
NOVEL SUPPORT VECTOR MACHINES FOR DIVERSE LEARNING PARADIGMS

A Dissertation submitted in fulfillment of the requirements for the degree of Doctor of

Philosophy at Virginia Commonwealth University and University of Cordoba.

by

GABRIELLA ANGELA MELKI

Ph.D. Candidate

Director: Alberto Cano,

Assistant Professor, Department of Computer Science,

Virginia Commonwealth University

Director: Sebastián Ventura,

Professor, Department of Computer Science & Numerical Analysis,

University of Córdoba

Virginia Commonwealth University

Richmond, Virginia

University of Cordoba

Cordoba, Spain

September 2018

TITULO: Novel Support Vector Machines for Diverse Learning Paradigms

AUTOR: Gabriella Angela Melki

© Edita: UCOPress. 2019
Campus de Rabanales
Ctra. Nacional IV, Km. 396 A
14071 Córdoba

https://www.uco.es/ucopress/index.php/es/
ucopress@uco.es

TÍTULO DE LA TESIS:
NOVEL SUPPORT VECTOR MACHINES FOR DIVERSE LEARNING PARADIGMS

DOCTORANDO/A: GABRIELLA MELKI

Esta tesis doctoral propone nuevos modelos de máquinas de vector soporte para
clasificación, regresión multi-etiqueta, y aprendizaje multi-instancia. El trabajo fruto de
la tesis ha sido publicado en tres revistas de alto impacto en el área de computer
science – artificial intelligence y de reconocido prestigio internacional:

• G. Melki, V. Kecman, S. Ventura, and A. Cano. OLLAWV: OnLine Learning
Algorithm using Worst-Violators. Applied Soft Computing, vol. 66, 384-393,
2018.

• G. Melki, A. Cano, and S. Ventura. MIRSVM: Multi-Instance Support Vector

Machine with Bag Representatives. Pattern Recognition, vol. 79, 228-241,
2018.

• G. Melki, A. Cano, V. Kecman, and S. Ventura. Multi-Target Support Vector

Regression Via Correlation Regressor Chains. Information Sciences, vol. 415-
416, 53-69, 2017.

Como directores de la Tesis y hasta donde nuestro conocimiento alcanza el trabajo ha
sido realizado por la doctoranda bajo nuestra dirección y se han respetado los
derechos de otros autores a ser citados, cuando se han utilizado sus resultados o
publicaciones. Así mismo, el trabajo reúne todos los requisitos de contenido, teóricos
y metodológicos para ser admitido a trámite, a su lectura y defensa pública, con el fin
de obtener el referido Título de Doctor, y por lo tanto AUTORIZAMOS la presentación
de la referida Tesis para su defensa y mantenimiento de acuerdo con lo previsto en la
legislación vigente y conforme a la normativa de la Virginia Commonwealth University
y la Universidad de Cordoba, conforme a la normativa del programa de doctorado dual.

Por todo ello, se autoriza la presentación de la tesis doctoral.

Córdoba, 1 de septiembre de 2018

Firma del/de los director/es

Fdo.: Alberto Cano Rojas Fdo.: Sebastián Ventura Soto

Abstract

NOVEL SUPPORT VECTOR MACHINES FOR DIVERSE LEARNING PARADIGMS

This dissertation introduces novel support vector machines (SVM) for the following

traditional and non-traditional learning paradigms: Online classification, Multi-Target Re-

gression, Multiple-Instance classification, and Data Stream classification.

Three multi-target support vector regression (SVR) models are first presented. The

first involves building independent, single-target SVR models for each target. The second

builds an ensemble of randomly chained models using the first single-target method as a

base model. The third calculates the targets’ correlations and forms a maximum correlation

chain, which is used to build a single chained SVR model, improving the model’s prediction

performance, while reducing computational complexity.

Under the multi-instance paradigm, a novel SVM multiple-instance formulation and

an algorithm with a bag-representative selector, named Multi-Instance Representative SVM

(MIRSVM), are presented. The contribution trains the SVM based on bag-level information

and is able to identify instances that highly impact classification, i.e. bag-representatives,

for both positive and negative bags, while finding the optimal class separation hyperplane.

Unlike other multi-instance SVM methods, this approach eliminates possible class imbalance

issues by allowing both positive and negative bags to have at most one representative, which

constitute as the most contributing instances to the model.

Due to the shortcomings of current popular SVM solvers, especially in the context of

large-scale learning, the third contribution presents a novel stochastic, i.e. online, learning

algorithm for solving the L1-SVM problem in the primal domain, dubbed OnLine Learning

Algorithm using Worst-Violators (OLLAWV). This algorithm, unlike other stochastic meth-

ods, provides a novel stopping criteria and eliminates the need for using a regularization

term. It instead uses early stopping. Because of these characteristics, OLLAWV was proven

to efficiently produce sparse models, while maintaining a competitive accuracy.

i

OLLAWV’s online nature and success for traditional classification inspired its implemen-

tation, as well as its predecessor named OnLine Learning Algorithm - List 2 (OLLA-L2),

under the batch data stream classification setting. Unlike other existing methods, these

two algorithms were chosen because their properties are a natural remedy for the time and

memory constraints that arise from the data stream problem. OLLA-L2’s low spacial com-

plexity deals with memory constraints imposed by the data stream setting, and OLLAWV’s

fast run time, early self-stopping capability, as well as the ability to produce sparse mod-

els, agrees with both memory and time constraints. The preliminary results for OLLAWV

showed a superior performance to its predecessor and was chosen to be used in the final set

of experiments against current popular data stream methods.

Rigorous experimental studies and statistical analyses over various metrics and datasets

were conducted in order to comprehensively compare the proposed solutions against modern,

widely-used methods from all paradigms. The experimental studies and analyses confirm that

the proposals achieve better performances and more scalable solutions than the methods

compared, making them competitive in their respected fields.

ii

TABLE OF CONTENTS

Chapter Page

Abstract . i

Table of Contents . iii

List of Algorithms . v

List of Tables . vi

List of Figures . viii

1 Introduction . 12

1.1 Contributions of the Dissertation . 18

2 Background . 22

2.1 Support Vector Machine Classification . 23

2.2 Support Vector Regression . 25

2.3 Support Vector Machine Solvers . 27

2.4 Why Support Vector Machines: Form & Norm 31

3 Multi-Target SVR using Maximum Correlation Chains 33

3.1 Multi-Target Regression Background . 33

3.1.1 Notation . 34

3.1.2 Multi-Target Regression Methods 34

3.2 Three Novel SVMs for Multi-Target Regression 40

3.3 Experimental Environment . 44

3.4 Results & Statistical Analysis . 47

3.4.1 Average Correlation Coefficient . 47

3.4.2 Mean Square Error . 50

3.4.3 Average Root Mean Square Error 50

3.4.4 Average Relative Root Mean Square Error 52

3.4.5 Run Time . 53

3.4.6 Discussion . 53

3.5 Conclusions . 55

4 Multi-Instance SVM using Bag-Representatives 57

4.1 Multi-Instance Classification Background 57

iii

4.1.1 Notation . 58

4.1.2 Multi-Instance Classification Methods 58

4.2 MIRSVM: A Novel SVM for Multi-Instance Classification 64

4.3 Experimental Environment . 70

4.4 Results & Statistical Analysis . 72

4.4.1 Accuracy . 74

4.4.2 Precision & Recall . 75

4.4.3 Cohen’s Kappa Rate . 77

4.4.4 Area Under ROC Curve . 79

4.4.5 Overall Comparison . 79

4.5 Conclusions . 81

5 Novel OnLine SVM using Worst-Violators . 83

5.1 Online Learning Background . 83

5.1.1 Notation . 84

5.1.2 Stochastic Gradient Descent . 84

5.1.3 Stochastic Gradient Descent for the Primal L1-SVM Problem 86

5.2 OLLAWV: OnLine Learning Algorithm using Worst-Violators 87

5.3 Experimental Environment, Results, and Analysis 93

5.3.1 SVM Experimental Setup . 94

5.3.2 SVM Comparison Results and Statistical Analysis 96

5.3.3 Non-SVM Experimental Setup . 99

5.3.4 Non-SVM Results and Statistical Analysis 100

5.4 Conclusions . 101

6 OLLAWV for Batched Data Streams . 103

6.1 Data Stream Classification Background 103

6.1.1 Notation . 104

6.1.2 Data Stream Classification Methods 104

6.2 OnLine Learning Algorithms for Batched Data Streams 110

6.3 Experimental Study . 114

6.3.1 Experimental Environment . 114

6.3.2 Static Datasets & Stream Generators 117

6.4 Results & Analysis . 119

6.4.1 Accuracy . 120

6.4.2 Cohen’s Kappa Rate . 121

6.4.3 Training & Testing Time . 124

6.5 Conclusions . 125

7 Conclusions . 126

iv

8 Future Work . 128

References . 130

Vita . 150

v

LIST OF ALGORITHMS

Algorithm Page

3.1 Multi-Target Support Vector Regression (SVR) 40

3.2 Build Chained Model . 41

3.3 Multi-Target SVR with Random-Chains (SVRRC) 42

3.4 Multi-Target SVR with Max-Correlation Chain (SVRCC) 43

4.1 Multi-Instance Representative SVM (MIRSVM) 68

5.1 OnLine Learning Algorithm using Worst-Violators (OLLAWV) 91

6.1 OnLine Learning Algorithm - List 2 (OLLA-L2) 112

6.2 Evaluate Interleaved Chunks . 116

vi

LIST OF TABLES

Table Page

3.1 Summary of Multiple-Target Learning Notation 34

3.2 Multi-Target (MT) Regression datasets . 45

3.3 Average Correlation Coefficient (aCC) for MT regressors 48

3.4 Wilcoxon, Nemenyi, and Holm tests for aCC . 48

3.5 Mean Square Error (MSE) for MT regressors . 49

3.6 Wilcoxon, Nemenyi, and Holm tests for MSE . 49

3.7 Average Root Mean Square Error (aRMSE) for MT regressors 51

3.8 Wilcoxon, Nemenyi, and Holm tests for aRMSE 51

3.9 Average Relative Root Mean Square Error (aRRMSE) for MT regressors 52

3.10 Wilcoxon, Nemenyi, and Holm tests for aRRMSE 52

3.11 Run Time (seconds) for MT regressors . 54

3.12 Wilcoxon, Nemenyi, and Holm tests for Run Time 54

4.1 Summary of Multiple-Instance Learning Notation 58

4.2 Multi-Instance (MI) Classification datasets . 71

4.3 Accuracy for MI classifiers . 74

4.4 Holm and Wilcoxon tests for Accuracy . 74

4.5 Precision for MI classifiers . 76

4.6 Holm and Wilcoxon tests for Precision . 76

4.7 Recall for MI classifiers . 76

4.8 Holm and Wilcoxon tests for Recall . 76

vii

4.9 Cohen’s Kappa Rate for MI classifiers . 77

4.10 Holm and Wilcoxon tests for Cohen’s Kappa rate 77

4.11 AUC for MI classifiers . 78

4.12 Holm and Wilcoxon tests for AUC . 78

4.13 Run Time (seconds) for MI classifiers . 80

4.14 Overall ranks comparison for MI classifiers . 80

5.1 Summary of Online Learning Notation . 84

5.2 Classification Datasets . 94

5.3 Comparison of OLLAWV vs. NNISDA and MNSVM 97

5.4 Non-SVM Algorithm Hyperparameters . 99

5.5 Accuracy (%) for Non-SVM Methods vs. OLLAWV 100

6.1 Summary of Data Stream Notation . 104

6.2 Comparison of OLLAWV vs. OLLA-L2 . 113

6.3 Data Stream Algorithms Used in Experimental Study 115

6.4 Base Streamed Datasets & Generators . 117

6.5 Accuracy (%) for Data Stream Classifiers . 121

6.6 Cohen’s Kappa Rate (%) for Data Stream Classifiers 122

6.7 Training Time (seconds) for Data Stream Classifiers 123

6.8 Testing Time (seconds) for Data Stream Classifiers 123

viii

LIST OF FIGURES

Figure Page

2.1 A 2-dimensional example of different possible separating hyperplanes that

correctly classify all the toy data points. 23

2.2 An illustration of the soft-margin L1-SVM solution on an example 2-

dimensional non-linearly separable dataset. 23

2.3 Vapnik’s ε-insensitivity loss function. 27

2.4 Linear support vector regression example solution on a toy 2D dataset. 27

3.1 SVR Flow Diagram. Firstly, the multi-target dataset is divided into m ST datasets,

D1,D2, . . . ,Dm. Then m models, h1, h2, . . . , hm, are independently trained for each

ST dataset. 40

3.2 SVRRC Flow Diagram on a dataset with three targets. SVRRC first builds the six

random chains of the target’s indices (three examples are shown). It then constructs

a chained model by proceeding recursively over the chain, building a model, and

appending the current target to the input space to predict the next target in the

chain. 42

3.3 SVRCC Flow Diagram on a sample dataset with three targets. SVRCC first finds

the direction of maximum correlation among the targets and uses that order as the

only chain. It then constructs the chained model, as done in SVRRC. 43

3.4 Bonferroni-Dunn test for aCC . 48

3.5 Bonferroni-Dunn test for MSE . 49

3.6 Bonferroni-Dunn test for aRMSE . 51

3.7 Bonferroni-Dunn test for aRRMSE . 52

3.8 Bonferroni-Dunn test for Run Time . 54

4.1 A summary of the steps performed by MIRSVM. The representatives are first

randomly initialized and continuously updated according to the current hyperplane.

Upon completion, the model is returned along with the optimal bag-representatives. . 68

ix

4.2 Bag representative convergence plots on 9 datasets. The blue line shows the number

of bag representatives that are equal from one iteration to the next. The red dashed

line represents the total number of bags. 69

4.3 Difference between MIRSVM and MISVM on a random 2-dimensional toy

dataset. Note the differing number of support vectors produced by the two

methods. MIRSVM has 6, one for each bag, and MISVM has 29. Also note the

smoother representation of the data distribution given by MIRSVM’s decision

boundary, unlike MISVM whose decision boundary was greatly influenced by

the larger number of support vectors belonging to the negative class with

respect to the only 2 positive support vectors. 70

4.4 Bonferroni-Dunn test for Accuracy . 74

4.5 Bonferroni-Dunn test for Precision . 76

4.6 Bonferroni-Dunn test for Recall . 76

4.7 Bonferroni-Dunn test for Cohen’s Kappa rate . 77

4.8 Bonferroni-Dunn test for AUC . 78

4.9 Bonferroni-Dunn test for overall ranks comparison 80

5.1 A summary of the steps performed by OLLAWV. The model parameters (α,

b, S) and the algorithm variables (o, t, wv, and yo) are first initialized. The

worst-violator with respect to the current hyperplane is then found and the

model parameters are then updated. Once no more violating samples are

found, the model is returned. 91

5.2 A case of classifying 2-dimensional normally distributed data with different covari-

ance matrices, (left) for 200 and (right) 2000 data points. The theoretical separation

boundary (denoted as the Bayes Separation Boundary) is quadratic and is shown

as the dashed black curve. The other two separation boundaries shown are the ones

obtained by OLLAWV and SMO (implemented within LIBSVM), respectively. In

this particular case (left), the difference between the OLLAWV boundary and the

SMO boundary is hardly visible. The case presented on the right shows that, with

an increase of training samples, the OLLAWV and SMO boundaries converge to

the theoretical Bayesian solution. 92

5.3 Bonferroni-Dunn test for Accuracy . 97

5.4 Bonferroni-Dunn test for Run Time . 97

x

5.5 Bonferroni-Dunn test for % Support Vectors . 97

5.6 Run time in seconds versus the number of samples, divided into two groups: small

& medium (left) versus large (right). Note OLLAWV’s gradual increase in run

time as the number of samples increases compared to NNISDA and MNSVM’s

steeper change. In almost all cases, OLLAWV displays superior run time over

state-of-the-art. Run time depends upon many characteristics: dimensionality,

class-overlapping, complexity of the separation boundary, number of classes, as

well as the number of support vectors, which partly explains the tiny bump in the

left figure. 98

5.7 Size of the model given as percentage of support vectors with respect to the number

of samples versus the number of samples. Note that OLLAWVs percentage of sup-

port vectors is always smaller (except in one case) than NNISDA’s and MNSVM’s

ones. 98

5.8 Bonferroni-Dunn test for Accuracy . 100

5.9 Mean accuracy over all datasets for OLLAWV and the 5 non-SVM competing methods. 101

6.1 Bonferroni-Dunn test for Accuracy . 121

6.2 Bonferroni-Dunn test for Cohen’s Kappa rate . 122

6.3 Bonferroni-Dunn test for Training Time . 123

6.4 Bonferroni-Dunn test for Testing Time . 123

xi

CHAPTER 1

INTRODUCTION

In traditional classification and regression problems, learning algorithms uncover dependen-

cies and patterns that exist between given inputs (samples) and their outputs (categorical or

continuous), using training data. Identifying these patterns is a non-trivial task due to many

factors, such as the high dimensionality of the data, as well as dataset size. Over the past

decade, dataset sizes have grown disproportionately to the speed of processors and memory

capacity, limiting machine learning methods to computational time. Many real-world appli-

cations, such as human activity recognition, operations research, and video/signal process-

ing, require algorithms that are scalable and accurate, while being able to provide insightful

information in a timely fashion.

More recently, these classic methods have been extended to accommodate various types

of data paradigms [163]. Examples include Multiple Target (MT) learning, Multiple Instance

(MI) learning, and Data Stream learning. These emerging paradigms require algorithms to

be robust, while accommodating and exploiting their different and complex data representa-

tions. In this thesis, various approaches are devised for solving classification and regression

problems within the traditional and non-traditional learning paradigms mentioned, using

support vector machines.

Multi-target learning is a challenging task that consists of creating predictive models for

problems with multiple simultaneous outputs [12, 45, 164]. Learning under this paradigm

has the capacity to generate models representing a wide variety of real-world applications,

ranging from natural language processing [100] to bioinformatics [124]. MT learning includes

multi-target regression (MTR), which addresses the prediction of continuous targets, multi-

label classification [192] which focuses on binary targets, and multi-dimensional classification

which describes the prediction of discrete targets [23]. One contribution of this dissertation

12

will be focused on tackling the multi-target regression problem, also known as multi-output,

multi-variate, or multi-response regression [23].

A characteristic of multi-target data is that the outputs have some structure, in the form

of inter-relationships, correlations, and dependencies. Although modeling the multi-variate

nature and possible complex relationships between the target variables simultaneously is

challenging, past empirical work has shown that the targets are more accurately represented

by a single multi-target model [45, 68]. The most valuable advantage of using multi-target

techniques is that, not only are the relationships between the sample variables and the targets

exploited, but the relationships between the targets amongst themselves are as well [12, 45].

This guarantees a better representation and interpretability of real-world problems that

produce multiple outputs, unlike a series of single-target (or traditional) models [13]. In

addition, MT models could also be considerably more computationally efficient to train,

rather than training multiple single-target models individually [69].

Several methods have been proposed for solving such multi-target tasks and can be

categorized into two groups. The first being problem transformation methods, also known

as local methods, in which the multi-target problem is transformed into multiple single-

target (ST) problems, each solved separately using standard classification and regression

algorithms. The second being algorithm adaptation methods, also known as global or big-

bang methods, which adapt existing traditional algorithms to predict all the target variables

simultaneously [23]. It is known that algorithm adaptation methods outperform problem

transformation methods, however they are deemed to be more challenging since they predict,

model, and interpret multiple outputs simultaneously.

Multi-instance learning (MIL) is a generalization of supervised learning that has been

recently been gaining interest because of its applicability to many real-world problems such

as image classification and annotation [91], human action recognition [187], predicting stu-

dent performance [189], and drug activity prediction [58]. The difference between MIL and

traditional learning is the nature of the data. In the multi-instance classification setting, a

13

sample is considered a bag that contains multiple instances and is associated with a single

label. The individual instance labels within a bag are unknown and bag labels are assigned

based on a multi-instance assumption, or hypothesis. Introduced by Dietterich et. al. [58],

the standard MI assumption states that a bag is labeled positive if and only if it contains

at least one positive instance, and is negative otherwise. In other words, the bag-level class

label is decided by the disjunction of the instance-level class labels. Other hypotheses have

been proposed by Foulds and Frank [70] to encompass a wider range of applications with MI

data, but for the scope of this thesis, the focus will be on the standard MI assumption.

Multi-instance classification methods are typically categorized on how the information

within the data is exploited. Under the Instance-Space (IS) paradigm, discriminative in-

formation is considered to be at the instance level, where instance-level classifiers aim to

separate the instances from positive bags from those in negative ones. Given a new bag, the

classifier will predict the bag-label by aggregating the instance-level scores using some MI

assumption. The IS paradigm is based on local, or instance-level information, where learning

is not concerned with global characteristics of the entire bag. Unlike the IS paradigm, the

Bag-Space (BS) paradigm considers the information provided of the bag as whole, also known

as global, or bag-level information. Another approach for dealing with multi-instance data

falls under the Embedded-Space (ES) paradigm, where each bag is mapped to a single feature

vector, which summarizes the information contained within each bag. The original bag space

is mapped to a vector space, where a classifier is then trained. Under this paradigm, the

multi-instance problem is transformed into a traditional supervised learning problem, where

any classifier can then be applied.

A recent survey [43] organized the various problems and complexities associated with

MIL into four broad categories: Prediction level, Bag composition, Label ambiguity and Data

distribution; each raising different challenges. As mentioned previously, when instances are

grouped into bags, predictions can be performed at two levels: the bag-level or the instance

level. Certain types of algorithms are often better suited for one of these two types of

14

predictions. The composition of each bag, such as the proportion of instances of each class

and the relationship between instances also affects the performance of MIL methods. The

ambiguity amongst the instance labels stemming from label noise and unclear relationships

between an instance and its class is another complexity that should be considered. Finally,

the underlying distributions of positive and negative classes affects MIL algorithms depending

on their assumptions about the data.

One of the major complexities that this thesis will be tacking is dealing with the ambi-

guity of the relationship between a bag label and the instances within the bag. This issue

stems from the standard MI assumption, where the underlying distribution among instances

within positive bags is unknown. There have been different attempts to overcome this com-

plexity, such as “flattening” the MIL datasets, meaning instances contained in positive bags

each adopt a positive label, allowing the use of classical supervised learning techniques [142].

This approach assumes that positive bags contain a significant number of positive instances,

which may not be the case, causing the classifier to mislabel negative instances within the

bag, decreasing the power of the MI model. To overcome this issue, a different MIL approach

was proposed, where subsets of instances are selected from positive bags for classifier train-

ing [126]. One drawback of this type of method is that the resulting training datasets become

imbalanced towards positive instances. Model performance further deteriorates when more

instances are selected as subsets than needed [44]. The MIL contribution of this thesis aims

to deal with these drawbacks by minimizing class imbalance, which is achieved by optimally

selecting bag-representatives from both classes.

The Data Stream learning paradigm has become a more pragmatic area of research

recently with the prevalence and advancements in software and hardware technologies, which

have vastly increased the amount and frequency of available data [78]. The classic machine

learning process, whether it be for traditional supervised learning or non-traditional learning

paradigms, is divided into two phases: model building and model testing from static datasets.

It is often assumed that the data generating process is stationary, i.e. the data are drawn from

15

a fixed, yet unknown probability distribution, however, in many real-world scenarios, this

might not be the case. Rather, data are now being made available in an online, or streamed

fashion, and are usually generated by an evolving, or drifting, phenomenon [55, 59, 197].

The former is described as a stationary stream and the latter, non-stationary. These drifts

can be due to a number of events, such as seasonality effects, changes in user preferences,

or hardware/software faults. Due to the fluid nature of the data generation environment,

where the probabilistic characteristics of data can change over time, traditional machine

learning methods will be bound to perform sub-optimally at best or completely fail at worst.

These data complexities prompted the need for effective, efficient, and accurate algorithms

for learning from stationary streamed data, as well as adapting to, drifting environments.

Applications of data stream classification can vary from astronomical and geophysical

operations [40] to real-time recommender systems for business and industrial uses [104, 105].

Adapting traditional classification methods to these types of scenarios is usually a non-trivial

task. The algorithms need to perform classification immediately upon request, since it may

not be possible to control the rate at which test samples arrive. Another hurdle stems

from the possibility of drifting concepts, and if they occur, the classifier will most likely

become outdated after a period of time [82]. There are two popular strategies commonly

used when learning from non-stationary data streams, commonly referred to as active and

passive approaches [59, 67]. They differ in their employed methods for adapting to a possibly

evolving data stream. The active approach relies on an explicit drift detector in order

to utilize an appropriate adaptation mechanism, while the passive approach continuously

updates the model over time when data is received, without the need for an explicit drift

detector. Deciding which approach to utilize depends on the application (whether there are

sudden concept drifts, or if the data arrive online or in batches), the computational resources

that are available, and any prior assumptions about the data distribution [4].

Generally, passive approaches have been shown to be more effective in classification set-

tings where there are gradual drifts [67]. Although detecting and deal with gradual drifts can

16

be done by active approaches, the change detection is considerably more difficult [5]. Active

approaches work well in settings where the concept drift is abrupt. Additionally, passive

approaches generally perform better in batch learning settings, whereas active approaches

have been shown to work well in the online setting [15, 83].

The contributions of this thesis aim to deal with the drawbacks that exist within these

non-traditional learning paradigms, using traditional and a novel solvers for support vector

machines. Support vector machines (SVMs), proposed by Cortes and Vapnik [54], represent

popular linear and non-linear (kernelized) learning algorithms based on the idea of a large-

margin classifier. They have been shown to improve generalization performance for binary

classification problems. SVMs are similar to other machine learning techniques, but literature

shows that they usually outperform them in terms of scalability, computational efficiency,

and robustness against outliers. They are known for creating sparse and non-linear classifiers,

making them suitable for handling large datasets.

A traditional approach for training SVMs is the Sequential Minimal Optimization (SMO)

algorithm [138], a method for solving the L1-SVM’s Quadratic Programming (QP) task.

Although SMO provides an exact solution to the SVM QP problem, its performance is highly

dependent on the SVM hyperparameters. More recent approaches, which have been shown

to surpass SMO in terms of scalability while remaining competitive in accuracy, include the

LASVM algorithm [24], the Minimal Norm SVM (MNSVM) [159] and the Non-Negative

Iterative Single Data Algorithm (NNISDA) [110, 198]. With all the various efforts aimed at

solving the SVM task efficiently, this area is still requires investigation.

To deal with issues of scalability, this thesis introduces a different approach which fo-

cuses on the minimization of the regularized L1-SVM through Stochastic Gradient Descent

(SGD), a well-known simple, yet efficient technique for learning classifiers under convex loss

functions. Recently, SGD algorithms have been shown to have considerable performance and

generalization capabilities in the context of large-scale learning [27], and have been used to

solve the SVM problem, such as NORMA [113] and PEGASOS [153, 194].

17

Although stochastic and iterative algorithms are very simple to implement and efficient,

they also have their limitations. One of these limitations is the lack of meaningful stopping

criteria for the algorithm; without a pre-specified number of iterations to train, the algorithms

continue running [135]. Another limitation stems from the superlinear increase in training

time as the number of samples increases. Incremental algorithms attempt to alleviate this

issue, but they cannot guarantee a bound on the number of updates per iteration.

1.1 Contributions of the Dissertation

The current leading MT models are based on ensembles of regressor chains, where ran-

dom, differently ordered chains of the target variables are created and used to build separate

regression models, using the previous target predictions in the chain. The challenges of

building MT models stem from trying to capture and exploit possible correlations among

the target variables during training, at the expense of increasing the computational com-

plexity of model training. One of the contributions of this thesis aims to investigate the

performance changes when building a regression model using two distinct chaining meth-

ods versus building independent single-target models for each target variable using a novel

framework. Specifically, this MTR contribution includes:

- Evaluating the performance of a Support Vector Regressor (SVR) as a multi-target

to single-target problem transformation method to determine whether it outperforms

current popular ST algorithms. Its performance is analyzed as a base-line model for MT

chaining methods due to the fact that ST methods do not account for any correlation

among the target variables.

- Building an MT ensemble of randomly chained SVR models (SVRRC), an approach

inspired by the chaining classification method in [157], to investigate the effects of

exploiting correlations among target variables during model training. The main issues

to be investigated with this approach are the randomness of the created chains: they

might not capture all targets’ correlations, and the time taken to build the ensemble.

18

- Proposing an MT algorithm adaptation model of SVRs that builds a unique chain, cap-

turing the maximum correlation among target outputs, named SVR Correlation Chains

(SVRCC). The advantages of using this approach include exploiting the correlations

among the targets which leads to an improvement in model prediction performance,

and a reduction in computational complexity because a single SVR-chain model is

trained, rather than building an ensemble of 10 base regressors.

To address the limitations presented by MIL algorithms, this thesis proposes a novel

SVM formulation with a bag-representative selector, called Multiple-Instance Representative

Support Vector Machine (MIRSVM). The algorithm does not assume any distribution of the

instances and is not affected by the number of instances within a bag, making it applicable

to a variety of contexts. The key contributions of this work include:

- Reformulating the traditional primal L1-SVM problem to optimize over bags, rather

than instances, ensuring all the information contained within each bag is utilized during

training, while defining bag representative selector criteria.

- Deriving the dual multi-instance SVM problem, with the Karush-Kuhn-Tucker neces-

sary and sufficient conditions for optimality. The dual is maximized with respect to

the Lagrange multipliers and provides insightful information about the resulting sparse

model. The dual formulation is kernelized with a Gaussian radial basis function, which

calculates the distances between bag representatives.

- Devising a unique bag-representative selection method that makes no presumptions

about the underlying distributions of the instances within each bag, while maintaining

the default MI assumption. This approach eliminates the issue of class imbalance

caused by techniques such as flattening or subsetting positive instances from each bag.

The key feature of MIRSVM is its ability to identify instances (support vectors) within

positive and negative bags that highly impact the model.

19

To address the limitations presented by current popular SVM solvers, this thesis pro-

poses a novel OnLine Learning Algorithm using Worst-Violators (OLLAWV). This unique

method iterates over samples, updates the model, and utilizes a novel stopping criterion.

The model is updated by iteratively selecting (without replacement) the worst violating

sample, i.e. the sample with the largest error according to the current decision function, and

stops training when there are no more violating samples left to update. In other words, the

algorithm is implicitly identifying support vectors and stopping when it has found them all.

Because samples are selected and updated without replacement, coupled with the fact that

the maximum number of iterations never exceeds the size of the dataset, OLLAWV does

not use the regularization updating term. Instead, the regularization is achieved by early

stopping. In [53], it has been shown that the smaller the number of updates (determined

here by the proposed stopping criterion) is, the larger will be the margin. On the other

hand, the larger the margin, the better generalization of the model is. The experimental

results presented here confirm both the theoretical statements in [53] and the validity of the

approach proposed and taken in OLLAWV algorithm. Combining this method of updating

the model and stopping criteria with the fact that SVMs are known for creating sparse kernel

classifiers, the contribution aims to speed up the model training time without sacrificing the

model’s accuracy. The key contributions of this work include:

- Devising a unique iterative procedure for solving the L1-SVM problem, as well as a

novel method for identifying support vectors, or worst-violators. Rather than randomly

iterating over the data samples, OLLAWV aims to reduce training time by selecting and

updating the samples that are most incorrectly classified with respect to the current

decision hyper-plane.

- Designing a novel stopping criteria by utilizing the worst-violator identification method.

