016* 0.001**

Fasting NEFA 
(mmol/L)

r2 0.159 0.157 0.186

p 0.033* 0.036* 0.012*

Fasting HbA1c (%)
r2 -0.147 -0.188 -0.189 -0.194 -0.194

p 0.048* 0.009** 0.009** 0.007** 0.007**

Postprandial c-HDL 
(mg/dl)

r2 0.236

p 0.002**

Postprandial NEFA 
(mmol/L)

r2 0.158 0.153 0.180

p 0.039* 0.045* 0.015*

Postprandial Glucose
(mg/dl)

r2 0.194

p 0.01**

Postprandial TG
(mg/dl)

r2 -0.170

p 0.023*

Postprandial hs-CRP
(mg/dl)

r2 -0.197

p 0.008**

Postprandial Apo A1
(mg/dl)

r2 0.182

p 0,015*

ISI
r2 0.160 -0.273

p 0.034* 0.000**

DI
r2 0.180

p 0.014*
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Supplementary Table 5 

 
 
Supplementary table 5. Capacity of baseline fasting and postprandial levels of selected spliceosome components and 
splicing factors to predict T2DM development by ROC curve analysis. AUC: Area under curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ROC Curve Non-T2DM / Incident-T2DM

Fasting AUC p-value

RNU2 0.60 0.010

SRSF5 0.60 0.013

RNU6ATAC 0.60 0.014

RNU4 0.59 0.019

SNRNP200 0.59 0.027

ESRP1 0.58 0.046

SRSF1 0.58 0.050

Postprandial AUC p-value

RNU4ATAC 0.65 0.0007

RNU6ATAC 0.64 0.0005

SNRNP70 0.64 0.04

NOVA1 0.62 0.004

ESRP1 0.62 0.005

RNU6 0.61 0.006

SRSF1 0.59 0.02

RNU12 0.59 0.03

RNU4 0.59 0.02

RNU2 0.58 0.06
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Supplementary Table 6  

 

Supplementary table 6. Capacity of the fingerprints comprised by baseline fasting and/or postprandial levels of 
spliceosome components and splicing factors to predict T2DM development using different computational (machine-
learning) algorithms. Logistic Regression, Random Forest and C4.5 algorithms were applied using R language to 
determine the capacity of the fingerprints comprised by baseline fasting and/or postprandial levels of spliceosome 
components and splicing factors to predict T2DM development using the full cohort the patients or only those patients that 
developed T2DM during the two first years of follow-up. These analysis (training) were confirmed by cross-validation 
studies as described in Supplementary Material and Methods. AUC from training cohort and cross-validation (CV) analysis 
are shown. HbA1c: Glycosylated hemoglobin; SFs: Splicing factors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All patients during 5 years of follow-up
Logistic Regression Random Forest C4.5

Training CV Training CV Training CV

HbA1c 0.643 0.634 0.676 0.567 0.618 0.557

FINDRISK 0.548 0.537 0.661 0.544 0.500 0.449

HbA1c and FINDRISK 0.643 0.624 0.929 0.509 0.618 0.562

Baseline fasting SFs levels 0.894 0.686 1 0.711 0.942 0.704

Baseline postprandial SFs levels 0.853 0.656 1 0.763 0.963 0.703

Baseline fasting and postprandial SFs levels 1 0.654 1 0.813 0.953 0.771

Baseline fasting and postprandial SFs levels + HbA1c 1 0.675 1 0.795 0.947 0.743

Baseline fasting and postprandial SFs levels + FINDRISK 1 0.704 1 0.808 0.972 0.737

Patients that developed T2DM during
the twofirst years of follow-up

Logistic Regression Random Forest C4.5

Training CV Training CV Training CV

HbA1c 0.691 0.687 0.716 0.606 0.681 0.633

FINDRISK 0.568 0.553 0.671 0.530 0.500 0.486

HbA1c and FINDRISK 0.691 0.667 0.950 0.611 0.706 0.647

Baseline fasting SFs levels 0.924 0.72 1 0.745 0.988 0.630

Baseline postprandial SFs levels 0.906 0.678 1 0.806 0.998 0.739

Baseline fasting and postprandial SFs levels 1 0.699 1 0.851 0.872 0.705

Baseline fasting and postprandial SFs levels + HbA1c 1 0.681 1 0.871 0.989 0.756

Baseline fasting and postprandial SFs levels + FINDRISK 1 0.682 1 0.861 0.971 0.745
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Supplementary Figures 

Supplementary Figure 1  

 

 

Supplementary figure 1. Graphical scheme of the patients study timeline. Specifically, from the initial 462 non-T2DM 
patients included in the CORDIOPREV study, 107 patients developed T2DM (Incident-T2DM cases) after a mean follow-
up of 5-years according to all the American Diabetes Association (ADA) diagnosis criteria evaluated on the basis of glucose 
tolerance tests (OGTT) performed each year. In the present study, all these 107 incident-T2DM cases and 108 matched 
controls (non-T2DM subjects, randomly selected from the remaining 355 subjects that did not develop T2DM during the 
study period) were included. A fat-rich meal test was performed at baseline under fasting conditions, and blood was taken 
(at 0h and 4h-postprandial) to isolate the PBMCs and determine the expression profile of splicing machinery components. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 Year
Follow-up

462 patients 355 patients

108 Non-T2DM subjects107 Incident-T2DM cases

11patients24 patients43 patients 19 patients 10 patients

Fat-rich meal test

2 Year
Follow-up

3 Year
Follow-up

4 Year
Follow-up

5 Year
Follow-up

OGTT OGTT OGTT OGTT OGTTOGTT

Blood sampling
- Serum collection and storage
- PBMC isolation and storage
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Supplementary Figure 2 

  
 
Supplementary figure 2. Modulation of the expression levels of specific spliceosome components and splicing factors 
during a fat-rich meal test (fasting vs. 4h of postprandial). a) Spliceosome components and splicing factors that were 
selectively altered during the postprandial phase (in comparison with baseline levels) in a specific group of patients 
(Incident-T2DM or non-T2DM patients). b) Altered factors at baseline that remained altered in postprandial phase. c) 
Factors that were only altered at baseline. Data represent mRNA expression levels [adjusted by a normalization factor (NF) 
calculated from the expression level of GAPDH and ACTB] of the different spliceosome components and SFs in the PBMCs 
from non-T2DM and Incident-T2DM subjects during fat-rich meal test. Values represent the mean ± SEM. Asterisks 
indicate values that significantly differ from non-T2DM patients (t-test: *, p<0.05; **, p<0.01; ***, p<0.001). 
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Supplementary Figure 3 

 

Supplementary figure 3. Expression pattern of altered spliceosome components and splicing factors at baseline in the 
PBMCs of non-T2DM and Incident-T2DM subjects sub-classified according with the year of T2DM diagnosis. 
mRNA expression levels [adjusted by a normalization factor (NF) calculated from the expression level of GAPDH and 
ACTB] of specific spliceosome components (first row) and SFs (second row) in the PBMCs from non-T2DM and Incident-
T2DM subjects. Values represent the mean ± SEM. Asterisks indicate values that significantly differ from non-T2DM 
patients (t-test: *, p<0.05; **, p<0.01).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
RN

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

*

0

3×108

6×108

9×108

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

RNU2

0

1×107

2×107

3×107
SNRNP200

**

0

1×109

2×109

3×109

4×109

5×109
RNU4

0.0

2.5×104

5.0×104

7.5×104

1.0×105
SRSF1

*

*

0

1×105

2×105

3×105

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

ESRP1

*

0

1×106

2×106

3×106
RNU6ATAC

*

0.0

3.5×107

7.0×107

1.1×108

1.4×108

1.8×108
SRSF5

Non-T2DM
Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

x
p
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
RN

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

*

0

3×108

6×108

9×108

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

RNU2

0

1×107

2×107

3×107
SNRNP200

**

0

1×109

2×109

3×109

4×109

5×109
RNU4

0.0

2.5×104

5.0×104

7.5×104

1.0×105
SRSF1

*

*

0

1×105

2×105

3×105

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

ESRP1

*

0

1×106

2×106

3×106
RNU6ATAC

*

0.0

3.5×107

7.0×107

1.1×108

1.4×108

1.8×108
SRSF5

Non-T2DM
Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

x
p
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

x
p
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

*

0

3×108

6×108

9×108

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

RNU2

0

1×107

2×107

3×107
SNRNP200

**

0

1×109

2×109

3×109

4×109

5×109
RNU4

0.0

2.5×104

5.0×104

7.5×104

1.0×105
SRSF1

*

*

0

1×105

2×105

3×105

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

ESRP1

*

0

1×106

2×106

3×106
RNU6ATAC

*

0.0

3.5×107

7.0×107

1.1×108

1.4×108

1.8×108
SRSF5

Non-T2DM
Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

x
p
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

x
p
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

*

0

3×108

6×108

9×108

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

RNU2

0

1×107

2×107

3×107
SNRNP200

**

0

1×109

2×109

3×109

4×109

5×109
RNU4

0.0

2.5×104

5.0×104

7.5×104

1.0×105
SRSF1

*

*

0

1×105

2×105

3×105

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

ESRP1

*

0

1×106

2×106

3×106
RNU6ATAC

*

0.0

3.5×107

7.0×107

1.1×108

1.4×108

1.8×108
SRSF5

Non-T2DM
Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

x
p
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105
m

R
N

A
 e

x
p
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
RN

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

*

0

3×108

6×108

9×108

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

RNU2

0

1×107

2×107

3×107
SNRNP200

**

0

1×109

2×109

3×109

4×109

5×109
RNU4

0.0

2.5×104

5.0×104

7.5×104

1.0×105
SRSF1

*

*

0

1×105

2×105

3×105

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

ESRP1

*

0

1×106

2×106

3×106
RNU6ATAC

*

0.0

3.5×107

7.0×107

1.1×108

1.4×108

1.8×108
SRSF5

Non-T2DM
Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

x
p
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
RN

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

*

0

3×108

6×108

9×108

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

RNU2

0

1×107

2×107

3×107
SNRNP200

**

0

1×109

2×109

3×109

4×109

5×109
RNU4

0.0

2.5×104

5.0×104

7.5×104

1.0×105
SRSF1

*

*

0

1×105

2×105

3×105

m
R

N
A 

ex
pr

es
si

on
 le

ve
ls

 
(a

dj
us

te
d 

by
 N

F)

ESRP1

*

0

1×106

2×106

3×106
RNU6ATAC

*

0.0

3.5×107

7.0×107

1.1×108

1.4×108

1.8×108
SRSF5

Non-T2DM
Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

x
p
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM
Non-T

2D
M

Yea
r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2
m

R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

(a
dj

us
te

d 
by

 N
F

)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n
 le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0

2×108

4×108

6×108

8×108

1×109

RNU2

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

ls
(a

dj
us

te
d 

by
 N

F
)

*

Incident-T2DM

*

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×105

2×105

3×105

4×105

m
R
N

A
 e

xp
re

ss
io

n 
le

ve
ls

ad
ju

st
ed

 b
y 

N
F

ESRP1

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Ctrl
 Y

ea
r 1

0

1×109

2×109

3×109

4×109

5×109

RNU4

***

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×107

1.0×108

1.5×108

2.0×108

SRSF5

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

SNRNP200

**

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

SRSF1

*

Incident-T2DM

Non-T
2D

M
Yea

r 1

Yea
r 2

Yea
r 3

+4
+5

0.0

5.0×105

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

RNU6atac

* 0.0800

Incident-T2DM



 

 13 

Supplementary Figure 4 

 

Supplementary figure 4. Expression pattern of altered spliceosome components and splicing factors during the 
postprandial state in the PBMCs of non-T2DM and Incident-T2DM subjects sub-classified according with the year 
of T2DM diagnosis. mRNA expression levels [adjusted by a normalization factor (NF) calculated from the expression level 
of GAPDH and ACTB] of specific spliceosome components and SFs in the PBMCs from non-T2DM and Incident-T2DM 
subjects. Values represent the mean ± SEM. Asterisks indicate values that significantly differ from non-T2DM patients (t-
test: *, p<0.05; **, p<0.01; ***, p<0.001).  
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Abstract  

Type-2 diabetes mellitus (T2DM) has become a major health problem worldwide. T2DM 

risk can be reduced with healthy dietary interventions, but the precise molecular mechanisms 

underlying this association are still incompletely understood. We recently discovered that the 

expression pattern of the splicing machinery is associated with the risk of T2DM development. 

Thus, the aim of this work was to evaluate the influence of 3-year dietary intervention in the 

expression pattern of the splicing machinery components in PBMCs from patients within the 

CORDIOPREV-study. Expression of splicing machinery components were determined in 

PBMCs, at baseline and after 3-years of follow-up, from all patients who developed T2DM (n=107) 

and 108 randomly selected non-T2DM patients, who were randomly enrolled in two healthy 

dietary patterns (Mediterranean or Low-Fat Diet). Dietary intervention modulated the expression 

of key splicing machinery components (i.e. up-regulation of SPFQ/RMB45/RNU6, etc., down-

regulation of RNU2/SRSF6) after three years, independently of the type of healthy diet. Some of 

the changes observed were associated with key clinical features and were differentially induced 

by dietary intervention in incident-T2DM and non-T2DM patients. This study reveals that 

splicing machinery can be modulated by long-term dietary intervention, and could become a 

valuable tool to screen the progression of T2DM. 

  



Introduction 

Type 2 diabetes mellitus (T2DM) has become a major global health problem in recent 

decades due to its rising incidence, prevalence, and its tight causal association with diverse 

comorbidities, including cardiovascular disease (CVD) (1; 2). In the context of CVD prevention, 

lifestyle and behavioral interventions have been shown as advantageous approaches with less 

associated costs and side effects compared to available medical treatments (3). In particular, 

several healthy dietary patterns have been shown to be useful tools for the management of T2DM 

and the concomitant reduction of cardiovascular risk. This is the case of Mediterranean Diet 

(MedDiet), Dietary Approaches to Stop Hypertension (DASH), vegetarian diet, and the low-fat 

(LF) high carbohydrates diet recommended by the National Cholesterol Education Program and 

the American Diabetes Association (ADA) (2-5). In line with this, our group has shown that 

within the CORonary Diet Intervention with Olive oil and cardiovascular PREVention study 

(CORDIOPREV), a prospective, randomized, controlled trial that includes CVD patients at high-

risk for T2DM development (6), long-term consumption of MedDiet rich in olive oil and LF diet 

have beneficial effects on the patients, improving insulin sensitivity and beta-cell function (7). In 

this context, early identification of patients at higher risk for T2DM development is critical for 

prevention of a new cardiovascular events (8; 9). Interestingly, we recently discovered that the 

expression pattern of certain splicing machinery elements in the peripheral blood mononuclear 

cells (PBMCs) of patients is tightly associated with the risk of T2DM and could accurately predict 

T2DM development in the individuals from the CORDIOPREV study, outperforming the 

capacity of classical predictors of T2DM development, such as glycated hemoglobin (HbA1c) or 

predictive scores (FINDRISK) (10), two stablished strategies that have limitations and cannot 

precisely predict an individual’s risk of developing T2DM (11; 12).  

The splicing machinery is comprised by the spliceosome, an intricate macromolecular 

complex whose functional core is composed of several small nuclear ribonucleoprotein (snRNP) 

subunits, which dynamically interact to regulate the splicing process. The activity of the 



spliceosome is precisely modulated by more than 300 auxiliary proteins, the so-called splicing 

factors, that specifically recognize certain sequences in exons and introns (13; 14). An emerging 

body of evidence indicates that, under adverse health conditions, there is a profound 

dysregulation of certain spliceosomal components and splicing factors that results in altered and 

even aberrant splicing processes, which, in turn, substantially contribute to the development of 

severe pathologies, including cancer, neurodegeneration, liver disease and diabetes (13; 15-19). 

Indeed, the correct function of the splicing machinery is essential to maintain cell homeostasis 

(17; 18; 20; 21). In this scenario, it has been proposed that nutrients can modulate processes 

required for cell homeostasis through the alteration of gene expression and, particularly, the 

splicing of pre-mRNAs encoding key regulatory proteins (e.g., insulin receptor, leptin receptor) 

(22). Moreover, several studies have shown that the gene expression pattern of PBMCs is severely 

influenced by the diet (23-26) and might reflect metabolic and immune responses of adipocytes 

or hepatocytes (27; 28), thus providing valuable information to advance in the study of diseases 

such as T2DM and CVDs, using less invasive sampling methods (10; 25).  

Based on all the above, the aim of this work was to evaluate the influence of the dietary 

intervention in the expression pattern of the components of the splicing machinery in PBMCs 

from patients included in the CORDIOPREV study. Specifically, we sought to ascertain if the 

consumption of two healthy diets (MedDiet and LF diet) during three years modified the 

expression pattern of the splicing machinery in PBMCs from patients at high risk of T2DM 

development. 

  



Research Design and Methods  

 

Study population  

The present study was conducted within the framework of the CORDIOPREV study 

(Clinical Trials Registry NCT0092493741), a prospective, randomized, controlled trial that 

includes 1002 CHD patients, who had their last coronary event over six months before joining the 

study (6). Patients gave written informed consent to participate in the trial and the study protocol 

was approved by the Human Investigation Review Committee of the Reina Sofia University 

Hospital (HURS, Cordoba, Spain), according to institutional and Good Clinical Practice 

guidelines. Details of the study, including inclusion and exclusion criteria and cardiovascular risk 

factors of the patients have been previously reported. In brief, patients aged 20-75 years, with 

established CHD but without clinical events in the last six months with no other serious diseases 

and a life expectancy of at least five years were eligible. Participants were randomly enrolled in 

2 study dietary models: the Mediterranean diet (MedDiet) and the low-fat (LF), high–complex 

carbohydrate diet recommended by the National Cholesterol Education Program and the ADA, 

both providing a wide variety of foods. The intervention phase is still in progress, and will have 

a follow up of seven years.   

At baseline, 462 participants were non-T2DM (7) and, after a mean follow-up of 60 

months, 107 from those patients developed T2DM (Incident-T2DM cases) (Supplementary 

Figure 1). Each year, T2DM was diagnosed according to the ADA diagnosis criteria. Specifically, 

if one or more of following criteria were present in the study subjects: fasting plasma glucose 

(FPG) concentration ≥126 mg/dL, impaired fasting glucose (IFG); FPG ≥200 mg/dL after 2h of oral 

glucose test (OGTT), impaired glucose tolerance (IGT); glycated hemoglobin (HbA1c) ≥6.5 % (≥48 

mmol/mol). Among the 107 incident-T2DM cases, 43 were diagnosed during the first year of 

follow-up, 24 during the second year, 11 during the third year, 19 during the fourth year and 10 

during the fifth year. In the present study, we included the incident-T2DM cases after the 60 



months of follow-up (n=107) together with 108 matched, randomly selected controls, who did not 

develop T2DM from the remaining 355 subjects that did not develop T2DM (non-T2DM subjects) 

during the study period, as previously reported (10) (Supplementary Figure 1). The random 

selection of the non-T2DM subjects was performed using computational stratified sampling from 

the 462 non-T2DM subjects of the CORDIOPREV study according to the following clinical, 

anthropometric and biochemical variables: diet, age, gender, fasting plasma glucose, body mass 

index, LDL-cholesterol and HDL-cholesterol. To implement this type of sampling, the target 

population was first divided into separate strata and then, samples were randomly selected 

within each stratum through simple automatic sampling by using the R software (10). We 

collected PBMCs samples at baseline and at the third year of follow-up, as established in the study 

protocol guidelines (6). 

