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Abstract

A single (n, ℓ) electron outside an (N − 1)-electron atomic core is bound as long as
Z > Zc = N − 1. A conjecture is examined, according to which the quantum defect
of the outermost electron satisfies limZ→Zc

δn,ℓ(Z) = Nℓ, where Nℓ is the number of
occupied or partially occupied orbitals with angular momentum quantum number ℓ

within the (N − 1)-electron core. Specifically, the 3s quantum defect is inspected for
the different occupancies of the n = 1 and n = 2 shells. The conjecture is found to
hold in all the cases considered.
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1 Introduction

We consider an atomic system with N electrons and nuclear charge Z. (N−1) of the electrons
form a core in some state X and the remaining electron can be described as an (n, ℓ) electron,
where the (n, ℓ) subshell is higher than any subshell occupied by core electrons. The (N −1)
electrons in the state X and the additional (n, ℓ) electron are coupled into an N -electron
state Y . The binding energy of the (n, ℓ)-electron is defined as

ǫn,ℓ = EN(Y ) − EN−1(X) .
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It can be written in the Rydberg-like form [1]

ǫn,ℓ = −

(

Z − (N − 1)
)2

2
(

n − δn,ℓ(Z)
)2 ,

where δn,ℓ(Z) is the quantum defect.
The quantum defect, that appears to be a mere reparameterization of the binding energy,

satisfes the following properties

• δn,ℓ(Z) is weakly dependent on n, fairly rapidly approaching an asymptotic value
δ∞,ℓ(Z), upon increase of n.

• Seaton’s theorem [2]: πδ∞,ℓ(Z) is equal to the zero energy ℓ-wave phase-shift.

• δn,ℓ(Z) decreases fairly rapidly with increasing ℓ.

• For fixed n and ℓ, δn,ℓ(Z) approaches zero as Z rises (before relativistic effects take
over).

2 The integrality conjecture

Inspection of experimental and computational data suggested the

Integrality conjecture: For fixed n and ℓ the quantum defect of the outermost

electron satisfies

lim
Z→(N−1)

δn,ℓ(Z) = Nℓ ,

where Nℓ is the number of occupied or partially occupied orbitals with angular

momentum quantum number ℓ in the (N − 1)-electron core.

The integrality conjecture can be rationalized by noting that when Z is close to (N − 1)
the outermost (n, ℓ) orbital becomes very diffuse. Relative to this orbital, the core becomes
a point charge. The (n, ℓ) orbital approaches a hydrogen-like orbital with effective charge
Z − (N − 1). Consistency of this asymptotic behaviour requires that the effective principal
quantum number, hence the quantum defect, approaches some integer. The precise value of
this integer can be inferred as follows. Recalling that the index that specifies the sequence of
ℓ-type orbitals is the radial quantum number nr ≡ n−ℓ = 1, 2, · · · , it follows that nr ≥ Nℓ+1,
or n ≥ ℓ + Nℓ + 1. When n = ℓ + Nℓ + 1 the electron in this diffuse orbital is effectively in
its ground state, that can be specified in terms of the effective principal quantum number
neff = ℓ + 1. Hence, the quantum defect is given by n − neff = Nℓ.

The integrality conjecture is based on the following observations:
1. Ivanov, Bromley and Mitroy [3] investigated the (1sns)3S states of the He isoelectronic
sequence. Translating their results into the conventions specified above, they established
that the ns quantum defects in all these states approach unity at Z → 1.
2. For the (1snp)1,3P states Ivanov [4] established that the np quantum defect vanishes at
the same limit.
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3. The integrality conjecture was proposed by Katriel, Puchalski and Pachucki [5], who
studied the (1s2s)1S state of the He isoelectronic sequence and the (1s22s)2S, the (1s23s)2S

and the (1s22p)2P states of the Li isoelectronic sequence.
4. Further exploration of the integrality conjecture was reported by Katriel, Gaigalas
and Puchalski [6], where this conjecture is referred to as the KPP conjecture. In that
paper the experimentally determined quantum defects along several isoelectronic sequences
are explored, demonstrating that in most cases they are consistent with the integrality
conjecture, although, since they are restricted to integral Z values, a precise extrapolation to
the Z → Zc limit is not feasible. The behaviour of the 2p orbital in the ground state of the
B isoelectronic sequence is more subtle. Extrapolation of the values of the quantum defect
at integer Z fails to suggest the asymptotic value that the integrality conjecture claims. A
computation over fractional Z values between the critical charge, Zc = 4, and Z = 5, is
required to account for the maximum of the quantum defect at Z ∼ 4.25, followed by its
rapid decrease upon further decrease of the nuclear charge. This computation confirms the
integrality conjecture, that for this 2p orbital predicts that limZ→4 δ2p = 0.
5. The (1s22s3s)1,3S and the (1s22s3p)1,3P states of the Be isoelectronic sequence were
similarly investigated by Katriel et al. [7].