This aims to eliminate the added parameterization that is included with most online

methods, where the number of iterations of the algorithm needs to be set in advance.

Once there are no incorrectly classified samples left, the algorithm terminates.

20

The current leading data stream approaches are based on ensembles of various classifi-

cation algorithms, used in conjunction with drift detection mechanisms [18, 121]. To address

the limitations of these current popular solvers and due to the infrequent investigation of

SVMs within the data stream environment [1], this thesis proposes a novel implementa-

tion and experimental study of two online algorithms: OnLine Learning Algorithm - List 2

(OLLA-L2) [106] and its successor OLLAWV, within the batched data stream classification

environment (implemented in the Massive Online Analysis (MOA) [17] framework). One

contribution aims to investigate the performance of OLLA-L2 because of its simplicity, on-

line nature, and superior performance over other popular SVM solver. A novel preliminary

drift detection mechanism was also designed and implemented to try and improve the per-

formance of OLLA-L2 when encountering drifting streams. The second contribution was to

compare the novel and newly completed OLLAWV with OLLA-L2 and its drift detector.

The main aim of these contributions is to provide a baseline streamed, online SVM that

satisfies the computational, memory, and time complexities that come with the data stream

classification problem. The key contributions include:

- Implementing OLLA-L2 for solving the L1-SVM problem within for batched data

streams, and a novel, preliminary change-detection tool. Rather than blindly rebuild

the model when a new batch arrives from the stream, the algorithm monitors the

change in error and determines whether to update/rebuild/retain the model.

- Developing the novel OLLAWV for batch data stream learning. Due to OLLAWV’s

speedy convergence, novel stopping criteria, worst-violator identification mechanism,

and its ability to produce sparse models, OLLAWV seemed like a prime contender for

being used in a batch streamed environment.

21

CHAPTER 2

BACKGROUND

Support vector machines represent a popular set of learning techniques that have been in-

troduced under Vapnik-Chervonenkis theory of structured risk minimization (SRM) [26, 54,

107, 150, 151]. SRM is an inductive principle for the purpose of model selection. It minimizes

the expected probability of error, resulting in a generalized model, without making assump-

tions about the data distribution [151, 173]. This is the basis for developing the maximal

margin classifier [173]. Based on the work of Aizerman et. al. [2], Boser et. al. [26] gener-

alized the linear algorithm to the non-linear case. Then, Cortes and Vapnik [54] proposed

the soft-margin SVM; a modification that not only allowed maximal margin classifiers to

be applied to non-linearly separable data, but also introduced a regularization parameter to

prevent overfitting and gauge generalizability. That same year, the algorithm was extended

by Vapnik and his coworkers [171] to the regression case.

This chapter presents a theoretical background of support vector machines. First, the

SVM paradigm is discussed in the context of classification, introducing the concepts of the

maximal margin, the linear soft-margin SVM for overlapping classes, and its kernelized ver-

sion. Next, Vapnik’s ε-insensitivity loss function and the concept of support vector regression

(SVR) are introduced. Afterwards, popular methods for solving the SVM problem are pre-

sented and their advantages and problems are discussed. Finally, insights into the benefits of

using SVMs are presented, along with a short comparison of SVMs to the classical statistical

learning paradigm.

22

1 2 3 4 5

1

2

3

4

5

x1

x2

Fig. 2.1.: A 2-dimensional example of

different possible separating hyperplanes

that correctly classify all the toy data

points.

x2

x1

ow
,b
(x
)
=
0ow

,b
(x
)
=
1

ow
,b
(x
)
=
−1

2‖w‖

b‖w‖

ξ1

0 ≤ ξ1 ≤ 1

ξ
2
>
1

ξ
3
>
2

ξ
4

ξ
5

−1

+1

ξ 6
=
0

Fig. 2.2.: An illustration of the soft-

margin L1-SVM solution on an exam-

ple 2-dimensional non-linearly separable

dataset.

2.1 Support Vector Machine Classification

Supervised learning is the process of determining a relationship f(x) by using a training

dataset S = {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}, which contains n inputs of d-dimensionality,

xi ∈ Rd, and their class labels yi. In the case of binary classification, yi ∈ {+1,−1}, where

+1 and −1 are the two class labels.

The goal of the soft-margin SVM classifier is to find a classification function

f(x) = sign ow,b(x), (2.1)

where ow,b(x) = w·xi+b is a linear decision (output) function representing an affine mapping

function o : Rd → R and is parameterized by w ∈ Rd, the weight vector, and b ∈ R, the bias

term. In addition, w and b must satisfy the following,

yi (w · xi + b) ≥ 1− ξi,∀i ∈ {1, . . . , n}, (2.2)

where ξ ∈ Rn are the non-negative slack variables that allow for some classification error

23

to account for overlapping datasets. The minimal distance between points belonging to

opposite classes and the hyperplane is defined as the margin and has a width equal to 2
||w|| ,

which is why the ||w|| must be minimal in order to maximize the margin.

In the example shown in Figure 2.1, if the training data points are slightly moved, the

solid line (with the larger margin) will still correctly classify all the instances, whereas the

dotted line (with a much smaller margin, comparatively) will not. This illustrates that the

location of the hyperplane has a direct impact on the classifiers generalization capabilities.

The hyperplane with the largest margin is called the optimal separating hyperplane. Fig-

ure 2.2 shows the optimal separating hyperplane for overlapping training data points, where

the filled data points are from the +1 class and the non-filled data points are from the −1

class. The training data points on the separating hyperplane (the circled data points), whose

decision function value equals +1 or −1, are called the support vectors.

The soft-margin SVM is a result of the following optimization problem:

min
(w,b)

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi (w · xi + b) ≥ 1− ξi, ∀i ∈ {1, . . . , n}

ξi ≥ 0, ∀i ∈ {1, . . . , n},

(2.3)

where the penalty parameter C ∈ R controls the trade-off between margin maximization and

classification error minimization, penalizing large norms and errors. Note that Equation 2.3

is a classic quadratic optimization problem with linear constraints, and consequently, it has a

unique solution. In geometric terms of SVM, this means that there is a one unique separation

boundary in the input space with a maximal margin.

Equation 2.3 can be rewritten as a regularized loss minimization problem by representing

the constraints as the Hinge loss, given by:

L(yi, o(w,b)(xi)) = max
{

0, 1− yio(w,b)(xi)
}
, (2.4)

which penalizes errors satisfying the following: yio(w,b)(xi) < 1 and is a crucial element that

24

facilitates the SVM model’s sparseness. The soft-margin SVM represented as a regularized

loss minimization problem becomes:

min
(w,b)∈Ho×R

R =
1

2
||w||2 + C

n∑
i=1

L(yi, o(w,b)(xi)), (2.5)

where Ho is a general Hilbert space. To handle cases when the data are non-linearly sep-

arable, while enhancing the classifier’s generalization capabilities, a kernel function can be

used [2], as shown in Equation 2.6:

K (xi,xj) = 〈φ (xi) , φ (xj)〉, (2.6)

where φ(·) represents a mapping function from the original feature space to a higher dimen-

sional space. The advantage of utilizing kernels is being able to calculate the inner product

in the input space rather than in the very high feature dimensional space (including the

infinite dimensional ones). The SVM model output, o shown in Equation 2.7, for a given

input vector x is defined by the kernel as given below:

o(x) =
n∑
i=1

αiK(x,xi) + b, (2.7)

where αi ∈ R are the coefficients, or weights, of the expansion in feature space, and b ∈ R is

the so-called bias term. Note that if a positive definite kernel is used, there is no need for a

bias term b, but b can nevertheless be used. The two terms, α and b, parametrize the SVM

model. A model is called dense if the absolute value of all its weights are greater than 0,

while a sparse model would be one that contains some αi = 0. The level of sparseness may

vary, but the sparser the model, the more scalable the applications.

2.2 Support Vector Regression

The support vector machine was applied to the regression case [64, 172], maintaining

all the maximal margin algorithmic features. Unlike pattern recognition problems where

the desired outputs yi are discrete, for the regression case they are continuous, real-valued,

25

function outputs. Given training dataset S =
{

(x1, y1), . . . , (xn, yn) ∈ Rd × R
}

, where yi ∈

R is the continuous output of input xi ∈ Rd, the goal is to learn a function f(x) with at most

ε deviation from the true targets yi for all the training data, while being as flat as possible.

This was introduced by Vapnik’s linear loss function with ε-insensitivity zone, illustrated in

Figure 2.3 and given by:

|yi − o(w,b)(xi)|ε =


0 if |yi − o(w,b)(xi)| ≤ ε

|yi − o(w,b)(xi)| − ε otherwise.

(2.8)

The loss is equal to 0 if the difference between the predicted and true output values is less

than ε. Vapnik’s ε-insensitivity function, shown in Equation 2.8, defines an ε-tube, illustrated

in Figure 2.4. If the predicted value is within the tube, no loss is incurred [107]. Estimating

a linear regression hyperplane is achieved by minimizing:

min
(w,b)∈Ho×R

R =
1

2
||w||2 + C

n∑
i=1

(|yi − o(w,b)(xi)|ε). (2.9)

Equation 2.9 is equivalent to the following, where non-negative slack variables are introduced:

min
(w,b,ξ,ξ∗)

1

2
||w||2 + C

n∑
i=1

(ξi + ξ∗i)

s.t. yi −w · xi − b ≤ ξi + ε, ∀i = {1, . . . , n}

w · xi + b− yi ≤ ξ∗i + ε, ∀i = {1, . . . , n}

ξi, ξ
∗
i ≥ 0, ∀i = {1, . . . , n}.

(2.10)

Note that the constant C influences the trade-off between approximation error and the model

generalizability, similar to the classification setting. The optimization function given in 2.10

can be solved more easily in its dual formulation and is key to extending the SVR to learn

from non-linear functions [150].

26

ε

ε-insensitivity

e

Fig. 2.3.: Vapnik’s ε-insensitivity loss

function.

0 1 2 3 4 5 6

0

2

4

6
ε

ε

x1

x2

Fig. 2.4.: Linear support vector regression

example solution on a toy 2D dataset.

The dual SVR kernelized cost function is as follows:

max
(α,α∗)

− 1

2

n∑
i,j=1

(αi − α∗i)(αj − α∗j)K(xi,xj)− ε
n∑
i=1

(αi + α∗i) +
n∑
i=1

yi(αi − α∗i)

s.t.
n∑
i=1

(αi − α∗i) = 0

αi, α
∗
i ∈ [0, C], ∀i = {1, . . . , n},

(2.11)

where α and α∗ correspond to the SVR dual variables.

2.3 Support Vector Machine Solvers

Although support vector machines represent a major development in machine learning

algorithms, in the case of large-scale problems (hundreds of thousands to several millions of

samples), the design of SVM training algorithms still has room for improvement.

Interior Point (IP) methods pose the SVM learning problem as a quadratic optimization

problem subject to linear constraints, which are then replaced with a barrier function [33].

The resulting unconstrained problem can then be optimized using Newton or Quasi-Newton

methods. Generally, interior point methods are good choices for small sized learning prob-

lems. However, because IP methods typically involve Cholesky decomposition, they require

a run time of [O(n3)]. Moreover, their memory requirements are [O(n2)], rendering the use

of IP methods impractical when the training set consists of a large number of samples [154].

27

The first attempts of overcoming the quadratic memory requirement of IP methods and

speeding up their training time were aimed at decomposing the underlying SVMs quadratic

programming problem. First, Boser et al. [26] implemented Vapnik’s chunking method.

Osuna et al. [132] later introduced a theorem on the convergence of dividing large QP

problems into a series of smaller sub-problems. The theorem states that the chunking method

will converge to the globally optimal solution.

Sequential Minimal Optimization (SMO) by Platt [138], its improvement by Keerthie et

al. [111], and SVM-Light [101] are alternative approaches to decomposing the QP problem.

SMO, implemented in the popular, widely used software package LIBSVM [47], is an iterative

procedure that divides the SVM dual problem into a series of sub-problems, which are

solved analytically by finding the optimal α values that satisfy the Karush-Kuhn-Tucker

conditions [33]. Although SMO is guaranteed to converge, heuristics are used to choose

α values in order to accelerate the convergence rate. This is a critical step because the

convergence speed of the SMO algorithm is highly dependent on the dataset size and SVM

hyperparameters [150].

Most existing approaches, including the methods described above, focus on solving the

dual of Equation 2.3, for two main reasons: firstly, the dual formulation provides a convenient

way of dealing with the constraints. Secondly, the dual formulation can be written in terms of

dot products, allowing the use of kernel functions [31]. However, these two conveniences are

not restrictions for solving primal SVM problem. For example, Chappelle [48] showed that

even though optimizing the primal and dual are equivalent in terms of solutions and time,

optimizing the primal when dealing with approximate solutions is far more superior. The

primal problem can be cast as an unconstrained problem by using linear or non-linear kernels

and the Representer theorem [149]; mainly, reparametrizing the weight vector. Chapelle [48]

investigated solving the primal objective with smooth loss functions, rather than using the

hinge loss function, and suggested using methods such as conjugate gradient descent and

Newton’s method.

28

Among typical techniques for solving QP problems are active set methods [181], which

have also been applied for solving the SVM problem [46, 89, 148]. These are iterative

methods, where constraints are divided into the sets of active and inactive constraints. They

iteratively update the active set until the optimal solution is found, i.e. when the variables are

no longer actively constrained. Although most active set methods have theoretical guarantees

to converge in finite time [148, 155], they are typically computationally expensive, especially

when the number of support vectors is large [154].

Some advancements in handling large scale problems are based on a geometric interpre-

tation of SVM problem. Some of these geometric SVMs include approaches that use convex

hulls [14] and minimum enclosing balls such as Core Vector Machines (CVM) [167]. Tsang et

al. [166] later improved the scalability of CVMs by introducing Ball Vector Machines (BVM)

which do not require a QP solver. Other geometric approaches include the novel algorithms

introduced by Strack [159], known as the Sphere Support Vector Machine (SphereSVM) and

Minimal Norm Support Vector Machine (MNSVM), which utilize the connection between

minimal enclosing balls and convex hull problems, while demonstrating a high capability for

learning from large datasets.

The Non-Negative Iterative Single Data Algorithm (NNISDA) [198] is an efficient ap-

proach for solving the SVM problem, shown to be faster than SMO and equal in terms of

accuracy [110]. NNISDA is an iterative algorithm that finds a solution to the L2-SVM using

coordinate descent, inspired by Iterative Single Data Algorithm (ISDA) [96], which was orig-

inally introduced in [108]. Coordinate descent is a popular optimization method that has

been widely used for solving the SVM problem [25, 74, 95, 125]. Note, the SMO algorithm

also utilizes a coordinate descent method, however it is done through coordinate pairs [154].

Recently, several authors have proposed the use of a standard stochastic (or online)

gradient descent (SGD) approach for SVMs to optimize large-scale learning problems [90,

112, 150, 151, 153]. Kivinen et al.[113] and Bousquet and Bottou [32] showed that stochastic

algorithms can be both the fastest, and have the best generalization performances. It has

29

also been shown that the SGD run time for solving the SVM unconstrained primal problem

is inversely proportional to the size of the training set [135, 152]. Shalev-Shwartz and Ben-

David [151] have demonstrated that the basic SGD algorithm is very effective when data are

sparse, taking less than linear [O(d)] time and space per iteration to optimize a system with

d parameters. It can greatly surpass the performance of more sophisticated batch methods

on large data sets. The previously mentioned approaches are extended variants of the classic

kernel perceptron algorithm [53].

Notable representatives of this method of learning include the Näıve Online R Minimiza-

tion Algorithm (NORMA) by Kivinen et al. [113] and the Primal Estimated Sub-Gradient

SOlver for Support vector machines (PEGASOS) by Shalev-Shwartz et al. [153]. NORMA

is an online kernel based algorithm designed to utilize SGD for solving the SVM problem,

exploiting the kernel trick in an online setting. It can be regarded as a generalization of the

kernel perceptron algorithm with regularization [113]. PEGASOS solves the primal SVM

problem using stochastic sub-gradient descent, implementing both linear and non-linear ker-

nels, and showed that the algorithm does not directly depend on the size of the data, making

it suitable for large-scale learning problems.

A more recent approach, named OnLine Learning Algorithm (OLLA) [106] is a unifica-

tion, simplification, and expansion of the somewhat similar approaches presented in [90, 112,

150, 151, 153] and [109, 129, 127]. This algorithm is unique because it is not only designed

to optimize the SVM cost function, but also the cost functions of several other popular

nonlinear (kernel) classifiers using SGD in the primal domain. Collobert and Bengio [53]

provided justification for not using regularization, and thus OLLA was designed to handle

cost functions with and without the regularization term. Comparisons of performances of

OLLA with the popular SMO algorithm highlighted the merits of OLLA in terms of speed,

as well as accuracy, when the number of samples was increased, making it suitable for large-

scale learning. Comparisons using various different classifiers against SMO were also shown

in [106], but for the scope of this thesis the L1-SVM was mentioned.

30

Although the SGD approaches mentioned above have many merits when it comes to

solving large-scale machine learning problems, stochastic procedures also have their disad-

vantages. One of them stems from the lack of meaningful stopping criteria. The only specified

stopping criteria is a user defined input for the number of iterations, which gives rise to the

question of what it should be set to. Another unknown parameter that requires tuning is

the gradient step size, which in some cases, directly affects the algorithm convergence rate.

Moreover, a third disadvantage of kernelized online algorithms is that the training time for

each update increases superlinearly with the number of samples [28].

2.4 Why Support Vector Machines: Form & Norm

The support vector machine problem shares similarities to classical statistical infer-

ence such as Neural Networks (NNs), however, there are several very important differences

between their approaches and assumptions.

One of the major differences is that these traditional classification and regression sta-

tistical techniques are based on the strict assumption that the data distribution is known

and is that of a Gaussian distribution. Another assumption is that this data can be modeled

by a set of linear parameter functions. Following this, the induction paradigm for parame-

ter estimation is the maximum likelihood estimation method, which can be reduced to the

minimization of the sum-of-errors-squared cost function [107].

The previously stated assumptions, on which the classic statistical paradigm relied,

turned out to be inappropriate for many contemporary problems for a couple of reasons [172]

. Real-world problems are, more often than not, high-dimensional. If the underlying map-

ping is not smooth, the linear paradigm needs an exponentially increasing number of terms,

thus increasing the dimensionality of the input space, also known as ‘the curse of dimen-

sionality ’. Another issue is that the data generation process might be very different from

the normal distribution. Due to these grave concerns, the maximum likelihood estimator or

sum-of-errors-squared cost function, should be replaced by a new induction paradigm to be

31

able to model non-Gaussian distributions, or rather, to have a distribution-free method of

classification or regression for high-dimensional, sparse data [107]. This was the foundational

reason for developing support vector machines.

The main differences between support vector machines and classical statistical tech-

niques, such as neural networks, can be identified by analyzing their form and norm. With

respect to both types of models’ form, the greatest majority of machine learning models are

the same, i.e. they are represented as the sum of weighted basis functions. The difference

in the two approaches stems from their norm (cost functions) and how these models learn

their function parameters (e.g. how many functions should be used, what their parameters

are, what the value of their weights should be).

For example, neural networks minimize the sum-of-errors-squared in output space, i.e.

the L2 norm, and SVMs maximize the margin in input space by minimizing the L2 norm of

the weight vector. For SVMs, the model parameters are not predefined and their number

depends on the training data used. Rather than choosing the appropriate structure of the

model, keeping the estimation error fixed, and minimizing the training error, as done by

classical techniques, SVMs keep the training error fixed or set to some appropriate level

and minimize the estimation error. This is the paradigm of structural risk minimization

(SRM) introduced by Vapnik and Chervonenkis and their colleagues, which led to the new

learning algorithm. This approach has been proven, both experimentally and theoretically,

to be superior (or comparable) to NNs and other statistical methods for contemporary real-

world problems, which are often very sparse datasets (i.e. small number of samples in high

dimensional spaces).

32

CHAPTER 3

MULTI-TARGET SVR USING MAXIMUM CORRELATION CHAINS

This chapter presents three multi-target support vector regression (SVR) models. The first

involves building independent, single-target SVR models for each output variable. The

second builds an ensemble of random chains using the first method as a base model, named

SVR with Random Chains (SVRRC), inspired by the classification MT method, Ensemble of

Random Chains Corrected (ERCC) [157]. The third calculates the targets’ correlations and

forms a maximum correlation chain, which is used to build a single chained model named SVR

with Correlation Chaining (SVRCC). The experimental study compares the performance of

the three approaches with six other prominent MT regressors. The experimental results are

then analyzed using non-parametric statistical tests. The results show that the maximum

correlation SVR approach improves the performance of using ensembles of random chains.

This chapter is organized as follows: Section 3.1 describes the notation used throughout

this chapter and reviews related works on multi-target regression. Section 3.2 presents the

three multi-target support vector regression approaches. Section 3.3 presents the experimen-

tal study. Section 3.4 discusses the results and the statistical analysis. Finally, Section 3.5

shows the main conclusions of this work.

3.1 Multi-Target Regression Background

This section first defines the notation that will be used throughout this chapter, and

then formally describes the multi-target regression problem along with relevant popular

algorithms used within this paradigm.

33

Table 3.1.: Summary of Multiple-Target Learning Notation

Definition Notation

Number of Samples N
Number of Input Attributes d
Input Space X ∈ RN×d, 1 ≤ i ≤ d
Input Instance x(l) = (x

(l)
1 , . . . , x

(l)
d) ∈X, 1 ≤ l ≤ N

Number of Dataset Targets/Outputs m
Target Space Y = {Y1, . . . ,Yj , . . . ,Ym} ∈ RN×m, 1 ≤ j ≤ m
Predicted Target Space Ŷ = {Ŷ1, . . . , Ŷj , . . . , Ŷm} ∈ RN×m, 1 ≤ j ≤ m
Target Instance y(l) = (y

(l)
1 , . . . , y

(l)
m) ∈ Y , 1 ≤ l ≤ N

Full Multi-Target (MT) Training Dataset D = {(x(1)
1 , y

(1)
1), . . . , (x

(N)
d , y

(N)
m)}

Single-Target (ST) Dataset with jth Target Dj = {(x(1)
1 , y

(1)
j), . . . , (x

(N)
d , y

(N)
j)} ∈ D, 1 ≤ j ≤ m

Number of Cross-Validation (CV) Sets k

ST Test Dataset with jth Target, ith CV Fold D(i)
j = {(x(i)

1 , y
(i)
j), . . . , (x

(i)
d , y

(i)
j) ∈ Dj , i ∈ {1, . . . ,N}

ST Training Dataset with jth Target, Excluding the ith CV Fold D(k−i)
j = Dj \ D(i)

j

ST Regression Model h : X × Y
MT Regression Model hj : X × Yj , 1 ≤ j ≤ m
Unknown Sample x(N ′) = {x(N+1), . . . ,x(N ′)}
Predicted Values for Unknown Sample y(N ′) = {y(N+1), . . . ,y(N ′)}

3.1.1 Notation

Let D be a training dataset of n instances. Let X ∈ D be a matrix consisting of d

input variables and n samples, such that X ∈ Rn×d. Let Y ∈ D be a matrix consisting of

m continuous target variables and n samples, where Y ∈ Rn×m. Table 3.1 summarizes the

notation used throughout this chapter.

3.1.2 Multi-Target Regression Methods

As mentioned previously, there are two main approaches to solving multiple-output

problems: problem transformation and algorithm adaptation. This section will present the

theory behind both approaches, their advantages and disadvantages, as well as current pop-

ular solvers.

Problem transformation methods are mainly based on training m independent, single-

target models for each target output on datasets Dj = {X,Yj}, ∀j ∈ {1, . . . ,m} and con-

cetenating all m predictions. The single-target method [157], also known as binary relevance

in literature [192], simply does exactly that, and is considered as a baseline for measuring

34

the performance of other problem transformation approaches. Since this approach divides

the multi-target problem into m single-target ones, any off-the-shelf traditional regression

algorithm can be used. Examples include ridge regression [93], regression trees [34], and

support vector regression [64].

The main drawback with single-target approaches in the multi-target setting, is that the

relationships between the targets are lost once independent models are built for each target.

This in turn may affect the overall quality of the m predictions [23]. Another drawback of

this type of approach is computational complexity: prediction for an unseen sample would

be obtained by running each of the m single-target models and concatenating their results.

Recently, Spyromitros-Xioufis et al. [157] proposed extending well-known multi-label

classification methods to deal with the multi-target regression problem, while modeling the

targets’ dependencies. Inspired by their successful classification counterparts, Spyromitros-

Xioufis et al. [157] introduced two novel approaches for multi-target regression: multi-target

regressor stacking (MTS) and regressor chains (RC). These methods involve two stages of

learning, the first being building ST models; and the second uses the knowledge gained by

the first step to predict the target variables while using possible relationships the targets

might have with one another.

Multi-target regressor stacking was inspired by its multi-label classification counter-

part [85] and involves two stages of training. The first stage consists of training m indepen-

dent single-target models, like in ST. In the second step, a second set of m meta models are

learned for each target variable, Yj, 1 ≤ j ≤ m. These meta models are learned on a trans-

formed dataset, where the input attributes space is expanded by adding the approximated

target variables obtained in the first stage, excluding the jth target being predicted.

The regressor chains method, also inspired by an equivalent multi-label classification

method [143], is another problem transformation method, based on the idea of chaining a

sequence of single-target models. In the training of RC, a random chain (sequence) of the set

of target variables is selected and for each target in the chain, models are built sequentially

35

by using the output of the previous model as input for the next [158], following the order of

the chain.

If the default, ordered chain is C = {Y1,Y2, . . . ,Ym}, the first model h1 : X → R is

trained for Y1, as in ST. For the subsequent models hj,j>1, the dataset is transformed by

sequentially appending the true values of each of the previous targets in the chain to the

input vectors. For a new input vector, the target values are unknown. Once the models

are trained, the unseen input vector will be appended with the approximated target values,

making the models dependent on the approximated values obtained at each step. One of

the issues associated with this method is that, if a single random chain is used, the possible

relationships between the targets at the head of the chain and the end of the chain are not

exploited due to the algorithm’s sequential nature.

In the methods described above, the estimated target variables (meta-variables) are

used as input in the second stage of training. In both methods, the models are trained

using these meta-variables that become noisy at prediction time, and thus the relationship

between the meta-variables and target variable is muddied. Dividing the training set into

sets, one for each stage, would not help this situation because both methods would be

trained on training sets of decreasing size. Due to these issues, Spyromitros et. al. proposed

modifications, in [157], to both methods that resembles k-fold cross-validation (CV) to be

able to obtain unbiased estimates of the meta-variables. These methods are called Regressor

Chains Corrected (RCC) and Multi-Target Stacking Corrected (MTSC).

However, these corrections did not solve all the methods’ problems. One problem with

the RC and RCC methods was that they are sensitive to the chain ordering. To remedy this

issue, Spyromitros-Xioufis et al. [157] proposed the Ensemble of Regressor Chains (ERC) and

Ensemble of Regressor Chains Corrected (ERCC). Instead of a single chain, k ≤ 10 chains

are created at random, and the final prediction values are obtained by taking the mean values

of the k predicted values for each target. The ERC, ERCC and MTSC procedures involve

repeating the RCC and MTS procedures k times, respectively, with k randomly ordered

36

chains for ERCC, and k different modified training sets for MTSC. The corrected methods

exhibited better performance than their original variants, as well as ST models. The ERCC

algorithm had the best overall performance, as well as being statistically significantly more

accurate of all the methods tested[157].

Many authors have proposed using support vector machines for multi-target learning [23,

184, 185]. One example is that of Zhang et al. [195], who presented a multi-output support

vector regression approach based on problem transformation. It builds a multi-output model

that considers the correlations between all the targets using the vector virtualization method.

Basically, it extends the original feature space and expresses the multi-output problem as

an equivalent single-output problem, so that it can then be solved using the single-output

least squares support vector regression machines (LS-SVR) algorithm [161]. Moreover, other

contemporary problem transformation approaches include Linear Target Combinations for

MT Regression [170].

Algorithm adaptation methods are based on the principle of simultaneously predicting

all outputs using a single model which captures all dependencies and internal relationships

among them. Using this type of approach provides several advantages over problem trans-

formation methods [36, 117, 156]:

- A single taget model is more interpretable than several single-target models.

- When the targets are correlated, algorithm adaptation methods ensure better predic-

tive performance.

The first attempts at dealing with predicting multiple real-valued targets at the same

time are statistical approaches which aim to capture the possible correlations amongst target

variables. One example is reduced-rank regression, proposed by Izenman [98], which places a

constraint on the elements of estimated reduced-rank regression coefficient matrices. Brown

and Zidek [38] then proposed a multivariate version of the Hoerl-Kennard ridge regression

rule. Recently Similä and Tikka [156] considered the regression problem of modeling several

37

output variables using the same set of input variables, chosen by their simultaneous variable

selection method, named L2-SVS. The importance of an input attribute is measured by

the L2-norm of their corresponding regression weights, which are found by minimizing the

sum-of-errors-squared.

Maximal margin classifiers have also been transformed to accommodate the multi-output

case [168]. Rather than having a single-output support vector regressor be applied indepen-

dently to each target, several approaches have been proposed to extend the traditional SVR

to the multi-output case. One example is that of Vazquez and Walter [174]. They extended

the traditional SVR by considering the multi-output version of Kringing called Cokring-

ing [52]. The authors show that their multi-target SVR produced better results than build-

ing independent SVRs. Another example is Brudnak’s [39] proposal of a vector-valued SVR

(VVSVR). Their method generalizes Vapnik’s ε-insensitive loss function and regularization

function from the scalar-valued case to that of vector-value.

In addition to maximal margin classifiers being extended to the multi-output case, the

use of multi-output kernels has also been investigated. Evgeniou and Pontil [69] presented

an approach to multi-output learning based on minimizing regularized risk functionals, such

as SVMs. They proposed a novel kernel function that uses a parameter µ that couples

the targets. Their experiments also supported the fact that using an algorithm adaptation

approach does perform well when targets are correlated. However, when the targets are

not correlated, Evengiou and Pontil showed that their proposed method reduces to single-

target learning when the parameter µ is set to be very large, posing no risk to using their

multi-target kernel. Choosing the right value for µ must be found by cross-validation.

Due to the success of using this multi-output kernel approach, Evgeniou et al. [68]

extended their earlier results and developed a framework for multi-task learning within the

context of regularization in reproducing kernel Hilbert spaces. A drawback of their proposed

kernel method is that its computational complexity time is worse than the complexity of

solving m independent kernel methods.

38

Multiple-target regression trees, also known as multi-variate or multi-objective regression

trees, are extensions of the traditional regression tree to the multi-output case. One of

the first approaches for building multi-target regression trees was that of De’ath [56], who

proposed an extension of the univariate method CART [37] to the multi-output case, dubbed

multi-variate regression trees (MRTs). The main difference between the traditional CART

and its multi-variate extension is the redefinition of the impurity measure of a node to the

multi-variate sum-of-squared-errors.

Blockeel et al. proposed multi-objective decision trees (MODTs) [21, 117], which are

decision trees capable of predicting multiple target attributes at once and are used for multi-

objective prediction. Struyf and Džeroski [160] proposed a constraint-based framework for

building multi-objective regression trees (MORTs). Later, Kocev et al. [115] investigated

whether ensembles of multi-objective decision trees could be used to improve the performance

of using multiple single-target trees or a single multi-target tree. The ensemble learning

techniques used were bagging [34] and random forests [35].