 

Study diets 

The MedDiet was composed by a minimum of 35% calories from fat [22% 

Monounsaturated Fatty Acid (MUFA), 6% Polyunsaturated Fatty Acid (PUFA) and 10% 

saturated fat], 15% proteins, and a maximum of 50% carbohydrates; and the LF diet by 30% total 

fat (12%-14% MUFA, 6-8% PUFA 10% and 10% saturated fat), 15% protein, and a minimum of 

55% carbohydrates. In both diets, the cholesterol content was adjusted to 300 mg/d. Participants 

receive the same intensive dietary counseling and were monitored by nutritionists, dietitians, 

internists and cardiologists. Details about diets and randomization has been previously reported 

and summarized (6). In the present study, 93 patients were assigned to the LF Diet group and 122 

to the MedDiet group (Supplementary Figure 1). 

 

Metabolic study design 

Oral glucose tolerance test (OGTT) and fat-rich meal tests were implemented in all 

patients to dynamically determine the metabolic status of the patient. Blood samples were 



collected before the meal and after 4h, and biochemical determination of metabolic parameters 

and calculation of insulin resistance and sensitivity indexes were performed as previously 

reported (6; 10).  

 

Blood sampling and processing to isolate PBMCs 

Venous blood from the participants at the inclusion of the study and after three years of 

follow-up (12h overnight fast) was collected in tubes containing EDTA and PBMCs were isolated 

as previously described (6; 26) 

 

RNA extraction and quantification 

Total RNA from PBMCs was isolated using Direct-zol RNA kit (Zymo Research, Irvine, 

CA, USA) following manufacturer’s instructions. The amount of RNA recovered was determined 

and its quality assessed by the NanoDrop2000 spectrophotometer (Thermo Fisher). One µg of 

RNA was reverse transcribed to cDNA using random hexamer primers with the First Strand 

Synthesis Kit (Thermo Fisher). 

 

Analysis of splicing machinery components by microfluidic-based dynamic qPCR array  

A 48.48 Dynamic Array based on microfluidic technology (Fluidigm, San Francisco, CA, 

USA) was implemented to determine the expression of 48 transcripts in 48 samples, 

simultaneously. Specific primers for human transcripts including components of the major (n=13) 

and minor spliceosome (n=4), associated splicing factors (n=28) and three housekeeping genes 

were specifically designed, as previously reported (10). Preamplification, exonuclease treatment 

and qPCR dynamic array were implemented following manufacturer’s instructions using the 

Biomark System and the Real-Time PCR Analysis Software (Fluidigm). Details are provided in 

(10).  

 



Statistical and bioinformatical analysis 

Data were assessed for normality of distribution using the Kolmogorov–Smirnov test and 

are expressed as mean ± SEM. Statistical analysis was carried out using paired Student’s t-test, 

for the alteration of the expression pattern in each patient over the three years of the study, 

unpaired t-test (Mann Whitney U test), when comparing values at baseline or third year, or 

ANOVA depending on the existence of ≥2 groups in each comparison. Significant correlations 

were studied using bivariate Spearman correlation methods, for these analyses, the fold change 

between the third year and baseline gene expression or clinical parameters were calculated, in 

order to determine dynamic correlations. P-values smaller than 0.05 were considered statistically 

significant. Statistical analyses were carried out with GraphPad Prism 6 (La Jolla, CA, USA) and 

SPSS 17.0 (IBM).  



Results 

 

Dietary intervention modulated the expression of several splicing machinery components  

The effect of dietary intervention on the expression pattern of splicing machinery 

components was evaluated in PBMCs from n=215 patients at high risk of T2DM-development 

included in the CORDIO-PREV study (Supplementary Figure 1). Demographic, anthropometric 

and clinical parameters at basal (inclusion of the study) and after 3 years of follow-up are depicted 

in Table 1. Dietary intervention during 3 years improved HbA1c levels and HOMA-IR and HIRI 

indexes in this study cohort. However, glucose levels were significantly increased, and HDL 

levels decreased (Table 1). These changes were observed under both LF Diet and MedDiet 

(Supplementary Table 1 and 2). Microfluidic-based qPCR analysis revealed that the expression 

pattern of several splicing machinery components was altered in PBMCs from these patients after 

three years of dietary intervention. Specifically, results unveiled an increase in the expression of 

the spliceosome components RNU6, RNU4ATAC, U2AF1, PRPF40A, and RNU12 and in the 

splicing factors NOVA1, SRSF3, RBM45, SPFQ, ESRP1, and SNW1, as well as a decrease of the 

spliceosome component RNU2 and the splicing factor SRSF6 (Figure 1). Further analysis 

indicated that the increase in the expression of SPFQ observed herein was inversely correlated 

with the evolution of HOMA-IR and HIRI indexes, which decreased during the follow-up in the 

full population (Table 2).  

 

The modulation of the expression of several splicing machinery components was not diet 

dependent 

At baseline, all CORDIO-PREV participants were randomly enrolled in one of the two 

dietary model groups, LF Diet and MedDiet showing comparable levels of all parameters 

determined except for C-reactive protein, which was lower for MedDiet (Table 3). Interestingly, 

while most of the splicing machinery components altered during the dietary intervention showed 



similar trends and changes when the population was separated by diets (Supplementary Figure 

2), a distinct, differential response was observed in the case of three splicing factors SNW1, SPFQ 

and NOVA1. In particular, the observed increase in the expression of these factors was more 

pronounced in PBMCs from patients under LF Diet than in those from MedDiet patients (Figure 

2).  

 

The expression pattern of specific splicing machinery components was differentially 

modulated by dietary intervention in Incident-T2DM and non-T2DM patients  

After 5 years of dietary intervention, 107 participants had developed T2DM (29). As 

previously reported, at baseline, the group of patients who developed T2DM during the five year 

of the study (Incident-T2DM; n=107) presented higher weight, BMI, HbA1c levels, fasting insulin 

and TGs compared to randomly selected non-T2DM controls (n=108) (10). The cohort of n=108 

randomly selected non-T2DM patients showed comparable levels of all the parameters 

determined except for age and DI compared to the total population (n=355) of non-T2DM 

individuals (10). The expression of some of the previously mentioned spliceosome components 

and splicing factors was differentially altered in the PBMCs of patients that develop T2DM after 

the 5 years of the study compared to non-T2DM subjects. Specifically, RNU12 was clearly 

increased in non-T2DM patients as compared to incident-T2DM patients (Figure 3A). On the 

other hand, ESRP1 and RNU6 were markedly increased, and SRSF6 reduced, in Incident-T2DM 

patients while no such changes were observed in non-T2DM subjects (Figure 3B). Of note, SRSF6 

decrease was directly correlated with the decrease in HbA1c levels observed in Incident-T2DM 

patients (Table 5). In addition, we observed that NOVA1 and RNU4ATAC were significantly 

altered both in Incident-T2DM and non-T2DM; however, the increase of NOVA1 was clearly more 

pronounced in Incident-T2DM, wherein it inversely correlated with HOMA-IR, while the 

increase of RNU4ATAC was more pronounced in non-T2DM (Figure 3C).  



From non-T2DM patients, 51 were initially assigned to LF Diet and 57 to MedDiet, while 

from Incident-T2DM patients, 42 were initially assigned to LF Diet and 65 to MedDiet 

(Supplementary figure 1). During the follow-up, participants that did not develop T2DM 

presented a significant decrease in HbA1c, HOMA-IR, HIRI and c-Hdl, although glucose levels 

significantly increased (Table 4). Similar changes to those found for the overall population were 

observed under LF Diet, although changes in HbA1c and glucose levels appeared to be 

attributable to MedDiet group (Table B A and C). On the other hand, Incident-T2DM patients 

presented a decrease in HbA1c levels and an increase in glucose levels, with a significant decrease 

in HOMA-IR and HIRI and increase in cholesterol in patients submitted to LF Diet and a decrease 

in DI and c-HDL in patients from MedDiet group (Table 5). When analyzing the expression 

pattern according to the diabetic status and the dietary group, several differences emerged 

between groups. In particular, RNU12, which was increased in non-T2DM subject after the three 

years of follow-up (Figure 3A), showed a trend to a more pronounced increase under LF Diet 

compared to Incident-T2DM cases, although it did not reach statistical significance (Figure 4A). 

On the other hand, the differences observed in the splicing factor ESRP1 and RNU6 between non-

T2DM and Incident-T2DM patients were stronger under MedDiet and LF Diet, respectively 

(Figure 4B); while changes in SRSF6 were similar in patients under both dietary interventions. 

Finally, the increase in NOVA1 was strikingly more pronounced under LF Diet than under 

MedDiet in Incident-T2DM patients, whereas the increase in RNU4ATAC was more obvious in 

MedDiet group in non-T2DM patients (Figure 4C).  



Discussion 

This study represents, to the best of our knowledge, the first comprehensive analysis of 

the regulatory role of a healthy dietary pattern intervention on the expression of the components 

of the splicing machinery, including spliceosome elements and splicing factors. This study was 

implemented using PBMCs from patients at high risk of T2DM development included in the 

CORDIOPREV trial, in that we have previously demonstrated that the expression pattern of 

certain splicing machinery components is associated with the risk of T2DM development and 

could accurately predict this development in individuals from the CORDIOPREV study [10].  

Importantly, our present study provides primary evidence that a dietary intervention can 

distinctly alter the expression pattern of the splicing machinery, both spliceosome components 

and splicing factors, in humans at risk of T2DM. In particular, the results demonstrate that the 

consumption of two healthy diets (MedDiet and LF diet) during three years can modulate the 

expression pattern of key spliceosome components and splicing factors in PBMCs from the 

patients enrolled in the CORDIOPREV study, including the overexpression of some molecular 

components, like SPFQ, RBM45, RNU6, etc. and the downregulation of others, including RNU2 

and SRSF6. Interestingly, some of the changes observed in the expression levels of certain splicing 

machinery components were closely associated with relevant clinical features, as is the case of 

the increase in the expression levels of the splicing factor SPFQ, which was inversely correlated 

with the decrease in HOMA-IR and HIRI indexes observed in the population. The finding of a 

diet-related long-term modulation of the expression of the splicing machinery components could 

represent a novel valuable piece of information for two reasons. First, because it unveils that the 

splicing process may represent an adaptive mechanism in response to different nutritional 

conditions, and that this mechanism could be in place not only in circulating PBMCs but may 

also operate in cell types from other tissues and organs tightly coupled to nutrient-dependent 

metabolic homeostasis (e.g. liver, pancreas, adipose tissue), an avenue that is indeed worth 

exploring. Actually, we and other have already found the delicate and important role that the 



regulation of the splicing machinery can play in those organs (10; 18; 30-32). Secondly, inasmuch 

as PBMCs can be an accessible and suitable sentinel to detect relevant changes related to nutrient- 

and diet-dependent metabolic homeostasis, our current results support the idea that changes in 

the expression of key splicing machinery components could provide a fine screening marker for 

the development or progression of T2DM and their diet-related dynamics. Indeed, within the 

CORDIOPREV study, the long-term intake of a MedDiet, rich in olive oil, or a LF diet improved 

insulin sensitivity and beta-cell function (7), and therefore the increase in the expression of 

specific splicing factors found herein under both diets, and their inverse correlation with insulin 

resistance indexes, strongly suggest that the molecular changes might be related to the beneficial 

consequence of the healthy diet consumption and, therefore, that they could represent a novel 

mechanism linking healthy dietary intervention and the improvement the metabolic status of the 

patients and the protection from cardiovascular complications. Given the very scarce information 

available on the functional roles and implications of many of the molecules identified in the 

present study to be altered in PBMCs (e.g. SPFQ, RBM45, RNU6, etc.) the present findings open 

novel, unexplored avenues in this field of research.  

One of the findings from this study that we consider most noteworthy is that the diet-

induced alterations in the splicing machinery of PBMCs was independent of the type of healthy 

diet in which CORDIOPREV participants were enrolled (MedDiet or LF Diet), except for three 

splicing factors (SNW1, SPFQ and NOVA1) that showed a more pronounced modulation in 

patients under the LF Diet. To date, and to the best of our knowledge, nothing has been reported 

regarding the influence of diet intervention in the modulation of the expression of SNW1, SPFQ 

and NOVA1. However, some of these factors have been described to contribute to the alternative 

splicing of key genes whose splicing processing changes in response to a fatty diet (31). 

Previously, several studies have shown that PBMCs gene expression pattern is influenced by the 

diet (23-26) and that this might reflect changes related to both metabolic and immune responses 

(27; 28). In addition, it has been demonstrated that the splicing process of key regulatory proteins 



for metabolic homeostasis, like the receptors for insulin or leptin, can be markedly influenced by 

nutrient metabolism, directly or indirectly (22; 33). Thus, it seems reasonable to think that those 

splicing-related changes would rely on upstream changes in the function of the machinery 

responsible for generating the splice variants. However, little or nothing is known in this regard 

in PBMCs, for there are no reports on how diet can influence the expression of the components 

of the spliceosome and the splicing factors, which altogether are responsible of the modulation 

of the splicing process. Nevertheless, in this context, some studies have highlighted that 

nutritional status can induce changes in the activity of serin-arginine (SR) proteins, an important 

family of splicing factors, further supporting the contention that different nutrients may be able 

to modulate the expression of metabolic genes at the level of its splicing processing. Specifically, 

it has been described that insulin signaling can up-regulate the expression of the splicing factor 

SRSF1 in pancreatic beta cells, inducing the splicing of the insulin receptor to generate the INSR-

B isoform (34). The same study also found a regulation of the protein levels of the splicing factor 

MBNL1 by high glucose levels. In addition, other splicing factors belonging to the SR proteins 

family, SRSF2, is decreased under Vitamin E-deficient diet in the liver (35). Thus, although still 

limited, growing evidence, included the results from this study, points to a link between diet and 

nutrient and regulation of the splicing process, including its underlying operating machinery. 

Another intriguing implication of our present results relates to the predictive capacity of 

studying changes in the splicing machinery in at-risk patients. To be more specific, nutrient-

induced changes in specific splicing machinery components may provide hints on the predictive 

potential and possible functional correlation of key molecules, which had not been explored 

hitherto in this regard. Thus, within this study, regardless of the type of dietary intervention, the 

expression of some of the splicing factors studied was differentially altered in patients that 

develop T2DM after the 5 years of the study compared to non-T2DM subjects. For example, 

RNU12, a component of the minor spliceosome, showed a significant increase after the 3 years of 

dietary intervention in non-T2DM patients. Interestingly, we have previously described that the 



expression of this small nuclear RNA (snRNA), which is essential to form U12 snRNP and carry 

out the appropriate splicing of type 12 introns (36), was lower, at baseline (inclusion of the study), 

in Incident-T2DM compared to non-T2DM patients and that was associated with the risk of 

T2DM development (10). Therefore, since lower expression levels of RNU12 were associated with 

higher risk of T2DM, the dietary-induced increase in the expression of this component in non-

T2DM may be associated to the protective effects of the healthy dietary consumption. 

Furthermore, in the same study, 4 hours incubation with baseline postprandial serum from 

Incident-T2DM patients induced a significant reduction of RNU12 expression compared to non-

T2DM treated PBMCs from healthy patients (10). Therefore, the modulation in the expression of 

these spliceosomal components may represent a link between the dietary intervention and the 

beneficial effects on the metabolic status of the patient. Remarkably, the difference in RNU12 

expression, at year 3, between incident and non-T2DM patients, was more pronounced under LF 

Diet. Thus, although the possible mechanisms linking nutrient-induced changes in the splicing 

machinery, their functional consequences and the regulatory implications thereof are still to be 

fully elucidated, our present study provide suggestive evidence that it is worth exploring both 

the mechanistic/functional and the predictive components of this plausible link, for it may 

provide original, valuable biological knowledge as well as practical information for the patients. 

In conclusion, this study reveals that expression of the splicing machinery components 

in PBMCs from patients at risk of T2DM can be notably and selectively influenced by long-term 

dietary intervention; also, that the two dietary interventions tested herein, MEdDiet and LF Diet, 

induced remarkably similar changes on the expression of spliceosome components; and finally, 

that there are distinct, diet type-induced changes in PBMCs from both non-T2DM and incident-

T2DM patients, that may have an as yet unknown functional significance. Therefore, we propose 

that the machinery that controls and performs the alternative splicing process and is 

consequently responsible for changes in the pattern of functionally and pathologically relevant 

splice variants in the regulation of metabolic homeostasis is a plausible target to be operated by 



dietary intervention. As such, our results pave the way to explore in experimental models the 

possible mechanistic role and relevance of the splicing machinery and its components in diet-

related metabolic regulation, and the investigate the value of screening changes in specific 

splicing machinery components to monitor and early predict relevant diet-related changes in 

patients at risk of T2DM. 
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Figure 1. PBMCs expression pattern of specific splicing machinery components after three years 

of follow-up. mRNA expression levels [adjusted by a normalization factor (NF) calculated from the 

expression level of GAPDH and ACTB] of specific spliceosome components and splicing factors in the 

PBMCs from all the patients included in the study. Values represent the mean ± SEM. Asterisks indicate 

values that significantly differ from non-T2DM patients (t-test: *, p<0.05; **, p<0.01; ***, p<0.001).  
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Figure 2. PBMCs expression pattern of the specific splicing machinery components after three 

years of follow-up under two healthy dietary pattern (LF Diet and MedDiet). mRNA expression 

levels [adjusted by a normalization factor (NF) calculated from the expression level of GAPDH and ACTB] 

of specific  spliceosome components and splicing factors in the PBMCs from all the patients included in the 

study. Values represent the mean ± SEM. Asterisks indicate values that significantly differ from non-

T2DM patients (t-test: *, p<0.05; **, p<0.01). LF Diet: Low-fat Diet; MedDiet: Mediterranean Diet.  
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Figure 3. PBMCs expression pattern of specific splicing machinery components after three years 

of follow-up in non-T2DM and incident-T2DM cases. mRNA expression levels [adjusted by a 

normalization factor (NF) calculated from the expression level of GAPDH and ACTB] of specific  

spliceosome components and splicing factors in the PBMCs from all the patients included in the study. 

Values represent the mean ± SEM. Asterisks indicate values that significantly differ from non-T2DM 

patients (t-test: *, p<0.05; **, p<0.01; ***<0.001).  
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Figure 4. PBMCs expression pattern of specific splicing machinery components after three years 

of follow-up in non-T2DM and incident-T2DM cases under two healthy dietary pattern (LF Diet 

and MedDiet). mRNA expression levels [adjusted by a normalization factor (NF) calculated from the 

expression level of GAPDH and ACTB] of specific  spliceosome components and splicing factors in the 

PBMCs from all the patients included in the study. Values represent the mean ± SEM. Asterisks indicate 

values that significantly differ from non-T2DM patients (t-test: *, p<0.05; **, p<0.01; ***<0.001). LF Diet: 

Low-fat Diet; MedDiet: Mediterranean Diet.  
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Tables 

Table 1 

  Basal mean ± SEM 3rd year mean ± SEM p-value 
HbA1c (%) 5.945 ±  0.025 5.599  ± 0.028 <0.001 
Glucose (mg/dl) 95.24 ± 0.71 99.22 ± 0.775 <0.001 
Insulin (mU/l) 9.351 ± 0.434 9.467 ± 0.547 0.836 
ISI 3.797 ± 0.181  3.916 ± 0.202 0.517 
HOMA-IR 2.936 ± 0.170  2.375 ± 0.152 0.001 
HIRI 1188.537 ±68.348 970.754 ± 63.257 0.002 
IGI 0.804 ± 0.175 1.047 ± 0.127 0.227 
DI 0.841 ± 0.030 0.832 ± 0.036 0.825 
MISI (x102) 0.021 ± 0.030 0.019 ± 0.001 0.455 
Total cholesterol (mg/dl) 162.701 ± 2.350 165.132 ± 2.446 0.241 
c-HDL (mg/dl) 44.306 ± 0.699 42.065 ± 0.686 <0.001 
TG (mg/dl) 120.552 ± 4.245 124.478 ± 4.729 0.33 
hs-CRP (mg/dl) 2.569 ± 0.22 2.352 ± 0.171 0.342 
 

Table 1. Demographic and metabolic characteristics after three years of follow-up. Values 

expressed as mean ± SEM. BMI: Body mass index; HbA1c: Glycated hemoglobin; TG: Triglycerides; 

c- LDL: Low density lipoprotein; c-HDL: High density lipoprotein; NEFA: Non-esterified fatty acids; 

Apo A1: Apolipoprotein A1; Apo B: Apolipoprotein B; hs-CRP: High sensitivity C-reactive protein; 

HOMA-IR: Homeostasis model assessment- insulin resistance; HIRI: Hepatic insulin resistance 

index; MISI: Muscle insulin sensitivity index; DI: Disposition index; ISI: Insulin sensitivity index; 

IGI: Insulinogenic index.  
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Table 2. Spearman correlations between the fold change in the expression levels of splicing 

machinery components (3rd year/baseline levels) and the fold change in relevant T2DM related 

parameters. HbA1c: glycated hemoglobin; HOMA-IR: Homeostasis model assessment- insulin 

resistance; HIRI: Hepatic insulin resistance index; Non-significant correlations are not depicted. 