3 Results

The purpose of the present study is to provide a comprehensive examination of the integrality
conjecture, considering all the systems in which the outermost orbital is 3s. The case
Nℓ=0 = 0, in which no 1s or 2s orbital is occupied, is only represented by the hydrogen-like
(one electron) atom, that trivially satisfies δnℓ(Z) = 0, hence the integrality conjecture,
limZ→Zc

δ3s(Z) = 0. In the case Nℓ=0 = 1, e.g., (1s3s)1,3S and (1s23s)2S the integrality
conjecture was confirmed in the references cited above. Here, we consider the configurations

• Zc = 2: [(1s2s)3S3s]2,4S and [(1s2s)1S3s]2S.

• Zc = 3: (1s22s3s)1,3S (cf. [7] as well).

• Zc = 4: (1s22s23s)2S.

• Zc = 5: (1s22s22p3s)1,3P .

• Zc = 6: [(1s22s22p2)3P3s]2,4P , [(1s22s22p2)1D3s]2D, and [(1s22s22p2)1S3s]2S.

• Zc = 10: (1s22s22p63s)2S.

In Figure 1 we show quantum defects evaluated by using the NIST [8] experimental data.
The 1s22s22p3, 1s22s22p4 and 1s22s22p5 quantum defects are not presented because the figure
is already cluttered enough, but they fit within the space between curves XII and XIII. The
curves are made to go through δ3s = 2 at Zc, so this figure can claim to be consistent with
the integrality conjecture, but certainly not to establish its validity. More convincing results
can be obtained by computationally evaluating the quantum defect in the vicinity of the
critical charge, allowing non-integral nuclear charges. Hartree-Fock energies were obtained,
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using the Froese Fischer code [9], for most of the systems specified above, as well as for
the corresponding system with the 3s electron removed. The quantum defects evaluated by
using these energies are presented in Figure 2. The asymptotic trends suggested in Figure 1
are firmly established in Figure 2.

To avoid some technical complications we do not deal with the three-electron, three
open-shells configuration 1s2s3s, as well as with the four electron 1s22s3s1S state, which
is not the lowest 1S state of this system [10]. While the Hartree-Fock approximation does
not include correlation, the asymptotic binding energy of the outermost electron can be
safely assumed to be reliable, because correlation with the core becomes asymptotically
negligible, and correlation within the core becomes asymptotically identical with that in the
(N − 1)-electron system.

4 Discussion

The most important result is that the asymptotic values of the quantum defects, at Z → Zc,
where Zc is the number of electrons in the n = 1, 2 levels, is equal to 2, which is the value
of Nℓ=0 in all these systems. Whether the 2s orbital is singly or doubly occupied, and what
total spin it is coupled into, are asymptotically irrelevant.

The slopes of the curves can be interpreted as follows:
States corresponding to a common configuration: Consider the singlet and triplet P

states that correspond to the 1s22s22p3s configuration. Since the triplet is lower in energy
(by Hund’s rule), the corresponding quantum defect should be higher (i.e., the effective
quantum number is lower). In the configuration 1s22s22p23s the order of the four levels is
found to be [8] 4P < 2P < 2D < 2S. However, the quantum defects depend on the binding
energies corresponding to three different 1s22s22p2 states, namely 3P < 1D < 1S. The two
P states correspond to the parent 3P state, so the quartet binding energy is higher than
that of the doublet, yielding a higher quantum defect for the former. Since the 2D and
the 2S binding energies are determined relative to the parent 1D and 1S states, respectively,
the order of these binding energies, hence, the corresponding quantum defects, cannnot be
simply deduced. The results suggest that these quantum defects are fairly close to one
another, lying between those of the 2P and the 4P .
States corresponding to distinct configurations: The overall trend suggests that the
quantum defect increases, for a common deviation from the critical charge, with increasing
number of electrons in the n = 1, 2 levels. This is probably due to the core contraction,
which implies less penetration of the 3s orbital into the core, making it more hydrogen-like.

Finally, we note that the insight into the asymptotic behaviour of the outermost orbital
upon approaching the critical charge can be applied to the many atomic properties that
depend on the shape of this outermost orbital. Work along these lines is underway.
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Figure captions

Figure 1: Spectroscopic 3s quantum defects, based on NIST [8] data.
Figure 2: Computed 3s quantum defects, based on Hartree-Fock binding energies.
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