The methods described above were all designed to try to analyze and improve the

performance of predicting multiple outputs at once, however there are still outstanding

issues to be addressed. Considering the models’ predictive performances, the benefits of

using MTSC and ERCC instead of the baseline ST are not apparent. In the experimental

study performed by Spyromitros-Xioufis et al. [157], the ST method sometimes outperformed

their proposed problem transformation approaches. The best explanation for this would be

that the targets correlations were not captured due to the randomized learning process (chain

order). Another issue that these approaches face comes with having a large number of output

variables. Due to the ensemble based approach of up to 10 random chains, or solving a large

number of single-target problems, the algorithms’ computational complexity would suffer.

Furthermore, these models do not provide a clear description of the relationship between the

input and output variables, as well as the outputs amongst themselves. The contributions

of this chapter aim to remedy the mentioned disadvantages.

39

3.2 Three Novel SVMs for Multi-Target Regression

Three novel models have been implemented for the purposes of multi-target regression.

The base model is the SVR model, where m single-target soft-margin non-linear support

vector regressors (NL-SVR) are built for each target variable Yj.

For NL-SVR, the regularized soft-margin loss function given in equation (2.10) is mini-

mized. This contribution involves solving the dual of this formulation given by (2.11). Using

the dual formulation, the multi-target problem is solved by transforming it into m single-

target problems, as shown in Algorithm 3.1 and Figure 3.1. This algorithm will output m

single-target models, hj, ∀j = 1, . . . ,m, for a given dataset D. It first splits the dataset into

m separate ones, Dj, each with a single-target variable Yj, and then builds a distinct SVR

model for each of the datasets.

Building m ST models is a good base-line, but as mentioned previously, it does not cap-

D1 : [X][Y1] h1 : D1 → Ŷ1

D2 : [X][Y2] h2 : D2 → Ŷ2

D : [X][Y]
...

Dm : [X][Ym] hm : Dm → Ŷm

Fig. 3.1.: SVR Flow Diagram. Firstly, the multi-target dataset is divided into m ST datasets,
D1,D2, . . . ,Dm. Then m models, h1, h2, . . . , hm, are independently trained for each ST dataset.

Algorithm 3.1 Multi-Target Support Vector Regression (SVR)

Input: Training dataset D
Output: ST models hj , j = 1, . . . ,m
1: for j = 1 to m do
2: Dj = {X,Yj} . Get ST data
3: hj : X → R . Build ST model for the jth target
4: end for
5: return hj , j = 1, . . . ,m

40

Algorithm 3.2 Build Chained Model

Input: Training dataset D, random chain C
Output: A chained model hj , j = {1, . . . ,m}, c ≤ 10
1: D1 = {X,YC1} . Initialize first dataset
2: for j = 1 to m do . For each target in chain C
3: hj : Dj → R . Train model on appended dataset
4: if j < m then
5: Dj+1 =

{
Dj ,YCj

}
. Append new target in chain to dataset

6: end if
7: end for
8: return hj , j = 1, . . . ,m

ture possible correlations between the target attributes during training. If these correlations

are not exploited, this could retract from the model’s potential performance. Therefore, cre-

ating an ensemble model using a series of random chains was proposed, using the base-line

SVR method, named SVR Random Chains (SVRRC).

For SVRRC, ensembles of at most 10 m-sized random chains, C, are built from different

and distinct permutations of the target variable indices. When chaining target values, there

are two main options: using the predicted value as input for the following target, or using the

true value of the target variable as input of the subsequent targets. The main problem with

the former approach is that errors are propagated throughout the chained model, therefore

SVRRC employs chaining of the true values.

For each random chain, a new model is trained by predicting the first target variable

in the chain. Next, the first target’s true value, Yj, is appended to the training set. This

chaining process is repeated for all the target indices in the chains, {C1, . . . ,Cc} ∈ C, c ≤ 10 .

This process will be repeated for each random chain generated, returning an ensemble of

chained SVRs. Algorithm 3.2 describes the process of building a chained model given chain

C ∈ C, and Algorithm 3.3 shows the steps taken by SVRRC.

Given this ensemble of chained models, the predicted values for a given unseen instance

are calculated by taking the mean of the multiple models generated using different random

chains. Since the unseen input has no known target value, the predicted value at each step

of the chain Ŷj is appended to the input at each step of the chain.

41

D : [X][Y1Y2Y3]

[1, 2, 3] [1, 3, 2] . . . [3, 2, 1]

h1 : [X]→ Ŷ1 h1 : [X]→ Ŷ1 . . . h1 : [X]→ Ŷ1

h2 : [XY1]→ Ŷ2 h2 : [XY1]→ Ŷ3 . . . h2 : [XY3]→ Ŷ2

h3 : [XY1Y2]→ Ŷ3 h3 : [XY1Y3]→ Ŷ2 . . . h3 : [XY3Y2]→ Ŷ1

Fig. 3.2.: SVRRC Flow Diagram on a dataset with three targets. SVRRC first builds the six
random chains of the target’s indices (three examples are shown). It then constructs a chained
model by proceeding recursively over the chain, building a model, and appending the current
target to the input space to predict the next target in the chain.

Algorithm 3.3 Multi-Target SVR with Random-Chains (SVRRC)

Input: Training dataset D, c random chains C
Output: An ensemble of chained models hC
1: for each C ∈ C do . For each random chain
2: hC = build chained model(D,C) . build a chained model for chain C
3: end for
4: return hC

Due to the computational complexity of buildingm! distinct chains and training (m!)×m

models, the number of ensembles and chains are limited to a maximum of 10. However, if the

number of target variables is less than 3, i.e. m! ≤ 10, all m! random chains are constructed.

A disadvantage of building an ensemble of 10 random chains stems from the fact that:

when the number of output variables increases, the number of possible chains increases

factorially. Therefore, there is no guarantee that the 10 random chains generated will truly

reflect the relationships among the target variables. Additionally, building an ensemble of

regressors is computationally expensive. Finding a heuristic that allows the identification of

a single, most appropriate chain, which fully reflects the output variable interrelations would

improve the scalability of training the ensemble.

42

D : [X][Y1Y2Y3] [1, 2, 3]

h1 : [X]→ Ŷ1 h2 : [XY1]→ Ŷ2 h3 : [XY1Y2]→ Ŷ3

generate maximum correlation chain

E[(Yi−µi)(Yj−µj)]√
E[(Yi−µi)(Yi−µi)]E[(Yj−µj)(Yj−µj)]

Fig. 3.3.: SVRCC Flow Diagram on a sample dataset with three targets. SVRCC first finds the
direction of maximum correlation among the targets and uses that order as the only chain. It then
constructs the chained model, as done in SVRRC.

Algorithm 3.4 Multi-Target SVR with Max-Correlation Chain (SVRCC)

1: P = corrcoef(Y) . Find correlation coefficient matrix for target variables
2: C =

∑n
i=1 Pij , ∀j = 1, . . . ,m . Sum row elements of the correlation coefficient matrix

3: C = sort (C,decreasing) . Sort sums in decreasing order
4: hC = build chained model(D,C) . build a chained model for max correlation chain C
5: return hC

The third proposal was designed to remedy this issue. It builds a single chain based

on the maximization of the correlations among the target variables. By calculating the

correlation of the target variables and imposing it on the order of the chain, this ensures that

each appended target provides some additional knowledge on the training of the next. With

SVRRC, there is no reasoning behind the generation of these chains, and since the number of

random chains generated is limited to 10, there is no way of ensuring that the 10 chains fully

represent the targets’ dependencies. Calculating and using the correlations of the targets

would break this uncertainty. Algorithm 3.4 presents the SVR maximum Correlation Chain

(SVRCC) method. The computational complexity and hardware constraints (memory size)

are negligible during the construction of the targets’ correlation matrix, since the correlation

matrix would be an (m×m) matrix, and the likelihood that the number of targets is large

enough to cause a memory issue is minimal.

To calculate the correlation coefficients of the targets, the targets’ co-variance matrix,

Σ, is first calculated as shown in Equation 3.1:

Σij = cov(Yi,Yj) = E [(Yi − µi)(Yj − µj)] , (3.1)

43

where µi = E(Yi), and E(Yi) is the expected value of Yi, ∀i, j ∈ {1, . . . ,m}. This matrix

will show how the targets change together.

The correlation coefficients matrix, P, is then calculated as shown in Equation 3.2:

P = corrcoef(Y) =
Σij√
ΣiiΣjj

, ∀i, j ∈ {1, . . . ,m}, (3.2)

which describes the linear relationship among the target variables. The coefficients are then

sorted in decreasing order, creating the maximum correlation chain.

3.3 Experimental Environment

Although many interesting applications of multi-target regression exist, there are not

many publicly available datasets to use. The datasets used in the experimental study were

collected from the Mulan website [169], as well as the UCI Machine Learning Repository [8].

Information on the 24 datasets used is summarized in Table 3.2.

Experiments were performed over the RC, ST, MTS, MTSC, ERC, ERCC, and MORF

algorithms, which have also been used in the experimental study conducted in [157]. These

algorithms were chosen because they have shown considerable performance in training multi-

target models. The have also made their framework readily available for reproducing their

results. All three SVR algorithms are implemented within the general framework of Mulan’s

MTRegressor1 [169], which was built on top of Weka2 [88]. LIBSVM’s Epsilon-SVR [47]

implementation was used as the base SVR model. The parameters experimented with for

the SVR regression task are the penalty parameter C, the Gaussian kernel parameter γ, and

the error or tube parameter ε given by Equations (3.3a) to (3.3c), referred to as (3.3).

1http://mulan.sourceforge.net
2http://www.cs.waikato.ac.nz/ml/weka

44

C ∈{1, 10, 100} (3.3a)

γ ∈{1−9, 1−7, 1−5, 1−3, 1−1, 1, 5, 10} (3.3b)

ε ∈{0.01, 0.1, 0.2} (3.3c)

To ensure a controlled environment when conducting the performance comparisons, the

experimental environment for running the competing algorithms was the same as what was

done in [157]. This includes the following. The ST base-line model used was Bagging [34]

of 100 regression trees [182]. The MTSC and ERCC methods are run using 10-fold cross-

validation, and the ensemble size for the ERC and ERCC methods was set to 10. The

Table 3.2.: Multi-Target (MT) Regression datasets

Dataset # Samples # Attributes # Targets

EDM 145 16 2
Enb 768 8 2
Jura 359 11 7
Osales 639 413 12
Scpf 1137 23 3
Slump 103 7 3
Solar Flare 1 323 10 3
Solar Flare 2 1,066 10 3
Water Quality 1,060 16 14
OES97 323 263 16
OES10 403 298 16
ATP1d 201 411 6
ATP7d 188 411 6
Andro 49 30 6
Wisconsin Cancer 198 34 2
Stock 950 10 3
California Housing 20,640 7 2
Puma8NH 8,192 8 3
Puma32H 8,192 32 6
Friedman 500 25 6
Polymer 41 10 4
M5SPEC 80 700 3
MP5SPEC 80 700 3
MP6SPEC 80 700 3

45

ensemble size of 100 trees was used for MORF, and the rest of its parameters were set as

recommended by [116].

The performance metrics used to analyze our contributions’ performances are shown

in Equations 3.4 to 3.7. For unseen or test datasets of size Ntest, the performances are

evaluated by taking the run time (seconds) each algorithm takes to build a classifier, as well

as the following metrics, where the upwards arrow ↑ indicates maximizing the metric and

the downwards arrow ↓ indicates minimizing the metric.

• The average correlation coefficient (aCC ↑):

1

m

m∑
j=1

∑Ntest
l=1 (y

(l)
j − ȳj)(ŷ

(l)
j − ¯̂yj)√∑Ntest

l=1 (y
(l)
j − ȳj)2

∑Ntest
l=1 (ŷ

(l)
j − ¯̂yj)2

(3.4)

• The mean squared error (MSE ↓):

1

m

m∑
j=1

1

Ntest

Ntest∑
l=1

(y
(l)
j − ŷ

(l)
j)2 (3.5)

• The average root mean squared error (aRMSE ↓):

1

m

m∑
j=1

√∑Ntest
l=1 (y

(l)
j − ŷ

(l)
j)2

Ntest
(3.6)

• The average relative root mean squared error (aRRMSE ↓):

1

m

m∑
j=1

√√√√∑Ntestl=1 (y
(l)
j − ŷ

(l)
j)2∑Ntest

l=1 (y
(l)
j − ȳj)2

(3.7)

The predicted output is represented by ŷ, the average of the predicted output is ¯̂y, and

the average of the true output target variable is ȳ. The test dataset is the hold-out set during

cross-validation. This ensures our model is evaluated on data that it has not been trained on,

and thus unbiased towards the training datasets. It also contributes to the generalizability

and robustness of the model.

46

3.4 Results & Statistical Analysis

Tables 3.3, 3.5, 3.7, 3.9, and 3.11 show the results of our algorithm implementations

compared with those of RC, MORF, ST, MTS, MTSC, ERC, and ERCC. Each subsection

discusses a single metric along with the statistical analysis of the results. The best met-

ric value obtained on each dataset is typeset in bold. Non-parametric statistical tests are

then used to validate the experiments results obtained. To determine whether significant

differences exist among the performance and results of the algorithms, the Iman-Davenport

non-parametric test is run to rank the algorithms over the datasets used, according to the

Friedman test. The average ranks are presented in the last row of the results tables. The

Bonferroni-Dunn post-hoc test [65] is then used to find these differences that occur between

the algorithms. Below each result table, a diagram highlighting the critical distance (in gray)

between each algorithm is shown. The Wilcoxon, Nemenyi, and Holm [180] tests were run for

each of the result metrics to compute multiple pairwise comparisons among the algorithms

used in the experimental study. Tables 3.4, 3.6, 3.8, 3.10, and 3.12 show the sum of ranks

R+ and R− of the Wilcoxon rank-sum test, and the p-values for the 3 tests, which show the

statistical confidence rather than using a fixed α value.

3.4.1 Average Correlation Coefficient

Table 3.3 shows that our proposed methods perform the best on 15 out of the 24 datasets.

Specifically, the maximum correlation chain method, SVRCC, performs the best on 11, which

is better than the total number of datasets the competing methods performed better at (9).

The Iman-Davenport statistic, distributed according to the F-distribution with 9 and 207

degrees of freedom is 6.72, with a p-value of 1.9E−8 which is significantly less than 0.01,

implying a statistical confidence larger than 99%. Therefore, we can conclude that there

exist statistically significant differences between the aCC results of the algorithms.

Figure 3.4 shows the mean rank values of each algorithm along with the critical dif-

ference value, 2.4236, for α = 0.05. The algorithms that are to the right of the critical

47

difference rectangle are the ones with significantly different results. Therefore, the 6 out

of 10 algorithms beyond the critical difference perform significantly worse than our control

algorithm, SVRCC. Table 3.4 provides complementary analysis of the results.

Table 3.3.: Average Correlation Coefficient (aCC) for MT regressors

Datasets MORF ST MTS MTSC RC ERC ERCC SVR SVRRC SVRCC

Slump 0.6965 0.7062 0.7163 0.6977 0.6956 0.6977 0.7023 0.7245 0.7339 0.7457
Polymer 0.7305 0.7336 0.7371 0.7228 0.7015 0.7029 0.7222 0.7634 0.7857 0.7905
Andro 0.7349 0.6454 0.6793 0.6581 0.6915 0.6806 0.6653 0.6880 0.6951 0.7056
EDM 0.6722 0.6352 0.6412 0.6354 0.6355 0.6379 0.6354 0.6484 0.6565 0.6567
Solar Flare 1 0.1083 0.1258 0.1034 0.1193 0.1492 0.1387 0.1292 0.1066 0.0857 0.1152
Jura 0.7854 0.7907 0.7880 0.7882 0.7877 0.7884 0.7897 0.7789 0.7921 0.7983
Enb 0.9828 0.9832 0.9822 0.9829 0.9813 0.9823 0.9837 0.9858 0.9867 0.9868
Solar Flare 2 0.2357 0.2295 0.2375 0.2343 0.2302 0.2351 0.2432 0.1470 0.1648 0.1656
Wisconsin Cancer 0.3362 0.3587 0.3652 0.3588 0.3628 0.3609 0.3590 0.3187 0.3208 0.3373
California Housing 0.7705 0.7720 0.7149 0.7451 0.7007 0.7844 0.8065 0.7847 0.7949 0.8007
Stock 0.9785 0.9747 0.9755 0.9752 0.9753 0.9757 0.9763 0.9825 0.9829 0.9822
SCPF 0.5827 0.5508 0.5503 0.5477 0.5569 0.5656 0.5515 0.5891 0.5975 0.5946
Puma8NH 0.5424 0.4828 0.4942 0.4205 0.4677 0.4656 0.4650 0.6041 0.5975 0.6038
Friedman 0.1507 0.1609 0.1548 0.1667 0.1558 0.1608 0.1632 0.1710 0.1748 0.1752
Puma32H 0.3085 0.2934 0.2890 0.2504 0.2754 0.2870 0.2797 0.3358 0.3351 0.3385
Water Quality 0.4303 0.4063 0.4019 0.4051 0.3992 0.4052 0.4147 0.3545 0.3828 0.3857
M5SPEC 0.8161 0.8346 0.8134 0.8228 0.8333 0.8340 0.8308 0.9451 0.9452 0.9472
MP5SPEC 0.8315 0.8536 0.8244 0.8535 0.8524 0.8526 0.8542 0.9560 0.9602 0.9633
MP6SPEC 0.8317 0.8531 0.8231 0.8531 0.8507 0.8515 0.8541 0.9444 0.9500 0.9528
ATP7d 0.8260 0.8408 0.8422 0.8474 0.8273 0.8351 0.8464 0.8305 0.8407 0.8400
OES97 0.7829 0.7995 0.7990 0.8001 0.7986 0.7990 0.7999 0.8116 0.8134 0.8137
Osales 0.7186 0.6912 0.7104 0.7076 0.6357 0.7136 0.7193 0.6511 0.6433 0.6677
ATP1d 0.8961 0.9066 0.9051 0.9075 0.9048 0.9081 0.9071 0.9092 0.9130 0.9100
OES10 0.8708 0.8808 0.8805 0.8806 0.8804 0.8804 0.8809 0.8911 0.8924 0.8963

Average 0.6508 0.6462 0.6429 0.6409 0.6396 0.6476 0.6492 0.6634 0.6685 0.6739
Ranks 6.4167 5.8958 6.6042 6.4792 7.5208 5.8958 4.8542 4.7917 3.7083 2.8333

1 2 3 4 5 6 7 8 9 10 11

SVRCC

SVRRC

SVR

ERCC

ERC

RCMTSC
MTS

ST

MORF

Fig. 3.4.: Bonferroni-Dunn test for aCC

Table 3.4.: Wilcoxon, Nemenyi, and Holm tests for aCC

SVRCC vs. Wilcoxon R+ Wilcoxon R− Wilcoxon p-value Nemenyi p-value Holm p-value

MORF 224.0 76.0 3.4E−2 4.1E−5 8.3E−3

ST 239.0 61.0 9.6E−3 4.6E−4 1.3E−2

MTS 242.0 58.0 7.2E−3 1.6E−5 6.3E−3

MTSC 238.0 62.0 1.1E−2 3.0E−5 7.1E−3

RC 250.0 50.0 3.1E−3 0.0000 5.6E−3

ERC 229.0 71.0 2.3E−2 4.6E−4 1.0E−2

ERCC 221.0 79.0 4.3E−2 2.1E−2 1.7E−2

SVR 297.0 3.00 6.0E−7 2.5E−2 2.5E−2

SVRRC 266.5 33.5 4.0E−4 3.2E−1 5.0E−2

48

According to the Wilcoxon test, SVRCC is shown to have significantly better per-

formance over all algorithms with p-value < 0.05. The Nemenyi and Holm tests show that

SVRCC performs better than 6 out of the 9 algorithms with p-value ≤ 5.6E−3 and ≤ 1.7E−2,

respectively. The exact confidence for algorithm SVRCC against all others is 0.95.

Table 3.5.: Mean Square Error (MSE) for MT regressors

Datasets MORF ST MTS MTSC RC ERC ERCC SVR SVRRC SVRCC

Slump 1.4388 1.4161 1.3667 1.4414 1.4602 1.4727 1.4183 1.2991 1.1726 1.1614
Polymer 1.6718 1.8120 1.5446 1.6726 1.8259 1.9999 1.6873 1.1874 1.1068 1.0796
Andro 1.4930 2.1467 1.4714 1.7525 2.2603 2.0812 1.8707 1.5406 1.2847 1.2187
EDM 0.8342 0.9373 0.9352 0.9418 0.9389 0.9326 0.9393 0.9092 0.8650 0.8817
Solar Flare 1 3.3458 3.1196 3.1193 3.0524 3.0357 3.0381 3.0594 2.9912 3.0176 3.0129
Jura 1.0973 1.0595 1.0732 1.0695 1.0744 1.0694 1.0632 1.1167 1.0435 1.0315
Enb 0.0381 0.0361 0.0407 0.0377 0.0452 0.0403 0.0343 0.0255 0.0216 0.0214
Solar Flare 2 2.9619 2.8532 2.7732 2.8282 2.8510 2.8273 2.8110 2.9518 2.9204 2.8713
Wisconsin Cancer 1.7666 1.7155 1.7156 1.7256 1.7119 1.7146 1.7195 1.8171 1.7915 1.7692
California Housing 0.8665 0.8221 0.9642 0.8673 1.0125 0.8952 0.7513 0.7477 0.6987 0.6726
Stock 0.0841 0.1039 0.0990 0.1008 0.0998 0.0987 0.0949 0.0578 0.0596 0.0554
SCPF 2.2244 2.3173 2.3661 2.3517 2.3923 2.3025 2.3295 2.2960 2.2510 2.3179
Puma8NH 1.9678 2.1133 2.0989 2.2024 2.1413 2.1473 2.1467 1.8242 1.8728 1.8299
Friedman 5.4573 5.3357 5.3478 5.3260 5.3482 5.3253 5.3210 5.3038 5.2942 5.2812
Puma32H 5.3419 4.9499 4.9627 5.0405 4.9905 4.9662 4.9805 5.2711 5.2749 5.1306
Water Quality 11.3143 11.5621 11.6276 11.5931 11.6495 11.6022 11.5004 12.2974 12.2042 12.0593
M5SPEC 1.0081 0.8754 1.0336 0.9421 0.8847 0.8824 0.8903 0.2578 0.2597 0.2575
MP5SPEC 1.1483 0.9817 1.1953 0.9970 0.9886 0.9880 0.9882 0.2261 0.1979 0.2136
MP6SPEC 1.1626 0.9928 1.1906 0.9992 1.0115 1.0045 0.9905 0.2926 0.2903 0.2954
ATP7d 1.7859 1.7348 1.6435 1.6460 1.8521 1.7888 1.6739 1.7820 1.7433 1.7098
OES97 4.6331 4.8340 4.8379 4.8082 4.8573 4.8591 4.8187 3.1440 3.0633 3.0499
Osales 7.3631 6.6850 5.8848 6.0850 7.8575 6.4746 5.9155 7.0727 7.3153 7.1374
ATP1d 1.0589 0.9056 0.9053 0.8982 0.9125 0.8783 0.9004 0.9091 0.8837 0.8922
OES10 3.6471 3.8931 3.8952 3.8909 3.9031 3.9063 3.8869 2.2623 2.1608 2.1320

Average 2.6546 2.6334 2.5872 2.5946 2.7127 2.6373 2.5747 2.3993 2.3664 2.3368
Ranks 6.5833 5.6667 6.0833 6.2500 7.8333 6.1250 5.1250 4.6667 3.6250 3.0417

1 2 3 4 5 6 7 8 9 10 11

SVRCC

SVRRC SVR

ERCC

ERC

RCMTSC

MTS
ST

MORF

Fig. 3.5.: Bonferroni-Dunn test for MSE

Table 3.6.: Wilcoxon, Nemenyi, and Holm tests for MSE

SVRCC vs. Wilcoxon R+ Wilcoxon R− Wilcoxon p-value Nemenyi p-value Holm p-value

MORF 268.0 32.0 3.2E−4 5.1E−5 6.3E−3

ST 241.0 59.0 7.9E−3 2.7E−3 1.3E−2

MTS 224.0 76.0 3.4E−2 5.0E−4 1.0E−2

MTSC 226.0 74.0 2.9E−2 2.4E−4 7.1E−3

RC 263.0 37.0 6.5E−4 0.0000 5.6E−3

ERC 234.0 66.0 1.5E−2 4.2E−4 8.3E−3

ERCC 224.0 76.0 3.4E−2 1.7E−2 1.7E−2

SVR 262.0 38.0 7.4E−4 6.3E−2 2.5E−2

SVRRC 245.0 55.0 5.3E−3 5.1E−1 5.0E−2

49

3.4.2 Mean Square Error

Table 3.5 shows that our proposed methods perform the best on 15 out of the 24

datasets. In this case, SVRCC also performs the best on 11 versus the 9 that the competing

methods performed better at. The Iman-Davenport statistic, distributed according to the

F-distribution with 9 and 207 degrees of freedom is 6.57, with a p-value of 3.1E−8, implying

statistically significant differences among the MSE results.

Figure 3.5 shows the mean rank values of each algorithm along with the critical difference

value, 2.4236, for α = 0.05. According to the critical difference bar, there are 6 out of 10

algorithms beyond that perform significantly worse than our control algorithm, SVRCC.

According to the Wilcoxon test, shown in Table 3.6, SVRCC is shown to have significantly

better performance over all algorithms with p-value < 0.05. The Nemenyi and Holm tests

show that SVRCC performs significantly better than 6 out of the 9 algorithms with p-values

≤ 5.6E−3 and ≤ 1.7E−2 respectively, and has an exact confidence of 0.95 against all others.

3.4.3 Average Root Mean Square Error

Table 3.7 shows that our proposed methods perform the best on 18 out of the 24 datasets.

In this case, SVRCC performs the best on 15 versus the 6 that the methods compared

performed better at. The Iman-Davenport statistic is 7.6, with a p-value of 1.3E−9, implying

statistically significant differences in the aRMSE results.

Figure 3.6 shows the mean rank values of each algorithm along with the critical difference

value, 2.4236, for α = 0.05. According to the critical difference bar, there are 7 out of 10

algorithms that perform significantly worse than our control algorithm, SVRCC.

According to the Wilcoxon test, shown in Table 3.8, SVRCC is shown to have sig-

nificantly better performance over all algorithms with p-value < 0.01. The Nemenyi test

shows that SVRCC performs significantly better than 7 out of the 9 algorithms with p-value

≤ 5.6E−3, while the stricter Holm test shows that it performs significantly better than 8 out

of the 9 algorithms with p-value ≤ 0.05.

50

Table 3.7.: Average Root Mean Square Error (aRMSE) for MT regressors

Datasets MORF ST MTS MTSC RC ERC ERCC SVR SVRRC SVRCC

Slump 0.6711 0.6652 0.6456 0.6699 0.6787 0.6793 0.6649 0.5561 0.5345 0.5337
Polymer 0.5277 0.5409 0.5042 0.5336 0.5536 0.5803 0.5319 0.4403 0.4062 0.4060
Andro 0.4649 0.5420 0.4414 0.4871 0.5390 0.5317 0.5039 0.4326 0.4061 0.3989
EDM 0.6372 0.6715 0.6705 0.6729 0.6722 0.6704 0.6721 0.6449 0.6411 0.6366
Solar Flare 1 0.9777 0.9274 0.9271 0.9089 0.8921 0.9016 0.9121 0.8856 0.8844 0.8801
Jura 0.5800 0.5686 0.5720 0.5706 0.5726 0.5712 0.5693 0.5794 0.5687 0.5622
Enb 0.1212 0.1166 0.1237 0.1214 0.1272 0.1253 0.1140 0.0981 0.0914 0.0903
Solar Flare 2 0.8725 0.8420 0.8127 0.8305 0.8313 0.8300 0.8304 0.8418 0.8349 0.8345
Wisconsin Cancer 0.9290 0.9163 0.9158 0.9187 0.9153 0.9160 0.9173 0.9422 0.9362 0.9306
California Housing 0.6541 0.6366 0.6889 0.6530 0.7053 0.6632 0.6079 0.6038 0.5859 0.5755
Stock 0.1643 0.1830 0.1774 0.1790 0.1790 0.1777 0.1739 0.1357 0.1329 0.1308
SCPF 0.7113 0.7235 0.7342 0.7255 0.7285 0.7143 0.7227 0.7155 0.7081 0.7048
Puma8NH 0.7855 0.8139 0.8114 0.8307 0.8196 0.8202 0.8203 0.7650 0.7740 0.7671
Friedman 0.9382 0.9203 0.9219 0.9199 0.9219 0.9197 0.9193 0.9203 0.9195 0.9183
Puma32H 0.9395 0.8700 0.8713 0.8778 0.8739 0.8716 0.8727 0.9353 0.9356 0.9331
Water Quality 0.8921 0.9015 0.9041 0.9025 0.9051 0.9030 0.8990 0.9284 0.9293 0.9271
M5SPEC 0.5707 0.5324 0.5761 0.5515 0.5347 0.5339 0.5376 0.2745 0.2744 0.2740
MP5SPEC 0.5315 0.4914 0.5426 0.4947 0.4930 0.4928 0.4928 0.2337 0.2176 0.2177
MP6SPEC 0.5344 0.4939 0.5416 0.4943 0.4982 0.4967 0.4927 0.2627 0.2460 0.2497
ATP7d 0.5216 0.4956 0.4752 0.4765 0.5194 0.5024 0.4824 0.5141 0.5066 0.5018
OES97 0.4652 0.4634 0.4635 0.4622 0.4643 0.4644 0.4627 0.3794 0.3768 0.3749
Osales 0.7190 0.6912 0.6496 0.6615 0.7591 0.6772 0.6515 0.7212 0.7343 0.7121
ATP1d 0.4053 0.3608 0.3587 0.3591 0.3653 0.3562 0.3596 0.3693 0.3638 0.3507
OES10 0.3954 0.3896 0.3897 0.3892 0.3901 0.3903 0.3889 0.3085 0.3039 0.3038

Average 0.6254 0.6149 0.6133 0.6121 0.6225 0.6162 0.6083 0.5620 0.5547 0.5506
Ranks 7.3333 5.7708 5.8125 6.0625 7.6250 6.0208 4.8542 5.0625 3.9167 2.5417