 

 

 

 

 

 

 

 

 

 

 

   Fold change during follow-up 
   Study population Incident-

T2DM 
   SPFQ SRSF6 

Fo
ld

 c
ha

ng
e 

du
ri

ng
 fo

llo
w

- u
p 

HOMA-IR r2 -0.157  
p 0.03*  

HIRI r2 -0.176  
p 0.018*  

HbA1c (%) r2  0.227 
p  0.047* 



Table 3 

 

  LF Diet mean ± SEM MedDiet mean ± SEM p-value 
Age (years) 59.667 ± 0.825 59.426 ± 0.841 0.842 
Waist circumference 
(cm) 104.457 ± 1.172 103.428 ± 0.919 0.484 
Weight (kg) 84.276 ± 1.596 83.439 ±	1.160 0.664 
BMI (kg/m2) 30.895 ± 0.489 30.676 ± 0.369 0.716 
Glucose (mg/dl) 94.55 ± 1.098 95.84 ± 0.921 0.365 
HbA1c (%) 5.985 ± 0.032 5.9256 ± 0.033 0.21 
Insulin (mU/l) 9.032 ± 0.612 9.467 ± 0.585 0.612 
TG (mg/dl) 119.3804 ± 5.979 121.823 ± 5.645 0.769 
Total cholesterol 
(mg/dl) 161.301 ± 3.544 162.966 ± 2.980 0.718 
c-LDL (mg/dl) 92.374 ± 2.748 92.183 ± 2.333 0.958 
c-HDL (mg/dl) 43.25 ± 0.910 44.721 ± 0.992 0.276 
NEFA (mmol/L) 0.306 ± 0.016 0.298 ± 0.015 0.709 
Apo A1 (mg/dl) 133.132 ± 2.217 135.227 ± 2.163 0.506 
Apo B (mg/dl) 74.467 ± 2.163 73.433 ± 1.703 0.704 
hs-CRP (mg/dl) 3.509 ± 0.421 1.989 ± 0.187 0.001 
HOMA-IR 2.896 ± 0.189 3.001 ± 0.252 0.755 
HIRI 1145.944 ± 76.126 1235.176 ± 101.531 0.506 
MISI (x102) 0.022 ± 0.003 0.018 ± 0.001 0.214 
DI 0.813 ± 0.045 0.849 ± 0.038 0.546 
ISI 3.841 ± 0.291 3.574 ± 0.181 0.417 
IGI 0.888 ± 0.072 0.85 ± 0.264 0.903 

 

Table 3. Baseline demographic and metabolic characteristics according to dietary pattern. Values 

expressed as mean ± SEM. BMI: Body mass index; HbA1c: Glycated hemoglobin; TG: Triglycerides; c- 

LDL: Low density lipoprotein; c-HDL: High density lipoprotein; NEFA: Non-esterified fatty acids; Apo 

A1: Apolipoprotein A1; Apo B: Apolipoprotein B; hs-CRP: High sensitivity C-reactive protein; HOMA-

IR: Homeostasis model assessment- insulin resistance; HIRI: Hepatic insulin resistance index; MISI: 

Muscle insulin sensitivity index; DI: Disposition index; ISI: Insulin sensitivity index; IGI: Insulinogenic 

index. LF Diet: Low-fat Diet; MedDiet: Mediterranean Diet.  

 

 



Table 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Demographic and metabolic characteristics after three years of follow-up of Non-T2DM 

cases (A), under LF Diet (B) and under Mediterranean Diet (C). Values expressed as mean ± SEM. 

HbA1c: Glycated hemoglobin; HOMA-IR: Homeostasis model assessment- insulin resistance; HIRI: 

Hepatic insulin resistance index; MISI: Muscle insulin sensitivity index; DI: Disposition index; ISI: 

Insulin sensitivity index; IGI: Insulinogenic index; c-HDL: High density lipoprotein; TG: Triglycerides; 

hs-CRP: High sensitivity C-reactive protein. LF Diet: Low-fat Diet; MedDiet: Mediterranean Diet.  

Non-T2DM Basal mean ± SEM 3rd year mean ± SEM p-value

HbA1c (%) 5.873 ± 0.033 5.538 ± 0.033 <0.001
Glucose (mg/dl) 94.58 ± 0.931 96.58 ± 0.923 0.033
Insulin (mU/l) 7.960 ± 0.516 7.674 ± 0.607 0.711
ISI 4.113 ± 0.286 4.316 ± 0.295 0.432
HOMA-IR 2.538 ± 0.129 1.79 ± 0.125 <0.001
HIRI 1022.711 ± 51.75 754.442 ± 61.552 <0.001
IGI 0.999 ± 0.081 1.075 ±	0.135 0.537
DI 0.904 ± 0.046 0.97 ± 0.051 0.254
MISI (x102) 0.022 ± 0.002 0.018 ± 0.001 0.211
Total cholesterol (mg/dl) 159.962 ± 3.052 158.457 ± 2.936 0.554
c-HDL (mg/dl) 44.856 ± 0.893 42.135 ± 0.844 0.002
TG (mg/dl) 109.228 ± 4.789 110.057 ± 5.709 0.859
hs-CRP (mg/dl) 2.422 ± 0.329 2.038 ± 0.206 0.268

Non-T2DM (LF Diet) Basal mean ± SEM 3rd year mean ± SEM p-value
HbA1c (%) 5.906 ± 0.042 5.492 ± 0.038 <0.001
Glucose (mg/dl) 94.44 ± 1.208 95.24 ± 1.312 0.574
Insulin (mU/l) 8.016 ± 0.753 8.13 ± 1.019 0.926
ISI 4.25 ± 0.545 4.581 ± 0.492 0.467
HOMA-IR 2.613 ± 0.209 1.811 ± 0.177 <0.001
HIRI 1033.922 ± 83.559 795.222 ± 103.476 0.057
IGI 0.938 ± 0.107 1.07 ± 0.16 0.418
DI 0.847 ± 0.059 1.04 ± 0.069 0.008
MISI (x102) 0.024 ± 0.005 0.02 ± 0.003 0.413
Total cholesterol (mg/dl) 157.66 ± 4.446 156.42 ± 4.39 0.697
c-HDL (mg/dl) 43.735 ± 1.244 40.449 ± 0.95 0.013
TG (mg/dl) 113.88 ± 7.876 109.46 ± 7.32 0.466
hs-CRP (mg/dl) 3.246 ± 0.623 2.177 ± 0.285 0.105

Non-T2DM (MedDiet) Basal mean ± SEM 3rd year mean ± SEM p-value

HbA1c (%) 5.844 ± 0.049 5.579 ± 0.053 <0.001
Glucose (mg/dl) 94.7 ± 1.403 97.77 ± 1.288 0.014
Insulin (mU/l) 7.911 ± 0.715 7.268 ± 0.705 0.508
ISI 4.015 ± 0.303 4.128 ± 0.365 0.714
HOMA-IR 2.474 ± 0.159 1.773 ± 0.177 <0.001
HIRI 1012.701 ± 64.185 718.032 ± 71.573 <0.001
IGI 1.045 ± 0.116 1.079 ± 0.204 0.852
DI 0.945 ± 0.067 0.919 ± 0.073 0.761
MISI (x102) 0.019 ± 0.002 0.017 ± 0.002 0.238
Total cholesterol (mg/dl) 162.054 ± 4.215 160.302 ± 3.957 0.658
c-HDL (mg/dl) 45.854 ± 1.27 43.636 ± 1.329 0.059
TG (mg/dl) 105 ± 5.698 110.6 ± 8.697 0.426
hs-CRP (mg/dl) 1.689 ± 0.248 1.915 ± 0.297 0.431

A

B

C
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Table 5. Demographic and metabolic characteristics after three years of follow-up of Incident-

T2DM patients (A), under LF Diet (B) and under Mediterranean Diet (C). Values expressed as mean 

± SEM. HbA1c: Glycated hemoglobin; HOMA-IR: Homeostasis model assessment- insulin resistance; 

HIRI: Hepatic insulin resistance index; MISI: Muscle insulin sensitivity index; DI: Disposition index; 

ISI: Insulin sensitivity index; IGI: Insulinogenic index; c-HDL: High density lipoprotein; TG: 

Triglycerides; hs-CRP: High sensitivity C-reactive protein. LF Diet: Low-fat Diet; MedDiet: 

Mediterranean Diet.  

Incident-T2DM Basal mean ± SEM 3rd year mean ± SEM p-value
HbA1c (%) 6.016 ± 0.036 5.667 ± 0.046 <0.001
Glucose (mg/dl) 95.94 ± 1.081 102.03 ± 1.205 <0.001
Insulin (mU/l) 10.81 ± 0.677 11.349 ±0.889 0.515
ISI 3.459 ±0.213 3.487 ± 0.269 0.914
HOMA-IR 3.354 ±0.318 2.989 ± 0.272 0.25
HIRI 1362.571 ± 127.201 1197.774 ± 108.225 0.192
IGI 0.596 ± 0.35 1.017 ± 0.22 0.287
DI 0.771 ± 0.037 0.68 ± 0.044 0.077
MISI (x102) 0.02 ± 0.002 0.021 ±	0.002 0.834
Total cholesterol (mg/dl) 165.606 ±3.596 172.212 ±3.852 0.046
c-HDL (mg/dl) 43.705 ± 1.093 41.989 ±1.104 0.011
TG (mg/dl) 132.684 ± 6.96 139.929 ± 7.364 0.28
hs-CRP (mg/dl) 2.725 ±0.292 2.686 ± 0.273 0.895

Incident-T2DM (LF Diet) Basal mean ± SEM 3rd year mean ± SEM p-value

HbA1c (%) 6.081 ± 0.051 5.689 ± 0.072 <0.001
Glucose (mg/dl) 95.15 ± 1.895 101 ± 1.896 0.002
Insulin (mU/l) 10.276 ± 0.975 9.112 ± 0.744 0.17
ISI 3.564 ± 0.388 3.811 ± 0.424 0.516
HOMA-IR 3.184 ± 0.338 2.319 ± 0.201 0.018
HIRI 1260.763 ± 136.871 925.57 ± 80.505 0.021
IGI 0.787 ± 0.088 0.634 ± 0.097 0.105
DI 0.739 ± 0.061 0.719 ± 0.092 0.84
MISI (x102) 0.023 ± 0.004 0.021 ± 0.003 0.708
Total cholesterol (mg/dl) 167.8 ± 5.874 178.025 ± 7.355 0.064
c-HDL (mg/dl) 43.5 ± 1.346 43.2 ± 1.361 0.765
TG (mg/dl) 126.103 ± 9.817 136.667 ± 11.105 0.23
hs-CRP (mg/dl) 3.754 ± 0.585 136.667 ± 11.105 0.282

Incident-T2DM (MedDiet) Basal mean ± SEM 3rd year mean ± SEM p-value

HbA1c (%) 5.975 ± 0.048 5.652 ± 0.06 <0.001
Glucose (mg/dl) 96.49 ± 1.284 102.75 ± 1.567 <0.001
Insulin (mU/l) 11.175 ± 0.929 12.878 ± 1.379 0.179
ISI 3.393 ± 0.25 3.283 ± 0.348 0.759
HOMA-IR 3.469 ± 0.483 3.442 ± 0.4260.426 0.955
HIRI 1432.14 ± 193.086 1383.778 ± 170.206 0.798
IGI 0.472 ± 0.577 1.267 ± 0.356 0.222
DI 0.791 ± 0.047 0.656 ± 0.043 0.013
MISI (x102) 0.018 ± 0.002 0.021 ± 0.004 0.574
Total cholesterol (mg/dl) 164.119 ± 4.564 168.271 ± 4.091 0.315
c-HDL (mg/dl) 43.854 ± 1.624 41.109 ± 1.632 0.003
TG (mg/dl) 137.034 ± 9.592 142.085 ± 9.851 0.599
hs-CRP (mg/dl) 2.021 ± 0.250 2.426 ± 0.341 0.079

A

B

C



Supplementary Figures 

Supplementary Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure 1. Graphical scheme of the patients study timeline. Specifically, from the initial 

462 non-T2DM patients included in the CORDIOPREV study, 107 patients developed T2DM (Incident-

T2DM cases) after a mean follow-up of 5-years according to all the American Diabetes Association (ADA) 

diagnosis criteria evaluated on the basis of glucose tolerance tests (OGTT) performed each year. In the 

present study. all these 107 incident-T2DM cases and 108 matched controls (non-T2DM subjects. 

randomly selected from the remaining 355 subjects that did not develop T2DM during the study period) 

were included. The number of patients enrolled in each dietary pattern is included. LF Diet: Low-fat Diet; 

MedDiet: Mediterranean Diet.  
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Supplementary Figure 2 

 

 

Supplementary Figure 2. PBMCs expression pattern of specific splicing machinery components 

after three years of follow-up under two healthy dietary pattern (LF Diet and MedDiet). mRNA 

expression levels [adjusted by a normalization factor (NF) calculated from the expression level of GAPDH 

and ACTB] of specific  spliceosome components and splicing factors in the PBMCs from all the patients 

included in the study. Values represent the mean ± SEM. Asterisks indicate values that significantly differ 

from non-T2DM patients (t-test: **, p<0.01). LF Diet: Low-fat Diet; MedDiet: Mediterranean Diet.  
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Supplementary Tables 

Supplementary Table 1 

 

  Basal mean ± SEM 3rd year mean ± SEM p-value 
HbA1c (%) 5.981 ± 0.034 5.576 ± 0.039 <0.001 
Glucose (mg/dl) 94.76 ± 1.076 97.84 ± 1.152 0.008 
Insulin (mU/l) 9.034 ± 0.611 8.572 ± 0.651 0.551 
ISI 3.932 ± 0.343 4.224 ± 0.33 0.327 
HOMA-IR 2.872 ± 0.192 2.042 ± 0.135 <0.001 
HIRI 1136.125 ± 77.340 853.952 ± 67.436 0.003 
IGI 0.868 ± 0.071 0.867 ± 0.099 0.996 
DI 0.798 ± 0.043 0.894 ± 0.059 0.116 
MISI (x102) 0.024 ± 0.003 0.02 ± 0.002 0.369 
Total cholesterol (mg/dl) 162.167 ± 3.613 166.022 ± 4.21 0.203 
c-HDL (mg/dl) 43.629 ± 0.909 41.685 ± 0.813 0.024 
TG (mg/dl) 119.236 ± 6.169 121.382 ± 6.493 0.676 
hs-CRP (mg/dl) 3.473 ± 0.431 2.5759 ± 0.258 0.051 
 

Supplementary Table 1. Demographic and metabolic characteristics after three years of follow-

up of patients under Low-Fat Diet. Values expressed as mean ± SEM. BMI: Body mass index; HbA1c: 

Glycated hemoglobin; TG: Triglycerides; c- LDL: Low density lipoprotein; c-HDL: High density 

lipoprotein; NEFA: Non-esterified fatty acids; Apo A1: Apolipoprotein A1; Apo B: Apolipoprotein B; hs-

CRP: High sensitivity C-reactive protein; HOMA-IR: Homeostasis model assessment-insulin resistance; 

HIRI: Hepatic insulin resistance index; MISI: Muscle insulin sensitivity index; DI: Disposition index; 

ISI: Insulin sensitivity index; IGI: Insulinogenic index.  

 

 



Supplementary Table 2 

 

  Basal mean ± SEM 3rd year mean ± SEM p-value 
HbA1c (%) 5.912 ± 0.035 5.617 ± 0.04 <0.001 
Glucose (mg/dl) 95.62 ± 0.949 100.32 ± 1.041 <0.001 
Insulin (mU/l) 9.599 ± 0.608 10.169 ± 0.83 0.478 
ISI 3.707 ± 0.198 3.71 ± 0.255 0.991 
HOMA-IR 2.984 ± 0.263 2.629 ± 0.247 0.173 
HIRI 1229.653 ± 105.956 1062.383 ± 99.161 0.111 
IGI 0.759 ± 0.294 1.173 ± 0.204 0.218 
DI 0.87 ± 0.042 0.790 ± 0.045 0.117 
MISI (x102) 0.019 ± 0.001 0.019 ± 0.002 0.944 
Total cholesterol (mg/dl) 163.123 ± 3.105 164.43 ± 2.863 0.646 
c-HDL (mg/dl) 44.854 ± 1.03 42.373 ± 1.054 0.001 
TG (mg/dl) 121.579 ± 5.848 126.895 ± 6.738 0.374 
hs-CRP (mg/dl) 1.859 ± 0.176 2.177 ± 0.227 0.081 
 

Supplementary Table 2. Demographic and metabolic characteristics after three years of follow-

up of patients under Mediterranean Diet. Values expressed as mean ± SEM. BMI: Body mass index; 

HbA1c: Glycated hemoglobin; TG: Triglycerides; c- LDL: Low density lipoprotein; c-HDL: High density 

lipoprotein; NEFA: Non-esterified fatty acids; Apo A1: Apolipoprotein A1; Apo B: Apolipoprotein B; hs-

CRP: High sensitivity C-reactive protein; HOMA-IR: Homeostasis model assessment- insulin resistance; 

HIRI: Hepatic insulin resistance index; MISI: Muscle insulin sensitivity index; DI: Disposition index; 

ISI: Insulin sensitivity index; IGI: Insulinogenic index.  
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Dysregulation of splicing machinery in NAFLD 

Dysregulation of the splicing machinery is associated to the development of 
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Context: Non-alcoholic fatty liver disease (NAFLD) is a common obesity-associated 
pathology characterized by hepatic fat accumulation, which can progress to fibrosis, cirrhosis 
and hepatocellular carcinoma. Obesity is associated with profound changes in gene 
expression patterns of the liver, which could contribute to the onset of comorbidities. 
Objective: Since these alterations might be linked to a dysregulation of the splicing process, 
we aimed to determine whether the dysregulation in the expression of splicing machinery 
components could be associated with NAFLD.  
Methods: We collected n=41 liver biopsies from non-alcoholic obese individuals with or 
without hepatic steatosis that underwent bariatric surgery. The expression pattern of splicing 
machinery components was determined using a microfluidic qPCR-based array. An in vitro 
approximation to determine lipid accumulation using HepG2 cells was also implemented.  
Results: The liver of obese steatotic patients exhibited a severe dysregulation of certain 
splicing machinery components compared to non-steatotic obese patients. Non-supervised 
clustering analysis allowed the identification of three molecular phenotypes of NAFLD with 
a unique fingerprint of alterations in splicing machinery components, which also presented 
distinctive hepatic and clinical-metabolic alterations, and a differential response to bariatric 
surgery after one year. In addition, in vitro silencing of certain splicing machinery 
components (i.e. PTBP1, RBM45, SND1) reduced fat accumulation and modulated the 
expression of key de novo lipogenesis enzymes, whereas, conversely, fat accumulation did 
not alter spliceosome components expression.  
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Conclusion: There is a close relationship between splicing machinery dysregulation and 
NAFLD development, which should be further investigated to identify novel therapeutic 
targets. 