1 2 3 4 5 6 7 8 9 10 11

SVRCC

SVRRC SVR

ERCC

ERC

RCMTSC

MTS
ST

MORF

Fig. 3.6.: Bonferroni-Dunn test for aRMSE

Table 3.8.: Wilcoxon, Nemenyi, and Holm tests for aRMSE

SVRCC vs. Wilcoxon R+ Wilcoxon R− Wilcoxon p-value Nemenyi p-value Holm p-value

MORF 286.0 14.0 1.3E−5 0.0000 6.3E−3

ST 259.0 41.0 1.1E−3 2.2E−4 1.3E−2

MTS 247.0 53.0 4.3E−3 1.8E−5 1.0E−2

MTSC 251.0 49.0 2.8E−3 5.6E−5 7.1E−3

RC 270.0 30.0 2.4E−4 0.0000 5.6E−3

ERC 255.0 45.0 1.8E−3 6.9E−5 8.3E−3

ERCC 246.0 54.0 4.8E−3 8.2E−3 2.5E−2

SVR 296.0 4.00 8.3E−7 3.9E−3 1.7E−2

SVRRC 284.0 16.0 2.0E−5 1.2E−1 5.0E−2

51

Table 3.9.: Average Relative Root Mean Square Error (aRRMSE) for MT regressors

Datasets MORF ST MTS MTSC RC ERC ERCC SVR SVRRC SVRCC

Slump 0.6939 0.6886 0.6690 0.6938 0.7019 0.7022 0.6886 0.5765 0.5545 0.5560
Polymer 0.6159 0.5971 0.5778 0.6493 0.6270 0.6544 0.6131 0.5573 0.5253 0.5116
Andro 0.5097 0.5979 0.5155 0.5633 0.5924 0.5885 0.5666 0.4856 0.4651 0.4455
EDM 0.7337 0.7442 0.7413 0.7446 0.7449 0.7452 0.7443 0.7058 0.7070 0.6978
Solar Flare 1 1.3046 1.1357 1.1168 1.0758 0.9951 1.0457 1.0887 0.9917 0.9455 0.9320
Jura 0.5969 0.5874 0.5906 0.5892 0.5910 0.5896 0.5880 0.5952 0.5764 0.5885
Enb 0.1210 0.1165 0.1231 0.1211 0.1268 0.1250 0.1139 0.0977 0.0910 0.0899
Solar Flare 2 1.4167 1.1503 0.9483 1.0840 1.0092 1.0522 1.0928 1.0385 1.0253 1.0298
Wisconsin Cancer 0.9413 0.9314 0.9308 0.9336 0.9305 0.9313 0.9323 0.9555 0.9483 0.9427
California Housing 0.6611 0.6447 0.6974 0.6630 0.7131 0.6690 0.6146 0.6130 0.5945 0.5852
Stock 0.1653 0.1844 0.1787 0.1803 0.1802 0.1789 0.1752 0.1364 0.1337 0.1388
SCPF 0.8273 0.8348 0.8436 0.8308 0.8263 0.8105 0.8290 0.8164 0.8037 0.8013
Puma8NH 0.7858 0.8142 0.8118 0.8311 0.8199 0.8205 0.8207 0.7655 0.7744 0.7676
Friedman 0.9394 0.9214 0.9231 0.9210 0.9231 0.9209 0.9204 0.9218 0.9208 0.9196
Puma32H 0.9406 0.8713 0.8727 0.8791 0.8752 0.8729 0.8740 0.9364 0.9367 0.9319
Water Quality 0.8994 0.9085 0.9109 0.9093 0.9121 0.9097 0.9057 0.9343 0.9310 0.9045
M5SPEC 0.5910 0.5523 0.5974 0.5671 0.5552 0.5542 0.5558 0.2951 0.2935 0.2925
MP5SPEC 0.5522 0.5120 0.5683 0.5133 0.5145 0.5143 0.5119 0.2484 0.2323 0.2358
MP6SPEC 0.5553 0.5152 0.5686 0.5119 0.5198 0.5187 0.5109 0.2850 0.2669 0.2623
ATP7d 0.5563 0.5308 0.5141 0.5142 0.5558 0.5397 0.5182 0.5455 0.5371 0.5342
OES97 0.5490 0.5230 0.5229 0.5217 0.5239 0.5237 0.5222 0.4641 0.4618 0.4635
Osales 0.7596 0.7471 0.7086 0.7268 0.8318 0.7258 0.7101 0.7924 0.7924 0.7811
ATP1d 0.4173 0.3732 0.3733 0.3712 0.3790 0.3696 0.3721 0.3773 0.3707 0.3775
OES10 0.4518 0.4174 0.4176 0.4171 0.4178 0.4180 0.4166 0.3570 0.3555 0.3538

Average 0.6910 0.6625 0.6551 0.6589 0.6611 0.6575 0.6536 0.6039 0.5935 0.5893
Ranks 7.5000 5.7708 5.9375 6.1667 7.4375 6.3750 4.9792 4.7708 3.2708 2.7917

1 2 3 4 5 6 7 8 9 10 11

SVRCC

SVRRC SVR

ERCC

ERC

RCMTSC

MTS

ST

MORF

Fig. 3.7.: Bonferroni-Dunn test for aRRMSE

Table 3.10.: Wilcoxon, Nemenyi, and Holm tests for aRRMSE

SVRCC vs. Wilcoxon R+ Wilcoxon R− Wilcoxon p-value Nemenyi p-value Holm p-value

MORF 290.0 10.0 5.1E−6 0.0000 5.6E−3

ST 261.0 39.0 8.5E−4 6.5E−4 1.3E−2

MTS 239.0 61.0 9.6E−3 3.2E−3 1.0E−2

MTSC 261.0 39.0 8.5E−4 1.1E−3 8.3E−3

RC 275.0 25.0 1.1E−4 0.0000 6.3E−3

ERC 261.0 39.0 8.5E−4 4.1E−5 7.1E−3

ERCC 254.0 46.0 2.0E−3 1.2E−2 1.7E−2

SVR 291.0 9.00 3.9E−6 2.4E−2 2.5E−2

SVRRC 222.5 77.5 3.8E−2 5.8E−1 5.0E−2

3.4.4 Average Relative Root Mean Square Error

Table 3.9 shows that our proposed methods perform the best on 16 out of the 24 datasets.

In this case, SVRCC performs the best on 11 versus the 6 that the competing methods

52

performed better at. The Iman-Davenport statistic is 8.54, with a p-value of 7.6E−11.

Figure 3.7 shows the mean rank values of each algorithm along with the critical difference

value, 2.4236, for α = 0.05. According to the critical difference bar, there are 6 out of 10

algorithms beyond that perform significantly worse than our control algorithm, SVRCC.

According to the Wilcoxon test, shown in Table 3.10, SVRCC is shown to have sig-

nificantly better performance over all algorithms with p-value < 0.05, and 8 out of the 9

algorithms for p-value < 0.01. The Nemenyi test shows that SVRCC performs significantly

better than 6 out of the 9 algorithms with p-value ≤ 5.6E−3, and the Holm test shows its

performance is significantly better than 8 out of the 9 algorithms with p-value ≤ 0.05.

3.4.5 Run Time

Table 3.11 shows that our proposed methods perform faster on 16 out of the 24 datasets.

In this case, SVR performs the best on 12 versus the 6 of the state-of-the-art methods. The

Iman-Davenport statistic 64.41, with a p-value of 0.0 which implies a statistical confidence

of 100%. Figure 3.8 shows the mean rank values of each algorithm along with the critical

difference value, 2.4236, for α = 0.05. According to the critical difference bar, there are 6 out

of 10 algorithms beyond that perform significantly worse than our control algorithm, SVR.

According to the Wilcoxon test, shown in Table 3.12, SVR is shown to have significantly

better performance over all algorithms with p-value < 0.01. The Nemenyi and Holm tests

show that SVRCC performs significantly better than 6 out of the 9 algorithms and 8 out of

the 9 algorithms with p-value ≤ 5.6E−3 and p-value ≤ 1.6E−2, respectively.

3.4.6 Discussion

Results indicate that our proposed methods perform competitively against the current

contemporary methods, specifically SVRCC which exploits relationships among the targets.

Firstly, they show that using SVR as a base-line method for multi-target chaining causes

a performance improvement in model prediction, compared to other ST base-line models,

53

Table 3.11.: Run Time (seconds) for MT regressors

Datasets MORF ST MTS MTSC RC ERC ERCC SVR SVRRC SVRCC

Slump 38.1 2.6 9.9 15.9 1.8 11.1 50.5 0.6 1.9 0.7
Polymer 7.6 2.7 9.1 15.5 1.9 14.9 80.5 0.5 2.6 0.5
Andro 25.7 4.4 15.0 34.2 3.4 33.2 197.9 1.1 6.2 1.1
EDM 24.8 2.8 9.4 18.1 2.1 5.8 19.0 0.9 1.0 0.9
Solar Flare 1 34.1 3.5 13.6 26.7 2.7 17.7 86.9 2.3 9.3 2.6
Jura 64.3 7.9 31.8 74.3 6.4 43.5 254.2 4.7 18.7 5.3
Enb 71.4 6.6 26.1 63.6 5.4 15.6 69.6 11.3 17.7 15.9
Solar Flare 2 55.4 7.4 30.7 68.0 6.3 42.9 241.5 9.4 53.5 15.6
Wisconsin Cancer 51.4 6.1 21.9 53.7 4.9 14.8 61.6 2.0 2.4 2.0
California Housing 93.0 9.7 34.8 75.9 8.2 21.3 102.0 15.8 25.2 23.6
Stock 93.7 11.7 46.8 96.7 11.0 75.4 427.3 18.5 90.5 26.3
SCPF 66.3 19.3 65.9 176.3 15.0 104.2 734.2 32.8 162.8 48.8
Puma8NH 130.4 29.7 106.7 288.6 27.9 201.6 1227.7 94.1 516.6 177.1
Friedman 79.5 27.0 81.2 258.3 25.0 273.7 2871.6 12.3 322.3 18.8
Puma32H 93.9 68.1 181.0 635.0 87.7 667.9 6087.0 32.2 1018.7 53.1
Water Quality 108.4 93.1 262.1 912.3 127.2 925.4 10993.3 110.2 2567.9 189.5
M5SPEC 89.8 68.9 166.3 604.6 73.7 262.3 3132.1 39.2 546.7 45.1
MP5SPEC 84.5 94.6 221.2 888.3 91.5 557.0 6864.1 49.3 1132.1 58.4
MP6SPEC 90.3 93.4 212.6 871.0 89.1 557.6 6761.3 47.2 1227.1 58.5
ATP7d 70.5 262.6 452.1 2319.8 242.1 1779.2 24373.8 80.0 1897.4 136.5
OES97 83.4 485.3 1146.6 4928.9 499.8 5315.0 58072.1 148.2 3759.1 342.6
Osales 92.0 1094.8 2340.7 8322.2 986.5 11361.2 122265.3 437.0 4830.1 843.6
ATP1d 70.7 272.9 476.5 2568.9 261.9 2138.9 26768.9 95.0 2127.8 174.4
OES10 90.0 738.9 1633.6 6682.9 688.5 7150.8 83533.1 229.1 5419.4 577.1

Average 71.2 142.2 316.5 1250.0 136.2 1316.3 14803.2 61.4 1073.2 117.4
Ranks 5.5 3.71 6.0 8.29 3.0 7.08 9.92 1.88 6.71 2.92

1 2 3 4 5 6 7 8 9 10 11

SVRCC

SVRRC
SVR

ERCC

ERC

RC
MTSCMTS

ST
MORF

Fig. 3.8.: Bonferroni-Dunn test for Run Time

Table 3.12.: Wilcoxon, Nemenyi, and Holm tests for Run Time

SVRCC vs. Wilcoxon R+ Wilcoxon R− Wilcoxon p-value Nemenyi p-value Holm p-value

SVRCC 295.0 5.00 1.2E−6 2.3E−1 5.0E−2

MORF 225.0 75.0 3.2E−2 3.4E−5 1.3E−2

ST 221.5 78.5 4.1E−2 3.6E−2 1.7E−2

MTS 300.0 0.00 1.2E−7 2.0E−6 1.0E−2

MTSC 300.0 0.00 1.2E−7 0.0000 6.3E−3

RC 229.0 71.0 2.3E−2 2.0E−1 2.5E−2

ERC 300.0 0.00 1.2E−7 0.0000 7.1E−3

ERCC 300.0 0.00 1.2E−7 0.0000 5.6E−3

SVRRC 300.0 0.00 1.2E−7 0.0000 8.3E−3

as well as most MT methods. This demonstrates the advantages of using the SVR method

as a base-line for multi-target learning, thus increasing the performance of the ensemble of

regressor chains, SVRRC, compared to ERCC. More importantly, the results highlight the

54

major advantage of capturing and exploiting the targets’ relationships during model training.

Using an ensemble of randomly generated chains does not ensure the targets’ correlations

are fully captured; however, using a maximum correlation chain improves the performance in

terms of quality metrics as well as run time. The run time of SVR was shown to be the fastest,

due to the fact that its complexity is mostly dependent on the number of targets. However,

this method does not consider any of the correlations that might exist among the target

variables, but SVRCC does take them into account and does not have a significant impact

on run time. The most noteworthy finding that highlights advantage of using the base-line

SVR and the maximum correlation method, SVRCC, rather than random chaining as done

in ERCC, are the run time results and their analysis. ERCC had the worst run time across all

datasets, whereas our proposals, SVR and SVRCC, performed the fastest. This emphasizes

the advantage of using a single chain rather an ensemble of random chains, especially when

the single chain is ordered in the direction of the targets maximum correlation.

3.5 Conclusions

This contribution proposed three novel methods for solving multi-target regression prob-

lems. The first method takes a problem transformation approach, which generates m ST

models, each trained independently. This base-line approach was shown to perform the best

in terms of run time, but its drawback is that it does not take the possible correlations

between the target variables into account during training. The second implements SVR

as an ensemble model of randomly generated chains, inspired by the classification method

ERCC. This was done to investigate the effects of exploiting correlations among the target

variables during model training. Due to the random nature of this method, capturing target

correlations is not guaranteed. The third proposal, SVRCC, generates a single chain that

is ordered in the direction of the targets’ maximum correlation, ensuring the correlations

among targets are taken into account within the learning process.

55

The experimental study compared the proposed methods’ performances to 7 popular,

contemporary methods on 24 MT regression datasets. Firstly, the results show the superior

performance of using the SVR method as a base-line model, rather than regression trees

as used in MORF. The results for SVRRC show an increase in performance when random

chaining is used to develop an ensemble model. This indicates the importance of the rela-

tionship among the target variables during training. Finally, the results show the superiority

of using the SVRCC method, which was ranked the best in all quality metrics and second

best in terms of run time. SVRCC performed better than the single-target SVR model and

the randomly chained ensemble model SVRRC, showing that the targets’ maximum corre-

lation does positively contribute toward model training. The statistical analysis supports

and shows the significance of the results obtained by our experiments. They demonstrated

that statistically significant differences exist between the proposed algorithms against the

methods compared. SVRCCs competitive performance, as well as speed, shows that it is a

powerful learning algorithm for multi-target problems. The research outcomes of this chapter

have been published in [130].

56

CHAPTER 4

MULTI-INSTANCE SVM USING BAG-REPRESENTATIVES

This chapter proposes a novel support vector machine (SVM) formulation under the multiple-

instance learning (MIL) paradigm. It also presents a novel algorithm and bag representative

selector that train the SVM using bag-level information, named Multi-Instance Represen-

tative Support Vector Machine (MIRSVM). The contribution is able to identify instances

that highly impact classification, i.e. the bag-representatives, for both positive and negative

bags, while finding the optimal class separation hyperplane. Unlike other multi-instance

SVM methods, this approach eliminates possible class imbalance issues by allowing both

positive and negative bags to have at most one representative, which constitute as the most

contributing instances to the model. The experimental study evaluates and compares the

performance of this proposal against 11 popular and widely used multi-instance methods over

15 datasets, and the results are validated through non-parametric statistical analysis. The

results indicate that bag-based learners outperform the instance-based and wrapper meth-

ods, and emphasize this proposal’s overall superior performance against other multi-instance

SVM models.

4.1 Multi-Instance Classification Background

This section defines the notation that will be used throughout this chapter and reviews

related works pertaining to multiple-instance learning, specifically the concepts of instance-

based and bag-based learners are discussed and compared, along with algorithms within

those paradigms.

57

Table 4.1.: Summary of Multiple-Instance Learning Notation

Definition Notation

Number of Bags n
Number of Instances m
Number of Input Attributes d
Set of Bags B = {B1, . . . , Bn}
Bag Index Set I ∈ Zn+
Input Space X ∈ Rm×d
Bag Labels Y ∈ {−1, 1}n
Input Instance i from Bag I xi ∈ xi = (xi1, . . . , xid), ∀i ∈ {1, . . . , n}, i ∈ I
Unknown Individual Instance Label i yi ∈ {−1, 1}
Bag I BI = {xi | ∀i ∈ I}

Full Multi-Instance Training Dataset D = {(B1, Y1), . . . , (Bn, Yn)}

4.1.1 Notation

Let D be a training dataset of n bags. Let Y ∈ D be a vector of n labels corresponding

to each bag, having a domain of Y ∈ {−1, 1}n. Let X ∈ D be a matrix consisting of d input

variables and m instances, xi ∈ X, ∀i ∈ {1, . . . ,m} , having a domain of X ∈ Rm×d. Let

B be the set of bags which contain |BI | number of instances, sometimes of different size and

usually non-overlapping, such that BI = {x1, . . . ,x|BI |} for index set I ∈ {1, . . . , n}.

4.1.2 Multi-Instance Classification Methods

The difference between MIL and traditional learning lies in the nature of the data. In the

traditional binary classification setting, the goal is to learn a model that maps input samples

to labels, f : Rm×d → Y m ∈ {−1, +1}. In the multi-instance setting, samples are called

bags and each bag contains one or more input instances and is assigned a single bag-level

label. Input instances, {x1, x2, . . . , xm}, are grouped into bags with unique identifiers,

B = {B1, B2, . . . , Bn | BI = {xi | ∀i ∈ I}, ∀I ∈ {1, . . . , n}} and assigned a label, YI . The

individual instance labels within a bag are unknown. Traditionally, MIL has focused on

binary classification problems, however, there are cases where the number of classes can be

larger. The scope of this chapter will focus on binary multi-instance classification.

58

Using the training dataset D = {(B1, Y1), . . . , (Bn, Yn)}, the goal is to train a classifier

that predicts the label of an unseen bag, f(Bn+1) → Yn+1 [6]. In order to build a classifier

without any knowledge of the individual training instance labels, Dietterich et. al. [58]

proposed the standard MI (SMI) hypothesis, shown in Equation (4.1), which states that a

bag is labeled positive if and only if at least one of the instances in the bag is positive, and

is labeled negative otherwise.

YI =


+1 if ∃ yi = +1, ∀i ∈ I

−1 otherwise.

(4.1)

This implies that individual instance labels yi exist, but are not known (for positive

bags) during training. Equation (4.1) can also be rewritten as Equation (4.2) for simplicity:

YI = argmax∀i∈I yi. (4.2)

In addition to the SMI assumption, alternative MI assumptions have been proposed

to date [70]. A recent review [6] describing the taxonomy of multi-instance classification

presents various methods and algorithms used in literature, which are categorized based on

their approach to handling the MI input space. Instance-based classifiers that fall under the

instance-space paradigm, aim to separate instances in positive bags from those in negative

ones. Bag-level classifiers (bag-space paradigm) treat each bag as a whole entity, implicitly

extracting information from each bag in order to accurately predict their labels. Methods

that fall under the embedded-space paradigm map the input bags to a single feature vector

that explicitly encapsulates all the relevant information contained within each bag.

Instance-based methods that follow the SMI assumption attempt to identify desirable

instance properties that make a bag positive. A simple and natural way of addressing this

type of learning problem is to assume that each instance in a bag has the same label as the

bag itself. After that, a single-instance classifier can be trained on the transformed dataset,

and finally, the SMI assumption can be applied over the predicted instance labels of unseen

59

bags [92]. Methods that employ this type of approach are called Wrapper methods; they

act as an interface between the instance and bag levels. One algorithm that employs this

approach is called Simple-MI [62]. Simple-MI represents each bag with the mean vector of

the instances within it. Another example is MIWrapper [71], which introduces weights to

treat instances from different bags differently. The major disadvantage of wrapper techniques

is that they assume the distribution the instances in positive bags is positive, when it may

not be, thus imposing noise over the positive class.

One traditional instance-based method that takes a different approach is the Axis-

Parallel Rectangle (APR) [58], which trains a model that assigns a positive label to an

instance if it belongs to an axis-parallel rectangle in feature space, and assigns a negative

label otherwise. The APR method is optimized by maximizing the number of positive bags in

the training set containing at least one instance in the APR, while concurrently maximizing

the number of negative bags that do not contain any instance in the APR.

Another similar and popular approach that falls under maximum likelihood-based meth-

ods, is the Diverse Density (DD) [126] framework. The DD metric is maximized for instances

in feature space that are near at least one instance in a positive bag and far from all instances

in negative bags. In the Expectation-Maximization Diverse Density (EM-DD) algorithm,

Zhang and Goldman [193] propose a similar framework that iteratively maximizes the DD

measure. Auer and Ortner [9] present a boosting approach that uses balls centered around

positive bags to solve the MI problem called Multi-Instance Optimal Ball (MIOptimalBall).

This approach is similar to that of APR and DD, except that Auer and Ortner [9] propose

computing optimal balls per positive bags. A major challenge affecting these methods is

that the distributions of the positive and negative bags affect their performance. Methods

based on the DD metric [44, 49, 50] assume the positive instances form a cluster, which may

not be the case. Alternatively, Fu et al.[75] models the distribution of negative bags with

Gaussian kernels, which can prove difficult when the quantity of data is limited.

60

As mentioned previously in brief, the classical method of boosting [72, 147] has been

adapted to a multi-instance instance-based algorithm. For example, Viola et al. [191] pro-

posed an adaptation of boosting to the multi-instance paradigm based on the standard

MI assumption, named MILBoost. Later, inspired by the MILBoost [191] and Online-

ADABoost [134] algorithms, Babenko et al. [10] developed a novel online MI boosting method

which lead to a robust and stable model in the area of object tracking. All the works men-

tioned, including many other such as [140, 183], have positively contributed and inspired

many approaches in the area of visual detection and tracking.

An extension of traditional single-instance k-nearest neighbors method (k-NN) was pro-

posed by Wang and Zucker [176] to be applied to the bag-level, named CitationKNN. This

method uses a distance function between bags in order to determine bag similarities. Not

only are the set of closest bags to a single bag considered, but also how many bags is the

single bag closest to. A voting scheme is then used to determine the bag class labels. Note,

any bag-based distance function can be used by CitationKNN.

Rule based methods have also been adapted to the multi-instance learning environment.

Zafra et al. [188] proposed a novel multi-objective multi-instance genetic programming al-

gorithm (MOG3P-MI) for rule-based systems, which optimizes two objectives: sensitivity

and specificity. This evolutionary algorithm was then implemented in a distributed GPU

environment in [42] to further enhance its performance over large-dimensional MIL problems.

Blockeel et al. [22] introduced the Multi-Instance Tree Inducer (MITI), based on the

standard MI assumption, which uses decision trees as a heuristic to solve the MI problem.

This approach aims to identify whether an instance within a bag is truly positive and elim-

inate false positives within the same bag. The disadvantage of this approach stems from

removing instances considered as false positives from partially grown trees without updating

the existing tree structure. Bjerring and Frank [19] then enhanced this approach by creating

the method Multi-Instance Rule Induction (MIRI). The algorithm aims to eliminate any

possibility of a suboptimal split because the tree is discarded and regrown.

61

The MI adaptation of the SVM presents two contexts for solving the problem: the

instance-level and the bag-level. The first tries to identify instances, either all within a bag

or just key instances, that help find the optimal separating hyperplane between positive and

negative bags. The latter uses kernels defined over whole bags to optimize the margin [63].

Andrews et. al. [7] proposed a mixed-integer quadratic program that solves the MI

problem at an instance-level, using a support vector machine, named MISVM, that can be

solved heuristically. Rather than maximizing the margin of separability between instances

of different classes, this instance-based method maximizes the margin between bags. It

tries to identify the key instance from each positive bag that makes the bag positive by

assuming it has the highest margin value. Instances from positive bags are selected as

bag-representatives, and the algorithm iteratively creates a classifier that separates those

representatives from all instances from the negative bags. Using bag-representatives from

one class and all instances from the other is an example of an approach that combines rules

from the SMI assumption and the collective assumption. A disadvantage of this approach

stems from the assumption that all instances within positive bags are also positive, which is

an implicit step in the initialization of MISVM. Andrews et. al. [7] also proposed a second

mixed-integer instance-level approach, named mi-SVM, which does not discard the negative

instances of the positive bags. It rather tries to identify the instances within positive bags

that are negative and utilize them in the construction of the negative margin. The main

disadvantage of these approaches is that they create an imbalanced class problem that favors

the negative class, resulting in a biased classifier.

Tomar and Agarwal [165] proposed a bag-level multi-instance SVM based on Twin Sup-

port Vector Machine, named MIL-TWSVM. Rather than constructing a single hyperplane,

as done by the traditional SVM, the Twin SVM constructs two nonparallel hyperplanes. In

this implementation, each bag is transformed into a single vector of dissimilarities to other

bags, using various distance metrics.

62

Asymmetric SVM (ASVM), presented by Yang et al. [91], was designed to use an asym-

metric loss function under the SMI assumption. This approach was based on the idea that

the cost of misclassification is different for positive and negative bags. For example, a false

negative instance in a positive bag would not necessarily introduce an error on the bag label,

assuming there are many positive instances within the bag. However, a false positive in-

stance in a negative bag would definitely lead to an error. Using rules such as these, ASVM

aims to minimize false positives, while ensuring all negative instances are on the negative

side of the hyperplane.

The approach presented by Cheung et al. [51] presented a loss function that takes the cost

associated with bag labels and the cost (under the SMI assumption) between prediction of

beach bag and its instances into account. They also presented an SVM regularization scheme

as well which, rather than using a heuristic method, used concave-convex optimization,

ensuring local-optimum convergence.

An example of using the approach of a bag-level kernel would coincidentally be one of

the first bag-level approaches to the multi-instance SVM problem, proposed by Gärtner et.

al. [84]. A bag-level kernel determines the similarity between two bags in a higher dimensional

space. Blaschko et. al. [20] proposed conformal kernels which manipulate each attribute’s

dimension based on its importance, without affecting the angles between vectors in the

transformed space. These type of bag level kernels transform the bags into a single-instance

representation which enables standard SVMs to be directly applied to multi-instance data.

Unlike the bag-based methods mentioned previously, which have a the SMI assumption

embedded in their design, mapping-based algorithms do not assume a specific relationship

exists between the labels of each bag and its instances. Rather, the relationship is learned

from the data. An example of such methods is the Two-Level Classifier (TLC) [178]. Another

example, which includes the use of kernels in the multi-instance bag-space setting, would be

approach taken by Zhou et al. [196]. The basic idea behind their method is to treat instances

in an non-i.i.d. manner, thus exploiting relationships among instances using a graph kernel.

63

For most of the methods described above, implicit or explicit assumptions have been

made about the distribution of the data. Selecting a method that is robust for a problem

such as MIL can be difficult when little is known about the nature of the data, especially

considering the unknown distribution of the instances within bags [6]. The proposed method,

MIRSVM, is a general method that uses support vector machines to design a MIL model

without making prior assumptions about the data. Classifiers of this type are known to

provide better generalization capabilities and performance, as well as sparser models.

4.2 MIRSVM: A Novel SVM for Multi-Instance Classification

MIRSVM is based on the idea of selecting representative instances from both positive

and negative bags which are used to find an unbiased, optimal separating hyperplane. A

representative is iteratively chosen from each bag, and a new hyperplane is formed according

to the representatives until they converge. Based on the SMI hypothesis, only one instance

in a bag is required to be positive for the bag to adopt a positive label. Due to the unknown

distribution of instances within positive bags, MIRSVM is designed to give preference to

negative bags during training, because their distribution is known, i.e. all instances are

guaranteed to be negative. This is evident during the representative selection process, by

taking the index of the maximum output value within each bag based on the current hyper-

plane using the following rule, sI = argmaxi∈I(〈w, xi〉+ b), ∀I ∈ {1, . . . , n}. In other words,

the most positive instance is chosen from each positive bag and the least negative instance is

chosen from each negative bag (instances with the largest output value based on the current

hyperplane), pushing the decision boundary towards the positive bags.

Equation (4.3) presents the primal MIRSVM optimization problem:

min
w,b,ξ

1

2
||w||2 + C

∑
I

ξI , (4.3)

s.t. YI(〈w,xsI 〉+ b) ≥ 1− ξI , ∀I ∈ {1, . . . , n} (4.3a)

ξI ≥ 0, ∀I ∈ {1, . . . , n}, (4.3b)

64

where SI is the set of the bag representatives’ indices and xsI is the instance representative

of bag BI . Note the variables in MIRSVMs formulation are the similar to those of the

traditional SVM, except they are now representing each bag as an instance. Solving the

optimization problem given in Equation (4.3) using a quadratic programming solver is a

computationally expensive task due to the number of constraints, which scales by the number

of bags n, as well as the calculation of the inner product between two d-dimensional vectors

in constraint (4.3a). The proposed solution for these problems was deriving and solving the

dual of the optimization problem given by Equation (4.3).

The dual can be formed by taking the Lagrangian of (4.3), given by Equation (4.4),

where α and β are the non-negative Lagrange multipliers.

L (w, b, ξ,α,β) =
1

2

d∑
j=1

w2
j + C

∑
I

ξI −
∑
I

βIξI −
∑
I

αI

(
YI

(
d∑
j=1

wjxsIj + b

)
− 1 + ξI

)
(4.4)

At optimality [33], 5w,b,ξL(w, b, ξ,α,β) = 0 and the following conditions are met:

∂L
∂wj

: wj =
∑
I

αI YI xsI j, ∀j ∈ {1, . . . , d} (4.5)

∂L
∂b

:
∑
I

αIYI = 0, (4.6)

∂L
∂ξI

: αI + βI = C, ∀I ∈ {1, . . . , n} (4.7)

and the KKT complementary conditions below,

αI(YI(〈w, xsI 〉+ b)− 1 + ξI) = 0, ∀I ∈ {1, . . . , n} (4.8)

βIξI = (C − αI)ξI = 0, ∀I ∈ {1, . . . , n}. (4.9)

65

At the optimal solution and due to the KKT conditions 4.8 and 4.9, the dual Lagrangian

becomes in terms of α, and the dual MIRSVM formulation becomes the following:

max
α

∑
I

αI −
1

2

∑
I

∑
K∈I

d∑
j=1

αIαKYIYKxsIjxsKj (4.10)

s.t.
∑
I

αIYI = 0 (4.10a)

0 ≤ αI ≤ C, ∀I ∈ {1, . . . , n}, (4.10b)

where sI is computed for each bag, as shown in Equation (4.11):

sI = argmax
i∈I

(
∑
K∈I

d∑
j=1

αKYKxsKjxij + b), ∀I ∈ {1, . . . , n}. (4.11)

Equations (4.8) and (4.9) imply three possible solutions for αI values:

1. If αI = 0 and ξI = 0, then the instance is correctly classified and outside the margin.

2. If 0 < αI < C, then, from the complementary conditions, YI(〈w,xsI 〉+ b)− 1 + ξI = 0

and ξI = 0. Thus YI(〈w,xsI 〉+ b) = 1, and the instance is a support vector. Support

vectors with 0 < αI < C are called unbounded support vectors and lie on the margins.

3. If αI = C, then there is no restriction for ξI > 0. This also indicates that the instance is

a support vector, but one that is bounded. If 0 ≤ ξI < 1, then the instance is correctly

classified, and is misclassified if ξ ≥ 1.

The dual is then kernelized by replacing the inner product of samples in feature space

with their corresponding kernel value, K (xsI ,xsK). The dual function is now written as:

max
α

∑
I

αI −
1

2

∑
I

∑
K∈I

αIαKYIYKK (xsI ,xsK) (4.12)

s.t.
∑
I

αIYI = 0 (4.12a)

0 ≤ αI ≤ C, ∀I ∈ {1, . . . , n}. (4.12b)

66

One of the biggest advantages of the dual SVM formulation is the sparseness of the

resulting model. This is because support vectors, instances that have their corresponding

αI 6= 0, are only considered when forming the decision boundary. MIRSVM uses a Gaussian

RBF kernel, given by Equation (4.13), where σ is the Gaussian shape parameter.