Dysregulations of the splicing machinery precede the development of steatosis and define different 
molecular phenotypes of NAFLD. This study provides novel information to explore strategies for 
NAFLD. 

Introduction 

Non-alcoholic fatty liver disease (NAFLD) is rapidly emerging as an important and growing 
health issue in western countries, due to the rising prevalence of obesity, type-2 diabetes 
(T2D) and metabolic syndrome (1). NAFLD is described as a range of liver disorders 
characterized by fat accumulation within the liver (steatosis), which is not related to alcohol 
consumption. These disorders comprise a wide range of diseases, from simple steatosis to 
hepatic inflammation and fibrosis (non-alcoholic steatohepatitis or NASH), cirrhosis and 
hepatocellular carcinoma (HCC) (2,3). Although most patients with simple steatosis would 
remain stable, 10–15% with histologically proven NASH will progress to cirrhosis and HCC. 
Indeed, due to its high prevalence, NAFLD has emerged as speedily growing cause of end-
stage liver disease and HCC, in addition to hepatitis C, hepatitis B and alcohol abuse (4,5). 
Unfortunately, the molecular mechanisms underlying the heterogeneous outcomes of NAFLD 
remain unclear, precluding any attempt to anticipate the disease progression to 
decompensated cirrhosis or HCC (6). Within the natural history of NAFLD, hepatic steatosis 
is the first stage, wherein an improved understanding of the pathogenesis of liver steatosis 
would have a critical prognostic impact for preventing disease progression (7,8). In this 
sense, while hepatic steatosis is closely associated with obesity, there is a meaningful 
percentage of obese people who have normal intrahepatic triglyceride content and appear to 
be resistant to developing obesity-related metabolic complications, including NAFLD (9). 
However, little is known about the mechanisms underlying the apparent resistance of this 
group of patients. 

Several studies have demonstrated that NAFLD development and progression result from 
a combination of environmental and genetic factors (8,10-12). Many of these studies have 
performed transcriptome profiling by microarray in humans with NAFLD and assessed 
changes in gene expression; however, most studies do not address changes in RNA 
alternative splicing. This process is of relevance because numerous diseases course with a 
dysregulation in the process of alternative RNA splicing and because alterations in alternative 
RNA splicing are associated with inflammation, metabolic disorders and cancer, which are 
critical hallmarks in the natural history of NAFLD (13-15). Splicing process is catalyzed by 
the minor and major spliceosomes, which act on different types of introns (13). The 
spliceosome is an intricate macromolecular complex, whose functional core is comprised by 
several small nuclear ribonucleoproteins (snRNPs) subunits, which dynamically interact to 
regulate the splicing process. In addition, the activity of the spliceosome is modulated by 
many splicing factors that specifically recognize certain sequences in exons and introns (16). 
Consequently, the dysregulation of the expression and/or function of certain spliceosomal 
components may result into an aberrant splicing process (16).  

In recent years, a growing body of evidence pinpoints an obvious association between 
several metabolism-related elements and processes of alternative splicing, which could 
represent potential tools for the translational research on NAFLD. Specially, genes linked to 
obesity are regulated by alternative splicing (17-20) and some studies have underlined the 
importance of splicing variants in NAFLD and NASH development (21,22). The appearance 
of these aberrant alternative splicing variants might be linked to a dysregulation of the 
cellular machinery responsible for this process, including the spliceosome and splicing 
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factors (13,14,23). Actually, some studies have found correlations in the expression levels 
between specific splicing isoforms and certain splicing factors in the context of obesity and 
diabetes (24,25). Moreover, NAFLD and NASH are associated with changes in the mRNA 
expression of certain splicing factors in the liver of obese patients (10,26-28).  

Taken as a whole, the existing evidence suggests that the cellular machinery responsible 
for the catalysis and regulation of the splicing process (spliceosome components and splicing 
factors) could be dysregulated and associated with obesity-derived NAFLD, wherein we 
hypothesize that these alterations could be causally related to the development of NAFLD. 
Therefore, the aim of the present study was to implement a novel and comprehensive 
approach to identify alterations in the expression of spliceosome components and splicing 
factors that could be associated to the development of hepatic steatosis in obese patients.  

Material and Methods 

Patients and samples 
All experimental protocols were carried out in accordance with approved guidelines of the 
IMIBIC/University Hospital Ethics Committees. Informed consent was obtained from all 
participants. Excessive alcohol consumption, as defined by a daily alcohol intake >20g, was 
the main exclusion criterion. Liver biopsies were obtained during bariatric surgery from 
obese women (BMI>30) with (n=32) and without (n=9) hepatic steatosis. The presence and 
grade of steatosis was assessed by the same operator using liver ultrasound. Patients were 
classified in: absence of steatosis (normal liver pattern), mild steatosis (increase in echoes of 
the liver parenchyma as compared with the kidney cortex, but with adequate visualization of 
vessels and diaphragm), moderate steatosis (increased fine echoes within the liver 
parenchyma with impaired visualization of vascular structures, but not diaphragm) and severe 
steatosis (marked increase in echoes of the liver parenchyma with poor or no visualization of 
vascular structures, posterior right lobe and diaphragm). The presence of fibrosis and 
inflammation was evaluated by liver histology by two experienced pathologists. Lipid content 
was also evaluated by liver histology; however, the result of these analyses did not 
completely match with the classification obtained according to liver ultrasound. In this sense, 
biopsy histology, considered the gold standard, has important limitations (29-32), including 
that is not capable to evaluate the liver completely and it is not suitable to be used to 
determine the follow-up of the patients, one of the main aims of this study. For these reasons, 
as one of the major aims of this study was to correlate the changes observed with the follow-
up of the patients, and liver echography is also a well-recognized established tool for the 
screening of fatty liver (32-34), we used the classification established by liver echography. 
Since NALFD is a tremendously gender dimorphic disease (35) and the gene expression 
patterns in the liver are clearly gender-dependent (36), in this study only women were 
included, as they represented the vast majority of subject undergoing bariatric surgery in our 
hospital during the study period.  

RNA extraction and reverse transcription  
Details regarding RNA extraction, quantification and reverse transcription have been 
previously reported elsewhere by our group (37-39). Specifically, total RNA from liver 
samples was isolated using AllPrep DNA/RNA/Protein Mini Kit following the 
manufacturer’s protocol (Qiagen, Madrid, Spain) and RNA from the HepG2 cell line using 
TRI Reagent (Sigma-Aldrich, Madrid, Spain), followed by DNase treatment. The amount and 
purity of RNA recovered was determined using the NanoDrop2000 spectrophotometer 
(Thermo Scientific, Madrid, Spain). One µg of RNA was reverse transcribed to cDNA using 
random hexamer primers and RevertAid First Strand cDNA Synthesis Kit (Thermo 
Scientific, Madrid, Spain).  
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Analysis of splicing machinery components by qPCR dynamic array based on microfluidic 
technology 
A 48.48 Dynamic Array (Fluidigm, San Francisco, CA, USA) using a microfluidic-based 
technique for gene expression analysis was implemented to determine the expression of 48 
transcripts in 48 samples, simultaneously, as previously reported (40). Specific primers for 
human transcripts including the components of the major (n=13) and minor spliceosome 
(n=4), as well as associated splicing factors (n=28) and three housekeeping genes 
[Supplementary Table 1 (41)] were specifically designed with the Primer3 software and 
StepOne™ Real-Time PCR System software v2.3 (Applied Biosystems, Foster City, CA, 
USA). Preamplification, exonuclease treatment and qPCR dynamic array based on 
microfluidic technology were implemented following manufacturer’s instructions using the 
Biomark System and the Real-Time PCR Analysis Software (Fluidigm). Additional details 
are provided in Supplementary Material and Methods (41). To control for variations in the 
amount of RNA used and the efficiency of the reverse-transcription reaction, the expression 
level of each transcript was adjusted by ACTB (silencing experiments in HepG2 cells) or by a 
Normalization Factor (NF) obtained from the expression levels of different housekeeping 
genes (ACTB and HPRT in human samples and GAPDH and HPRT in HepG2 cells) using 
Genorm 3.3 (42). 

Quantitative real time PCR (qPCR) 
qPCR reactions were carried out using the Stratagene Mx3000p system with the Brilliant III 
SYBR Green Master Mix (Stratagene, La Jolla, CA, USA) as previously reported (37-39). 
The primers for human transcripts were designed and qPCR results generated adjusted by a 
NF as explained above. Specific primers for human transcripts for de novo lipogenesis 
enzymes genes are included in Supplementary Table 2 (41). 

Cell culture and treatments 
Human HepG2 cell line was purchased from the American Type Culture Collection (HB-
8065) and maintained following manufacturer´s instructions at 37°C and 5% CO2. This cell 
line was validated by the analysis of short tandem repeat analysis (STR; GenePrint 10 
System, Promega, Madrid, Spain) and routinely tested for mycoplasma contamination as 
previously reported (43). To explore the modulation of the expression of key spliceosome 
components and splicing factors, 24 hours treatments with glucose (25mM, Sigma Aldrich), 
insulin (10nM, Sigma Aldrich), IGF1 (10nM, I3769, Sigma Aldrich), leptin (10ng/ml, 003-
12, Phoenix Pharmaceuticals), oleic acid (OA, 500µM, O1383, Sigma-Aldrich) and palmitic 
acid (PA, 500µM, P9767, Sigma-Aldrich) were performed. Doses were chosen based on 
previous studies (44,45). 

Transfection with specific siRNAs 
To perform silencing experiments, specific siRNAs for the factors of interest were used 
(Thermo Scientific, Madrid, Spain; and Origene, Herford, Germany). A commercial negative 
control (scramble; Thermo Scientific, Madrid, Spain) was used in all the experiments. For 
transfection assays, 200,000 cells were seeded in FBS-containing medium during 48h. Then, 
medium was replaced by antibiotic-antimycotic free medium and cells were transfected with 
100nM of each specific siRNA using Lipofectamine RNAiMAX reagent (Thermo Scientific, 
Madrid, Spain). After 48h, cells were detached and seeded to analyze in vitro lipid 
accumulation experiments or to extract RNA to validate the transfection efficiency and to 
determine the expression of key de novo lipogenesis enzymes (measured by qPCR). 

Lipid accumulation experiments and Oil Red O staining in HepG2 
HepG2 cells were treated with OA for two different purposes: 1) to assess the effect of the 
silencing of selected splicing machinery components on lipid accumulation; or, 2) to evaluate 
the effect of lipid accumulation on the expression of the selected splicing machinery 
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components. Briefly, cells were seeded and, once 80% of cell confluence was reached, cells 
were cultured in FBS-free medium and 0,5% free fatty acids bovine serum albumin (BSA) 
for 1h. Then, HepG2 cells were treated with 500µM OA in FBS-free medium and 2% BSA 
for 24h (for the silencing experiment in HepG2 cells) or 10, 24, 48h (naive HepG2 cells). 
After the incubation time, medium was removed and silenced cells were washed with PBS 
and fixed with 10% paraformaldehyde for 15 minutes, while naive HepG2 cells were lysed 
with Trizol reagent to isolate RNA as described above. Control cells were treated with OA-
free medium. In silenced HepG2 cells, after removing paraformaldehyde, cells were washed 
and incubated with 60% isopropanol. Then, Oil Red O working solution was added for 10 
minutes in agitation and washed. At this point, cells were examined under a light inverse 
microscope to acquire images. OD was measured at a wavelength of 520 nm in the 
FlexStation III system (Molecular Devices, Sunnyvale, CA, USA).  

Alamar Blue assay 
Alamar Blue assay (Bio-Rad Laboratories, Madrid, Spain) was used to determine cell 
viability, as previously reported (43). Briefly, cell viability was analyzed at 0h (before OA 
treatment) and 24h (after OA treatment and before Oil Red O staining) by measurement of 
fluorescent signal exciting at 560nm and reading at 590nm (Flex Station 3). Specifically, the 
day of the measurement, Alamar blue reduction was measured after cells were incubated for 
3h with 10% Alamar blue/serum free media.  

Statistical and bioinformatical analysis  
Data are expressed as mean ± standard error of the mean (SEM) or compared with the 
corresponding controls (set at 100%). Data were evaluated for heterogeneity of variance 
using the Kolmogorov–Smirnov test and, consequently, parametric (Student t) or 
nonparametric (Mann-Whitney U) tests were implemented to analyze the statistical 
differences. Heatmaps were generated using MetaboAnalyst 3.0 (46). Predictive models were 
constructed by Random Forest algorithm (with R language) as classifier, followed by a leave 
one-out cross-validation using the full-dataset of variables or a selection of them (obtained by 
feature ranking processes) as described in Supplementary Material and Methods (41). P-
values smaller than 0.05 were considered statistically significant. All statistics analyses were 
performed using the GraphPad Prism 6.0 software (La Jolla, CA, USA) (46).  

RESULTS 

Patients and clinical correlations 
Demographic and clinical features of the 41 patients included in the study (9 without and 32 
with hepatic steatosis) are summarized in Table 1, while same parameters in the steatotic 
patients according to the grade of hepatic steatosis are shown in Supplementary Table 3 (41). 
In general, steatotic patients presented higher levels of plasma alanine aminotransferase 
(ALT; p=0.041), which validates the ultrasound diagnosis, and higher Homeostatic Model 
Assessment for insulin resistance (HOMA-IR; p=0.049) and fasting insulin levels (p=0.049) 
compared to non-steatotic patients. Within the steatotic patients, HOMA-IR and total protein 
plasma levels were associated with the grade of steatosis (p=0.03 and 0.007, respectively). 
Histology analysis revealed no signal of fibrosis or NASH. It should be noted that these 
patients presented an early stage of NAFLD, only with the presence of steatosis and not 
fibrosis, inflammation or liver damage. 

Hepatic steatosis was associated with alterations in splicing machinery components 
Dynamic qPCR array showed that livers from steatotic patients showed a marked 
dysregulation of the expression levels of several (16 out of 45) spliceosomal components and 
splicing factors compared to livers from non-steatotic patients (Fig. 1A), such as the snRNPs 
RNU6ATAC, RNU6 or RNU2 and the splicing factors PTPBP1 or SRRM1 (Fig. 1B). Indeed, 
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individual ROC curves analyses of each of the altered elements revealed that the expression 
of these spliceosome components and splicing factors was clearly different between patients 
with or without steatosis [Fig. 1B; specificity and sensitivity values for each ROC curve are 
shown in Supplementary Table 4 (41)]. Random Forest analysis demonstrated the existence 
of splicing machinery-associated molecular fingerprints that were significantly different 
between steatotic and non-steatotic subjects. Particularly, the combination of the expression 
levels of the factors PTBP1, SRRM1, RBM45, RNU4 and RNU6ATAC generated a ROC curve 
that was able to classify our cohort in steatotic and non-steatotic patients with an AUC of 
0.960 (Fig. 1C). The validity and consistency of this and other splicing machinery-associated 
molecular fingerprints were demonstrated by cross-validation analysis (Fig. 1C). A more 
detailed analysis demonstrated that alterations in the expression levels of the components of 
this machinery were not associated with the grade of steatosis since a progressive 
dysregulation of these elements in individuals with different steatotic grades was not 
observed (Fig. 2).  

Dysregulation of splicing machinery in steatotic condition could be associated with specific 
clinical alterations 
Non-supervised hierarchical analysis of steatotic patients, according to the expression pattern 
of the spliceosome components and splicing factors, identified the existence of three distinct 
molecularly defined groups of steatotic patients (Clusters A, B and C), which were grouped 
together by the presence of similar alterations in certain spliceosome components and 
splicing factors (Fig. 3A). These three molecularly defined clusters of steatotic patients were 
characterized by alterations in the expression levels of key splicing machinery components, 
which were altered in one particular molecular cluster and that could define a specific 
fingerprint (Fig. 3B). Indeed, patients in molecular Cluster A are defined by low levels of the 
spliceosome components RBM22, SNRNP200, SF3B1 tv1, PRPF40A and PRPF8, and the 
splicing factors SRSF4, TRA2B, TIA1, SNW1, CELF1 and RBM3; patients in molecular 
Cluster B by high levels of the splicing factors RBM45 and TRA2A; and patients in molecular 
Cluster C by high levels of the spliceosome components RNU6ATAC, RNU4, RNU11, RNU2, 
RNU12, U2AF2, TCERG1, RNU4ATAC, SF3B1 and RNU6, and the splicing factors SND1, 
RAVER1, SRSF2, ESRP2, and low levels of, SRSF1, NOVA1 and ESRP1. In this sense, a 
combination of the expression levels of seven of these factors [two of them characterizing the 
cluster A (SRSF4 and TRA2B), two characterizing the cluster B (RBM45 and TRA2A) and 
three characterizing the cluster C (SND1, RAVER1 and RNU6ATAC)] was able to perfectly 
classify patients in one of the three Clusters using the Random Forest algorithm followed by 
a cross-validation analysis (AUC=1, p<0.001).  

Remarkably, the patients within each cluster were characterized by certain hepatic and 
clinical-metabolic alterations (Fig. 4). Thus, patients grouped in Cluster A (n=4) exhibited 
elevated glucose and haptoglobin levels compared to the rest of steatotic patients (Clusters 
B+C) and non-steatotic controls. Cluster B (n=17) presented high triglycerides and gamma-
glutamyl transferase (GGT) plasma levels, as well as low alkaline phosphatase levels, in 
comparison with Clusters A+C and non-steatotic patients. Finally, patients in Cluster C 
(n=11) showed increased insulin, ALT and aspartate aminotransferase (AST) levels. In 
addition, patients included in Cluster C seemed to present a worsened biochemical and 
hepatic response to bariatric surgery after one year. These patients presented a differential 
response to bariatric surgery after one year of follow-up, inasmuch as only 70% of the 
patients included in Cluster C (7 out of 10) presented a total recovery from hepatic steatosis 
(determined by liver ultrasound) compared to 86% of patients included in Clusters A and B 
(12 out of 14), although this difference did not reach statistical significance (Fig. 5). In 
addition, patients included in cluster C exhibited a differential response one-year post-surgery 
in terms of normalization of GGT, glucose, triglycerides, alkaline phosphatase and HDL 

A
D

V
A

N
C

E
 A

R
T

IC
LE

:
T

H
E

 J
O

U
R

N
A

L 
O

F
 C

LI
N

IC
A

L 
E

N
D

O
C

R
IN

O
LO

G
Y

 &
 M

E
T

A
B

O
LI

S
M

JC
EM

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article-abstract/doi/10.1210/jc.2019-00021/5406941 by Endocrine Society M
em

ber Access 3 user on 25 M
arch 2019



ADVANCE A
RTIC

LE

The Journal of Clinical Endocrinology & Metabolism; Copyright 2019  DOI: 10.1210/jc.2019-00021 
 

 7

plasma levels, compared to patients included in Clusters A and B, although only GGT and 
glucose differences reached statistical significance (Fig. 5). It should be noted that all patients 
similarly decreased BMI and WHR without differences between clusters. 

Alterations in splicing machinery components influenced lipid accumulation and de novo 
lipogenesis in HepG2 cells 
Several spliceosome components and splicing factors were selected for functional analysis in 
the HepG2 cell line based on the altered expression in the whole population of steatotic 
patients (PTBP1) or in a particular Cluster of steatotic patients [SRSF4, RBM22 (Cluster A), 
RBM45 (Cluster B), SND1 and RAVER1 (Cluster C)]. Remarkably, lipid accumulation in 
HepG2 cells induced by OA overload, which was validated by Oil Red O absorbance (Fig. 
6A), did not alter the expression of any of the factors selected for functional analysis, except 
for a slight decrease in SND1 after 10h of treatment (Fig. 6B). In contrast, silencing of the 
selected splicing factors using specific siRNAs (Fig. 6C), significantly altered lipid 
accumulation after treatment with OA (Fig. 6D). This approach demonstrated that the 
modulation (silencing) of certain selected factors, altered lipid accumulation, since the 
percentage of fat accumulation after OA treatment was lower in those cells compared with 
percentage of OA accumulation in negative control cells (Fig. 6D), without any obvious 
influence of cell viability [Supplementary Figure 1 (41)]. In addition, the silencing of RBM22 
and SND1 produced a decrease in the expression levels of FASN and SCD, with no major 
significant changes in the expression levels of other enzymes implicated in de novo 
lipogenesis [Supplementary Figure 2 (41)]. 