K(xi,xj) = e−
||xi−xj ||

2

2σ2 (4.13)

To evaluate the output vector, oI , of bag I using the kernel, the following equation is

used, where BI are the instances of bag I, XS are the optimal bag representatives, and YS

are the representative bag labels.

oI = K(BI ,XS) ∗ (α · YS) + b (4.14)

The bias term b is calculated as shown in Equation (4.15), where sv is the vector of

support vector indices and nsv is the number of support vectors [96].

b =
1

nsv

∑
sv

Ysv −K(Xsv,Xsv) ∗ (αsv · Ysv) (4.15)

Algorithm 4.1 shows the procedure for training the multi-instance representative SVM

classifier and obtaining the optimal representatives from each bag. During training, the

representatives, S, are first initialized by randomly selecting an instance from each bag.

A hyperplane is then obtained using the representative instances, and new optimal rep-

resentatives are found with respect to the current hyperplane, by using the rule given in

Equation (4.11). At each step, the previous values in S are stored in Sold. The training

procedure ends when the bag representatives stop changing from one iteration to the next

(S = Sold). Examples of the convergence of bag-representatives are shown in Figure 4.2.

During the testing procedure, each bag produces an output vector based on the hyperplane

found in the training procedure. The bag label is then assigned by taking the sign of the

output vector’s maximum value, following the SMI assumption.

67

This formulation is designed to utilize and select representatives from positive and neg-

ative bags, unlike MISVM, which only optimizes over representatives from positive bags,

while flattening the negative bag instances. MISVM allows multiple representatives to be

chosen from negative bags and limits positive bag-representatives to be one, while MIRSVM

allows for balanced bag-representative selection, where each bag is allowed one. MISVM

also uses a wrapper method to initialize the positive bag-representatives by taking the mean

vector of the instances within each positive bag. This is an implicit assumption that the

Initialize S
randomly

Train SVM
using QP

solver over
S, set
Sold = S

Find optimal
representa-
tives, S, for
the current
hyperplane

while S
has not

changed,
S 6= Sold

return
α, b,S

yes

no

Fig. 4.1.: A summary of the steps performed by MIRSVM. The representatives are first randomly
initialized and continuously updated according to the current hyperplane. Upon completion, the
model is returned along with the optimal bag-representatives.

Algorithm 4.1 Multi-Instance Representative SVM (MIRSVM)

Input: Training dataset D, SVM Parameters C and σ
Output: SVM model parameters α and b, Bag Representative IDs S
1: for I ∈ {1, . . . , n} do
2: SI ← rand (|BI |, 1, 1) . Assign each bag a random instance
3: end for
4: while S 6= Sold do
5: Sold ← S
6: XS ←X(S), YS ← Y (S) . Initialize the representative dataset
7: G← (YS × YS) ·K (XS , XS , σ) . Build Gram matrix
8: α← quadprog (G,−1n,YS ,0

n,0n,Cn) . Solve QP Problem
9: sv ← find (0 < α ≤ C) . Get the support vector indices
10: nsv ← count (0 < α ≤ C) . Get the number of support vectors
11: b← 1

nsv

∑nsv
i=1 (Ysv −Gsv ∗ (αsv · Ysv)) . Calculate the bias term

12: for I ∈ {1, . . . , n} do
13: GI ← (YI × YS) ·K (BI , XS , σ)
14: SI ← argmaxi∈I (GI ∗α+ b) . Select optimal bag-representatives
15: end for
16: end while

68

Fig. 4.2.: Bag representative convergence plots on 9 datasets. The blue line shows the number of
bag representatives that are equal from one iteration to the next. The red dashed line represents
the total number of bags.

instances within the positive bags are all positive, whereas MIRSVM’s initialization proce-

dure selects an instance from all bags at random, ensuring no noise is added by any wrapper

techniques during initialization and no assumptions are made about the instances. Due to

the constraints on the representatives, MIRSVM produces sparser models while MISVM has

the freedom to select as many negative support vectors as it needs and restricts the support

vectors chosen from positive bags to be one. Figure 4.3 shows the decision boundaries pro-

duced by MIRSVM and MISVM to highlight the differences in their solutions. As Figure 4.3

shows, MISVM produces a larger number of support vectors from the negative bags, which

greatly influences the final decision boundary in favor of the negative class.

69

1 2 3 4 5 6 7 8

2

3

4

5

6

7

instance in positive bag

instance in negative bag

decision boundary

support vectors

positive margin

negative margin

1 2 3 4 5 6 7 8

2

3

4

5

6

7

instance in positive bag

instance in negative bag

decision boundary

support vectors

positive margin

negative margin

Fig. 4.3.: Difference between MIRSVM and MISVM on a random 2-dimensional toy dataset. Note
the differing number of support vectors produced by the two methods. MIRSVM has 6, one for
each bag, and MISVM has 29. Also note the smoother representation of the data distribution given
by MIRSVM’s decision boundary, unlike MISVM whose decision boundary was greatly influenced
by the larger number of support vectors belonging to the negative class with respect to the only 2
positive support vectors.

4.3 Experimental Environment

This section presents the experimental setup and comparison of our contribution, as

well as 11 other widely used methods on 15 different benchmark datasets. The main aim

of the experiments is to compare our contribution to other multi-instance support vector

machines, contemporary multi-instance learners, and ensemble methods.

Table 4.2 presents a summary of the 15 datasets used throughout the experiments, where

the number of attributes, bags, and total number of instances are shown. The datasets were

obtained from the Weka1 [88] and KEEL2 [3] dataset repositories.

The experimental environment was designed to test the difference in performance of

the proposed method against 11 competing algorithms, contrasting instance-level, bag-level,

and ensemble methods. Instance-level methods include MIOptimalBall, MIBoost, MISVM,

MIDD, and MIWrapper. Bag-level methods include MISMO, SimpleMI, miGraph, and TLC.

1http://www.cs.waikato.ac.nz/ml/weka
2http://sci2s.ugr.es/keel/datasets.php

70

Table 4.2.: Multi-Instance (MI) Classification datasets

Dataset Attributes Positive Bags Negative Bags Total Instances Avg. Bag Size

Suramin 20 7 6 13 2898 222.92
EastWest 24 10 10 20 213 10.65
WestEast 24 10 10 20 213 10.65
Musk1 166 47 45 92 476 5.17
Musk2 166 39 62 101 6728 66.61
Webmining 5863 21 92 113 3423 30.29
Mutagenesis-atoms 10 125 63 188 1618 8.61
Mutagenesis-bonds 16 125 63 188 4081 21.71
Mutagenesis-chains 24 125 63 188 5424 28.85
TRX 8 25 168 193 26611 137.88
Elephant 230 100 100 200 1391 6.96
Fox 230 100 100 200 1320 6.60
Tiger 230 100 100 200 1188 5.94
Component 200 423 2707 3130 36894 11.79
Function 200 443 4799 5242 55536 10.59

The ensemble-based bag-space methods, Bagging and Stacking, were also used. The base

algorithms selected for the ensembles Bagging and Stacking were TLC, and TLC and Sim-

pleMI, respectively. These algorithms were chosen because they have shown considerable

performance in learning multi-instance models, while also having their frameworks readily

available for reproducing their results through MILK, the Multi-Instance Learning Kit3 [186],

used in conjunction with the Weka framework. Experiments were run on an Intel i7-6700k

CPU with 32GB RAM. MIRSVM was implemented in MATLAB while the referenced al-

gorithms are available in the Java implementation of Weka with the exception of miGraph

which was made available by Zhou et al.4 and tested in MATLAB.

We have compared the models trained on the different hyperparameters using the cross-

validation (CV) procedure which ensures that the models performances are accurately as-

sessed and the model built is not biased towards the full dataset. The tuning of the model

includes finding the best penalty parameter, C, as well as the best shape parameter for the

Gaussian radial basis function kernel, σ. The best hyperparameters were chosen from the

3http://www.cs.waikato.ac.nz/ml/milk
4http://lamda.nju.edu.cn/code miGraph.ashx

71

following 6× 6 possible combination runs, shown in Equations (4.16a) and (4.16b), referred

to as (4.16).

C ∈{0.1, 1, 10, 100, 1000, 10000} (4.16a)

σ ∈{0.1, 0.5, 1, 2, 5, 10} (4.16b)

These parameters were also used for the compared SVM methods. This was done in order

to keep the experimental environment controlled and ensure fair evaluation of the multi-

instance SVM algorithms. The parameters for the referenced algorithms used throughout

the experiments were those specified by their authors.

4.4 Results & Statistical Analysis

The classification performance was measured using five metrics: Accuracy (4.17a), Pre-

cision (4.17b), Recall (4.17c), Cohen’s kappa rate (4.17d), and Area under ROC curve

(AUC) (4.17e). The Precision and Recall measures were reported because Accuracy alone

can be misleading when classes are imbalanced, as is the case with the component and func-

tion datasets, which respectively have six and ten times as many negative bags than positive.

Cohen’s Kappa Rate and the AUC measures are used as complementary measures in order

to evaluate the algorithms comprehensively. Cohen’s kappa rate, shown in Equation (4.17d),

evaluates classifier merit according to the class distribution and ranges between -1 (full dis-

agreement), 0 (random classification), and 1 (full agreement). The AUC metric highlights

the trade-off between the true positive rate, or recall, and the false positive rate, as shown

in Equation (4.17e). The values of the true positive (TP), true negative (TN), false positive

(FP), and false negative samples (FN) were first collected for each of the classifiers, then

the metrics were computed using the equations shown in (4.17) on the n′ bags of the test

data, where n′ = TP +FP + TN +FN . The run times (training and testing times) of each

algorithm are also reported to analyze the scalability and speed of each of the algorithms

across differently sized datasets.

72

The results for the following are shown in Tables 4.3, 4.5, 4.7, 4.9, 4.11, and 4.13.

Accuracy
TP + TN

n′
(4.17a)

Precision
TP

TP + FP
(4.17b)

Recall
TP

TP + FN
(4.17c)

Cohen’s Kappa Rate
n′ − (TP + FN) ∗ (TP + FP)

n′

1− (TP + FN) ∗ (TP + FP)

n′

(4.17d)

Area Under ROC Curve
1 +

TP

TP + FN
− FP

FP + TN
2

(4.17e)

In order to analyze the performances of the multiple models, non-parametric statis-

tical tests are used to validate the experimental results obtained. The Iman-Davenport

non-parametric test is run to investigate whether significant differences exist among the per-

formance of the algorithms by ranking them over the datasets used, using the Friedman test.

The algorithm ranks for each metric in Equations (4.17) are presented in the last row of the

results tables, and the lowest (best) rank value is typeset in bold. Table 4.14 contains the

ranks and meta-rank of all methods, which helps determine and visualize the best performing

algorithms across all datasets and metrics.

After the Iman-Davenport test indicates significant differences, the Bonferroni-Dunn

post-hoc test [65] is then used to find where they occur between algorithms by assuming

the classifiers’ performances are different by at least some critical value. Below each result

table, a figure highlighting the critical distance (in gray), from the best ranking algorithm

to the rest, is shown. The algorithms to the right of the critical distance bar perform

statistically significantly worse than the control algorithm, MIRSVM. Figures 4.4, 4.5, 4.6,

4.7, 4.8, 4.9 show the results of the Bonferroni-Dunn post-hoc procedure over the metrics

in (4.17), as well as the meta-rank results in Table 4.14. The Holm (multiple) and Wilcoxon

73

(pairwise) rank-sum post-hoc tests [94] were then run for each of the metrics to compute

multiple and pairwise comparisons between the proposed algorithm and the other methods

compared, investigating whether statistical differences exist among the algorithms’ results.

Tables 4.4, 4.6, 4.8, 4.10, and 4.12 show the p-values for the Holm test for α = 0.05, and the

rank-sums and adjusted p-values for the Wilcoxon test.

4.4.1 Accuracy

The results for accuracy indicate that the bag-based and ensemble learners perform

better than the instance-based and wrapper methods. MIRSVM achieves the best accuracy

over 5 of the 15 datasets with a competitive average against miGraph, Bagging, Stacking, and

TLC. Note that MIRSVM performs better than MISVM for all datasets, indicating that using

representatives from each bag and limiting the number of support vectors per negative bag

improves the classification performance. The instance-level classifiers and wrapper methods,

Table 4.3.: Accuracy for MI classifiers

Datasets MIRSVM miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

suramin 0.8000 0.8462 0.5000 0.7250 0.4250 0.5000 0.7250 0.5000 0.5000 0.6000 0.6650 0.4615
eastWest 0.8000 0.7000 0.5000 0.7250 0.6125 0.5000 0.7125 0.5625 0.5000 0.6000 0.6000 0.4500
westEast 0.7500 0.7500 0.5000 0.3750 0.4500 0.5000 0.7375 0.4125 0.5000 0.5625 0.9649 0.6375
musk1 0.9022 0.8152 0.5109 0.7717 0.8804 0.5109 0.7826 0.7609 0.5109 0.8587 0.8142 0.8587
musk2 0.8218 0.7426 0.6139 0.7723 0.7228 0.6139 0.7030 0.7129 0.6139 0.6238 0.8756 0.6733
webmining 0.8500 0.8142 0.8142 0.7699 0.8142 0.8142 0.8407 0.6903 0.8142 0.8142 0.9358 0.8053
trx 0.8860 0.8964 0.8705 0.9016 0.8808 0.8705 0.8705 0.8705 0.8705 0.8756 0.6450 0.8860
mutagenesis-atoms 0.7714 0.7606 0.6649 0.6436 0.7074 0.6649 0.6915 0.6649 0.6649 0.7766 0.7766 0.7606
mutagenesis-bonds 0.8252 0.7872 0.6649 0.6915 0.7713 0.6649 0.7979 0.6649 0.6649 0.8351 0.8351 0.8564
mutagenesis-chains 0.8411 0.7926 0.6649 0.6702 0.7766 0.6649 0.8351 0.6649 0.6649 0.8404 0.8404 0.8351
tiger 0.7750 0.7950 0.5000 0.5000 0.7100 0.5000 0.7200 0.7550 0.5000 0.6650 0.8000 0.7250
elephant 0.8300 0.8300 0.5000 0.5000 0.7900 0.5000 0.8100 0.8000 0.5000 0.8000 0.5625 0.8250
fox 0.6550 0.6300 0.5000 0.5000 0.5800 0.5000 0.5250 0.4750 0.5000 0.6450 0.8587 0.6500
component 0.9366 0.9153 0.8649 0.8696 0.8780 0.8649 0.8968 0.8703 0.8649 0.9358 0.6000 0.9355
function 0.9523 0.9405 0.9155 0.9138 0.9193 0.9155 0.9376 0.9195 0.9155 0.9649 0.6238 0.9647

Average 0.8264 0.8010 0.6390 0.6886 0.7279 0.6390 0.7724 0.6883 0.6390 0.7598 0.7598 0.7550
Rank 2.2000 3.8667 9.6000 7.8667 6.5667 9.6000 5.3333 8.5667 9.6000 4.7000 4.8667 5.2333

1 2 3 4 5 6 7 8 9 10 11

MIRSVM

miGraph

MIBoostMIOptimalBall

MIDD MIWrapperMISMO MISVM

SimpleMI

TLC

Bagging Stacking

Fig. 4.4.: Bonferroni-Dunn test for Accuracy

Table 4.4.: Holm and Wilcoxon tests for Accuracy
MIRSVM vs. miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

Holm p-value 0.0500 0.0045 0.0071 0.0083 0.0050 0.0100 0.0063 0.0056 0.0250 0.0167 0.0125

Wilcoxon p-value 0.0279 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0067 0.3028 0.0103
Wilcoxon R+ 98.500 120.00 119.00 120.00 120.00 120.00 120.00 120.00 106.00 79.000 104.00
Wilcoxon R− 21.500 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 14.000 41.000 16.000

74

such as MIBoost, MIWrapper, and SimpleMI perform the worst. This behavior emphasizes

the importance of not making prior assumptions about the positive bags’ distributions.

Figure 4.4 and Table 3.4 show the results for the statistical analysis on the accuracy

results. The algorithms with ranking higher than 5.63 (MIRSVM rank + Bonferroni-Dunn

critical value), to the right of the gray bar in Figure 4.4, perform statistically worse than

MIRSVM. Table 3.4 shows the p-values of the Holm and Wilcoxon tests and their results com-

plement one another. Holm’s procedure rejects those hypotheses having a p-value ≤ 0.01,

thus indicating that MIRSVM performs significantly better than all methods except mi-

Graph, Bagging, Stacking, and TLC. The Wilcoxon p-values show significant differences

exist among all algorithms except miGraph, Bagging, and Stacking. They also show that

MIRSVM has significantly better accuracy than MIBoost, MIOptimalBall, MIDD, MIWrap-

per, MISMO, MISVM, and SimpleMI, each having respectively small p-values, highlighting

MIRSVM’s superior classification accuracy.

4.4.2 Precision & Recall

Precision and recall are conflicting metrics that must be evaluated together in order

to observe their behavior, since they are both used to measure relevance. The results for

MIWrapper and SimpleMI indicate that they are unstable classifiers, exhibiting extreme vari-

ance in behavior, making them unsuitable for real-world applications. It is also interesting to

analyze the performance on the mutagenesis datasets which have a larger number of positive

bags than negative, where MISVM, MIBoost, MIWrapper, and SimpleMI predict all bags as

negative. Additionally, while MISMO obtains unbiased results on these datasets, MIRSVM

significantly outperforms it over both precision and recall, achieving a better trade-off.

75

Table 4.5.: Precision for MI classifiers

Datasets MIRSVM miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

suramin 0.7778 0.7778 1.0000 1.0000 0.2857 1.0000 1.0000 0.5000 1.0000 0.6429 0.6514 0.4000
eastWest 0.7143 0.7000 0.5000 0.8750 0.5882 0.5000 0.7429 1.0000 0.5000 0.6053 0.6053 0.4444
westEast 0.7272 0.7273 0.5000 0.2727 0.4600 0.5000 0.6939 0.3600 0.5000 0.5581 0.9729 0.6038
musk1 0.8519 0.7778 1.0000 0.9286 0.9048 1.0000 0.8049 0.8108 1.0000 0.8478 0.8817 0.8478
musk2 0.7059 0.7826 0.6139 0.7826 0.7576 0.6139 0.7424 0.7538 0.6139 0.7400 0.9138 0.7164
webmining 0.7500 1.0000 0.8142 0.8173 0.8142 0.8142 0.8936 1.0000 0.8142 0.8817 0.9462 0.8500
trx 1.0000 0.8571 0.8705 0.9306 0.9191 0.8705 0.8705 0.8705 0.8705 0.9138 0.6747 0.9011
mutagenesis-atoms 0.7872 0.7985 1.0000 0.4630 0.6111 1.0000 0.5439 1.0000 1.0000 0.7059 0.7059 0.6667
mutagenesis-bonds 0.8468 0.8195 1.0000 0.5385 0.7500 1.0000 0.6812 1.0000 1.0000 0.7857 0.7857 0.8333
mutagenesis-chains 0.8571 0.8116 1.0000 0.5091 0.7059 1.0000 0.7759 1.0000 1.0000 0.7705 0.7705 0.7581
tiger 0.7365 0.7323 0.5000 0.5000 0.6944 0.5000 0.7444 0.7802 0.5000 0.6514 0.8000 0.7320
elephant 0.8576 0.8750 0.5000 0.5000 0.7959 0.5000 0.8444 0.7679 0.5000 0.8000 0.5581 0.8283
fox 0.6040 0.6275 0.5000 0.5000 0.5833 0.5000 0.5287 0.4854 0.5000 0.6747 0.8478 0.6705
component 0.9866 0.7782 0.8649 0.8778 0.8902 0.8649 0.8958 0.8696 0.8649 0.9462 0.6429 0.9449
function 0.8459 0.6775 0.9155 0.9202 0.9317 0.9155 0.9376 0.9197 0.9155 0.9729 0.7400 0.9726

Average 0.8033 0.7828 0.7719 0.6944 0.7128 0.7719 0.7800 0.8079 0.7719 0.7665 0.7665 0.7447
Rank 5.3333 6.1333 7.1000 7.3333 7.3667 7.1000 5.8667 5.8667 7.1000 5.9000 6.3333 6.5667

3 4 5 6 7 8 9 10 11 12

MIRSVM
miGraph

MIBoost

MIOptimalBall
MIDD

MIWrapper

MISMO

MISVM

SimpleMI
TLC

Bagging

Stacking

Fig. 4.5.: Bonferroni-Dunn test for Precision

Table 4.6.: Holm and Wilcoxon tests for Precision
MIRSVM vs. miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

Holm p-value 0.0125 0.0056 0.0050 0.0045 0.0063 0.0250 0.0500 0.0071 0.0167 0.0100 0.0083

Wilcoxon p-value 0.4212 0.5614 0.0946 0.0256 0.5614 0.4212 0.8039 0.5614 0.1354 0.4543 0.1354
Wilcoxon R+ 75.000 71.000 90.000 99.000 71.000 75.000 55.000 71.000 87.000 74.000 87.000
Wilcoxon R− 45.000 49.000 30.000 21.000 49.000 45.000 65.000 49.000 33.000 46.000 33.000

Table 4.7.: Recall for MI classifiers

Datasets MIRSVM miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

suramin 1.0000 1.0000 0.0000 0.4500 0.1000 0.0000 0.4500 0.5000 0.0000 0.4500 0.7100 0.3333
eastWest 1.0000 0.7000 0.7000 0.5250 0.7500 0.7000 0.6500 0.1250 1.0000 0.5750 0.5750 0.4000
westEast 0.8000 0.8000 0.9000 0.1500 0.5750 0.9000 0.8500 0.2250 1.0000 0.6000 0.9892 0.8000
musk1 0.9787 0.8936 0.0000 0.5778 0.8444 0.0000 0.7333 0.6667 0.0000 0.8667 0.8913 0.8667
musk2 0.9231 0.4615 1.0000 0.8710 0.8065 1.0000 0.7903 0.7903 1.0000 0.5968 0.9464 0.7742
webmining 0.2857 0.0000 1.0000 0.9239 1.0000 1.0000 0.9130 0.6196 1.0000 0.8913 0.9815 0.9239
trx 0.4833 0.2400 1.0000 0.9583 0.9464 1.0000 1.0000 1.0000 1.0000 0.9464 0.5600 0.9762
mutagenesis-atoms 0.8880 0.8560 0.0000 0.3968 0.3492 0.0000 0.4921 0.0000 0.0000 0.5714 0.5714 0.5714
mutagenesis-bonds 0.8960 0.8720 0.0000 0.5556 0.4762 0.0000 0.7460 0.0000 0.0000 0.6984 0.6984 0.7143
mutagenesis-chains 0.9120 0.8960 0.0000 0.4444 0.5714 0.0000 0.7143 0.0000 0.0000 0.7460 0.7460 0.7460
tiger 0.8700 0.9300 0.5000 1.0000 0.7500 0.5000 0.6700 0.7100 1.0000 0.7100 0.8000 0.7100
elephant 0.9100 0.7700 0.6000 1.0000 0.7800 0.6000 0.7600 0.8600 1.0000 0.8000 0.6000 0.8200
fox 0.9000 0.6400 0.7000 1.0000 0.5600 0.7000 0.4600 0.8300 1.0000 0.5600 0.8667 0.5900
component 0.5839 0.5225 1.0000 0.9867 0.9797 1.0000 0.9967 1.0000 1.0000 0.9815 0.4500 0.9826
function 0.5327 0.5643 1.0000 0.9919 0.9840 1.0000 0.9983 0.9994 1.0000 0.9892 0.5968 0.9894

Average 0.7976 0.6764 0.5600 0.7221 0.6982 0.5600 0.7483 0.5551 0.6667 0.7322 0.7322 0.7465
Rank 4.8667 6.5667 6.8667 6.3333 7.3667 6.8667 6.7000 7.4333 4.8333 7.3667 6.0667 6.7333

2 3 4 5 6 7 8 9 10 1111

MIRSVM

miGraph

MIBoost
MIOptimalBall

MIDD

MIWrapper

MISMO

MISVM

SimpleMI TLCBagging

Stacking

Fig. 4.6.: Bonferroni-Dunn test for Recall

Table 4.8.: Holm and Wilcoxon tests for Recall
MIRSVM vs. miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

Holm p-value 0.0125 0.0063 0.0167 0.0050 0.0071 0.0100 0.0045 0.0500 0.0056 0.0250 0.0083

Wilcoxon p-value 0.0060 0.2077 0.5614 0.4543 0.2077 0.6387 0.1070 0.6603 0.5995 0.1354 0.5721
Wilcoxon R+ 106.50 83.000 71.000 74.000 83.000 69.000 89.000 60.000 70.000 87.000 62.000
Wilcoxon R− 13.500 37.000 49.000 46.000 37.000 51.000 31.000 45.000 50.000 33.000 43.000

76

Figure 4.5 and 4.6 show that there are no significant differences between the precision

and recall results obtained by all algorithms. Note, MIRSVM outperforms both ensemble

methods according to recall, despite them exhibiting good accuracy and precision, indicat-

ing they are strongly conservative towards predicting positive bags. Holm’s test indicates

significant differences exist between MIRSVM and all algorithms except miGraph, MISMO,

MISVM, and TLC for precision, and all the above along with SimpleMI, MIOptimalBall,

and Bagging for recall. The Wilcoxon test does not reflect significant differences for preci-

sion, does for recall. The tests are severely biased due to the classifier’s extreme unbalanced

behavior, whereas MIRSVM demonstrates proper balance of the precision-recall trade-off.

4.4.3 Cohen’s Kappa Rate

Table 4.9 shows the Cohen’s Kappa rate results obtained by the algorithms. These

results support the accuracy achieved by the algorithms, in the sense that the instance-based

Table 4.9.: Cohen’s Kappa Rate for MI classifiers

Datasets MIRSVM miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

suramin 0.6829 0.6829 0.0000 0.4500 -0.1500 0.0000 0.4500 0.0000 0.0000 0.2000 0.3300 -0.0964
eastWest 0.6000 0.4000 0.0000 0.4500 0.2250 0.0000 0.4250 0.1250 0.0000 0.2000 0.2000 -0.1000
westEast 0.5000 0.5000 0.0000 -0.2500 -0.1000 0.0000 0.4750 -0.1750 0.0000 0.1250 0.7529 0.2750
musk1 0.8036 0.6290 0.0000 0.5396 0.7604 0.0000 0.5642 0.5197 0.0000 0.7174 0.3744 0.7174
musk2 0.6540 0.4123 0.0000 0.5031 0.4039 0.0000 0.3613 0.3856 0.0000 0.2492 0.3858 0.2940
webmining 0.3468 0.0000 0.0000 0.0246 0.0000 0.0000 0.4535 0.3771 0.0000 0.3744 0.6945 0.2458
trx 0.2100 0.3375 0.0000 0.5228 0.4224 0.0000 0.0000 0.0000 0.0000 0.3858 0.2900 0.3364
mutagenesis-atoms 0.5395 0.4431 0.0000 0.1709 0.2654 0.0000 0.2909 0.0000 0.0000 0.4738 0.4738 0.4431
mutagenesis-bonds 0.5699 0.5070 0.0000 0.3131 0.4356 0.0000 0.5569 0.0000 0.0000 0.6195 0.6195 0.6659
mutagenesis-chains 0.6303 0.5094 0.0000 0.2359 0.4738 0.0000 0.6225 0.0000 0.0000 0.6391 0.6391 0.6285
tiger 0.5500 0.5900 0.0000 0.0000 0.4200 0.0000 0.4400 0.5100 0.0000 0.3300 0.6000 0.4500
elephant 0.7000 0.6600 0.0000 0.0000 0.5800 0.0000 0.6200 0.6000 0.0000 0.6000 0.1250 0.6500
fox 0.3100 0.2600 0.0000 0.0000 0.1600 0.0000 0.0500 -0.0500 0.0000 0.2900 0.7174 0.3000
component 0.6644 0.5795 0.0000 0.1613 0.2836 0.0000 0.3656 0.0675 0.0000 0.6945 0.2000 0.6906
function 0.6292 0.5838 0.0000 0.0966 0.2801 0.0000 0.4083 0.0933 0.0000 0.7529 0.2492 0.7507

Average 0.5594 0.4730 0.0000 0.2145 0.2973 0.0000 0.4056 0.1635 0.0000 0.4434 0.4434 0.4167
Rank 2.6333 4.2000 10.1667 7.0000 6.5333 10.1667 5.2333 8.3667 10.1667 4.2667 4.2667 5.0000

1 2 3 4 5 6 7 8 9 10 11

MIRSVM

miGraph
MIBoost

MIOptimalBallMIDD MIWrapper

MISMO

MISVM

SimpleMI

TLC
Bagging Stacking

Fig. 4.7.: Bonferroni-Dunn test for Cohen’s Kappa rate

Table 4.10.: Holm and Wilcoxon tests for Cohen’s Kappa rate
MIRSVM vs. miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

Holm p-value 0.0500 0.0045 0.0071 0.0083 0.0050 0.0100 0.0063 0.0056 0.0167 0.0250 0.0125

Wilcoxon p-value 0.0121 0.0001 0.0012 0.0012 0.0001 0.0006 0.0001 0.0001 0.1205 0.2077 0.0946
Wilcoxon R+ 91.500 120.00 113.00 113.00 120.00 115.00 119.00 120.00 88.000 83.000 90.000
Wilcoxon R− 13.500 0.0000 7.0000 7.0000 0.0000 5.0000 1.0000 0.0000 32.000 37.000 30.000

77

and wrapper methods perform worse than bag-based and ensemble learners. MIRSVM’s

kappa values all fall within the range (0.5-1], indicating that its merit as a classifier agrees

with the class distribution and is not random. Note that MIOptimalBall, MIDD, MISVM,

MISMO, and Stacking contain some negative kappa values, indicating performance worse

than the default-hypothesis. MIBoost, SimpleMI, and MIWrapper are shown to randomly

classify all 15 datasets. Figure 4.7 and Table 4.10 show the results of the statistical analysis

on the Cohen’s Kappa Rate results. The Holm and Wilcoxon procedures reflect results

similar to the Bonferroni-Dunn test, where MIRSVM performs significantly better than

MIOptimalBall, MIDD, MISVM, MIWrapper, MIBoost, and SimpleMI, having p-values <

0.01. This supports MIRSVM’s performance as a competitive classifier.

Table 4.11.: AUC for MI classifiers

Datasets MIRSVM miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

suramin 0.8333 0.8333 0.5000 0.7250 0.4250 0.5000 0.7250 0.5000 0.5000 0.6000 0.6650 0.4524
eastWest 0.8000 0.7000 0.5000 0.7250 0.6125 0.5000 0.7125 0.5625 0.5000 0.6000 0.6000 0.4500
westEast 0.7500 0.7500 0.5000 0.3750 0.4500 0.5000 0.7375 0.4125 0.5000 0.5625 0.8456 0.6375
musk1 0.9005 0.8135 0.5000 0.7676 0.8797 0.5000 0.7816 0.7589 0.5000 0.8589 0.6837 0.8589
musk2 0.8406 0.6904 0.5000 0.7432 0.6981 0.5000 0.6772 0.6900 0.5000 0.6317 0.6732 0.6435
webmining 0.6320 0.5000 0.5000 0.5096 0.5000 0.5000 0.7184 0.8098 0.5000 0.6837 0.8123 0.6048
trx 0.6500 0.6170 0.5000 0.7392 0.6932 0.5000 0.5000 0.5000 0.5000 0.6732 0.6450 0.6281
mutagenesis-atoms 0.7106 0.7137 0.5000 0.5824 0.6186 0.5000 0.6420 0.5000 0.5000 0.7257 0.7257 0.7137
mutagenesis-bonds 0.7856 0.7455 0.5000 0.6578 0.6981 0.5000 0.7850 0.5000 0.5000 0.8012 0.8012 0.8211
mutagenesis-chains 0.8252 0.7417 0.5000 0.6142 0.7257 0.5000 0.8051 0.5000 0.5000 0.8170 0.8170 0.8130
tiger 0.7750 0.7950 0.5000 0.5000 0.7100 0.5000 0.7200 0.7550 0.5000 0.6650 0.8000 0.7250
elephant 0.8200 0.8300 0.5000 0.5000 0.7900 0.5000 0.8100 0.8000 0.5000 0.8000 0.5625 0.8250
fox 0.6550 0.6300 0.5000 0.5000 0.5800 0.5000 0.5250 0.4750 0.5000 0.6450 0.8589 0.6500
component 0.7855 0.7496 0.5000 0.5536 0.6033 0.5000 0.6272 0.5201 0.5000 0.8123 0.6000 0.8081
function 0.7563 0.7698 0.5000 0.5298 0.6015 0.5000 0.6391 0.5268 0.5000 0.8456 0.6317 0.8434

Average 0.7680 0.7253 0.5000 0.6015 0.6390 0.5000 0.6937 0.5874 0.5000 0.7148 0.7148 0.6983
Rank 2.7667 4.2667 10.1667 7.0000 6.5333 10.1667 5.2333 8.2333 10.1667 4.2667 4.2667 4.9333

1 2 3 4 5 6 7 8 9 10 11MIRSVM

miGraph

MIBoost

MIOptimalBall
MIDD MIWrapper

MISMO

MISVM

SimpleMI
TLC

Bagging

Stacking

Fig. 4.8.: Bonferroni-Dunn test for AUC

Table 4.12.: Holm and Wilcoxon tests for AUC
MIRSVM vs. miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

Holm p-value 0.0167 0.0045 0.0071 0.0083 0.0050 0.0100 0.0063 0.0056 0.0250 0.0500 0.0125

Wilcoxon p-value 0.0166 0.0001 0.0002 0.0003 0.0001 0.0012 0.0009 0.0001 0.2523 0.3028 0.0781
Wilcoxon R+ 90.000 120.00 118.00 117.00 120.00 113.00 114.00 120.00 81.000 79.000 91.500
Wilcoxon R− 15.000 0.0000 2.0000 3.0000 0.0000 7.0000 6.0000 0.0000 39.000 41.000 28.500

78

4.4.4 Area Under ROC Curve

Table 4.11 shows AUC results obtained by the algorithms, which complement the accu-

racy and kappa rate, emphasizing the better performance of bag-based methods. MIRSVM

achieves the best AUC score on 5 of the 15 datasets, while MIBoost, SimpleMI, and MI-

Wrapper obtain the worst results. Their AUC score indicates random predictor behavior,

having values = 0.5. Bag-level methods all obtain scores between 0.7 and 0.77 indicating a

high true positive rate and a low false positive rate, which is reflected by the precision and

recall results. Figure 4.8 and Table 4.12 show that MIRSVM performs significantly better

than 6 out of the 11 competing algorithms. Holm’s procedure indicates that significant dif-

ferences exist between MIRSVM and all algorithms except miGraph, TLC, Bagging, and

Stacking. MISVM’s true positive rate could be affected because of the possible imbalance

of support vectors from the positive and negative classes (favoring the negative). Note that

the Wilcoxon p-values for MIWrapper, MIBoost, and SimpleMI are 0.0001.