Metabolic factors modulated the expression of key splicing factors 
In vitro analysis in HepG2 cells showed that the expression of the key splicing machinery 
components selected above could be modulated in response to metabolic factors such as 
glucose, leptin, PA or IGF1. Specifically, glucose treatment significantly decreased the 
expression of SND1 and leptin decreased the expression of RBM22, while IGF1 treatment 
significantly increased the expression of RAVER1. However, insulin did not modulate the 
expression of any of these selected splicing factors. Finally, while OA treatment could not 
modulate the expression levels of any of these factors (as shown before), PA produced an 
increase in the expression of PTBP1 and RBM22 [Supplementary Figure 3 (41)]. 

DISCUSSION 

Our study represents a novel and comprehensive approximation for understanding the 
molecular dysregulations underlying the development of NAFLD in obese patients as 
compared to non-steatotic obese patients. Indeed, we have shown that the livers of steatotic 
obese patients exhibit an overt but differential (patient-dependent) alteration of the cellular 
machinery responsible for the regulation of the splicing process (spliceosome components 
and splicing factors). The clinical correlations together with the in vitro studies suggest that 
the dysregulation of certain spliceosome components and splicing factors could be causally 
linked to the development of hepatic steatosis and would be associated with specific NAFLD-
related clinical complications (hyperinsulinemia, ALT levels, etc.), as well as with hepatic 
and biochemical improvements after bariatric surgery. 

A growing body of evidence suggests that aberrant pre-mRNA splicing processes in the 
liver plays a significant role in the pathogenesis of NAFLD and NASH. Indeed, previous 
studies using microarray approaches have found an association between these liver disorders 
and changes in splicing factors expression, which could, thus, contribute to alterations in 
normal RNA splicing (6,10,28,47,48). Nevertheless, most studies have been focused on the 
consequences of changes in specific mRNA splicing variants (17,25). In the present study we 
have provided a proof-of-concept that alterations in the expression of spliceosome 
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components and splicing factors are associated to the development of hepatic steatosis in 
obese patients, including the main components of the spliceosome core (RNU2, RNU6, 
SF3B1, RNU6ATAC or RNU4ATAC) and a representative set of splicing factors (PTBP1, 
SRRM1, SND1 or SRSF2) involved in the process. Some of these altered splicing factors have 
been previously related to liver development and metabolism, as it is the case of the 
polypyrimidine tract binding protein PTBP1 (HNRNPI), which has been shown herein to be 
increased in the liver of steatotic patients, and has been reported to regulate the splicing of the 
fatty acid desaturase genes 2 and 3 (FADS2 and FADS3), which are implicated in fatty acid 
elongation and desaturation (49), and multiple genes involved in cholesterol synthesis and 
uptake including LDLR, MVK, HMGCS1, and PSCK9 (50). Also, studies in staphylococcal 
nuclease and tudor domain containing 1 (SND1) protein in rats have indicated that 
steatogenic conditions promote its action on low density lipid droplets (51). However, we 
describe herein, a dysregulation in some elements of the spliceosome core (snRNPs), which 
are essential for the appropriate recognition of intron sequences and the assembly of 
spliceosome to initiate the splicing process (16). These results show that a spliceosome-
associated molecular fingerprint is able to discriminate between steatotic and non-steatotic 
livers in obese patients (with AUC>0.96). The fact that spliceosome alterations were not 
associated with the grade of hepatic steatosis suggests their role as triggers for initiating fat 
deposition within the liver. Indeed, the in vitro results suggest that alterations in spliceosome 
components and/or splicing factors could precede the development of hepatic steatosis in 
obese patients since the modulation of the expression of PTBP1, SRSF4, RBM22, RBM45, 
SND1 and RAVER1 lowered lipid accumulation in a well-established hepatocyte cell line 
model (HepG2 cells) (52), while an exogenous overload of lipids (OA) was not able to alter 
the expression of the mentioned spliceosome components and/or splicing factors. 
Remarkably, our results also indicate that the dysregulations in the expression of certain 
spliceosome components and/or splicing factors could have an impact on other key hepatic 
processes, inasmuch as silencing of RBM22 and SND1 decreased the expression of FASN and 
SCD enzymes, indicating a possible connection between the dysregulation of some of the 
splicing factors studied herein and de novo lipogenesis in the liver. In fact, it has been 
described that the inhibition of SRPK2, a regulator of the splicing factors RNA-binding SR 
proteins, results in intron retention and mRNA instability of lipogenic genes (53). It is also 
worth noticing that, although OA treatment did not alter the expression of these splicing 
machinery components, other metabolic factors, such as glucose, leptin, IGF1 or PA, 
modulated the expression of some of these key factors, suggesting a possible association 
between these metabolic factors, the dysregulation of specific spliceosome components and 
the development of NAFLD in obese patients. In this sense, several studies have previously 
shown a regulation of specific splicing factors by metabolic factors. It has been postulated 
that nutrients can modulate processes required for cell homeostasis through the alteration of 
gene expression and the splicing of pre-mRNAs encoding key regulatory proteins (e.g., 
insulin receptor, leptin receptor) (54). For example, it has been described that glucose can 
regulate the expression of the splicing factor MBNL1 (55). Furthermore, the splicing of the 
fatty acid desaturase 3 has been observed to be modulated in the liver of baboons in response 
to different diets and in HepG2 cells after treatment with polyunsaturated fatty acids (56). 
This is especially important because the role of spliceosome in early NAFLD makes it 
attractive to further investigate derived screening strategies and preventive therapeutic 
targets.   

Our results also pinpoint a putative association between changes in the expression of 
certain spliceosome components and splicing factors and NAFLD-associated comorbidities 
(hyperinsulinemia, ALT/AST levels, etc.) and with the biochemical response to bariatric 
surgery. Indeed, the expression pattern of the spliceosome components and splicing factors 
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analyzed herein seemed to identify three discrete molecularly defined subpopulations of 
steatotic obese patients characterized by the dysregulated expression of certain spliceosome 
components and splicing factors, associated to specific clinical characteristics and also with a 
differential response to bariatric surgery after one year. In particular, patients included in the 
Cluster A, which were mainly characterized by altered expression of SRSF4, RBM22 and 
TRA2B compared to non-steatotic and Clusters B and C steatotic patients, presented an 
increase in glucose plasma levels, indicating a possible relationship between this splicing 
factors and glucose homeostasis. Indeed, one of the splicing factors dysregulated in this 
cluster of patients (TRA2B, also named SRFS10) has been previously described in relation to 
obesity, wherein TRA2B seems to be downregulated in liver samples from insulin resistant 
humans with obesity (26). Similarly, patients in Cluster B were characterized by altered 
hepatic expression of RBM45 and TRA2A and presented higher triglycerides and GGT levels 
at the diagnosis. This represents a very interesting finding inasmuch as hepatic TRA2A has 
been found to be modulated in response to estrogens in order to control the alternative 
splicing of class B scavenger receptors BI (SR-BI) and BII (SR-BII) (57), which are crucial 
player in the hepatic uptake of TGs (58). Finally, obese patients included in Cluster C 
presented elevated levels of insulin and aminotransferases and a differential evolution of 
biochemical parameters and of the recovery in the grade of steatosis after bariatric surgery. 
Interestingly, SND1, one of the splicing factors whose expression alteration characterized 
Cluster C, is a splicing factor associated to the physiological function and pathological 
transformation of the liver (51,59). Indeed, hepatic SND1 has been shown to be associated to 
different aspects of lipid metabolism in the liver and with the development of hepatic 
steatosis (51). Hence, these results, together with the in vitro results discussed above, suggest 
that the dysregulation of certain spliceosome components and/or splicing factors could also 
be involved in promoting the development of NAFLD and predisposing the patients to 
specific NAFLD-associated comorbidities. 

Altogether, our present results demonstrate a novel relationship between the 
dysregulation of splicing machinery and the development of NAFLD and its associated 
metabolic co-morbidities, as well as with the biochemical improvement after bariatric 
surgery. These findings shed light to the possible underlying molecular mechanisms 
responsible for the development of hepatic steatosis in obese patients and, thus, provide novel 
information to explore the development of efficient screening strategies, diagnostic, 
prognostic or therapeutic tools for obesity-related NAFLD, which is becoming one of the 
main sources of morbidity and mortality in developed countries. 
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Development and Progression of Hepatocellular Carcinoma. Cancer Res. 2017;77(12):3306-
3316. 

Figure 1. Differential expression of splicing machinery components in the liver of 
steatotic and non-steatotic obese patients. A) Study design and pattern of dysregulation 
of spliceosome components and splicing factors in the liver of steatotic and non-steatotic 
obese patients. A graphical summary of the study design is shown in the left panel. A 
schematic representation of fold change levels of spliceosome components and splicing 
factors between the liver of steatotic and non-steatotic obese patients, represented in red 
(increase) or blue (decrease), is depicted in the right panel. B) Expression levels and ROC 
curves of significantly altered spliceosome components and splicing factors in the liver 
of steatotic compared with non-steatotic obese patients. mRNA expression levels 
[adjusted by a normalization factor (NF) calculated from the expression level of HPRT and 
ACTB] of the different spliceosome components (first row) and splicing factors (second row) 
significantly altered in the liver of obese women with (ST) and without steatosis (NON ST). 
Values represent the mean ± SEM. Asterisks indicate values that significantly differ from 
non-steatosis patients (t-test: *p<0.05, **p<0.01, ***p<0.001). Receiver operating 
characteristic (ROC) curve analysis, to determine the accuracy of the components of the 
splicing machinery and splicing factors to discriminate between patients with or without liver 
steatosis, are included below each graph. B) ROC curves of subsets of spliceosome 
components and splicing factors generated by Random Forest computational algorithm 
followed by cross validation analysis, considering the expression of a selection of the 
most relevant and discriminatory splicing machinery components. Specifically, three 
subset of specific splicing machinery components are included: PTBP1, RBM45, SRRM1, 
RNU4 and RNU6ATAC; PTBP1, RBM22, SRSF1, SRRM1, SNRNP70 and RNU6ATAC; 
CELF1, PTBP1, RBM22, RBM3, SRRM1 and RNU6. AUC: Area under curve. p: p value. 

Figure 2. Pattern of dysregulation of spliceosome components and splicing factors in the 
liver of non-steatotic and steatotic obese patients according to the grade of lipid 
accumulation. Above, fold change expression levels among patients with different levels of 
steatosis compared to non-steatotic livers, represented in red (increase) or blue (decrease). 
Below, mRNA expression levels [adjusted by a normalization factor (NF) calculated from the 
expression level of HPRT and ACTB] of the different spliceosome components and splicing 
factors in the liver of obese women without steatosis (NON ST) and with three different 
levels of steatosis (mild, moderate and severe). Values represent the mean ± SEM. Asterisks 
indicate values that significantly differ from non-steatosis patients (t-test: *p<0.05, **p<0.01, 
***p<0.001).  

Figure 3. The expression of splicing machinery components is differentially altered in 
the liver of steatotic individuals. A) Unsupervised clustering analysis of the expression 
levels of the splicing machinery in patients with steatosis. This bioinformatic approach 
identified three molecularly-defined populations of steatotic patients (CLUSTER A, B and 
C). B). Specific changes of certain components of the splicing machinery defined each cluster 
of steatotic patients. The three molecularly defined clusters of steatotic patients were 
associated with the alteration in the expression of certain spliceosome components and 
splicing factors, compared to patients without steatosis or included in the other clusters. The 
alteration of selected factors (within the frame) was able to classify patients in the three 
Clusters with an AUC of 1, using the classification algorithm Random Forest. Data indicate 
mRNA expression levels [adjusted by a normalization factor (NF) calculated from the 
expression level of HPRT and ACTB] in each cluster (A, B and C) compared to the rest of 
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patients with and without steatosis (NON ST). Values represent the mean ± SEM. Asterisks 
indicate values that significantly differ between groups (t-test *p<0.05, **p<0.01, 
***p<0.001). 

Figure 4. Each molecularly defined population of steatotic patients (CLUSTER A, B 
and C) was characterized by certain hepatic and clinical-metabolic alterations. Relevant 
clinical parameters associated to each cluster of patients grouped according to their 
expression levels of the spliceosome components and splicing factors. Values represent the 
mean ± SEM.  Asterisks indicate values that significantly differ from control cells (t-test: 
*p<0.05, **p<0.01). GGT: Gamma-Glutamyltransferase; ALT: Alanine Transaminase, AST: 
Aspartate Transaminase. 

Figure 5. Cluster C presented a worst response to bariatric surgery after one year of 
follow-up. Recovery from hepatic steatosis and evolution of BMI, WHR, GGT, Glucose, 
Triglycerides, Alkaline phosphatase and HDL levels one year after bariatric surgery in 
patients from Cluster C (CL C) vs. Clusters A+B (CL A+B). The data are expressed as 
percentage of the value before surgery (normalized to 100%). Values represent the mean ± 
SEM.  Asterisks indicate values that significantly differ from control cells (t-test: *p<0.05, 
**p<0.01). BMI: Body Mass Index, WHR: Waist-Hip Ratio, GGT: Gamma-
Glutamyltransferase; ALT: Alanine Transaminase, AST: Aspartate Transaminase, HDL: 
High Density Lipoprotein. 

Figure 6. Modulation of splicing machinery components influenced lipid accumulation 
in HepG2 cells. A) Validation of lipid accumulation in HepG2 cell lines by Oil Red O 
absorbance at 520 nm.  Data are expressed as a percentage of the control (normalized to 
100%). B) Effect of lipid accumulation on the expression of certain spliceosome 
components and splicing factors at 10, 24 and 48h. mRNA expression levels [adjusted by a 
normalization factor (NF) calculated from the expression level of HPRT and GAPDH] of the 
different spliceosome components and splicing factors in HepG2 cells treated with 500µM of 
OA. The data are expressed as percentage of the control (normalized to 100%). Values 
represent the mean ± SEM (n=5).  Asterisks indicate values that significantly differ from 
control cells (t-test: *p<0.05, **p<0.01, ***p<0.001). C) qPCR validation of the silencing 
with specific siRNAs. mRNA expression levels adjusted by the expression level of ACTB. 
Data are expressed as percentage of control random siRNAs (Scramble; set at 100%). D) 
Effect of silencing of certain splicing factors in HepG2 cells on lipid accumulation 
determined by Oil Red O absorbance at 520 nm. Data are expressed as percentage of the 
control (normalized to 100%). Values represent the mean ± SEM (n=5). OA: oleic acid. 

Table 1. Demographic and clinical characteristics of the patients included in this study. 
BMI: Body Mass Index, WHR: Waist-Hip Ratio, GGT: Gamma-Glutamyltransferase; ALT: 
Alanine Transaminase, AST: Aspartate Transaminase, HDL: High Density Lipoprotein, 
LDL: Low Density Lipoprotein, CRP: C-Reactive Protein. 

 Non Steatosis Steatosis p-value 

Age (years) 
37.00 ± 5.00 40.41 ± 1.77 

0.425 
n=9 n=32 

Body Weight (kg) 
125.60 ± 3.07 133.1 ± 3.58 

0.292 
n=9 n=32 

BMI (kg/m2) 
48.96 ± 0.92 50.63 ± 1.31 

0.513 
n=9 n=32 

WHR 0.86 ± 0.02 0.91 ± 0.01 0.059 
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n=9 n=32 

HOMA-IR 
2.00 ± 0.48 5.00 ± 0.71 

0.049 
n=5 n=22 

Glucose (mg/dl) 
101.70 ± 7.62 106.60 ± 3.33 

0.125 
n=9 n=32 

Insulin (mU/L) 
9.44 ± 1.32 19.59 ± 2.29 

0.049 
n=5 n=22 

Glycated Haemoglobin (%) 
6.01 ± 0.44 6.181 ± 0.13 

0.175 
n=8 n=32 

GGT (U/L) 
23.33 ± 2.11 38.94 ± 5.05 

0.181 
n=9 n=33 

ALT (U/L) 
19.44 ± 2.76 28.19 ± 2.35 

0.041 
n=9 n=32 

AST (U/L) 
17.11 ± 2.17 21.84 ± 1.76 

0.202 
n=9 n=32 

Alkaline Phosphatase (U/L) 
74.67 ± 2.54 78.75 ± 4.03 

0.602 
n=9 n=32 

Bilirubin (mg/dl) 
0.60 ± 0.07 0.66 ± 0.05 

0.835 
n=8 n=27 

Direct Bilirubin (mg/dl) 
0.30 ± 0.04 0.27 ± 0.016 

0.644 
n=6 n=28 

Indirect Bilirubin (mg/dl) 
0.38 ± 0.05 0.37 ± 0.03 

0.735 
n=6 n=28 

HDL (mg/dl) 
43.78 ± 4.89 41.50 ± 1.82 

0.596 
n=9 n=32 

LDL (mg/dl) 
126.60 ± 11.38 136.10 ± 6.34 

0.245 
n=9 n=31 

Triglycerides (mg/dl) 
103.30 ± 18.72 136.60 ± 19.81 

0.215 
n=9 n=32 

Cholesterol (mg/dl) 
191.60 ± 11.97 204.20 ± 6.62 

0.374 
n=9 n=32 

Creatinin (mg/dl) 
0.82 ± 0.16 0.69 ± 0.02 

0.470 
n=8 n=28 

CRP (mg/L) 
8.45 ± 1.28 12.62 ± 1.89 

0.476 
n=9 n=27 

Total Protein (g/dl) 
6.95 ± 0.27 7.00 ± 0.08 

0.817 
n=9 n=32 

Albumin (g/dl) 
3.98 ± 0.16 4.08 ± 0.06 

0.451 
n=9 n=32 

Haptoglobin (mg/dl) 
158.50 ± 6.50 190.20 ± 8.24 

0.065 
n=8 n=31 
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Supplementary Material and Methods 

Additional notes on the analysis of splicing machinery components by qPCR dynamic array based on microfluidic 
technology  

A 48.48 Dynamic Array (Fluidigm, San Francisco, CA, USA) was implemented to determine the expression of 48 
transcripts in 48 samples, simultaneously. Following manufacturer’s instructions, 1.25ng of cDNA of each sample was 
pre-amplified using 1µL of PreAmp Master Mix (Fluidigm) and 0.5 µL of all primers mix (500nM) in a T100 Thermal-
cycler (Bio-Rad, Hercules, CA, USA), using the following program: 1) 2min at 95oC; 2) 15sec at 94oC and 4min at 60oC 
(14 cycles). After pre-amplification, each sample was treated with 2 µL of a 4U/µL Exonuclease I solution (New England 
BioLabs, Ipswich, MA, USA) for 30min at 37oC followed by 15min at 80oC to remove unincorporated primers. Then, 
samples were diluted with 18µL of Buffer TE (Thermo Scientific, Madrid, Spain), and 2.7µL were mixed with 3µL of 
EvaGreen Supermix (Bio-Rad) and 0.3µL of DNA Binding Dye Sample Loading Reagent (Fluidigm). Similarly, primers 
were diluted to 5µM with 2X Assay Loading Reagent (Fludigm). Then, control line fluid was charged in the chip and Prime 
script program was run into the IFC controller MX (Fluidigm). Finally, 5µL of each primer and 5µL of each sample were 
pipetted into their respective inlets on the chip and the Load Mix script in the IFC controller software was run. After this 
program, the qPCR was run in the Biomark System (Fluidigm) following the thermal cycling program: (1) 95ºC for 1min; 
(2) 35 cycles of denaturing (95ºC for 5sec) and annealing/extension (60ºC for 20sec); and (3) a last cycle where final PCR 
products were subjected to graded temperature-dependent dissociation (60ºC to 95ºC, increasing 1ºC/3 sec). Data were 
processed with Real-Time PCR Analysis Software 3.0 (Fluidigm). 