4.4.5 Overall Comparison

Table 4.13 shows the run times, in seconds, for each algorithm. MIRSVM has the

fastest run time and is ranked second. MIRSVM shows very good scalability considering the

number of features, such as in the webmining dataset which comprises of 5863 attributes.

Additionally, taking into account the number of instances as seen in the two largest datasets,

component and function, MIRSVM displays superior scalability. It is important to note

that quadratic programming solvers are not the most efficient tools for solving optimization

problems in terms of run time, and yet MIRSVM still is shown to perform competitively

against the current widely used algorithms. The scalability of MIRSVM is founded on the

speedy rate of bag-representative convergence, as shown previously in Figure 4.2.

SimpleMI achieves the highest rank and competitive run times because, rather than use

the instances in each bag to train a model, it takes the mean value of the instances in a bag

and uses that for training. Even though SimpleMI has fast run-times, its performance over

79

the previous metrics is shown to be random and not as effective as the bag-level methods.

Table 4.14 shows the ranks achieved by each of the metrics along with the average and

meta-ranks, to illustrate the overall performance across all metrics. MIRSVM has the best

meta-rank (rank of the ranks) and the miGraph method has the second best. The meta-ranks

also highlight the better performance of bag-level methods over instance-level and wrapper

methods, emphasizing the importance of training at the bag-level. Not only does MIRSVM

use bag-level information during classification, but it also optimizes over the instances within

the bag, which helps determine which instances contribute the most information about the

bags label. SimpleMI, MIWrapper, MIBoost, MISVM, and MDD have the worst performance

compared to MIRSVM and miGraph. Specifically, it is evident from the precision and recall

results that MIBoost, MIWrapper, and SimpleMI, for example, classify all bags as negative

Table 4.13.: Run Time (seconds) for MI classifiers

Datasets MIRSVM miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

suramin 0.1 19.7 8.8 30.5 7922.0 9.5 52.3 333.9 7.2 35.5 183.0 90.6
eastWest 0.1 3.0 5.5 9.4 217.1 6.3 14.8 21.4 5.8 15.4 15.4 15.2
westEast 0.1 2.8 6.5 7.8 79.7 6.5 14.7 99.5 6.0 16.6 12128.1 10.8
musk1 0.4 56.8 13.4 32.1 3542.6 20.6 89.7 198.4 11.1 93.0 86272.6 759.5
musk2 2.3 452.3 97.3 782.9 126016.8 208.3 1799.4 26093.5 16.1 1772.2 2229.3 16759.0
webmining 300.6 302.5 45745.4 60474.8 47601.4 68736.7 51923.6 105622.3 2685.9 86272.6 9861.5 592948.9
trx 61.8 2206.4 17.6 682.3 339110.5 19.3 8670.3 134622.1 7.4 2229.3 243.3 11927.9
mutagenesis-atoms 9.8 193.1 8.8 99.2 2623.0 8.0 55.0 53.5 6.4 44.0 44.0 153.9
mutagenesis-bonds 8.3 410.3 10.2 310.2 17538.7 12.3 457.4 2794.8 8.4 131.1 131.1 853.1
mutagenesis-chains 19.3 513.4 12.0 525.0 48982.7 14.8 2451.9 6637.4 7.2 224.4 224.4 1619.0
tiger 29.5 302.8 44.5 157.8 23220.5 56.2 208.0 608.8 16.2 183.0 212.1 1085.0
elephant 47.7 306.7 45.5 243.9 56456.2 69.7 232.1 1114.3 20.8 212.1 16.6 1462.2
fox 81.0 303.1 44.2 206.1 27773.8 66.0 369.6 891.5 23.5 243.3 93.0 1729.1
component 231.7 3091.0 572.5 228209.6 96263.9 1096.9 629366.4 37224.6 144.0 9861.5 35.5 79149.8
function 740.3 8162.7 935.5 768458.0 350124.7 1887.5 1052225.3 565026.4 232.8 12128.1 1772.2 185918.5

Average 102.2 1088.4 3171.2 70682.0 76498.2 4814.6 116528.7 58756.2 213.3 7564.1 7564.1 59632.2
Rank 2.3 6.2 3.1 7.2 11.1 4.3 8.5 10.1 1.9 7.2 6.5 9.7

Table 4.14.: Overall ranks comparison for MI classifiers

Ranks MIRSVM miGraph MIBoost MIOptimalBall MIDD MIWrapper MISMO MISVM SimpleMI TLC Bagging Stacking

Accuracy 2.2000 3.8667 9.6000 7.8667 6.5667 9.6000 5.3333 8.5667 9.6000 4.7000 4.8667 5.2333
Precision 5.3333 6.1333 7.1000 7.3333 7.3667 7.1000 5.8667 5.8667 7.1000 5.9000 6.3333 6.5667
Recall 4.8667 6.5667 6.8667 6.3333 7.3667 6.8667 6.7000 7.4333 4.8333 7.3667 6.0667 6.7333
Kappa 2.6333 4.2000 10.1667 7.0000 6.5333 10.1667 5.2333 8.3667 10.1667 4.2667 4.2667 5.0000
AUC 2.7667 4.2667 10.1667 7.0000 6.5333 10.1667 5.2333 8.2333 10.1667 4.2667 4.2667 4.9333
Time 2.2667 6.2000 3.1000 7.2000 11.0667 4.3000 8.5333 10.1333 1.8667 7.2000 6.4667 9.6667

Average 3.3444 5.2056 7.8333 7.1222 7.5722 8.0333 6.1500 8.1000 7.2889 5.6167 5.3778 6.3556
Rank 1.3333 3.6667 8.9167 7.7500 9.2500 9.0833 5.9167 8.7500 7.3333 5.2500 4.2500 6.5000

1 2 3 4 5 6 7 8 9 10

MIRSVM miGraph MIBoost

MIOptimalBall

MIDD

MIWrapper
MISMO

MISVMSimpleMITLC

Bagging Stacking

Fig. 4.9.: Bonferroni-Dunn test for overall ranks comparison

80

for datasets that have imbalanced class distributions which favor the negative class. This

emphasizes the disadvantage of using wrapper methods and assuming the data distribution

of the instances within positive bags. Although these algorithms are popular in literature,

the experimental study clearly shows that recent bag-level and ensemble methods easily

overcome traditional multi-instance learning algorithms.

In summary, MIRSVM offers improvement in terms of both accuracy and run-time when

compared to referenced methods, especially those utilizing SVM-based algorithms.

4.5 Conclusions

This proposal consisted of a novel formulation and algorithm for the multiple-instance

support vector machine problem, which optimizes bag classification via bag-representative

selection. First, the primal formulation was posed and its dual was then derived and solution

computed using a quadratic programming solver. This formulation was designed to utilize

bag-level information and find an optimal separating hyperplane between bags, rather than

individual instances, using the standard multi-instance assumption. The SMI assumption

states that a bag is labeled positive if and only if at least one instance within a bag is

positive, and is negative otherwise. The key features of the proposed algorithm MIRSVM

are its ability to identify instances within positive and negative bags, i.e. the support vectors

or representatives, that highly impact the decision boundary and margin, as well as avoiding

uncertainties and issues caused by techniques that flatten, subset, or under-represent positive

instances within positively labeled bags. Additionally, it exhibits desirable convergence and

scalability, making it suitable for large-scale learning tasks.

The experimental study showed the better performance of MIRSVM compared with

existing multi-instance support vector machines, traditional multi-instance learners, as well

as ensemble methods. The results, according to a variety of performance metrics, were

compared and further validated using statistical analysis with non-parametric tests which

highlight the advantages of using bag-level based and ensemble learners, such as miGraph,

81

Bagging, and Stacking, while showing the instance-level based learners performed poorly

in comparison or were deemed as strongly biased and unstable classifiers. Our proposal,

MIRSVM, performs statistically better, neither compromising accuracy nor run-time while

displaying a robust performance across all of the evaluated datasets. The research outcomes

of this chapter have been published in [128].

82

CHAPTER 5

NOVEL ONLINE SVM USING WORST-VIOLATORS

Due to the ever-growing nature of dataset sizes, the need for scalable and accurate learning

algorithms has become evident. Stochastic gradient descent methods are popular tools used

to optimize large-scale learning problems because of their generalizability, simplicity, and

scalability. This chapter proposes a novel stochastic, i.e. online, learning algorithm for

solving the L1 support vector machine (SVM) problem: OnLine Learning Algorithm using

Worst-Violators (OLLAWV). This chapter’s scope is concerned with developing a unique

algorithm for large data problems without parallelization and distributed techniques. Unlike

other stochastic methods, OLLAWV eliminates the need for specifying a maximum number

of iterations and the use of a regularization term. Rather than using a regularizer, OLLAWV

uses early stopping for controlling the size of the margin, via a novel stopping criterion. The

experimental study, performed under strict nested cross-validation, evaluates and compares

the performance of OLLAWV with two modern SVM kernel methods that have been shown

to outperform traditional, widely used approaches for solving L1-SVMs, such as Sequential

Minimal Optimization. OLLAWV is also compared to five classic non-SVM algorithms.

The results over 23 datasets show OLLAWV’s superior performance in terms of accuracy,

scalability, and model sparseness, making it suitable for large-scale learning.

5.1 Online Learning Background

Since a comprehensive description of contemporary online learning algorithms was pre-

sented in Chapter 2, this section will introduce the concept of Stochastic Gradient Descent

(SGD) for the unconstrained primal L1-SVM optimization problem, given by Equation 2.5.

First, the notation used throughout the chapter is given, then a brief background on stochas-

tic gradient descent and its use for the L1-SVM problem will be presented.

83

Table 5.1.: Summary of Online Learning Notation

Definition Notation

Number of Samples n
Number of Input Attributes d
Input Space X ∈ Rn×d
Labels Y ∈ {−1, 1}n
Sample i xi = (xi1, . . . , xid), ∀i ∈ {1, . . . , n}
Sample Label i yi ∈ {−1, 1}, ∀i ∈ {1, . . . , n}

Full Training Dataset D = {(x1, y1), . . . , {xi, yi}, . . . , (xn, yn)}

5.1.1 Notation

Let D be the full training dataset of n d-dimensional samples. Let Y ∈ D be a vector

of n labels corresponding to each sample, Y ∈ {−1, 1}n. In the non-binary (more than two

classes) classification cases, Y ∈ Zn. Let X ∈ D be a matrix consisting of n samples that are

d-dimensional, X ∈ Rn×d. Table 5.1 summarizes the notation used throughout the chapter.

5.1.2 Stochastic Gradient Descent

Many learning algorithms function by repeatedly selecting a sample and updating the

model’s parameters based on only this chosen sample. These algorithms are called stochastic,

or online, methods, which have been used for various real-world scenarios dating back many

years ago, when algorithmic simplicity was a practical requirement [30, 144, 179]. Stochastic

algorithms are still extremely useful nowadays because of their performance advantages,

simplicity, and desirable sample complexity, in the context of large-scale learning problems.

The goal, for many learning algorithms, is to find an optimal weight vector w that

minimizes some convex, differentiable risk function f(w) over all samples. One approach

for achieving this, is through gradient descent : an iterative procedure where the gradient of

f , 5f(w) =
(
∂f(w)
∂w1

, . . . , ∂f(w)
∂wd

)
, is taken at each step and used to update the weights. At

each iteration, the batch gradient descent algorithm involves computing the average gradient

84

across all training samples as shown in Equation 5.1,

w(t+1) ← w(t) − η 1

n

n∑
i=1

5wfi(w
(t)), (5.1)

where η > 0 ∈ R is the learning rate and usually decreases with the number of iterations,

t. After T iterations, the algorithm returns the averaged weight vector w̄ = 1
T

∑T
t=1w

(t).

Different versions of the weight vector could also be returned, such as the last weight vector,

w(T), or the average of the last 25% of updates. More information about this can be found

in [129]. Under large-scale learning conditions however, taking the gradient across all samples

might be an impractical and computationally expensive task.

The stochastic gradient descent (SGD) algorithm is a drastic simplification of the gra-

dient descent procedure. Rather than computing the gradient of f exactly, at each iteration

it is instead an estimation of the gradient on the basis of a single, randomly picked sam-

ple xi, ∀i ∈ {1, . . . , n}, illustrating the concept known as stochastic approximation. In the

stochastic case, the model update then becomes,

w(t+1) ← w(t) − η5w fi(w
(t)). (5.2)

Thus, each iteration of SGD is very cheap in terms of computation since it only in-

volves the gradient at one sample and does not need to keep track of which samples were

used during previous iterations. Note, the iterative sequence is not determined uniquely by

the optimization function, starting point of w0, and sequence of step sizes; rather, it is a

stochastic process whose behavior is determined by the sequence of random examples chosen

at each iteration [27, 29]. If the samples are randomly selected from an online base system

(ground truth distribution), SGD directly minimizes the expected risk. If the samples are

drawn from a finite training set, the procedure minimizes the empirical risk [30].

The gradient descent procedure, stochastic or not, requires the function being minimized

to be differentiable. Some loss functions are not fully differentiable (such as the Hinge loss

function 2.4). In these cases, the subgradient of f at w can be used instead of the gradient.

85

5.1.3 Stochastic Gradient Descent for the Primal L1-SVM Problem

SVMs were typically treated and solved as a constrained quadratic optimization in dual

space. Their early development was hindered because of the quadratic dependence on the

number of samples and of the memory required to efficiently solve them. This led to the idea

of optimizing over subsets of the data, also known as decomposition methods [26, 101, 111,

138]. Although these methods improved convergence rates, in practice, their superlinear

(and sometimes cubic) dependence on the number of samples still was an issue in terms

of slow run times when learning from massive datasets. Linear SVMs, taking advantage

of linear kernels, were shown to outperform decomposition SVMs, motivating research for

solving the SVM problem in the primal [48, 135]. It has been shown that when finding an

approximate solution, primal optimization is superior [48]. These algorithms for the linear

SVM are mostly based on the perceptron [73, 145] - the simplest stochastic learning algorithm

for binary linear classification in the primal space. The perceptron cycles repeatedly, one

sample at a time, updating the weight vector accordingly, until an appropriate condition is

satisfied. By updating cyclically, these types of algorithms are able to process large amounts

of data at a much faster speeds with low memory resources, consequently making them

suitable for handling large datasets.

An approach similar to that of the perceptron aims to solve the regularized soft-margin

loss through stochastic gradient descent, which allows a perceptron-like update while man-

aging the model capacity [135]. This update is the only modification performed by the

algorithm when a new sample is given, only occurs if some loss is incurred, and continues

to be performed until some user intervention. Due to a lack of meaningful stopping cri-

teria, the algorithm would keep running indefinitely unless some user intervenes. Notable

representations of algorithms that use this type of approach can be found in Chapter 2.

Due to these characteristics, algorithms that use SGD are fundamentally different than

methods such as mistake-driven perceptron-like approaches. However, Collobert and Bengio

86

later showed that with early stopping, the capacity of the perceptron could be controlled,

using the idea of the margin. This was shown in a study comparing perceptrons, multi-layer

perceptrons, and SVMs [53]. They also showed that it can be computationally expensive to

train SVMs and perceptrons using SGD due to the regularization term, i.e. the term that

controls the models capacity, and then showed alternative methods for remedying this issue.

Namely, early stopping, and the removal of the regularization term or the learning rate, can

control the size of the margin. However, this then raises the question about knowing when

it is early enough to stop. This issue, along with the fact that solving the L1-SVM problem

in the primal provides a better approximate solution than solving the dual, inspired the

investigation for OLLAWV.

5.2 OLLAWV: OnLine Learning Algorithm using Worst-Violators

OLLAWV is an iterative, online learning algorithm for solving the L1-SVM problem

using a novel model update procedure while implementing a self-stopping condition. The

inspiration behind OLLAWV came from [106] which presented a generic online learning

algorithm tailored not only for SVMs, but also for various other popular classifiers that

use different risk functions, with or without a regularization term. The difference, novelty,

and advantage of OLLAWV resides in its iterative method, where the weight αi of the

most violating sample i.e., of the worst-violator, is only updated in each iteration. A worst

violating sample is defined as the sample that has the largest error with respect to the

current decision function. Rather than randomly selecting samples to update per iteration,

OLLAWV selects (without replacement) the most incorrectly classified sample and updates

the model accordingly. By iteratively updating the model using only the worst-violator,

the model is essentially finding its support vectors, as well as implicitly defining a stopping

criterion. If there are no more violating samples, the algorithm terminates, eliminating the

need to define the number of iterations for an algorithm to perform before returning the

model, as is the case with most state-of-the-art online algorithms.

87

At every iteration, the algorithm selects a worst violating sample that has not been

previously chosen, stores its index in vector S, and then updates the model. Equation 5.3

shows the method for selecting the worst-violator, where yo ∈ R is the error value, wv ∈

{1, . . . , n} is the error value’s index, o ∈ Rn is the decision function output, and ¬ is the ‘not’

symbol. For the L1-SVM, an error value will always be negative which is why the minimum

function is used (i.e. the most negative output value or incorrectly classified sample). The

worst violating sample becomes the model’s support vector because its weight is updated and

non-zero. Therefore, OLLAWV’s number of iterations is equal to the final model’s number

of support vectors. This is an interesting property of OLLAWV; if the number of iterations

is set beforehand, one is implicitly setting a bound on the number of support vectors.

[yo, wv] = min {ywv · owv}, ∀wv ∈ {¬S} (5.3)

Algorithm 5.1 lists OLLAWV’s pseudocode and Figure 5.1 illustrates the steps taken by

OLLAWV. First, the model parameters (α, b, S) and the algorithm variables (o, iteration

counter (t), initial worst-violator index wv and its error yo) are first initialized. The worst-

violator with respect to the current hyperplane is then found and the model parameters are

updated. Once no more violating samples are found or the maximum number of iterations

is reached, the model is returned.

OLLAWV performs stochastic gradient descent on the primal L1-SVM objective func-

tion given below:

min
w∈Ho×R

R =
1

2
||w||2 + C

n∑
i=1

max
{

0, 1− yio(w)(xi)
}
, (5.4)

where o(w)(xi) = 〈w,xi〉 is a linear predictor, with the bias term excluded for simplicity.

Note that the loss function used in Equation 5.4 is non-differentiable, but it has a subgradient

due to a knick-point at yo = 1. The loss function’s gradient after the knick-point equals

zero, which leads to a sparse model. Hence, when the value of yo ≥ 1 the loss is zero, and

88

for yo < 1 the loss increases linearly. The subgradient of the above cost function is given by:

∂R

∂w
=


w − C

∑n
i=1 yixi yioi < 1

w otherwise.

(5.5)

In the stochastic case, the calculation of the gradient needed for the weight update, is pattern

based, not epoch based as in batch gradient descent. It has been shown [107] that the ideal

gradient is equal to the sum of the gradients calculated after each sample is presented for

fixed weights during the whole epoch. Thus, the stochastic update of w from the subgradient

shown in Equation 5.5 becomes:

w ← w − η ∂R
∂w

w ← w + η


Cyixi −w yioi < 1

−w otherwise,

where η > 0 ∈ R is the learning rate. According to the Representer theorem [149], a vector

α ∈ Rn exists such that w =
∑n

i=1 αiφ(xi) is an optimal solution to Equation 5.4, where

φ(·) is a mapping from feature space to Hilbert space [151]. On the basis of the Representer

theorem, Equation 5.4 can be optimized with respect to α instead of w. By expressing w

this way and mapping input sample xi to φ(xi), the kernelized SGD update becomes:

n∑
i=1

αiφ(xi)←
n∑
i=1

αiφ(xi) + η


Cyiφ(xi)−

∑n
i=1 αiφ(xi) yioi < 1

−
∑n

i=1 αiφ(xi) otherwise.

89

However, OLLAWV optimizes in a stochastic manner, resulting in the following update:

∀i : αiφ(xi)← αiφ(xi) + η


(Cyiφ(xi)− αiφ(xi)) yioi < 1

(−αiφ(xi)) otherwise

∀i : αi ← αi + η


(Cyi − αi) yioi < 1

(−αi) otherwise.

The case when the worst violating sample is correctly classified, i.e. yioi ≥ 1, is OLLAWV’s

termination condition, i.e. is used as the stopping criterion in the algorithm. Hence the

update for α is reduced to the following:

∀i : αi ← αi + η(Cyi − αi). (5.6)

If the bias term b is included in Equation 5.4, its stochastic update is as follows:

∀i : b← b+ η
Cyi
n
. (5.7)

In this experimental study, η = 2/
√
t is used, where t is the current iteration; however,

other learning rates such as η = 1/t can also be used. Let Λ = ηCyi and P = ηαi be the

update parameters for OLLAWV, and the α update can be expressed as: αi ← αi + (Λ −

P). Note that Λ is the update resulting from the loss function and P is derived from the

regularizer term in Equation 5.4. In the case of OLLAWV, P = 0 because samples are never

updated more than once and their initial α value is always 0. It is important to note that in

OLLAWV’s case, Λ never equals 0 because the samples being updated are worst-violators,

meaning they are misclassified or incur some loss. The values of the decision function (output

vector o ∈ Rn in Algorithm 5.1), from which a worst-violator is found, changes per iteration

based on the influence of the support-vectors that have been previously updated.

90

Algorithm 5.1 OnLine Learning Algorithm using Worst-Violators (OLLAWV)

Input: D, C, γ, β, M
Output: α, b, S
1: α← 0, b← 0,S ← 0 . Initialize OLLAWV model parameters
2: o← 0, t← 0 . Initialize the output vector and iteration counter
3: wv ← 0, yo← ywv ∗ owv . Initialize hinge loss error and worst-violator index
4: while yo < M do
5: t← t+ 1
6: η ← 2/

√
t . Learning rate

7:
8: Λ← η ∗ C ∗ ywv . Calculate hinge loss update
9: B ← (Λ ∗ β) /n . Calculate bias update
10: o← o+ Λ ∗ K (x¬S , xwv, γ) +B . Update output vector
11: αwv ← αwv + Λ . Update worst-violator’s alpha value
12: b← b+B . Update bias term
13:
14: St ← wv . Save index of worst-violator
15: [yo, wv]← min

wv∈{¬S}
{ywv · owv} . Find the worst-violator

16: end while

Initialize
training
variables

Calculate
updates
based on

worst-
violator

and current
decision

boundary

Update
output

vector, worst-
violator’s
alpha, &
bias term

while
errors exist

return
α, b,S

no

yes

Fig. 5.1.: A summary of the steps performed by OLLAWV. The model parameters (α, b, S)

and the algorithm variables (o, t, wv, and yo) are first initialized. The worst-violator with

respect to the current hyperplane is then found and the model parameters are then updated.

Once no more violating samples are found, the model is returned.

91

Fig. 5.2.: A case of classifying 2-dimensional normally distributed data with different covariance
matrices, (left) for 200 and (right) 2000 data points. The theoretical separation boundary (denoted
as the Bayes Separation Boundary) is quadratic and is shown as the dashed black curve. The other
two separation boundaries shown are the ones obtained by OLLAWV and SMO (implemented
within LIBSVM), respectively. In this particular case (left), the difference between the OLLAWV
boundary and the SMO boundary is hardly visible. The case presented on the right shows that,
with an increase of training samples, the OLLAWV and SMO boundaries converge to the theoretical
Bayesian solution.

From Equation 2.7, the output vector update becomes the following:

o← o+ Λ ∗ K (x¬S, xwv, γ) +B, (5.8)

where K(·) is the Gaussian radial basis function (RBF) kernel, γ ∈ R is its parameter, and

B = (Λ∗β)/n denotes the bias update. Only non-support vector output values are calculated

per iteration, as denoted by x¬S in the kernel function, because samples are never selected to

be updated more than once. Because the output values scale with the C value, the stopping

criteria for OLLAWV is also set to scale with C, rather than the classic formulation yioi ≥ 1.

If the value of C is very large, yioi will never be greater than 1 and the algorithm will never

terminate. Therefore, the stopping criteria is set to be yioi ≥ M , where M ∈ R is a scaled

value of C. For the B calculation in Equation 5.8, β ∈ {0, 1} indicates whether the bias

term is to be used. If b is not a part of the model, it should be omitted from Equations 2.7

and 5.8 by setting β = 0, otherwise β = 1.

92

OLLAWV is an SGD method that has a convex cost function. Its learning rate coefficient

can decrease linearly or semi-linearly during the learning stage. Hence, OLLAWV shares the

complexity characteristics of SGD methods. Primarily, it can achieve linear convergence,

making it a particularly convenient and practical method for solving very large machine

learning problems. OLLAWV also works over a cost function without local minima, always

leading towards the global minimum, even though it stops the learning process as soon as all

samples are outside the prescribed margin. Figure 5.2 shows the decision boundaries achieved

by OLLAWV versus SMO (implemented within LIBSVM) and Bayes for toy datasets.

5.3 Experimental Environment, Results, and Analysis

This section presents two experimental setups of our contribution against other state-

of-the-art algorithms on 23 different benchmark datasets. The first study, presented in Sec-

tion 5.3.1, compares OLLAWV to two other SVM kernel methods, and the second compares

OLLAWV to 5 non-SVM methods, shown in Section 5.3.3. In each section, the experimen-

tal setups are first described and the state-of-the-art methods are listed. The results and

statistical analysis are then presented and analyzed. The main aim of the experiments is

to compare our contribution to other support vector machine solvers that have been shown

to surpass popular and widely used SVM kernel methods in terms of memory consumption,

run time, and accuracy. The supplemental experimental study in 5.3.3 was conducted to

emphasize the better performance of OLLAWV against non-SVM algorithms.

Table 5.2 presents a summary of the 23 datasets used throughout the experiments,

where the number of attributes, classes, and samples are shown. They are divided into

three groups: small, medium and large. The datasets were acquired from the UCI Machine

Learning repository1, and the LIBSVM2 and LibCVM3 sites [8, 47, 167].

1http://archive.ics.uci.edu/ml/index.php
2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3http://c2inet.sce.ntu.edu.sg/ivor/cvm.html

93

http://archive.ics.uci.edu/ml/index.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://c2inet.sce.ntu.edu.sg/ivor/cvm.html

Table 5.2.: Classification Datasets

Dataset # Samples # Attributes # Classes

small datasets
iris 150 4 3
teach 151 5 3
wine 178 13 3
cancer 198 32 2
sonar 208 60 2
glass 214 9 6
vote 232 16 2
heart 270 13 2
dermatology 366 33 6
prokaryotic 997 20 3
eukaryotic 2,427 20 4
medium datasets
optdigits 5,620 64 10
satimage 6,435 36 6
usps 9,298 256 10
pendigits 10,992 16 10
reuters 11,069 8,315 2
letter 20,000 16 26
large datasets
adult 48,842 123 2
w3a 49,749 300 2
shuttle 58,000 7 7
web (w8a) 64,700 300 2
ijcnn1 141,691 22 2
intrusion 5,209,460 127 2

5.3.1 SVM Experimental Setup

The experimental setup was designed to evaluate differences in performance of the

proposed OLLAWV method against the state-of-the-art algorithms: Minimal Norm SVM

(MNSVM) [159] and Non-Negative Iterative Single Data Algorithm (NNISDA) [198]. These

algorithms were chosen because they have shown considerable performance in run time,

memory consumption, and accuracy against the popular and widely used LIBSVM and

LibCVM packages. In [159], it was shown that MNSVM outperforms both the L1 and L2

implementations of LIBSVM, and BVM embedded in LibCVM. NNISDA was then com-

pared to MNSVM in [198], and showed an added improvement in run time performance.

MNSVM was implemented in an open source C++ framework called “GSVM – Command

94

Line Tool for Geometric SVM Training4”. Both, NNISDA and OLLAWV were implemented

as additional modules within Strack-Kecman’s code, keeping the experimental environment

controlled for all three algorithms. The experiments for all methods were run on the same

machine containing two Intel Xeon X5680 CPUs (6-core, 3.33 GHz) and 96 GB of RAM.