Bioinformatical analysis 
1. Data preprocessing 
Before conducting the computational study, the dataset was preprocessed as follows: 1) An univariate analysis of outliers 
was conducted and those values that lie outside 1.5 times the inter-quartile range were removed; 2) All genes with more 
than 70% of missing values were eliminated; 3) All missing values and outliers were replaced by the median of the variable 
in each group of patients; 4) All variables with zero variance were removed; 5) All variables were centered by means of 
subtracting the original values by the mean, and then, they were scaled by means of dividing by the standard deviation. By 
this way, all variables had the same impact and, therefore, the posterior estimation of the variables’ relevance was not 
biased by those variables with extreme values. 
 
2. Estimation of the variables’ relevance 
It is well-known that predictive performance can be enhanced if redundant, noisy and interacting variables are removed at 
the time of constructing models 1,2. In this work, several well-known feature-weighting algorithms 3 were used to compute 
the relevance of variables. The variables were ordered from higher to lower relevance according to a weight that represents 
the ability to distinguish between steatotic and non-steatotic patients. To avoid possible biases in the process of estimating 
the variables’ relevance, five well-known feature estimation methods were used, namely Correlation-Feature-Selection 
(CFS), Correlation-Attribute-Evaluation (CAE), Gain-Ratio (GR), Information-Gain (IG), and Relief-F (RF) 4,5. These 
algorithms are filter methods that evaluate the usefulness of a variable (or a set of variables) through measures of distance, 
dependency, information or correlation on data 1,2, so they are not influenced by classification algorithms in the feature 
estimation process. The use of these supervised feature weighting methods can lead to a superior estimation of the variables’ 
relevance, having as main advantages: (I) consideration of the expert knowledge unlike of several traditional approaches, 
such as Principal Component Analysis (PCA), that do not exploit the a priori classification of patients; (II) detection of 
redundant information; (III) detection of interacting features. 

In this work, the five feature-weighting methods were assessed by leave one-out cross validation, and the process was 
implemented in the R language. In the case of RF method, it was executed with a set of number of nearest neighbors equal 
to 1. The five estimation methods returned ranking of variables and, therefore, an average ranking can be computed as 
presented in Figure 1.  
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Figure 1. Workflow describing the five estimation methods used for ranking of variables and their integration to obtain 
the average ranking 

 
3. Construction of predictive models with subsets of relevant variables 
Subsequently, it was also determined the subset of variables that can best discriminate between steatotic and non-steatotic 
patients. To determine the best subset of variables by means of a final ranking of variables, we implemented a method 
previously published by our group 2, which provides a heuristic for searching on feature rankings. The number of possible 
subsets of variables is of exponential size but through a series of steps that are performed for each sub-ranking (Figure 2), 
the best subset of variables is selected as this one that produces the best classifier at discriminating between patients that 
have steatosis or not. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2. Workflow describing the series of steps that are performed for each sub-ranking  

 
2. Cross-validation of predictive models 
The capacity of generalization of the models was studied by means of assessing the models in a data partition that has not 
been seen previously (Cross-validation studies). This scenario was performed in R language by leave one-out cross-
validation to construct the models, using the same seed to partition the database, so allowing the replication of the 
computational study. 
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Supplementary Tables 

Supplementary Table 1 

 
Gene Accession Number Primer Sequence                                         

(Sense. Se) 
Primer Sequence                             
(Antisense. As) Product Size Nucleotide 

Position 

Sp
lic

eo
so

m
e 

C
om

po
ne

nt
s  

PRPF40A NM_017892.3 GCTCGGAAGATGAAACGAAA TGTCCTCAAATGCTGGCTCT 130 Se 2459; As 2288 

PRPF8 NM_006445.3 TGCCCACTACAACCGAGAA AGGCCCGTCCTTCAGGTA 139 Se 2373; As 2511 

RBM22 NM_018047.2 CTCTGGGTTCCAACACCTACA GGCACAGATTTTGCATTCCT 137 Se 133; As 269 

RNU11 NR_004407.1 AAGGGCTTCTGTCGTGAGTG CCAGCTGCCCAAATACCA 108 Se 4; As 111 

RNU12 NR_029422.1 ATAACGATTCGGGGTGACG CAGGCATCCCGCAAAGTA 106 Se 26; As 149 

RNU2 NR_002716.3 CTCGGCCTTTTGGCTAAGAT TATTCCATCTCCCTGCTCCA 116 Se 8; As 123 

RNU4 NR_003925.1 TCGTAGCCAATGAGGTCTATCC AAAATTGCCAGTGCCGACTA 103 Se 21; As 132 

RNU4ATAC NR_023343.1 GTTGCGCTACTGTCCAATGA CAAAAATTGCACCAAAATAA 85 Se 19; As 103 

RNU6 NR_004394.1 CGCTTCGGCAGCACATATA AAAATATGGAACGCTTCACGAA 101 Se 6; As 106 

RNU6ATAC NR_023344.1 TGAAAGGAGAGAAGGTTAGCACTC CGATGGTTAGATGCCACGA 112 Se 9; As 120 

SF3B1 NM_012433.3 CAGTTCCGTCTGTGTGTTCG GCTGCCTTCTTGCCTTGA 101 Se 65; As 165 

SF3B1 tv1 NM_012433.3 GCAGACCGGGAAGATGAATA TTTTCCCTCCATCTGCAAAA 88 Se 431; As 518 

SNRNP70 NM_001301069.1 TCTTCGTGGCGAGAGTGAAT GCTTTCCTGACCGCTTACTG 114 Se 821; As 934 

SNRNP200 NM_014014.4 GGTGCTGTCCCTTGTTGG CTTTCTTCGCTTGGCTCTTCT 103 Se 249; As 351 

TCERG1 NM_006706.3 GAGGAGCCCAAAGAAGAGGA CACCAGTCCAAACGACACAC 112 Se 1550; As 1661 

U2AF1 NM_006758.2 GAAGTATGGGGAAGTAGAGGAGATG TTCAAGTCAATCACAGCCTTTTC 120 Se 424; As 543 

U2AF2 NM_007279.2 CTTTGACCAGAGGCGCTAAA TACTGCATTGGGGTGATGTG 130 Se 1246; As 1375 

Sp
lic

in
g 

Fa
ct

or
s 

CELF1 NM_006560.3 AACAGAAGAGAATGGCCCAGC TGCTGAAGGAGTGCTAAATACTG 121 Se 837; As 957 

CELF4 NM_020180.3 CCCCAGCAGCAGAGAGAA GAAGCCGAAAGGGAGGAA 108 Se 1627; As 1734 

ESRP1 NM_020180.3 TTTTGGGATCACTGCTGGGG TGTCCCACCTTCTTGTTGGC 108 Se 216; As 323 

ESRP2 NM_024939.2 AGAGCCCAGCAGTCAATTGTT GTCTCACTGTCCACCACATCAG 96 Se 833; As 928 

KHDRBS1 NM_006559.2 GAGCGAGTGCTGATACCTGTC CACCAGTCTCTTCCTGCAGTC 106 Se 774; As 879 

MAGOH NM_002370.3 GCCAACAACAGCAATTACAAGA TTATTCTCTTCAGTTCCTCCATCAC 88 Se 265; As 352 

NOVA1 NM_002515.2 TACCCAGGTACTACTGAGCGAG CTGGTTCTGTCTTGGCCACAT 124 Se 592; As 715 

PTBP1 NM_002819.4 TGGGTCGGTTCCTGCTATT CAGATCCCCGCTTTGTAC 111 Se 45; As 155 

RAVER1 NM_133452.2 GTAACCGCCGCAAGATACTG CGAAGGCTGTCCCTTTGTATT 126 Se 298;  As 423 

RBM17 NM_032905.4 CAAAGAGCCAAAGGACGAAA TACATGCGGTGGAGTGTCC 107 Se 345; As 451 

RBM3 NM_006743.4 AAGCTCTTCGTGGGAGGG TTGACAACGACCACCTCAGA 98 Se 253; As 350 

RBM45 NM_152945.3 CCCATCAAGGTTTTCATTGC TTCCCGCAGATCTTCTTCTG 123 Se 415; As 537 

SFPQ NM_005066.2 TGGTAGGGGGTGAAAGTG TTAAAAACAAGAAATGGGGAAATG 125 Se 2873; As 2997 

SND1 NM_014390.3 ACTACGGCAACAGAGAGGTCC GAAGGCATACTCCGTGGCT 101 Se 2679; As 2779 

SNW1 NM_001318844.1 ATGCGTGCCCAAGTAGAGAG TCCCCATCCTCTTTTTCCA 134 Se 937; As 1070 

SRRM1 NM_001303448.1 GTAGCCCAAGAAGACGCAAA TGGTTCTGTGACGGGGAG 108 Se 733; As 840 

SRRM4  NM_194286.3 CCTTCACCACCTCCTCAC TTCGGCACATTCCAGACA 113 Se 1386; As 1498 

SRSF1 NM_006924.4 TGTCTCTGGACTGCCTCCA TGCCATCTCGGTAAACATCA 98 Se 580; As 658 

SRSF10 NM_006625.5 CTACACTCGCCGTCCAAGAG CCGTCCACAAATCCACTTTC 103 Se 343; As 445 

SRSF2 NM_003016.4 TGTCCAAGAGGGAATCCAAA GTTTACACTGCTTGCCGATACA 113 Se 835; As 947 

SRSF3 NM_003017.4 TAACCCTAGATCTCGAAATGCATC CATAGTAGCCAAAAGCCCGTT 117 Se 155; As 271 

SRSF4 NM_005626.4 GGAACTGAAGTCAATGGGAGAA CTTCGAGAGCGAGACCTTGA 110 Se 857; As 966 

SRSF5 NM_001039465.1 GCAAAAGGCACAGTAGGTCAA TTTGCGACTACGGGAACG 92 Se 723; As 814 

SRSF6 NM_006275.5 AGACCTCAAAAATGGGTACGG CTTGCCGTTCAGCTCGTAA 82 Se 263; As 344 

SRSF9 NM_003769.2 CCCTGCGTAAACTGGATGAC AGCTGGTGCTTCTCTCAGGA 87 Se 628; As 714 

TIA1 NM_022037.2 TAAATCCCGTGCAACAGCAGA TATGCAGGAACTTGCCAACCA 124 Se 2806; As 2929 

TRA2A NM_013293.4 TCAAAGGAGGCTATGGAAAGG TGTGTGCGCTCTCTTGGTTA 90 Se 734; As 823 

TRA2B NM_004593.2. GATGATGCCAAGGAAGCTAAAG AGGTAGGTCTCCCCATGTAAATTC 130 Se 784; As 913 

H
K

 g
en

es
 

ACTB NM_001101 ACTCTTCCAGCCTTCCTTCCT CAGTGATCTCCTTCTGCATCCT 176 Se 864; As 1039 
GAPDH NM_002046 AATCCCATCACCATCTTCCA AAATGAGCCCCAGCCTTC 122 Se 402; As 423 
HPRT NM_000194.2 CTGAGGATTTGGAAAGGGTGT TAATCCAGCAGGTCAGCAAAG 157 Se 252; As 409 

Supplementary Table 1. Specific primers for human transcripts used in this study, including components of the major 

and minor spliceosomes, associated splicing factors and three housekeeping genes (HK) that were specifically designed 

and used in qPCR-based microfluidic assays. NCBI accesion number, primers sequences, expected product sizes and 

nucleotide positions for the genes studied are included.  
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Supplementary Table 2 

 

Gene Accession 
Number 

Primer Sequence                                         
(Sense. Se) 

Primer Sequence                             
(Antisense. As) 

Product 
Size 

Nucleotide 
Position 

SREBP1 NM_001005291.2 TGAGGACAGCAAGGCAAAG GACAGGCAGAGGAAGACGAG 105 Se 1676; As 1780 
ACLY NM_001303274.1 AACTTTCTGATCGAGCCCTTC ACATCACCCACGTCCACAC 125 Se 480; As 604 
ACAC NM_198834.3 TTTCTTCCATCTCCCCCTCT CCATGCCAATCTCATTTCCT 118 Se 5509; As 5626 
FASN NM_004104.5 CTACGACTACGGCCCTCATTT TCCATGAAGCTCACCCAGTT 99 Se 3117; As 3215 
SCD NM_005063.5 ACGTGGCTTTTTCTTCTCTCAC GTACCTCCTCTGGAACATCACC 130 Se 794; As 923 

 

Supplementary Table 2. Specific primers for human transcripts associated to de novo lipogenesis process. NCBI 

accession number, primers sequences, expected product sizes and nucleotide positions for the genes studied are included.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

Supplementary Table 3 
 Mild  Moderate  Severe ANOVA 

Age (years) 35.50 ± 3.82 
n=8 

39.67 ± 2.79 
n=12 

44.42 ± 2.54 
n=12 0.140 

Body Weight (kg) 132.40 ± 9.15 
n=8 

132.50 ± 5.28 
n=12 

134.20 ±  5.70 
n=12 0.975 

BMI (kg/m2) 50.34 ± 2.80 
n=8 

50.68 ± 1.74 
n=12 

50.77 ± 2.54 
n=12 0.992 

WHR 0.86 ± 0.02 
n=8 

0.92 ± 0.01 
n=12 

0.92 ± 0.03 
n=12 0.097 

HOMA-IR 3.73 ± 0.70 * 
n=7 

4.06 ± 0.82* 
n=8 

7.75 ± 1.55 
n=7 0.03 

Glucose (mg/dl) 97.75 ± 4.71 
n=8 

105.70 ± 4.80 
n=12 

113.30 ± 6.46 
n=12 0.192 

Insulin (mU/L) 15.69 ± 2.96 
n=7 

16.24 ± 3.34 
n=8 

27.33 ± 4.37 
n=7 0.062 

Glycated Haemoglobin 
(%) 

5.80 ± 0.22 
n=8 

6.17 ± 0.13 
n=12 

6.45 ± 0.26 
n=12 0.135 

GGT (U/L) 29.63 ± 10.62 
n=8 

37.25 ± 7.72 
n=12 

46.83± 8.54 
n=12 0.418 

ALT (U/L) 20.75 ± 2.09 
n=8 

29.08 ± 3.53 
n=12 

32.25 ± 4.70 
n=12 0.159 

AST (U/L) 17.13 ± 1.94 
n=8 

22.00 ± 2.70 
n=12 

24.83 ± 3.49 
n=12 0.242 

Alkaline Phosphatase 
(U/L) 

73.00 ± 4.45 
n=8 

82.08 ± 8.69 
n=12 

79.25 ± 5.93 
n=12 0.694 

Bilirubin (mg/dl) 0.70 ± 0.10 
n=6 

0.65 ± 0.08 
n=11 

0.63 ± 0.08 
n=10 0.875 

Direct Bilirubin (mg/dl) 0.27 ± 0.03 
n=7 

0.27 ± 0.03 
n=11 

0.27 ± 0.02 
n=10 0.997 

Indirect Bilirubin (mg/dl) 0.34 ± 0.05 
n=7 

0.390 ± 0.06 
n=11 

0.38 ± 0.06 
n=10 0.859 

HDL (mg/dl) 40.38 ± 3.66 
n=8 

41.83 ± 3.05 
n=12 

41.92 ± 3.12 
n=12 0.941 

LDL (mg/dl) 134.90 ± 16.87 
n=8 

139.00 ± 11.02 
n=12 

133.70 ± 6.94 
n=11 0.937 

Triglycerides (mg/dl) 126.30 ± 37.12 
n=8 

121.10 ± 19.55 
n=12 

159.10 ± 43.69 
n=12 0.375 

Cholesterol (mg/dl) 202.30 ± 18.97 
n=8 

205.30 ± 11.29 
n=12 

204.30 ± 6.99 
n=12 0.984 

Creatinin (mg/dl) 0.69 ± 0.02 
n=6 

0.65 ± 0.02 
n=11 

0.72 ± 0.06 
n=11 0.581 

CRP (mg/L) 11.42 ± 3.77 
n=6 

10.85 ± 2.30 
n=10 

14.88 ± 3.71 
n=11 0.627 

Total Protein (g/dl) 7.19 ± 0.18* 
n=8 

7.18 ± 0.10* 
n=12 

6.70 ± 0.09 
n=12 0.007 

Albumin (g/dl) 4.26 ± 0.16 
n=8 

4.08 ± 0.08 
n=12 

3.68 ± 0.07 
n=12 0.122 

Haptoglobin (mg/dl) 181.10 ± 17.64 
n=8 

176.40 ± 13.92 
n=11 

209 ± 11.49 
n=12 0.193 

 

Supplementary Table 3. Demographic and clinical characteristics of the three group of steatotic grade patients 

included in this study. BMI: Body Mass Index, WHR: Waist-Hip Ratio, GGT: Gamma-Glutamyltransferase; ALT: 

Alanine Transaminase, AST: Aspartate Transaminase, HDL: High Density Lipoprotein, LDL: Low Density Lipoprotein, 

CRP: C-Reactive Protein.  
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Supplementary Table 4 

 

 
RNU6ATAC RNU6 SF3B1 RNU2 RNU4ATAC RBM22 U2AF1 U2AF2 

Sensitivity 75.76 84.83 77.19 71.88 77.42 51.61 84.85 75.76 

Specificity 66.67 75 77.78 87.5 71.43 77.78 66.67 77.78 

 

 
PTBP1 SRRM1 SND1 KHDRBS1 SRSF2 SRSF10 ESRP2 TIA1 

Sensitivity 75.76 63.64 75.76 78.79 75.76 66.67 71.88 69.7 

Specificity 88.89 66.67 66.67 66.67 77.78 66.67 77.78 66.67 

 

Supplementary Table 4. Sensitivity and Specificity values of ROC Curves of altered spliceosome components and 

splicing factors in patients with hepatic steatosis vs. patients without steatosis. 
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Supplementary Figures 

 

Supplementary Figure 1 

 

 

Supplementary Figure 1. Cell viability in response to the insults did not alter the observed results. Fat accumulation 
in RBM45 silenced HepG2 cells after OA treatment was lower compared with percentage of OA accumulation in control 
cells, as shown also in Fig.4C. This result was similar when considering viable cells per well, since the mean of percentage 
of lipid accumulation in RBM45 silenced cells compared with negative control cells was 92% analyzing ORO absorbance 
per well, and 88% when dividing Oil Red O absorbance into viable cells per well. 
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Supplementary Figure 2 

 

Supplementary Figure 2. Impact of the silencing of specific splicing factors on the expression of de novo lipogenesis 
enzymes in HepG2 cells. mRNA expression levels, adjusted by the expression level of ACTB, of different de novo 
lipogenesis enzymes in response to the silencing of key spliceosome components and splicing factors in HepG2 cells. Data 
are expressed as percentage of the control (normalized to 100%). Values represent the mean ± SEM (n=5).  Data are 
expressed as percentage of control random siRNAs (Scramble; set at 100%). Asterisks indicate values that significantly 
differ from scramble-treated HepG2 cells (t***p<0.001). 
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Supplementary Figure 3 

 

 

 

Supplementary Figure 3. Effect of treatment with several metabolic factors on the expression of selected splicing 
factors in HepG2 cells. mRNA expression levels [adjusted by a normalization factor (NF) calculated from the expression 
level of HPRT and GAPDH] of the different spliceosome components and splicing factors in response to different metabolic 
stimuli in HepG2 cells. Data are expressed as percentage of the control (normalized to 100%). Values represent the mean 
± SEM (Glucose and leptin n=3; Insulin, IGF1, Oleic acid and Palmitic acid n=5).  Data are expressed as percentage of 
control random siRNAs (Scramble; set at 100%). Asterisks indicate values that significantly differ from non-treated HepG2 
cells (t-test: **p<0.01, ***p<0.001). OA: oleic acid. PA: palmitic acid. 
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Peptides derived from the extracellular
domain of the somatostatin receptor splicing
variant SST5TMD4 increase malignancy in
multiple cancer cell types

Q1 X XD30X XMERCEDES DEL RIO-MORENOD31X X, D32X XEMILIA ALORS-PEREZ D33X X, D34X XPATRICIA BORGES DE SOUZAD35X X,
D36X XMARIA E. PRADOS-GONZALEZD37X X, D38X XJUSTO P. CASTAeNO D39X X, D40X XRA�UL M. LUQUED41X X, and D42X XMANUEL D. GAHETED43X X

C �ORDOBA, SPAIN

Extracellular fragments derived from plasma membrane receptors can play rele-
vant roles in the development/progression of tumor pathologies, thereby offering
novel diagnostic or therapeutic opportunities. The truncated variant of somatostatin
receptor subtype-5,Q2 X XSST5TMD4, is an aberrantly spliced receptor with 4 transmem-
brane domains, highly overexpressed in several tumor types, whose C-terminal tail
is exposed towards the extracellular matrix, and could therefore be the substrate for
proteolytic enzymes. In silico analysis implemented herein predicted D44X X2 possible
cleavage sites for metalloproteases MMP2, 9, 14, and 16 in its sequence, which
could generate 3 D45X Xreleasable peptides. Of note, expression those MMPs was directly
correlated with SST5TMD4 in several cancer-derived cell lines (i D46X Xe D47X Xneuroendocrine
tumors and prostate, breast, and liver cancers). Moreover, incubation with
SST5TMD4-derived peptides enhanced malignancy features in all cancer cell types
tested (iD48X Xe D49X Xproliferation, migration, etc.) and blunted the anti D50X Xproliferative response to
somatostatin in QGP-1 cells, acting probably through PI3K/AKT and/or MEK/ERK sig-
naling pathways and the modulation of key cancer-associated genes (eD51X Xg D52X XMMPs,
MKI67, ACTR2/3, CD24/44). These results suggest that SST5TMD4-derived peptides
could contribute to the strong oncogenic role of SST5TMD4 observed in multiple
tumor pathologies, and, therefore, represent potential candidates to identify novel
diagnostic, prognostic, or therapeutic targets in cancer. (Translational Research
2019;&&:&&-&&)

Abbreviations: CSCs = cancer stem cells; ECM = extracellular matrix; GPCR = G-protein cou-
pled receptor; HCC = hepatocellular carcinoma; IGF1 = insulin-like growth factor 1; MMP =
matrix metalloproteinase; NET = neuroendocrine tumor; SS14 = somatostatin 14; SSA = somato-
statin analog; SST1-5 = somatostatin receptors 1-5; SST5TMD4 = somatostatin receptor 5 variant
with 4 transmembrane domains; TMD = transmembrane domain
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AT A GLANCE COMMENTARY
del Rio-Moreno M, et al.