Experiments were performed using double, or nested, 5-fold cross-validation in order

to objectively evaluate the models’ performances and tune hyperparameters. In the outer

loop, the data are separated into 5 equally sized folds and each part is held out in turn as

the test set, and the remaining four parts are used as the training set. In the inner loop,

5-fold cross-validation is also used over the training set assigned by the outer loop, where

the best hyperparameters are chosen. The best model obtained by the inner loop is then

applied on the outer loop’s test set. This procedure ensures the model’s performance is not

optimistically biased as when using a single loop of k-fold cross-validation. It ensures the

class labels of the test data will not be seen when tuning the hyperparameters, which is con-

sistent with real-world applications. Obviously, such a rigorous procedure is computationally

expensive, but the goal is to fairly compare different classification models on the same data

sets, with the same cross-validation procedure, and hyperparameters. First, the datasets

were normalized by linear transformation of the feature values to the range [0, 1]. Then, the

training process, also involving model selection using pattern search, was performed. The

best hyperparameters were chosen from the following 8× 8 possible combinations, shown in

Equations (5.9a) and (5.9b), and were also used for the competing SVM methods.

C ∈ {4n}, n = {−2, . . . , 5} (5.9a)

γ ∈ {4n}, n = {−5, . . . , 2} (5.9b)

The γ parameter refers to that of the Gaussian RBF kernel, given by:

K(xi,xj) = e−γ||xi−xj ||
2

. (5.10)

4https://github.com/strackr/gsvm

95

https://github.com/strackr/gsvm

To deal with multi-class classification problems, the one-vs-one, or pairwise, approach

was used. The pairwise training procedure trains c(c− 1)/2 binary classifiers, a classifier for

each possible pair of classes, where c is the number of classes. During the prediction phase,

a voting scheme is used where all c(c− 1)/2 models predict an unseen data sample and the

class that received the highest number of votes is considered to be the samples true class.

5.3.2 SVM Comparison Results and Statistical Analysis

The classification performance was measured using the following metrics: accuracy,

run time, and the percentage of support vectors (size of the model). Table 5.3 displays

the results for OLLAWV and the two state-of-the-art methods. The percentage of support

vectors was reported for analyzing the complexities of the resulting models over the variously

sized datasets. In order to analyze the performances of the multiple models, non-parametric

statistical tests are used to validate the experimental results obtained [57]. The Iman-

Davenport non-parametric test is run to investigate whether significant differences exist

among the performance of the algorithms by ranking them over the datasets used, using the

Friedman test. The algorithm ranks for each metric are presented in the last row of Table 5.3,

and the lowest (best) rank value is typeset in bold. After the Iman-Davenport test indicates

significant differences (with p-value = 0.2397 for accuracy, and p-value = 0 for run time and

percent support vectors), the Bonferroni-Dunn post-hoc test is then used to find where they

occur between algorithms by assuming the classifiers’ performances are different by at least

some critical value (critical distance is 0.66 for α = 0.05). Below Table 5.3, Figures 5.3, 5.4,

and 5.5 highlight the critical distance (in gray) from the best ranking algorithm to the rest.

The algorithms to the right of the critical distance bar perform statistically significantly

worse than the control algorithm, OLLAWV.

The results in Table 5.3 indicate that OLLAWV outperforms NNISDA and MNSVM

in terms of accuracy, run time, and model complexity. Although the differences in accuracy

between the methods is not very large, on average, OLLAWV is about 2 times faster than

96

Table 5.3.: Comparison of OLLAWV vs. NNISDA and MNSVM

Dataset Accuracy (%) Run Time (s) Support Vectors (%)

OLLAWV NNISDA MNSVM OLLAWV NNISDA MNSVM OLLAWV NNISDA MNSVM

small datasets
iris 97.33 94.00 96.67 0.05 0.27 3.57 13.50 40.20 29.80
teach 52.32 52.31 52.95 0.12 0.44 8.85 69.19 99.80 87.40
wine 98.87 96.60 96.60 0.28 0.43 4.84 15.02 44.40 48.60
cancer 80.36 81.86 81.38 0.49 0.85 4.46 42.79 83.80 89.60
sonar 92.32 89.48 87.57 0.59 0.98 3.03 31.26 73.00 66.00
glass 72.41 67.81 69.30 0.46 1.01 11.94 62.84 90.80 87.60
vote 96.54 96.11 93.99 0.26 0.46 1.49 13.36 33.20 34.00
heart 82.22 83.33 83.33 0.50 0.91 6.45 37.69 73.00 82.00
dermatology 97.82 98.36 98.36 1.62 2.47 11.68 36.94 59.00 59.80
prokaryotic 88.96 88.86 88.97 6.09 10.64 50.86 29.01 51.20 49.00
eukaryotic 77.38 79.56 81.21 61.95 49.16 342.76 54.11 76.40 72.60
medium datasets
optdigits 99.11 99.29 99.31 411 528 787 28.64 31.60 30.60
satimage 91.66 92.39 92.35 1,334 687 1,094 20.72 45.00 44.80
usps 97.49 98.05 98.24 10,214 5,245 7,777 11.22 29.40 28.00
pendigits 99.56 99.62 99.61 723 909 1,500 10.27 17.60 16.60
reuters 98.03 98.08 97.99 954 1,368 1,657 8.770 18.20 18.60
letter 96.99 99.11 99.13 5,259 12,009 26,551 43.56 57.60 56.60
large datasets
adult 84.75 85.07 85.13 21,025 72,552 123,067 34.66 56.00 56.60
w3a 98.86 98.82 98.82 6,532 15,951 24,562 3.270 14.60 12.40
shuttle 99.77 99.83 99.87 2,833 7,420 45,062 2.010 6.00 16.40
web 98.94 99.00 99.00 12,067 30,583 38,040 4.320 13.20 10.80
ijcnn1 98.31 99.34 99.41 162,587 296,917 370,144 16.36 11.00 7.600
intrusion 99.77 99.67 99.66 2,402,804 4,646,810 3,772,113 0.780 2.000 1.700

Average 91.29 91.15 91.25 114,209 221,350 191,861 25.66 44.65 43.79
Ranks 1.739 2.022 2.239 1.217 1.913 2.869 1.087 2.609 2.304

1 2 3
OLLAWV

NNISDA

MNSVM

Fig. 5.3.: Bonferroni-Dunn
test for Accuracy

1 2 3
OLLAWV

NNISDA MNSVM

Fig. 5.4.: Bonferroni-
Dunn test for Run Time

1 2 3
OLLAWV

NNISDA

MNSVM

Fig. 5.5.: Bonferroni-Dunn
test for % Support Vectors

NNISDA and MNSVM. As mentioned previously, OLLAWV aims to speed up the learning

process without sacrificing the model’s accuracy. This stems from OLLAWV’s ability to

produce sparse models, as is shown by the averaged percentage of support vectors. The

speedup that OLLAWV presents is proportional to the model complexity and the experi-

mental results show that OLLAWV produces, on average, models that are 1.7 times smaller

than the two state-of-the-art methods used. This highlights the applicability and advantage

that OLLAWV has for learning from large datasets.

97

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
4

0

2

4

6

8

10

12

14
10

4

OLLAWV

NNISDA

MNSVM

0 1 2 3 4 5 6

10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
10

6

OLLAWV

NNISDA

MNSVM

Fig. 5.6.: Run time in seconds versus the number of samples, divided into two groups: small &
medium (left) versus large (right). Note OLLAWV’s gradual increase in run time as the number
of samples increases compared to NNISDA and MNSVM’s steeper change. In almost all cases,
OLLAWV displays superior run time over state-of-the-art. Run time depends upon many char-
acteristics: dimensionality, class-overlapping, complexity of the separation boundary, number of
classes, as well as the number of support vectors, which partly explains the tiny bump in the left
figure.

iri
s

te
ac

h
w
in
e

ca
nc

er

so
na

r

gl
as

s
vo

te
he

ar
t

de
rm

at
ol
og

y

pr
ok

ar
yo

tic

eu
ka

ry
ot

ic

op
td

ig
its

sa
tim

ag
e

us
ps

pe
nd

ig
its

re
ut

er
s

le
tte

r

ad
ul
t

w
3a

sh
ut

tle
w
eb

ijc
nn

1

in
tru

si
on

0

10

20

30

40

50

60

70

80

90

100 OLLAWV

NNISDA

MNSVM

Fig. 5.7.: Size of the model given as percentage of support vectors with respect to the number
of samples versus the number of samples. Note that OLLAWVs percentage of support vectors is
always smaller (except in one case) than NNISDA’s and MNSVM’s ones.

98

Figures 5.3, 5.4, and 5.5 show the results of the statistical analysis for accuracy, run time,

and percentage of support vectors. Figures 5.4 and 5.5 show that OLLAWV is statistically

significantly better than MNSVM and NNISDA for run time and percentage of support

vectors (model size). At the same time, Figure 4.4 emphasizes what was mentioned earlier:

OLLAWV is shown to speed up the learning process without sacrificing model accuracy

against the state-of-the-art methods used.

Figure 5.6 plots the correlation of OLLAWV, NNISDA, and MNSVM’s run time versus

number of samples for the small, medium, and large datasets. The figure clearly emphasizes

the benefit of using OLLAWV for large-scale learning due to its gradual increase in run time

as the number of samples increases in comparison to NNISDA and MNSVM. Figure 5.7 shows

the correlation between OLLAWV, NNISDA, and MNSVM’s percentage of support vectors

and the number of samples for all datasets. It highlights OLLAWV’s model sparseness in

comparison to the competing methods, while mirroring the run time results.

5.3.3 Non-SVM Experimental Setup

The supplemental experimental setup was designed to compare the performance of the

proposed OLLAWV against the following 5 popular non-SVM algorithms: k-Nearest Neigh-

bors (k-NN), J48, JRip, Näıve Bayes, and Logistic. These methods have been implemented

within the Weka framework [66]. The experiments were performed under the same nested

5-fold cross-validation framework as the SVM experimental study in Section 5.3.1. The

following hyperparameters, shown in Table 5.4, were used for the non-SVM algorithms.

Table 5.4.: Non-SVM Algorithm Hyperparameters

Algorithm Parameters

k-NN Number of neighbors: k ∈ {1, 3, 5, 7}
J48 Pruning: {True, False}, Pruning Confidence: {0.1, 0.25, 0.5}
JRip Pruning: {True, False}
Naive Bayes Use kernel estimation: {True, False}
Logistic Log-likelihood:

{
1e−7, 1e−8, 1e−9

}

99

Table 5.5.: Accuracy (%) for Non-SVM Methods vs. OLLAWV

Dataset OLLAWV k-NN J48 JRip Näıve Bayes Logistic

small datasets
iris 97.33 ± 1.49 96.00 ± 3.65 94.00 ± 2.79 90.67 ± 4.35 96.00 ± 2.79 97.33 ± 2.79
teach 52.32 ± 3.46 59.64 ± 2.89 49.72 ± 7.58 56.75 ± 9.60 53.75 ± 6.46 51.77 ± 6.68
wine 98.87 ± 1.54 97.73 ± 3.72 90.43 ± 5.83 93.24 ± 3.27 96.60 ± 3.14 96.05 ± 2.58
cancer 80.36 ± 5.80 77.32 ± 6.93 73.81 ± 8.57 73.78 ± 5.81 67.73 ± 5.07 77.32 ± 7.78
sonar 92.32 ± 3.11 88.99 ± 4.59 76.16 ± 10.6 75.18 ± 6.77 73.69 ± 7.65 75.18 ± 7.31
glass 72.41 ± 2.28 67.73 ± 5.91 65.06 ± 5.51 65.59 ± 9.66 49.46 ± 5.19 62.04 ± 5.75
vote 96.54 ± 1.87 92.26 ± 3.19 95.70 ± 2.12 96.54 ± 2.45 92.24 ± 3.24 93.54 ± 2.59
heart 82.22 ± 2.93 79.63 ± 5.71 78.52 ± 2.81 80.74 ± 4.06 84.44 ± 4.46 83.33 ± 3.93
dermatology 97.82 ± 0.05 96.18 ± 1.78 94.52 ± 2.21 91.27 ± 5.08 97.28 ± 1.64 96.98 ± 2.28
prokaryotic 88.96 ± 2.14 87.96 ± 3.01 78.54 ± 1.62 79.13 ± 2.78 62.38 ± 3.54 87.57 ± 2.56
eukaryotic 77.38 ± 1.96 81.42 ± 2.06 65.27 ± 2.92 66.42 ± 3.47 39.27 ± 3.43 69.55 ± 1.34
medium datasets
optdigits 99.11 ± 0.38 98.74 ± 0.39 90.87 ± 1.09 91.28 ± 0.40 92.42 ± 0.75 95.05 ± 0.91
satimage 91.66 ± 0.80 90.38 ± 0.72 85.64 ± 1.21 85.33 ± 0.77 85.41 ± 0.92 88.14 ± 1.11
usps 97.49 ± 0.22 97.04 ± 0.47 88.73 ± 0.46 89.20 ± 1.00 79.45 ± 0.59 91.88 ± 0.65
pendigits 99.56 ± 0.12 99.33 ± 0.17 96.24 ± 0.31 96.34 ± 0.41 88.34 ± 0.65 95.59 ± 0.18
reuters 98.03 ± 0.22 97.15 ± 0.43 96.90 ± 0.32 97.18 ± 0.44 93.52 ± 0.02 69.54 ± 0.28
letter 96.99 ± 0.21 95.71 ± 0.19 87.34 ± 0.68 87.02 ± 0.66 74.12 ± 0.97 77.45 ± 0.16
large datasets
adult 84.75 ± 0.26 83.85 ± 0.28 84.38 ± 0.28 83.73 ± 0.17 80.57 ± 0.09 82.46 ± 0.14
w3a 98.86 ± 0.04 98.60 ± 0.06 98.71 ± 0.05 98.41 ± 0.10 96.71 ± 0.20 98.61 ± 0.12
shuttle 99.77 ± 0.03 99.93 ± 0.03 99.97 ± 0.02 99.96 ± 0.02 98.57 ± 0.24 96.83 ± 0.12
web 98.94 ± 0.05 98.89 ± 0.06 98.79 ± 0.09 98.50 ± 0.13 96.71 ± 0.21 98.70 ± 0.08
ijcnn1 98.31 ± 0.07 98.48 ± 0.04 98.40 ± 0.09 98.11 ± 0.10 90.69 ± 0.26 92.29 ± 0.16
intrusion 99.77 ± 0.02 88.20 ± 1.06 58.01 ± 26.6 87.66 ± 3.79 49.75 ± 30.7 65.15 ± 15.7

Average 91.29 ± 1.26 90.05 ± 2.06 84.60 ± 3.64 86.18 ± 2.84 79.96 ± 3.58 84.45 ± 2.83
Ranks 1.500 2.500 4.041 3.9583 5.0625 3.9375

1 2 3 4 5 6 7 8
OLLAWV

k-NN J48

JRip Naive Bayes

Logistic

Fig. 5.8.: Bonferroni-Dunn test for Accuracy

5.3.4 Non-SVM Results and Statistical Analysis

Table 5.5 displays the accuracy results for all algorithms. The table also shows the

standard deviation for accuracy per outer fold, the average values across all datasets, and

the algorithm ranks. As the results indicate, OLLAWV outperforms all other methods.

Figure 5.9 displays the average accuracy results for OLLAWV and the non-SVM methods

across all datasets and highlights OLLAWV’s better performance. The Friedman test indi-

cates that OLLAWV performs significantly better than the competing methods for α = 0.05

and is ranked first. Figure 5.8 shows the critical distance bar (which is 1.391), and indicates

that all other algorithms perform statistically worse than OLLAWV, except for k-NN.

100

Fig. 5.9.: Mean accuracy over all datasets for OLLAWV and the 5 non-SVM competing methods.

5.4 Conclusions

This chapter proposed a novel online learning procedure and algorithm for solving the

L1-SVM problem, which is a unique method in terms of both iterating over samples and

updating the model. A new stopping criterion for the stochastic gradient procedure is also

proposed. The model is updated by changing the weight αi of a single worst-violator per

iteration and stops when all violating samples i.e., support vectors, are found. Finding

the worst-violators is done without replacement. Such an approach results in a significant

shortening of training time, as well as in a huge decrease in the resulting model size. The

key features of the proposed algorithm, OLLAWV, stem from its implicit ability of finding

support vectors and its self-stopping condition. This design was devised to address the

limitations presented by current SVM solvers.

The first experimental study demonstrates the better performance of OLLAWV com-

pared with state-of-the-art SVM solvers (MNSVM and NNISDA) which have been shown

to outperform the popular SMO implementation in the LIBSVM package. The results for

accuracy, run time, and percentage of support-vectors, obtained by the strict nested cross-

validation procedure, were compared and further validated using statistical analysis with

101

non-parametric tests. They highlighted the advantages and major speedup achieved by

OLLAWV against the competing MNSVM and NNISDA. The second, supplemental experi-

mental study evaluated the performance of OLLAWV against 5 popular non-SVM methods,

showing the better performance of OLLAWV against all five non-SVM algorithms (k-Nearest

Neighbors (k-NN), J48, JRip, Näıve Bayes, and Logistic). The proposal, OLLAWV, performs

statistically better in terms of run time and model size across all 23 evaluated benchmark

datasets, without compromising accuracy. The research outcomes of this chapter have been

published in [131].

102

CHAPTER 6

OLLAWV FOR BATCHED DATA STREAMS

Due to advances in hardware/software technologies and information systems, data generation

and automated processing has become fast, voluminous, and continuous; usually referred to

as streams of data. Nowadays, data streams are ubiquitous and notoriously difficult to store,

analyze, visualize, and learn from. Most traditional machine learning techniques need to be

adapted to accommodate the streamed, also known as online, environment due to underlying

resource constraints, i.e. memory consumption and run time, as well as the possibility of

concept drift [82]. This chapter presents a novel implementation and experimental environ-

ment for two online support vector machines (SVMs) in the batched data stream setting.

Unlike other existing methods, these two stochastic, i.e. online, algorithms were chosen be-

cause their characteristics are a natural remedy for the time and memory constraints that

come with the data stream problem. The first algorithm’s low memory complexity deals

with the memory constraints, and the second methods’ fast run time and self-stopping capa-

bility remedies the time constraint. The results for the latter, OnLine Learning Algorithm

using Worst-Violators (OLLAWV), showed a superior performance to the former, OnLine

Learning Algorithm - List 2 (OLLA-L2). OLLAWV was then compared to 12 popular data

stream algorithms against 24 datasets and stream generators. The results and statistical

analysis showed OLLAWV’s better performance, making it suitable for streamed learning.

6.1 Data Stream Classification Background

This section first describes the notation that will be used throughout the chapter, and

then formally describes the data stream classification problem along with relevant popular

algorithms used within this paradigm.

103

Table 6.1.: Summary of Data Stream Notation

Definition Notation

Number of Samples n
Number of Input Attributes d
Time Step t

Input Space at time t Xt ∈ Rn×d
Labels at time t Yt ∈ Zn
Sample i at time t xit = (xi1t , . . . , x

id
t) ∈Xt, ∀i ∈ {1, . . . , n}

Sample Label i at time t yit ∈ Yt, ∀i ∈ {1, . . . , n}

Data Stream D = {(x1, y1), (x2, y2), . . . , (xt, yt), . . .}
Set of Samples Provided to the Algorithm St =

{(
x1
t , y

1
t

)
, . . . , (xnt , y

n
t)
}

= {(Xt,Yt)} ∈ D

6.1.1 Notation

Let D be a data stream which provides a sequence of samples St = {(xt, yt)}n that

are provided from an unknown probability distribution at some arbitrary time t, where n is

the number of tuples. The sub-script, time t, is used to explicitly assert the data’s possible

time-varying nature. xt ∈ Rd represents a feature vector, and yt ∈ Z is its discrete class

label (in the non-binary classification case), both at time time t. The data may arrive to

the algorithm in an online manner, i.e. one sample at a time: St = {(xt, yt)}, or in a

batch setting: St = {(x1
t , y

1
t) , . . . , (x

n
t , y

n
t)}. The single-sample setting occurs when n = 1.

Table 6.1 summarizes the notation used throughout the chapter.

6.1.2 Data Stream Classification Methods

In the context of supervised data stream classification, the goal is to learn the relation-

ship between a set of attributes and a class label from continuous and rapidly arriving data.

Examples of real-world data stream applications range between network analysis, financial

data prediction, traffic control, sensor measurement, GPS tracking, as well as many oth-

ers [17, 77, 121, 123]. A data stream, D, produces a rapid sequence of data, St, either in

batches or in an online format, from an unknown distribution, over time t that is possibly

infinite in length and cannot be accessed more than once [190]. In real-world scenarios, St

104

is only available for learning at the time it is first presented to the algorithm [18]. This

requires machine learning algorithms to be robust, alert, and perform classification in a re-

source adaptive way. The stream would need to be classified on demand, since there is no

way to control the arrival of test samples.

Typically, there are two main core categories of data streams: stationary streams, where

the samples are drawn from a fixed, unknown probability distribution, and non-stationary

streams, where data distribution can change over time. In the non-stationary case, the class

labels and/or attribute distributions can evolve, abruptly or gradually. This phenomenon

is known as concept drift [82]. These drifts are only apparent in incoming samples, which

will eventually cause the classifiers performance to deteriorate, due to being trained on

outdated training data. Besides gradual and abrupt (i.e. sudden) changes, concept drifts

can also be described by their continuity, predictability, and recurrence [121, 177]. Stationary

stream classifiers lack any mechanism to adapt quickly when a drift occurs. Due to these

complexities, in both the stationary and non-stationary case, fast, robust, and adaptive

algorithms need to be designed for the data stream environment.

There are two main approaches for data stream learning problems in non-stationary en-

vironments: active and passive. To accommodate possible changes in the data stream, as well

as ensure prompt and robust classification, passive approaches, also known as trigger, per-

form continuous updates of the model whenever new data arrive. The active approach relies

on a change-detection mechanism which triggers an update to remedy or react to the change

encountered [120]. Both approaches attempt to maintain an updated model at all times,

however, passive approaches can avoid potential errors that might arise by a faulty change-

detection mechanism (false alarms or failures to detect changes) [59]. Methods that fall

under the passive approach are typically divided into two main categories: those that focus

on updating a single classifier (Single Classifier Models), and those that add/remove/modify

components of ensemble models (Ensemble Classifier Models). Single classifier models usu-

ally provide a lower computational cost, in comparison to ensemble models, making them a

105

more attractive and simple solution for mining ultra-large data streams. However, ensemble

methods are very popular due to their natural way of handling drifting streams [121].

One of the earliest passive methods, specifically designed for the streaming environment,

is the popular Very Fast Decision Tree (VFDT) [61], or Hoeffding Tree. It essentially sub-

samples data to achieve scalability when constructing the tree. The main idea behind this

approach is to determine a representative sample of sufficient size for constructing the tree,

as though it were constructed on the entire dataset. It was transformed to accommodate the

data stream format by building the tree incrementally. In order to accommodate concept-

drifting streams, the method was extended in [97] and is called Concept-adapting Very Fast

Decision Tree (CVFDT). It was also extended to handle multiple sub-trees at each node.

Gama et. al. [79] also modified the VFDT method to handle continuous and drifting data

by applying Bayes classifiers at leaf nodes [1]. More recent adaptations of VFDTs are

the Hoeffding Option Tree (HOT) and Adapting Hoeffding Option Tree (AdaHOT) [137].

HOT enables each training sample to update a set of option nodes, instead of a single

leaf, and AdaHOT incorporates Näıve Bayes classification at the leaves. One of the major

disadvantages of the VFDT family is that they are naturally suited for categorical data.

Numerical data would need to be discretized; a task that is usually done offline. It is

possible to test all possible splits, however, when dealing with numerical data, the number

of splits may be very large.

Rule-based methods have also been adapted for the data stream environment because

of their high level of interpretability. One popular example of a rule-based method is the

Very Fast Decision Rules (VFDR) [80] algorithm. This approach uses Näıve Bayes to help

exploit information available in each rule. Another recent example of rule-based methods

for concept-drifting data streams is a parallelized differential evolutionary algorithm for

learning classification rules [41]. Rule classifier’s major disadvantage lies when data evolves

significantly because of their inability to adapt quickly [59].

106

Ensemble classifiers are popular approaches for learning in streamed environments and

provide some advantages: they tend to have more flexibility in easily incorporating newly

presented data into a model by adding new members to the ensemble. They also obtain a nat-

ural way of “forgetting” irrelevant knowledge by removing members from the ensemble [59].

The two most common ensemble methods are bagging and boosting [133].

One well known, online approach that uses sample and model weighting/selection to

obtain the best accuracy over different sections of a drifting stream is the Dynamic Weighted

Majority (DWM) [118] algorithm. The main idea is to choose the best weighted classifier

that performs well for an unseen sample, or portion of the training stream, while having

the ability to add/remove classifiers to accelerate reacting to a possible drift. In [119], an

ensemble approach with a self-adapting confidence level for reacting to drifting streams is

introduced. Instead of a traditional voting, the dynamic threshold allows for an additional

functionality for ensemble classifiers: an option to abstain from contributing to the final

classification model.

Another ensemble method is the Social Adaptive Ensemble 2 (SAE2) [87], an improved

version of SAE [86] classifier. The main difference between the two is that SAE2 implements

a more scalable adaptation method. A relatively new online ensemble is the Anticipative

Dynmic Adaptation to Concept Changes (ADACC) [99] algorithm, which recognizes concepts

from incoming samples and optimizes control over the incremental classifiers. The main

disadvantages of such ensemble approaches stem from their high computational and spatial

complexity, as well as their low inter-classifier interpretability.

Unlike the previously mentioned ensemble approaches, the Learn++ for Non-Stationary

Environments (Learn++.NSE) [67] method, which belongs to the Learn++ family of algo-

rithms [139], operates in batch mode and has the ability to learn from environments that

exhibit constant, variable, or cyclical drifts. It uses a time-adjusted loss function to favor

newly trained classifiers, as well as classifiers that have performed will in the past (in case

of a recurring concept).

107

k-Nearest neighbor (k-NN) methods comprise another set of algorithms that have been

adapted to handle non-stationary streams of data, however, they use a change-detection

mechanism. Unlike the VFDTs and Näıve Bayes classifiers, k-NN cannot learn from a stream

without discarding data. These methods maintain a dynamic sample, or sliding window,

of the data stream. Finding this representative sample of data is referred to as reservoir

sampling [175], a technique used by many streaming algorithms [59]. Basic implementations

of k-NN maintain a sliding window of fixed sizes because storing all samples in a stream is

not feasible due to memory and processing constraints. The class label is then assigned by

the majority label present among the k-nearest neighbors of the unknown test sample.

An example of such windowing methods is the Probabilistic Adaptive Window (PAW)

algorithm, used with k-NN in [16]. Rather than storing all samples, or a limited sized window,

PAW keeps a dynamically sized window with a logarithmic number of samples, storing those

with higher probability than the rest. Another example of windowing techniques is that of the

ADaptive WINdowing (ADWIN) algorithm [15], which increases the size of the window when

no change is apparent, and shrinks it when there is a drift. The main disadvantage with these

change detection techniques is their difficulty to set a threshold for when a change occurs;

too low of a threshold value would cause many false positives, and too large a threshold

would cause many false negatives.

Other widely used examples of change-detection techniques include the Drift Detection

Method (DDM) [83] and its successor Early Drift Detection Method (EDDM) [11]. DDM

estimates the classifier error, which must decrease as more training samples arrive. However,

if the classification error increases above some threshold, a warning signal is generated and

new incoming samples are then stored in a window. If the error later falls below the threshold,

the warning is considered a false alarm and the window is discarded. If the error rate

increases, the classifier is then rebuilt on the samples stored in the window. EDDM is

similar to its predecessor, however offers an improvement for detecting gradual drifts by

proposing a novel method for comparing distances of error rates.

108

Support vector machine (SVM) methods have infrequently been used for data stream

classification due to challenges that stem from incrementally updating the SVM model as the

number of samples increases. Some methods, such as SVMLight [101] and SVMPerf [102],

have been proposed for speeding up SVM classification. It is worth noting that some of

the earliest work in streamed SVM learning [114, 162] precedes the earliest work in stream

decision tree learning. In fact, the contributions made by Klinkenberg and Joachims in [114],

are one of the earliest window-based methods for detecting concept drift. Other significant

contributions on incremental [24, 46, 141, 146, 155] and window-based [60, 76] support vector

machines have also been investigated. However, the biggest issue with these algorithms is

that most were not designed for streaming environments.

Adjusting SVMs for the data stream setting is a particularly critical task because of

their generalization capabilities, scalability, and robustness against outliers. Most of the

methods mentioned employ a quadratic programming formulation, with equal number of

constraints as the number of data, making the problem computationally expensive for large

amounts of data. In the kernelized case, the size of the kernel scales with the number of

samples squared, an impractical solution in the case of data streams. Even when using de-

composition methods, the disadvantage then stems from receiving an approximate solution;

which may require the algorithm to make many passes over the data to achieve a reasonable

level of convergence. Considering the event of a concept drift, the Karush-Kuhn-Tucker

(KKT) optimality conditions must be maintained if/when adding or removing samples for

the algorithm to succeed [1, 122]. The most interesting SVM methods for data stream learn-

ing are that of Cauwenberghs and Poggio [46], and Bordes et al. [24], because both utilize

decremental unlearning methods which provide insights into the relationship between the

geometry of the data and generalization capabilities.

These computational, spatial, and time complexities are what prompted researchers to

investigate large-scale learning solutions using Stochastic Gradient Descent (SGD) before

investigating how to deal with concept-drifts and their detection [90, 112, 145, 150, 151,

109

153]. Stochastic algorithms can be both the fastest and have superior generalization perfor-

mances [32, 113] against batch methods. This (and the work done in [129, 109]) prompted

the investigation of the novel OnLine Learning Algorithm (OLLA) [106] and its younger

counterpart OnLine Learning Algorithm using Worst-Violators (OLLAWV) [131] under a

stationary and non-stationary data stream environment. Due to their online, iterative na-

ture, and that they have shown significant improvements over popular SVM solvers in terms

of speed, memory consumption, and accuracy; OLLA and OLLAWV are a natural extension

for SVMs to the data stream environment.

6.2 OnLine Learning Algorithms for Batched Data Streams

OLLA-L2 [106] and its successor OLLAWV [131] are two online, iterative learning al-

gorithms that are implemented and investigated within the context of a batched, stationary

and non-stationary, data stream environment. OLLA-L2 stems from the same core algorithm

as OLLAWV, named OnLine Learning Algorithm (OLLA) [106]. It is a generic stochastic

learning algorithm tailored and designed for various non-linear (i.e. kernel) classifiers in the

primal domain. In this implementation of OLLA-L2, similar to that of OLLAWV described

in Chapter 5, the online learning algorithm is derived and used for solving the primal L1-

SVM cost function, given by Equation 2.5. The online nature of the core OLLA algorithm

and its superior performance in terms of speed and accuracy against popular and widely

used SVM solvers merited investigation in the data stream setting. The main objective is

to design a novel base-line incremental support vector machine that is capable of handling

large volumes of streamed data in a short amount of time, while maintaining a competitive

accuracy. By beginning with this approach, in the event of a concept drift, the classifier

would simply be able to rebuild itself, without violating any time constraints.