Background

Extracellular fragments derived from membrane

receptors can play relevant roles in tumor patholo-

gies. The truncated variant of somatostatin recep-

tor subtype 5, SST5TMD4, is an aberrantly

spliced receptor highly overexpressed in several

tumor types, whose C-terminal tail is exposed

towards the extracellular matrix and could be the

substrate of matrix metalloproteinases to induce

the release of soluble peptides.

Translational Significance

Peptides derived from the SST5TMD4 increase in

vitro tumorigenic potential of different tumor-

derived cell lines, indicating that they could have

important pathological implications and could be

potential candidates to identify novel diagnostic,

prognostic, and/or therapeutic tools in endocrine-

related tumor pathologies.

INTRODUCTION

Somatostatin, a neuropeptide mainly produced in

central nervous system and gastrointestinal tract, exerts

a broad range of biological functions in endocrine and

non D53X Xendocrine tissues, including inhibition of hormone

secretions or cellular growth.1,2 Somatostatin binds to

D54X X5 G-protein coupled receptors D55X Xsubtypes with 7-trans-

membrane-domain D56X X, named somatostatin receptors

SST1-5, to modulate diverse downstream pathways.3

The 5 D57X XSSTs are encoded by D58X X5 separated genes and exert

distinct effects depending on the particular constella-

tion of SSTs available on cell surface, as they can inter-

act with themselves or with other receptors.4,5

Somatostatin binding to SST1-5 can trigger antitu-

moral effects, inhibiting cell proliferation, angiogene-

sis and hormone secretion, and/or inducing

apoptosis.3,6 Consequently, somatostatin synthetic ana-

logues (SSA), like octreotide and lanreotide, were

developed and are used as medical therapy for different

tumor pathologies including pituitary or neuroendo-

crine tumors (NETs).3,6 Nevertheless, although SST1-

5 D59X Xis abundantly expressed in other cancers, such as

prostate, breast, or hepatocellular carcinoma (HCC),

their potential clinical value in these pathologies is still

to be defined.7-9

In this scenario, several pieces of evidence have

demonstrated that the somatostatin system is more

complex than originally envisioned. Indeed, recent

studies have revealed the existence of diverse mecha-

nisms that increase variability of G-protein coupled

receptors D60X X, including the SST1-5, as is the case of

alternative splicing processes that could generate

non D61X Xcanonical truncated variants with less than

7-transmembrane-domain D62X X.10-13 These truncated forms

are functionally active by modulating the physiology

of their canonical isoforms or by exerting separate,

independent functions.12,13 Moreover, presence of

these truncated receptors is commonly associated to

development/progression of tumor pathologies, as is

the case of the growth hormone-releasing hormone

receptor D63X X,10,11 cholecystokinin receptor,14 or adrenergic

receptors.15 In the somatostatin family, our group has

also identified a non D64X Xcanonical truncated splicing vari-

ant of SST5 that only harbors 4TMDs and was there-

fore named SST5TMD4, which is generated by cryptic

splice sites in the coding sequence and the distal, non-

D65X Xcoding 3’UTR of the SST5 gene.4 The SST5TMD4 is

barely expressed in normal tissues but is overexpressed

in different tumor pathologies as pituitary and NETs,

as well as in breast, prostate, and thyroid cancer.4,16-21

More importantly, SST5TMD4 acts as an oncogene in

these pathologies, wherein its presence is associated to

resistance of SSA and with malignancy features, as it

correlates with clinical parameters of aggressiveness

and promotes cell proliferation, migration, invasion,

and exacerbated hormone secretion.4,16-22

Remarkably, a unique feature of this truncated

SST5TMD4 receptor is the presence of 4TMDs, which

implies that its C-terminal tail is exposed to the extra-

cellular region.4,23 In this regard, an increasing number

of studies suggest that extracellular fragments derived

from shedding of plasma membrane receptors can play

relevant functional roles in the development/progres-

sion of tumor pathologies and might, therefore, provide

novel diagnostic/therapeutic tools for these patholo-

gies.24-27 Therefore, since SST5TMD4 presents only 4

TMDs and its C-terminal tail is directed towards the

extracellular matrix (ECM) instead of the cyto-

plasm,16,23 the extracellular region of SST5TMD4 may

be susceptible to the action of proteases confined in the

ECM such as metalloproteinases (MMPs), a group of

zinc D66X X- and calcium-dependent proteolytic enzymes

capable to degrade the majority of ECM proteins, such

as collagen and elastin, as well as to regulate the activ-

ity of other proteinases, growth factors, and cell

receptors.28,29

Consequently, we hypothesized that the action of

MMPs on the SST5TMD4 extracellular domain, which

is exposed to the ECM, could induce the release of sol-

uble peptides that may exert some of the pathological

actions previously ascribed to SST5TMD4, and there-

fore, could provide useful tools in the diagnostic,
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prognostic, and/or therapeutic management of patients

harboring SST5TMD4-related tumor pathologies.

Thence, the aim of the present work was to determine

if SST5TMD4 C-terminal domain has potential MMPs

sites that could generate derived peptides, and to evalu-

ate if such peptides could be able to directly trigger

functional responses in different cancer cells in which

the somatostatin system plays a relevant role.

MATERIALS AND METHODS

In silico prediction of MMPs cleavage sites and

synthesis of SST5TMD4-derived peptides. The complete

sequence of SST5TMD4 was analyzed with different

bioinformatic tools for prediction of the transmem-

brane regions: TMpred, THTMM (Technical Univer-

sity of Denmark), MobylePasteur, and DAS-TMfilter.

Furthermore, an in silico prediction of putative cleav-

age sites for MMPs in the extracellular segment of

SST5TMD4 was performed using CleavPredic. The

resulting SST5TMD4-derived peptides (M7, M10, and

M17) were chemically synthesized by Genosphere

Biotechnologies (Paris, France) and used in successive

experiments. Specifically, peptides were synthesized

by solid phase synthesis using standard Fmoc-protect-

ing group chemistry and purification was achieved

through semiD67X Xpreparative C18 reversed-phase HPLC

using TFA/CH3CN gradient.

Cell lines and treatments. The androgen-sensitive

22Rv1 (CRL-2505 D68X X and androgen-insensitive PC-3

(CRL-1435 D69X X prostate cancer cell lines, the SNU-387

(HB-8065) HCC cell line, and the invasive ER-nega-

tive MDA-MB-231 (HTB-26 D70X X and non D71X Xinvasive ER-

positive MCF-7 (HTB-22 D72X X breast cancer cell lines

were purchased from ATCC (Manassas, VA D74X X). Two

previously validated human NET cell lines, the car-

cinoid-like BON-1,30 and the somatostatinoma-

derived QGP-131 were also used. All of them were

maintained according to manufacturer�s instructions

at 37˚C and 5% CO2, under sterile conditions, vali-

dated by short tandem repeat analysis (GenePrint 10

System, Promega, Barcelona, Spain), and routinely

tested for mycoplasma contamination, as previously

reported.32,33 In each experiment, cells were treated

with the D75X X3 SST5TMD4-derived peptides at a final

concentration of 10¡7 M. This concentration was

selected based on dose-response experiments carried

out in QGP-1 cell line to evaluate the proliferative

response to D76X X5 different concentrations of the

SST5TMD4-derived peptides (10¡9 M to 10¡5 M)

after 24 hours. This approach revealed that 10¡7 M

was lower dose that caused a maximal proliferative

response (Supplementary F D77X Xig D78X X1, A). Furthermore, we

validated that 10¡7 M of the M17 peptide was more

effective than the D79X X2 lowest concentrations tested

(10¡9 M and 10¡8 M) in BON-1, 22Rv1, and SNU-

387 cells (Supplementary D80X XFig D81X X1, B). Somatostatin 14

(SS14; Biogenesis, Poole, UK), octreotide (GP-

Pharm, Barcelona, Spain), lanreotide (provided by

IPSEN Bioscience, Cambridge, D82X XMassachusetts D83X X), and

pasireotide (Novartis Pharmaceuticals Corporation,

East Hanover, New Jersey D84X X) were also used at a con-

centration of 10¡7 M based on previous studies.34,35

Measurements of cell proliferation. Cell proliferation

was determined by Alamar Blue-based assays (Thermo

Scientific) in all cell lines as previously

reported.16,20,21,32,33,36 Briefly, cells were seeded and

serum-starved for 24 hours. Cell proliferation was eval-

uated every 24 hours. At least D85X X3 experiments were per-

formed in independent days. In all the experiments,

cells were seeded per quadruplicate per treatment.

Measurement of cell migration capacity. Cell migra-

tion capacity was evaluated on PC-3, MDA-MB-231,

MCF-7, SNU-387, and BON-1 cells, by wound healing

assay as previously described.16,20,32,33,36 Cells were

serum starved for 1 hour when confluence was reached,

and a wound was made in the center of each well using

a 100 ml pipette tip. Cells were treated with each

SST5TMD4-derived peptides per triplicate in serum-

free medium to avoid proliferation. At least D86X X3 experi-

ments were performed in independent days, in which D87X X4

pictures along the wound were acquired per well at 0

and 24 hours. Wound healing was calculated as the

area of a rectangle centered in the image 24 after the

wound vsD88X Xthe area of the rectangle just after wounding,

using Image J-1.51s software (NIH, Bethesda, Mary-

land D89X X), and expressed as percentage of recovered area

compared to vehicle-treated control cells.

Tumorspheres formation. Tumorspheres formation

was assessed to evaluate the proliferation of cancer

stem-like cells (CSCs) present in the population of

tumor cell lines. These cells constitute a subpopulation

that exhibit initiation and metastasis properties. In

order to enrich the CSCs population to analyze its self-

renewal capability, cells were grown under non D90X Xadher-

ent serum-free conditions and supplemented with

growth factors, as only CSCs can proliferate in this

environment. Thereby, tumorspheres formation was

assessed using Ultra-Low Attachment Multiwell Plates

(Sigma-Aldrich, Madrid, Spain) as previously

reported.19,33 Briefly, cells were seeded in DMEM/F12

(Thermo Scientific, Madrid, Spain) serum-free medium

supplemented with 20ng/mg EGF (Sigma-Aldrich;

Madrid, Spain) for prostate cells; 20 ng/ml bFGF

(Sigma Aldrich) and 20 ml/ml B27 supplement vitamin

A (Thermo Scientific) for HCC cells; 20 ng/ml EGF

and 20 ml/ml B27 supplement vitamin A for breast

ARTICLE IN PRESS
Translational Research
Volume&& del Rio-Moreno et al 3

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

https://doi.org/10.1016/j.trsl.2019.02.013


cancer cell lines; and 20 ng/mg IGF1 (Sigma-Aldrich)

for NET cells lines. Treatments were added in the

moment of plating and refreshed every D91X X2 days. The

number of tumorspheres was determined after 7 days

of incubation. At least D92X X3 experiments were performed

in independent days. In all the experiments, cells were

seeded per triplicate per treatment.

Western blot. Phosphorylation levels of ERK1/2,

AKT and JNK were analyzed by western blot as pre-

viously reported.19,21,32,33 Briefly, cells were serum

starved for 1 hour, treated with SST5TMD4-derived

peptides for 5, 10, or 15 minutes and total protein

was collected in SDS-DTT buffer. At least D93X X3 experi-

ments were performed in independent days. Proteins

were separated by SDS-PAGE and transferred to a

nitrocellulose membrane (EMD Millipore, Darm-

stadt, Germany). Antibodies for phospho-ERK1/2

(#4370S, Cell Signaling Technology; Danvers, Mas-

sachusetts D94X X), phospho-AKT (#9271S, Cell Signaling

Technology), phospho-JNK (AF1205, R&D Systems;

Minneapolis, Minnesota D95X X), total ERK1/2 (SC-154,

Santa Cruz Biotechnology; Santa Cruz, California D96X X),

total AKT (#9272S, Cell Signaling Technology),

total JNK (AF1387, R&D Systems) and horseradish

peroxidase-conjugated goat anti D97X Xrabbit IgG (#7074,

Cell Signaling Technology) were used. Blots were

exposed to Clatirty Western-ECL Blotting Substrate

(Bio-Rad Laboratories, Madrid, Spain) and scanned

using ImageQuant Las 4000 system (GE Healthcare

Europe GmbH). Images were analyzed using ImageJ-

1.51s software.

RNA isolation and real-time quantitative RT-PCR. Details

regarding RNA extraction, quantification, and reverse

transcription have been previously reported elsewhere by

our group.37 Briefly, total RNA was isolated from cells

using TRI Reagent (Sigma-Aldrich, Madrid, Spain), fol-

lowed by DNase treatment. The amount and purity of

RNA recovered was determined using the NanoDrop2000

spectrophotometer (Thermo Scientific, Madrid, Spain).

One mg of RNA was reverse transcribed to cDNA, using

random hexamer primers and RevertAid First Strand

cDNA Synthesis Kit (Thermo Scientific), and amplified

by quantitative real-time PCR using specific primers for

human transcripts (Supplementary table 1). qPCR reac-

tions were carried out using the Stratagene M£ D98X X3000p sys-

tem with the Brilliant III SYBR Green Master Mix

(Stratagene, La Jolla, CaliforniaD99X X). The expression level of

each transcript was adjusted by a normalization factor D100X X

obtained from the expression levels of D101X X3 different house-

keeping genes [D102X Xbeta-actin (ACTB), D103X Xhypoxanthine-guanine

phosphoribosyltransferase (HPRT) and D104X Xglyceraldehyde-3-

D105X Xphosphate D106X Xdehydrogenase (GAPDH)] using Genorm 3.3.38

Statistical analysis. All statistical analyses were per-

formed using GraphPad Prism (La Jolla, California D107X X).

Proliferation assay and western blot analyses were ana-

lyzed by D108X X2-way ANOVA followed by Bonferroni’s

post D109X Xhoc test. Migration, tumorspheres formation, and

gene expression assays were analyzed using D110X X1-way

ANOVA followed by Bonferroni’s post D111X Xhoc test. Corre-

lations were studied by using the Pearson correlation

test. All data were obtained from at least D112X X3 independent

experiments from different cellular passages and

expressed as mean § SEM. P D113X Xvalues smaller than 0.05

were considered statistically significant.

RESULTS

SST5TMD4 C-terminal domain displays 2 D114X Xputative MMPs cleavage sites.An

analysis of the complete sequence of SST5TMD4 using different bio-

informatic tools for the prediction of the transmembrane regions

revealed that the C-terminal extracellular domain starts at the amino-

acid position 179 (Fig 1, A). Subsequently, an in-silico prediction of

putative cleavage sites for MMPs revealed D115X X2 processing sites; D116X X1 for

MMP2, 9 and 14 (at position 200) and 1D117X X for MMP16 (at position

210), which could lead to the generation of 3 putative peptides in

response to the alternative and/or simultaneous action of such

MMPs. These putative peptides have a length of 17, 10, and 7 amino

acids (and consequently were named M17: HRERLSGHKSW-

QEKGPG; M10: HRERLSGHKS; and M7: WQEKGPG) (Fig 1, B).

SST5TMD4 is co D118X Xexpressed with MMP2, 9, 14, and/or 16 in cancer-derived

cell lines. Expression studies revealed a coD119X Xexpression of SST5TMD4

with MMP2, 9, 14, and/or 16 in these cancer cell-lines (Fig 1, C).

Indeed, SST5TMD4 was expressed, although at low levels, in all cell

lines, while the expression patterns of MMP2, 9, 14, and 16 was cell

line-dependent, wherein relevant expression levels of some MMPs

were found in each cell line (Fig 1, C). Interestingly, although no cor-

relation was found between SST5TMD4 and each MMP (MMP2:

r2 = 0.2792, D120X XP = 0.2228; MMP9: r2 = 0.0001, D121X XP = 0.9814; MMP14:

r2 = 0.3033, D122X XP = 0.2001; MMP16: r2 = 0.3916, D123X XP = 0.1328), a direct

correlation between the total expression of MMPs and SST5TMD4

was found (r2 = 0.8896, D124X XP = 0.0014). All these cells lines also exhib-

ited considerable levels of SST5, but SST5 expression was not corre-

lated with that of SST5TMD4 (PC-3: r2 = 0.1124, D125X XP = 0.5812; 22Rv1:

r2 = 0.0118, D126X XP = 0.8617; SNU-387: r2 = 0.8341, D127X XP = 0.2671; MDA-

MB-231: r2 = 0.515, D128X XP = 0.2824; MCF-7: r2 = 0.3256, D129X XP = 0.4293;

BON-1: r2 = 0.7248, D130X XP = 0.1487; QGP-1: r2 = 0.01049, D131X XP = 0.8698),

indicating that the activity of the truncated and wild type variants

might be not invariably linked.

SST5TMD4-derived peptides increased cell proliferation and migration of

different cancer cell lines. All D132X X3 SST5TMD4-derived peptides signifi-

cantly enhanced cell proliferation rate compared to control cells in

PC-3, 22Rv1, SNU-387, MDA-MB-231, BON-1, and QGP-1 cells

lines at 24, 48, and/or 72 hours (Fig 2). Conversely, no such effect

was observed in MCF-7 cells (data not shown). Additionally, all cell

lines tested (PC-3, SNU-387, MDA-MB-231, MCF-7, and BON-1)

exhibited a higher migration rate when treated with SST5TMD4-

derived peptides (Fig 3).

SST5TMD4-derived peptides increased tumorspheres formation of breast

cancer and NETs cell lines. SST5TMD4-derived peptides increased the

number of tumorspheres formed in breast cancer (MDA-MB-231 and

MCF-7) and NETs (BON-1 and QGP-1) cell lines compared to con-

trol cells, this stimulatory effect being higher in MCF-7 and BON-1

than in MDA-MB-231 and QGP-1 cells (Fig 4). Whereas, no similar

changes were observed in prostate cancer and HCC cells in response

to treatment with SST5TMD4-derived peptides (data not shown).
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SST5TMD4-derived peptides induced intracellular signaling activation in

PC-3, MDA-MB-231, and NETs cells lines. ERK1/2 and AKT phosphoryla-

tion was clearly increased in some of the cancer cell lines analyzed in

response to SST5TMD4-derived peptides, while no changes in JNK

were observed. Indeed, PC-3, BON-1, and QGP-1 cells exhibited

higher levels of pAKT and pERK after the treatment with the D133X X3

SST5TMD4-derived peptides at 5, 10, or 15 minutes (Fig 5, A, C,

and D). Identical effects were observed in pAKT levels in MDA-

MB-231 cells (Fig 5, B). Conversely, phosphorylation levels of

pAKT and pERK in response to M7, M10, and M17 showed no

Fig 1. (A) Scheme representation of the predicted topology of SST5 and its truncated splicing variant

SST5TMD4 with only 4 transmembrane domains, using the THTMM program. Areas that correspond to the

transmembrane (red), intracellular (blue), and extracellular (pink) regions, calculated by probability analysis, are

indicated. (B) In silico determination of the D1X X2 processing sites for metalloproteases (MMP2, 9, 14, and 16)

in the extracellular domain of SST5TMD4 and prediction of the peptides derived from their processing

(M7, M10, and M17). The presence of possible cleavage sites for proteases in the extracellular segment of

SST5TMD4 was analyzed using the CleavPredict software. (C) Expression levels of MMPs, SST5TMD4, and

SST5 in all the human tumor-derived cell lines used in this study. Data indicate mRNA expression levels of

MMP2, 9, 14, 16, and SST5TMD4 adjusted by a normalization factor (NF) (calculated from the expression level

of ACTB, HPRT, and GAPDH). Values represent the mean § SEM. aaD2X X, amino acids.
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significant alteration in 22Rv1, MCF-7, and SNU-387 cell lines (data

not shown).

SST5TMD4-derived peptides abrogated the antiproliferative effect of

somatostatin in QGP-1 cell line. In order to explore the putative implica-

tion of the SST5TMD4-derived peptides in the cellular response to

somatostatin or its analogs, we first evaluated the responsiveness of all

the cell lines used herein to SS14 and SSAs (octreotide, lanreotide,

and pasireotide) (data not shown), wherein only QGP-1 cells exhibited

a robust and consistent inhibitory response to SS14, but not to SSAs,

in terms of proliferation rate. For this reason, the putative implication

of the SST5TMD4-derived peptides in the response to SS14 was tested

in this cell line. After 48 hours of treatment, a decrease in cell prolifer-

ation was observed in SS14-treated QGP-1 cells; however, this effect

was not observed when SS14 was combined with the SST5TMD4-

derived peptides (Fig 6), suggesting that SST5TMD4-derived peptides

could be playing a role in the blunted response to SSAs previously

observed in SST5TMD4-expressing cells. However, further studies are

required to substantiate these preliminary findings.

Expression of proliferation, migration, and stem cells associated genes in

BON-1 cell line after treatment with SST5TMD4-derived peptides. Inasmuch

as the D134X X3 SST5TMD4-derived peptides exerted consistent effects on

all the functional and signaling studies implemented in BON-1 cell

line, we used this as a model cell line to further determine the expres-

sion levels of several genes involved in cancer development/progres-

sion (Fig 7). Specifically, M7 and M17 peptides increased the

expression of the D135X X2 proliferation markers analyzed (CCND3 and

MKI67). These D136X X2 peptides also increased the expression of the com-

ponents of the Arp2/3 complex (ACTR2, ACTR3, and ARC), and

MMP2, whereas none of the D137X X3 peptides altered the expression of

MMP9. Similar tendencies in the modulation of CCND3, MKI67,

ACTR2, and ARC were found for M10. Remarkably, all D138X X3

SST5TMD4-derived peptides also enhanced the expression of CD24

and CD44.

DISCUSSION

There is emerging evidence that receptor-derived

peptide fragments are involved in cancer development

Fig 2. Effect of SST5TMD4-derived peptides M7, M10, and M17 on cell proliferation (24, 48, and/or

72 hours) of prostate cancer (PC-3 and 22Rv1), hepatocellular carcinoma (SNU-387), breast cancer

(MDA-MB-231), and NET (BON-1 and QGP-1) cell lines. The data are expressed as percentage of prolifera-

tion rate compared to vehicle-treated control cells (set at 100%). Values represent the mean § SEM of 3D3X X�7

experiments (in each experiment cells were seeded per quadruplicate per treatment). Asterisks indicate values

that significantly differ from control cells (t D4X Xtest: **, D5X XP < 0.01; *, D6X XP < 0.05).
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Fig 3. Effect of SST5TMD4-derived peptides M7, M10, and M17 on the migration capacity of PC-3, SNU-

387, MDA-MB-231, MCF-7, and BON-1 cell lines after 24 hours of treatment. Representative images of the

migration capacity are also included. The data are expressed as percentage of recovered area compared to vehi-

cle-treated control cells (set at 100%). Values represent the mean § SEM of 3D7X X�7 experiments (in each experi-

ment cells were seeded per triplicate per treatment). Asterisks indicate values that significantly differ from

control cells (t D8X Xtest: **, D9X XP < 0.01; *, D10X XP < 0.05).
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Fig 4. Effect of SST5TMD4-derived peptides M7, M10, and M17 on tumorsphere formation in breast can-

cer (MDA-MD-231 and MCF-7) and NET (BON-1 and QGP-1) cell lines. Representative images of tumor-

sphere formation are also included. Original magnification: £ D11X X10. Proliferation of cancer stem cells is quantified

as numbers of tumorospheres respect to vehicle-treated control cells (set as 100%). Values represent the mean §
SEM of 3D12X X�6 experiments (in each experiment cells were seeded per triplicate per treatment). Asterisks indicate

values that significantly differ from control (t D13X Xtest: *, D14X XP < 0.05; **, D15X XP< 0.01).
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and progression.10,11,14,15,24-27,39 However, this issue

has never been explored in SST5TMD4, a truncated

receptor that is markedly overexpressed in several

tumors, including pituitary, NETs, breast, prostate, and

thyroid cancers, wherein its presence is associated to

higher aggressiveness and/or resistance to medical

treatment with SSAs.4,16-19,21,22 Like other truncated

receptors,10-12 SST5TMD4 exhibits a preferential

intracellular localization, where it disrupts the function

of other SSTs, mainly SST2 and SST5,4 and inhibits

the ability of MCF-7 and SST2-transfected CHO-K1

cells to respond to somatostatin/SSAs.16 However, a

Fig 5. Effect of SST5TMD4-derived peptides M7, M10, and M17 on the activation of AKT and ERK sig-

naling in PC-3 (A), MDA-MB-231 (B), BON-1 (C), and QGP-1 (D) cell lines. Data are expressed as percent-

age of phosphorylation after 5, 10, and 15 minutes of incubation with M7, M10, and M17 peptides compared to

nonD16X Xtreated control cells (set at 100%). Values represent the mean § SEM of 4 experiments. Asterisks indicate

values that significantly differ from control (t D17X Xtest: * D18X XP < 0.05, ** D19X XP < 0.01, ***D20X XP < 0.001). C,D21X Xcontrol.

ARTICLE IN PRESS
Translational Research
Volume&& del Rio-Moreno et al 9

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

https://doi.org/10.1016/j.trsl.2019.02.013


substantial proportion of SST5TMD44 also resides at

the cell membrane, wherein it acts as a functional

receptor capable to mediate ligand-induced intracellu-

lar responses to somatostatin and cortistatin, a natural

somatostatin analog.4,19,22 This unique location at the

cell membrane, together with its distinctive feature of

harboring only 4TMDs, confers SST5TMD4 one of its

most relevant particularities, namely, that its C-termi-

nal tail is exposed towards the ECM, rendering this

extracellular region as a potential substrate for MMPs,

which are tightly associated to cancer angiogenesis,

invasiveness, and metastasis.29 Here, we explored this

novel aspect of SST5TMD4 biology to further under-

stand the mechanisms of actions of this truncated

receptor, and to identify novel putative diagnostic,

prognostic, and therapeutic tools.

A detailed in silico analysis revealed, for the first

time, the existence of D139X X2 putative cleavage sites in the

unique SST5TMD4 C-terminal extracellular domain,

which could be used by MMP2, 9, and 14 and/or

MMP16, respectively, to generate D140X X3 derived peptides

with 7, 10, and 17 aa. MMPs are able to degrade the

majority of ECM proteins, including cell receptors,28,29

and have been functionally linked to the aggressiveness

of different tumors types.29,40,41 Thus, some MMPs,

especially MMP2, 9, and 14 play relevant roles in

tumor pathologies, as they are present in tumor and

stromal cells, including cancer-associated fibroblasts,

macrophages, and endothelial cells,42 wherein they can

contribute to several tumor-associated processes,

including cell invasion, growth, and survival.43 These

tumor-promoting features of MMPs may be, at least in

part, mediated by the processing of key receptors pres-

ent at the cellular surface, which can generate receptor-

derived peptides with oncogenic capacity.24-26 Actu-

ally, this could be the case of SST5TMD4, inasmuch

as previous results have demonstrated that both, this

truncated receptor and the MMPs potentially involved

in its processing, are overexpressed in several tumor

pathologies.4,17,19-21,42,43 Importantly, this study pro-

vides 1 D141X Xmore piece of evidence to support this notion

by demonstrating that the SST5TMD4 truncated vari-

ant is co D142X Xexpressed with the MMPs implicated in the

processing of its extracellular domain in all the cancer

cell lines studied, wherein their expression levels are

directly correlated.

This study also demonstrates that the SST5TMD4-

derived peptides are capable to enhance the malignant

characteristics (i D143X Xe D144X X proliferation, migration, tumor-

spheres formation, and response to somatostatin) of

multiple cancer cells derived from diverse tumor

pathologies as NETs, breast, prostate, and liver cancer;

however, some of these actions seem to exhibit

different dynamics (i D145X Xe D146X X proliferation rate) or, even, be

cell-line dependent (i D147X Xe D148X Xmigration or tumorosphere for-

mation). Certainly, SST5TMD4-derived peptides were

able to drastically increase the capacity of the BON-1

cells to proliferate, migrate, and induce tumorsphere

formation; while in the QGP-1 cells, SST5TMD4-

derived peptides clearly increased tumorsphere forma-

tion and hampered the cellular response to somato-

statin, but exerted lesser effects on proliferation and

had no effect on migration rate. In this sense,

SST5TMD4 has been previously found overexpressed

in gasteroenteropancreatic-NETs (GEP-NETs) and

associated to aggressiveness, metastasis, and worse

prognosis. Consistent with the present results,

SST5TMD4 transfected BON-1 cells evidenced

increased proliferation,20 whereas SST5TMD4-trans-

fected QGP-1 did not.20 These differences could relate

to the distinct nature of the D149X X2 NET cell models,20,44

since QGP-1 cells have constitutive high expression of

somatostatin, which imparts a constant inhibition pat-

tern that might hinder the stimulatory action of the

SST5TMD4-derived peptides. Similar divergences

were found in breast and prostate cancer cell models.

Thus, whereas MDA-MB-231 cells exhibited increased

cell proliferation, migration, and tumorspheres forma-

tion in response to the SST5TMD4-derived peptides,

in MCF-7, a stimulatory effect of the D150X X3 peptides was

only found in cell migration capacity and tumorspheres

formation, these differences being probably attribut-

able to the distinct origin and aggressiveness of each

cell line.45 Consistent with these results, it was previ-

ously observed that forced overexpression of

SST5TMD4 in MCF-7 and MDA-MB-231 cells

Fig 6. Effect of somatostatin-14 (SS14) alone or in combination

with SST5TMD4-derived peptides on QGP-1 cells proliferation

(24 and/or 48 hours). The data are expressed as percentage of prolif-

eration rate compared to vehicle-treated control cells (set at 100%).

Values represent the mean § SEM of 3 experiments (in each experi-

ment cells were seeded per quadruplicate per treatment). Asterisks

indicate values that significantly differ from control cells (t D22X Xtest: **,

D23X XP < 0.01; *, D24X XP< 0.05).
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increased proliferation, cell invasion and/or tumor-

sphere formation capacity.16,19 In the case of prostate

cancer cells, the bone metastasis-derived PC-3 cell line

showed increased cell proliferation and migration in

response to the treatment with the SST55TMD4-

derived peptides. In contrast, in 22Rv1 cells, a cell line

more representative of the early disease, exhibited a

clear stimulatory effect of the D151X X3 peptides only on cell

proliferation.46,47 It should be noted that SST5TMD4

is overexpressed in prostate cancer, especially in

metastatic disease, and has been shown to hamper the

response to SSAs.21 Indeed, SST5TMD4 has been

shown to play a functional role in prostate cancer cells,

wherein its overexpression enhanced cell proliferation,

migration, and promoted tumor growth in vivo.21

Of note, this report describes for the first time an

increase in cell proliferation and migration in the HCC

cell line SNU-387 in response to SST5TMD4-derived

peptides. These results open a new research avenue in

the study of this pathology in that, although the

Fig 7. Effect of SST5TMD4-derived peptides M7, M10, and M17 on the expression of genes implicated in

malignancy features in the NET cell line BON-1. Data indicate mRNA expression levels of CCDN3, MKI67,

ACTR2, ACTR3, ARC, MMP2, MMP9, CD24, and CD44 adjusted by a normalization factor (NF) (calculated

from the expression level of ACTB, HPRT, and GAPDH,) and are expressed as percentage of expression com-

pared to vehicle-treated control cells (set at 100%). Values represent the mean § SEM of 3D25X X�4 experiments.

Asterisks indicate values that significantly differ from control ( D26X XtD27X Xtest: *, D28X XP < 0.05; **, D29X XP < 0.01).
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presence and putative functional role of the

SST5TMD4 has not yet been investigated in detail, it

has been reported that HCC could present resistance to

SSAs,7,9 an important therapeutic limitation that has

been shown to be associated, in several instances, with

the presence of the SST5TMD4.17,21,22 Moreover,

these data on HCC cells demonstrate that the malig-

nancy-prone effects of the SST5TMD4-derived pepti-

des could have a wide range of action across different

cancer types.

Finally, this study unveils some of the putative

molecular mechanisms underlying the pathological

effects exerted by the SST5TMD4-derived peptides in

cancer cells. Precisely, SST5TMD4-derived peptides

could exert their function through the activation of dif-

ferent cancer-relevant D152X Xsignaling pathways,48-50 such as

PI3K/AKT, MEK/ERK, but not JNK, in different can-

cer cell lines. In line with this, it has been also previ-

ously reported that SST5TMD4 exerts its functions via

modulation of several pathways, including activation

of PI3K/AKT16 and MEK/ERK,16,21 D153X X2 D154X Xsignaling path-

ways associated to malignancy promotion in several

tumor pathologies.48-50 Interestingly, to further explore

the effects of the SST5TMD4-derived peptides, the

expression of different key genes associated to malig-

nancy features was evaluated in BON-1 cell line,

where the D155X X3 SST5TMD4-derived peptides exerted con-

sistent effects on all the functional and signaling stud-

ies tested. Interestingly, we observed a clear

upregulation of the proliferation markers CCND3 and

MKI67, also used to assess the grade and differentia-

tion of NETs,51 the MMP2, involved in ECM degrada-

tion29 and likely in the own production of SST5TMD4-

derived peptides, and ACTR2/3 complex, closely

related to cell migration and invasion.52 Furthermore,

D156X X2 well-accepted stem cells surface markers CD24 and

CD44 were also increased in BON-1 cells in response

to the D157X X3 SST5TMD4-derived peptides.

Altogether, the results presented herein demonstrate,

for the first time, the presence of MMPs cleavage sites

in the sequence of the extracellular SST5TMD4 C-ter-

minal tail and that the SST5TMD4 truncated variant is

co D158X Xexpressed in all the cell lines studied and directly

correlated with the MMPs implicated in the processing

of its extracellular domain. In addition, this study dem-

onstrates that the D159X X3 SST5TMD4-derived peptides are

capable to enhance the malignant characteristics (pro-

liferation, migration, and tumorspheres formation) of

cancer cells derived from diverse tumor pathologies (i D160X Xe D161X X

NETs, breast, prostate, and liver cancer), and blunted

the anti D162X Xproliferative response to somatostatin in QGP-1

cells, likely through the activation of PI3K/AKT and/

or of MEK/ERK pathways and by the modulation key

pro-oncogenic genes. Indeed, these results invite to

suggest the idea that the peptides derived from the

SST5TMD4 extracellular domain could have important

biological activities and pathological implications, for

they could contribute to the strong oncogenic role of

SST5TMD4 previously reported in multiple tumor

pathologies. Therefore, this study suggests that the

SST5TMD4-derived peptides could be potential candi-

dates for future studies aimed to identify novel diag-

nostic, prognostic, and/or therapeutic tools in several

cancer types.
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Supplementary Table 1 
 

Gene Accession Number Primer Sequence (Sense) Primer Sequence (Antisense) Product Size 

ACTB NM_001101 ACTCTTCCAGCCTTCCTTCCT CAGTGATCTCCTTCTGCATCCT 176 

ACTR2 AF006082.1 ACAACTTTTGGATGACCCGACAA ACCTTTCCAGTCAAAGGGCAGAG 200 

ACTR3 AF006083.1 CCAATCCGCCATGGTATAGTTGA CACAGCAATGTACAAGCCTGGAA 200 

ARC AF006088.1 TGGGTGAATACCACTGCCAAGTT GATGTTCATGCCCAACAAGCTCT 205 

CCND3 NC_000006.12 GCTACGTACCCCGCGCCTC GCAGACCGCACCCAGGAGC 209 

CD24 NC_000006.12 TGAAGAACATGTGAGAGGTTTGAC GAAAACTGAATCTCCATTCCACAA 208 

CD44 NC_000011.10 CAATAGCACCTTGCCCACAAT AATCACCACGTGCCCTTCTATG 97 

GAPDH NM_002046 AATCCCATCACCATCTTCCA AAATGAGCCCCAGCCTTC 122 

HPRT NM_000194.2 CTGAGGATTTGGAAAGGGTGT TAATCCAGCAGGTCAGCAAAG 157 

MKI67 NM_002417.4 GACATCCGTATCCAGCTTCCT GCCGTACAGGCTCATCAATAAC 139 

MMP16 NM_005941.4 ATAGCGACGGGAATTTTGTG TCCACTTCCAAGGGTTATCAAG 107 

MMP14 NM_004995.3 GGAATAACCAAGTGATGGATGG CCCAATGCTTGTCTCCTTTG 132 

MMP2 NC_000016.10 CTACGATGGAGGCGCTAATG ACTCTTTGTCCGTTTTGGGG 150 

MMP9 NC_000020.11 CAGTGCCATGTAAATCCCCA CACCTCCACTCCTCCCTTTC 102 

SST5 NM_001053 CTGGTGTTTGCGGGATGTT GAAGCTCTGGCGGAAGTTGT 183 

SST5TMD4 DQ448304 TACCTGCAACCGTCTGCC AGCCTGGGCCTTTCTCCT 98 

 
Supplemetary Table 1. Specific primers for human transcripts used in this study. NCBI accesion 
number, primers sequences and expected product sizes for the genes studied are included. 

 