The algorithm that was first implemented and investigated under the data stream en-

vironment was OLLA-L2, listed in Algorithm 6.1. At every iteration, OLLA-L2 proceeds

cyclically over the data, updating the model if the chosen sample, i, is a violator, i.e. has an

110

error yioi ≤ 1, where yi and oi are the sample’s class label and corresponding model output,

respectively. If the sample has no error (yioi > 1), the model remains the same and no

update is performed. Note, this error rule is that of the Hinge loss, shown in Equation 2.4.

In the context of batched streams, the algorithm would cycle through the samples in each

arriving batch. For a pure online scenario, the algorithm would proceed with its updates, as

long as samples are provided by the stream.

The update parameters Λ ∈ R (lambda) and P ∈ R (rho), as seen in Algorithm 6.1,

describe scalars which are used for updating the output vector o ∈ Rn, the weight vector

in kernel feature space α ∈ Rn, and the bias term b ∈ R, if used. The input parameter

β ∈ {0, 1} describes whether the bias term will be used (β = 1) or not (β = 0). The update

parameters for Λ and P for the L1-SVM with regularizer ||w||2 are given by:

Λ = ηCyi P = ηαi

The advantage of using OLLA-L2’s update procedure is most apparent in lines 8 and 15

in Algorithm 6.1. The model’s α parameter update is simply the sum of two scalars values:

the previous value of α and Λ. Then, to determine whether an update is even needed, the

next sample’s output value, oi, is needed. It is obtained by using the scalar product of kernel

values and weight vector α for support vectors (stored in S) only. Hence, the sparser the

model, the more OLLA-L2 exhibits a speed-up [106].

In the batch setting, the quantity of iterations can be controlled by the parameter e,

which represents the number of epochs, or cycles, over the data. As mentioned in the previous

chapter, early stopping acts as a regularization technique [53]. It is worth noting that, if the

number if epochs is set to be less than the number of samples, or in the pure online stream

learning setting, where samples arrive one at a time with no cycling involved, the parameter

P is always equal to 0 because α is initialized to 0. P > 0 only if the algorithm cycles over

samples that have already had their respective α updated.

To try and maintain a sparse model, especially with evolving data streams, is a difficult

111

Algorithm 6.1 OnLine Learning Algorithm - List 2 (OLLA-L2)

Input: X,Y , β, n, e
Output: α, b, S
1: α← 0, b← 0,S ← 0, o← 0, i← 0 . Initialize model and algorithm parameters
2: for t = 1, . . . , n ∗ e do
3: η ← 2/

√
t . Learning rate in function of time

4: if yi oi ≤ 1 then . Check if current sample is a violator
5: Calculate Λ and P . Calculate update parameters
6: S ← [S ∪ i] . Save index of current violator
7: αi ← αi + (Λ− P) . Update violator’s alpha value
8: b← b+ (Λ− P)β . Update bias term
9: end if
10: i← i+ 1 . Get new sample
11: if i = n then . If the sample index exceeds the number of samples
12: i = 0 . Reset sample index
13: end if
14: oi ←K(xi, xS)αS + b . Calculate the new sample’s output value
15: end for

task. In the context of batch data streams, building a new model from scratch might be

too expensive, especially if there are many support vectors. The sample principle applies

to the pure online scenario. Because of these issues, a simple change detection mechanism

was designed and tested. OLLA-L2 was first updated to store the classification error, ξ =∑n
i=1 yi oi, for each previous batch trained on. If the mechanism is used, upon receiving a

new batch of data, the algorithm will calculate the difference in error between subsequent

batches and make a decision to either do nothing, update, or completely rebuild the model.

The model update procedure involves firstly training the model on the new batch, then

eliminating the support vectors with the smallest α values, and then appending the newly

added support vectors. Model variables from previous batches are scaled down by a ‘learning

rate’ that set to be large for the older batches and smaller for the more recent ones. This

gives preference to newly arriving samples in the case of a drift.

Although OLLA-L2 has many advantages, it also has complexities, some of which are

shared by other stochastic solvers. One example would be how/what to set the algorithm’s

maximum number of iterations, i.e. the model’s optimal point to stop training. Stopping

the training process prematurely might cause a missed opportunity for finding all possible

112

Table 6.2.: Comparison of OLLAWV vs. OLLA-L2

Dataset Accuracy (%) Run Time (s)

OLLA-L2 OLLAWV OLLA-L2 OLLAWV

RBFNoDrift 93.07 94.21 0.0238 0.0329
HyperplaneSlow 87.40 90.09 0.0261 0.0353
HyperplaneFaster 87.40 89.51 0.0256 0.0263
STAGGERGeneratorF1 100.0 100.0 0.0034 0.0021
HyperplaneFaster02 87.41 89.49 0.0257 0.0268
MixedGeneratorBT 92.45 98.00 0.0108 0.0205
MixedGeneratorBF 92.55 98.03 0.0107 0.0299
SineGeneratorF1BF 97.37 97.79 0.0091 0.0122
SineGeneratorF2BF 97.37 97.79 0.0091 0.0121
STAGGERGeneratorF1BF 100.0 100.0 0.0035 0.0021
STAGGERGeneratorF2BF 100.0 100.0 0.0039 0.0022
HyperplaneFasterAN0 87.40 89.51 0.0255 0.0263
HyperplaneFasterAN5 87.29 89.29 0.0258 0.0264
SEASuddenAN0 84.01 87.80 0.0494 0.0208
SEASuddenAN05 83.69 87.53 0.0494 0.0284

Average 91.83 93.94 0.0201 0.0203
Rank 1.90 1.10 1.3333 1.6667

support vectors. Stopping too late might cause the algorithm to diverge from its optimum

point, while leading to a longer run time. Setting a stopping point for training would be

especially difficult for the pure online scenario. This complexity inspired the work in Chap-

ter 5 on OLLAWV. The novelty and advantage of OLLAWV resides in the way it iterates

and updates the model. At each step, the algorithm chooses and updates the most violat-

ing sample, i.e. worst-violator. A worst-violator is defined as the sample that produces the

largest error with respect to the current decision function. Rather than shuffling the data and

cycling through each sample, as done in OLLA-L2, OLLAWV selects (without replacement)

the most incorrectly classified sample and updates the model accordingly. This procedure

essentially finds the model’s support vectors while implicitly defining a stopping criterion:

if there are no more violating samples, the algorithm terminates. These characteristics are

especially useful in the context of learning from a batch streamed environment since the

resulting model is speedily trained and is always sparse [131].

Preliminary experiments were conducted to test the capabilities of both approaches,

and the results for percent accuracy and run time are listed in Table 6.2. The results show

the better performance of OLLAWV in terms of accuracy. Both algorithms scale similarly

113

in terms of run time. The fast comparative run time of OLLAWV-L2 is dependent on its

change detection mechanism, since models have the opportunity to be minimally updated,

or even remain the same over new incoming batches of data. However, OLLAWV achieves

a competitive run time without the use of a change detector. The main bottleneck in terms

of run time for OLLAWV is the kernel vector calculation needed for calculating the model

output o, i.e. current decision function output. Only non-support vector output values are

calculated per iteration because samples are only allowed to be updated once. Therefore, the

number of kernel calculations decreases by 1 per iteration. This phenomenon, as well as early

stopping are contributing factors to OLLAWV’s competitive run time and model sparsity.

These characteristics motivated OLLAWV’s implementation and further experimentation in

the context of batch data streams.

6.3 Experimental Study

This section presents the experimental setup of OLLAWV against 12 popular data

stream algorithms on 24 different benchmark datasets and stream generators. The experi-

mental setup is first described, the contemporary comparison methods are then listed, then

a brief description of the datasets and stream generators is presented. The main purpose of

this study is to investigate whether OLLAWV is capable of learning from streams efficiently,

ensuring a strong base algorithm, before tackling streams with abrupt concept drift.

6.3.1 Experimental Environment

The experimental environment tests the difference in performance of OLLAWV against

12 contemporary algorithms, designed to handle stationary and non-stationary data streams.

Some use explicit drift-detectors and others take a passive approach. The majority of the

classifiers are without an explicit drift-detector because OLLAWV was implemented with-

out one, ensuring a fair comparison. However, classifiers with a detector mechanisms were

included for a more comprehensive understanding of how OLLAWV will compare.

114

Table 6.3.: Data Stream Algorithms Used in Experimental Study

Algorithm Description

HOT [137] Hoeffding Option Tree
AdaHOT [137] Adaptive Hoeffding Option Tree
NB [103] Näıve Bayes
k-NNPAW [16] k-NN with Probabilistic Adaptive Windows
DDM [83] Drift Detection Method with HOT
VFDR [80] Very Fast Decision Rules
VFDR-NB [80] VFDR with Näıve Bayes
SAE2 [87] Social Adaptive Ensemble 2
Learn.NSE [67] Learn++ for Non-Stationary Environments
DWM [118] Dynamic Weighted Majority
DACC [99] Dynamic Adaptation to Concept Changes
OCBoost [136] Online Coordinate Boosting

A summary of the 12 competing algorithms used throughout the experimental study is

given in Table 6.3. They are the following: Hoeffding Option Tree [137], Adaptive Hoeffd-

ing Option Tree [137], Näıve Bayes [103], k-NN with Probabilistic Adaptive Windows [16],

Drift Detection Method [83], Very Fast Decision Rules [80], VFDR with Näıve Bayes [80],

Social Adaptive Ensemble 2 [87], Learn++ for Non-Stationary Environments [67], Dynamic

Weighted Majority [118], Dynamic Adaptation to Concept Changes [99], and Online Coor-

dinate Boosting [136]. These algorithms were chosen because they have shown considerable

performance in learning in a stream environment, while also being readily available for use

and reproducing their results through MOA, Massive Online Analysis1 [17] framework. The

experiments were run on a server with 2 Intel Xeon CPU E5-2690v4 with 28 cores (56

threads), 128 GB of memory, and CentOS 7.4. OLLAWV was also implemented in Java

within MOA framework.

In the context of traditional batch learning, the most popular and unbiased method

for estimating the performance of an algorithm is the nested cross-validation procedure.

However, in the online learning setting which has computationally strict requirements and

drifting concepts, the nested cross-validation procedure is not straightforwardly applicable.

1https://moa.cms.waikato.ac.nz/

115

Algorithm 6.2 Evaluate Interleaved Chunks

Input: D = {S1, . . . ,ST }
Output: evaluator

1: firstChunk = TRUE

2: Initialize the classifier and evaluator

3: while D 6= ∅ do
4: From D generate new batch of instances, St
5: if !firstChunk then
6: for ∀(xt, yt) ∈ St do
7: predictions← classifier.classify((xt, yt))
8: evaluator.addResult((xt, yt), predictions)
9: end for
10: else
11: firstChunk← FALSE

12: end if
13: classifier.trainOnInstances(St)
14: end while

The approach taken for this experimental environment is the evaluation method named In-

terleaved Test-Then-Train, also known as Prequential [81] (predictive sequential evaluation),

listed in Algorithm 6.2. It is used to describe the change in accuracy (or any other evaluation

metric) of algorithms over time. It follows the online learning protocol: when a sample is

received, the current model makes a prediction, and when the system receives the sample’s

true label, the classifier’s loss can be computed. In other words, each sample can be used to

test the model before it is used during training, and using this, the evaluation metric can be

incrementally updated. Using this order, the algorithms are always being tested on unseen

samples. This scheme ensures that no hold-out test set is needed, thus utilizing all available

data. It also provides a smooth and unbiased plot of the evaluation metric over time, where

each sample becomes increasingly less significant to the overall average.

Along with the prequential evaluation method, traditional k-fold cross-validation was

used in the OLLAWV experiments for the purpose of model selection. Once the first batch

is received by the algorithm, 5-fold cross-validation is performed to select the best repre-

sentative parameters for the current batch, and once they are chosen, they will be used for

the remaining batches. This rigorous procedure is computationally expensive, however, the

116

goal is to optimally and fairly find the best representative SVM parameters for the incoming

stream. Each batch of samples is first normalized by linear transformation of the feature

values to the range [0,1]. Then the training process, also involving cross-validation and

prequential evaluation, are performed. To deal with multi-class classification problems, the

one-vs-one, or pairwise, approach was used. The best hyperparameters were chosen from

the following 6× 7 possible combinations, shown in Equations (6.1a) and (6.1b).

C ∈ {0.01, 0.1, 1.0, 10.0, 100.0, 1000.0} (6.1a)

γ ∈ {0.01, 0.1, 0.5, 1.0, 2.0, 4.0, 16.0} (6.1b)

The γ parameter refers to that of the Gaussian RBF kernel, given by:

K(xi,xj) = e−γ||xi−xj ||
2

. (6.2)

6.3.2 Static Datasets & Stream Generators

Table 6.4 presents a summary of the static datasets and the stream generators used

throughout the experiments, where the number of attributes, classes, and samples are shown.

Table 6.4.: Base Streamed Datasets & Generators

Dataset # Samples # Attributes # Classes

Static
Shuttle 57,999 10 7
Census 299,284 42 2
CovType 581,012 55 7
Generators
RandomRBFGenerator 1,000,000 10 2
LEDGenerator 1,000,000 2 10
HyperplaneGenerator 1,000,000 10 2
WaveformGenerator 1,000,000 40 3
STAGGERGenerator 1,000,000 3 2
MixedGenerator 1,000,000 4 2
SineGenerator 1,000,000 2 2
SEAGenerator 1,000,000 2 2

117

The static datasets were obtained from the UCI Machine Learning repository2 [8] and were

simulated as streams using a stream simulator from the MOA framework. The stream gen-

erators listed were also provided by the MOA [17] framework. Both the streamed-static data

and the generators provided 1000-sample sized batches to the algorithms. Variations of the

generators were also used to simulate the concept drift rate, as well as varying number of

attributes, classes, and functions (pertaining to the functional generators). These variations

are suffixed with the generator name in the results tables. For the purposes of this exper-

imental study, the variations used on the generators were mild in terms of their drifting

capabilities. This was done intentionally in order to test the performance of OLLAWV as a

base-line data stream classifier. The following are descriptions of the types of base generators

used throughout the experimental study:

- Random RBF Generator: This generator produces samples that form normally dis-

tributed hyperspheres surrounding randomly selected centroids, with varying densities.

This generator also has the option to simulate data evolution, i.e. concept drift.

- LED Generator: This stream generator’s goal is to predict the digit displayed on a

seven-segment LED display, where each segment has a 10% chance of being inverted.

- Rotating Hyperplane: This generator produces samples of different classes that are

separated by a hyperplane. Their orientation and position may be smoothly changed

by modifying the size of the weights.

- Waveform Generator: This generator constructs three different types of waves which

are combinations of two/three base waveforms. The goal is to find the final wave type.

- STAGGER Concepts Generator: This generator creates a concepts which are de-

scribed by a collection of samples, where each sample is a Boolean function of attribute-

valued pairs and is described by a disjunct of conjuncts.

2http://archive.ics.uci.edu/ml/index.php

118

- MIXED Concepts Generator: This stream generator has an abrupt concept drift,

where the class label is selected based on some functional conditional, and is reversed

after a context change.

- Sine Concepts Generator: This generator involves two relevant attributes, each

having values uniformly distributed between [0,1], with an abrupt concept drift change.

In the first context, all samples below a sine curve are classified as positive. However,

after the context change, the class label is reversed.

- SEA Concepts Generator: This generator involves an abrupt concept drift change

and three attributes, of which only two are relevant, ranging between [0, 10]. Samples

belong to a certain class label if the sum of the relevant attributes is less than or equal

to some threshold value, which varies based on the concept.

6.4 Results & Analysis

The classification performance was measured using two metrics: Accuracy and Cohen’s

kappa rate, and the results are shown in Tables 6.5 and 6.6, respectively. The metrics are

calculated as shown in Equations 6.3a and 6.3b, where TP is the true positive value, TN is

the true negative value, FP is the false positive value, FN is the false negative value, and

n′ = TP +FP +TN +FN . The training times of each algorithm are also given in Table 6.7

to analyze their scalability. All metrics were calculated using the prequential procedure.

Accuracy
TP + TN

n′
(6.3a)

Cohen’s Kappa Rate
n′ − (TP + FN) ∗ (TP + FP)

n′

1− (TP + FN) ∗ (TP + FP)

n′

(6.3b)

In order to analyze the performances of the multiple models, non-parametric statis-

tical tests are used to validate the experimental results obtained. The Iman-Davenport

non-parametric test is run to investigate whether significant differences exist among the per-

119

formance of the algorithms by ranking them over the datasets used, using the Friedman

test. The algorithm ranks for each metric in Equations (4.17) are presented in the last row

of the results tables, and the lowest (best) rank value is typeset in bold. After the Iman-

Davenport test indicates significant differences, the Bonferroni-Dunn post-hoc test [65] (for

α = 0.05) is then used to find where they occur between algorithms by assuming the clas-

sifiers’ performances are different by at least some critical value. Below each result table,

a figure highlighting the critical distance (in gray), from the best ranking algorithm to the

rest, is shown. The algorithms to the right of the critical distance bar perform statistically

significantly worse than the control algorithm, OLLAWV. Figures 6.1, 6.2, and 6.3 show the

results of the Bonferroni-Dunn post-hoc procedure over the metrics in Equation (6.3).

6.4.1 Accuracy

Table 6.5 shows the accuracy results of the 13 algorithms over 24 data streams, along

with their average and rank. Specifically, OLLAWV achieves the best accuracy over 14 of

the 24 datasets, with a competitive average against k-NNPAW, AdaHOT, DDM, and HOT.

Note that OLLAWV performs competitively with the algorithms that employ some form of

change detection/adaptation, even on more sudden drifting streams, indicating its value as

a base-line batch stream learning algorithm (without a detection/adaptation mechanism).

This is most likely due to the method in which OLLAWV performs its model updates: by

iteratively selecting and updating the worst-violating sample. If a gradual drift occurs when

a new batch is received, there are bound to be misclassified samples, which will in turn be

selected first by OLLAWV to be updated. However, for sudden drifts, OLLAWV would not

be able to update and adjust the model in time; it would always be one batch behind. This is

evident through OLLAWV’s accuracy results achieved over the two variant SEA generators:

SEASuddenAN0 and SEASuddenAN05.

120

Table 6.5.: Accuracy (%) for Data Stream Classifiers

Dataset OLLAWV HOT AdaHOT NB k-NNPAW DDM VFDR VFDR-NB SAE2 LearnNSE DWM DACC OCBoost

CovType 90.28 85.34 86.22 60.04 87.89 59.56 60.32 75.58 76.21 69.97 71.96 61.70 71.29
Census 93.76 94.70 94.74 87.02 93.65 91.85 93.65 84.06 90.13 84.14 91.40 90.37 93.47
Shuttle 99.67 98.18 98.52 90.02 99.26 98.49 88.40 96.06 90.24 93.79 89.91 92.03 74.21
RBFNoDrift 94.21 92.94 92.96 71.99 93.75 92.48 77.53 81.71 89.16 70.28 70.43 65.01 92.08
LEDNoDrift 73.83 73.85 73.84 73.94 65.83 73.64 41.16 73.75 67.60 67.84 71.15 48.27 17.44
HyperplaneSlow 90.09 82.10 82.42 77.69 84.03 81.57 68.88 85.19 82.67 86.20 88.06 80.66 85.78
HyperplaneFaster 89.51 82.72 85.34 77.23 84.27 84.33 78.63 85.18 83.01 86.50 86.76 81.15 87.80
RBFGradualRecurring 98.41 94.63 94.44 58.33 98.43 93.47 60.08 86.16 88.48 72.87 74.96 61.91 49.62
RBFBlips 99.07 95.67 95.60 60.83 98.94 94.92 66.90 88.35 89.04 77.53 79.98 68.27 47.46
WaveformGenerator 83.94 82.99 84.14 80.41 80.13 83.61 63.88 75.84 80.18 80.19 78.39 73.59 55.05
STAGGERGeneratorF1 100.0 99.99 99.99 100.0 100.0 100.0 99.91 100.0 95.04 89.82 100.0 99.96 100.0
HyperplaneFaster02 89.49 82.77 85.36 77.25 84.27 87.64 78.89 85.11 83.04 86.51 86.76 81.23 87.59
RBFGradualRecurringv2 97.18 93.29 93.00 57.47 95.73 93.19 57.96 80.71 84.45 62.41 63.79 49.42 48.88
MixedGeneratorBT 98.00 99.11 99.32 91.93 97.67 99.11 83.12 93.28 93.16 90.91 91.19 89.16 98.98
MixedGeneratorBF 98.03 99.18 99.36 92.04 97.59 99.20 89.96 94.30 93.41 90.76 91.46 88.61 98.94
RandomRBFGeneratorC4A25 99.12 97.43 97.14 81.59 98.69 96.89 72.33 89.03 90.61 78.23 79.67 63.02 52.16
RandomRBFGeneratorC4A50 99.74 99.16 99.14 91.90 99.17 98.99 80.63 95.63 92.00 86.03 90.45 73.78 50.66
SineGeneratorF1BF 97.79 99.75 99.73 93.55 95.54 99.66 94.83 95.90 94.51 92.55 93.30 92.20 99.51
SineGeneratoF2BF 97.79 99.75 99.73 93.55 95.41 99.66 95.26 96.10 94.57 92.55 93.34 92.20 99.48
STAGGERGeneratorF1BF 100.0 99.99 99.99 100.0 100.0 100.0 99.91 100.0 95.04 89.82 100.0 99.96 100.0
STAGGERGeneratorF2BF 100.0 99.98 99.98 100.0 100.0 99.98 99.87 100.0 95.02 44.41 100.0 100.0 0.61
HyperplaneFasterAN5 89.29 82.69 85.24 87.38 84.19 88.74 79.14 84.89 82.92 86.41 86.67 81.12 87.38
SEASuddenAN0 87.80 84.92 85.18 88.23 87.22 88.97 81.56 85.17 85.11 85.77 86.93 83.73 88.23
SEASuddenAN05 87.53 84.57 84.82 87.53 86.96 88.28 81.55 85.11 84.57 85.63 86.54 83.53 87.53

Average 93.94 91.90 92.34 82.50 92.03 91.43 78.93 88.21 87.51 81.30 85.55 79.20 73.92
Rank 2.52 5.42 4.54 8.19 4.8542 4.63 10.96 6.77 8.46 9.04 7.27 10.90 7.46

1 2 3 4 5 6 7 8 9 10 11 12

OLLAWV

HOT
AdaHOT

NBk-NNPAWDDM VFDR

VFDR-NB SAE2 LearnNSE

DWM DACC

OCBoost

Fig. 6.1.: Bonferroni-Dunn test for Accuracy

Figure 6.1 shows the results for the statistical analysis on the accuracy results. The algo-

rithms with rank higher than 5.48 (OLLAWV’s rank + the Bonferroni-Dunn critical value),

i.e. to the right of the gray bar in Figure 6.1, perform statistically worse than OLLAWV.

The Bonferroni-Dunn test shows that there are no statistically significant differences in the

accuracy results achieved by OLLAWV and AdaHOT, DDM, k-NNPAW, and HOT. This is

expected firstly, since the AdaHOT and DDM methods utilize HOT as their base classifier

and the HOT classifier performed competitively; and secondly, because of k-NNPAW’s use

of a probabilistic sliding window.

6.4.2 Cohen’s Kappa Rate

Table 6.6 shows the Cohen’s Kappa rate results obtained by the algorithms. These

results complement the accuracy results achieved by the algorithms, where OLLAWV out-

performs all compared classifiers on 13 out of the 24 datasets, and is competitive with the

popular algorithms: AdaHOT, DDM, k-NNPAW, and HOT. OLLAWV’s kappa values all

121

fall within the (50%, 100%] range, with the exception of the Census dataset, indicating that

its merit as a classifier that agrees with the class distribution, and is not random. Concerning

the Census dataset, the best result achieved was by AdaHOT, which obtained 37.39%. This

indicates that all algorithms performed approximately randomly over the Census dataset.

Classifiers OCBoost, DACC, Learn++.NSE, and VFDR all achieved the lowest rates on av-

erage. Note, for STAGGERGeneratorF2BF, Learn++.NSE obtained 0% indicating complete

random classifier behavior, and OCBoost obtained −96.47 indicating a performance worse

than the default-hypothesis. Figure 6.2 shows the results of the statistical analysis on the

Cohen’s Kappa rate results. They show that OLLAWV performs significantly better than 8

out of the 12 competing classifiers. These results also support OLLAWV’s performance as a

competitive base classifier and supplement the statistical analysis over the accuracy metric.

Table 6.6.: Cohen’s Kappa Rate (%) for Data Stream Classifiers

Dataset OLLAWV HOT AdaHOT NB k-NNPAW DDM VFDR VFDR-NB SAE2 LearnNSE DWM DACC OCBoost

CovType 84.30 76.44 77.69 40.16 80.43 34.11 31.47 61.16 62.98 50.63 55.53 36.64 48.24
Census 5.06 34.37 37.39 35.96 22.11 20.39 6.97 18.90 18.66 17.48 36.18 16.68 33.66
Shuttle 96.17 94.91 95.85 75.04 97.92 95.75 60.82 89.53 75.32 81.56 75.10 74.98 36.69
RBFNoDrift 88.42 85.88 85.92 43.98 87.49 84.96 55.07 63.41 78.32 40.57 40.84 30.02 84.17
LEDNoDrift 70.92 70.94 70.93 71.05 62.03 70.71 34.62 70.84 64.00 64.27 67.94 42.52 8.27
HyperplaneSlow 80.18 64.19 64.84 55.38 68.05 63.13 37.77 70.38 66.97 72.41 76.12 61.32 71.55
HyperplaneFaster 79.02 65.43 70.68 54.46 68.54 68.65 57.27 70.36 67.63 73.00 73.52 62.31 75.59
RBFGradualRecurring 97.88 92.82 92.58 44.28 97.90 91.27 46.66 81.51 84.61 63.73 66.54 49.00 31.46
RBFBlips 98.74 94.14 94.06 46.97 98.57 93.13 55.08 84.27 85.20 69.57 72.85 56.99 32.73
WaveformGenerator 75.91 74.48 76.21 70.62 70.19 75.41 45.82 63.76 70.28 70.29 67.59 60.39 32.62
STAGGERGeneratorF1 100.0 99.94 99.94 100.0 100.0 100.0 99.56 100.0 78.28 14.61 100.0 99.78 100.0
HyperplaneFaster02 78.98 65.55 70.72 54.50 68.55 75.28 57.77 70.23 67.68 73.02 73.51 62.46 75.17
RBFGradualRecurringv2 96.23 91.04 90.66 43.16 94.30 90.91 43.94 74.25 79.24 49.79 51.65 32.37 30.81
MixedGeneratorBT 95.99 98.21 98.64 83.87 95.33 98.21 66.24 86.56 86.32 81.81 82.39 78.31 97.96
MixedGeneratorBF 96.04 98.35 98.72 84.00 95.16 98.40 79.82 88.56 86.79 81.42 82.81 77.10 97.88
RandomRBFGeneratorC4A25 98.82 96.53 96.13 75.22 98.23 95.80 62.39 85.19 87.34 70.61 72.56 49.68 36.25
RandomRBFGeneratorC4A50 99.65 98.86 98.83 89.06 98.87 98.64 73.71 94.07 89.19 81.10 87.09 64.30 35.40
SineGeneratorF1BF 95.55 99.50 99.45 86.98 91.04 99.32 89.54 91.75 88.95 84.97 86.49 84.25 99.01
SineGeneratoF2BF 95.55 99.49 99.45 86.98 90.74 99.32 90.45 92.15 89.07 84.97 86.55 84.25 98.95
STAGGERGeneratorF1BF 100.0 99.94 99.94 100.0 100.0 100.0 99.56 100.0 78.28 14.61 100.0 99.78 100.0
STAGGERGeneratorF2BF 100.0 99.95 99.95 100.0 100.0 99.95 99.73 100.0 89.92 00.00 100.0 100.0 -96.47
HyperplaneFasterAN5 78.58 65.38 70.49 74.75 68.37 77.47 58.27 69.77 67.45 72.81 73.35 62.24 74.75
SEASuddenAN0 73.80 67.61 68.19 74.80 72.76 76.39 59.86 68.06 68.29 69.27 72.05 64.99 74.80
SEASuddenAN05 73.19 66.84 67.41 73.28 72.20 74.92 59.91 67.94 67.13 68.97 71.21 64.56 73.28

Average 85.79 83.37 84.36 69.36 83.28 82.59 61.35 77.61 74.91 60.48 73.83 63.12 56.37
Rank 3.02 5.54 4.58 7.75 4.85 4.58 11.38 6.60 8.25 8.92 6.94 11.15 7.44

1 2 3 4 5 6 7 8 9 10 11 12 13

OLLAWV HOT

AdaHOT NB

k-NNPAW

DDM
VFDR

VFDR-NB
SAE2 LearnNSE

DWM

DACC

OCBoost

Fig. 6.2.: Bonferroni-Dunn test for Cohen’s Kappa rate

122

Table 6.7.: Training Time (seconds) for Data Stream Classifiers

Dataset OLLAWV HOT AdaHOT NB k-NNPAW DDM VFDR VFDR-NB SAE2 LearnNSE DWM DACC OCBoost

CovType 0.0451 0.0765 0.0909 0.0009 0.0387 0.0577 0.0371 0.0445 0.1121 6.2806 0.0419 0.0357 0.0984
Census 0.0168 0.1040 0.1162 0.0007 0.0386 0.0345 0.0735 0.0458 0.0363 0.9368 0.0156 0.0175 0.0543
Shuttle 0.0103 0.0276 0.0298 0.0004 0.0386 0.0069 0.0108 0.0069 0.0217 0.2692 0.0104 0.0186 0.0581
RBFNoDrift 0.0329 0.0174 0.0247 0.0002 0.0383 0.0828 0.4267 0.3172 0.0491 3.4029 0.0104 0.0137 0.0402
LEDNoDrift 0.0697 0.0373 0.0649 0.0003 0.0389 0.0245 0.0097 0.0082 0.0694 5.4734 0.0175 0.0290 0.0547
HyperplaneSlow 0.0353 0.0094 0.0142 0.0002 0.0389 0.1405 0.1871 0.3006 0.0473 3.3734 0.0091 0.0142 0.0389
HyperplaneFaster 0.0263 0.0295 0.0416 0.0002 0.0384 0.1231 0.3016 0.3784 0.0424 3.2991 0.0098 0.0143 0.0376
RBFGradualRecurring 0.0456 0.0316 0.0369 0.0003 0.0389 0.0391 1.1284 0.9295 0.1004 11.7980 0.0335 0.0474 0.1070
RBFBlips 0.0396 0.0243 0.0299 0.0003 0.0384 0.0278 0.7587 0.8342 0.0948 11.9934 0.0342 0.0473 0.1050
WaveformGenerator 0.0394 0.0751 0.0965 0.0006 0.0390 0.1847 0.9670 0.9271 0.1715 17.9675 0.0511 0.0743 0.1318
STAGGERGeneratorF1 0.0021 0.0006 0.0007 0.0001 0.0389 0.0005 0.0013 0.0007 0.0018 0.5517 0.0003 0.0020 0.0113
HyperplaneFaster02 0.0268 0.0302 0.0465 0.0002 0.0388 0.0260 0.3192 0.3010 0.0456 3.2893 0.0095 0.0141 0.0372
RBFGradualRecurringv2 0.0545 0.0169 0.0203 0.0003 0.0383 0.0859 0.7622 0.7634 0.0552 12.0529 0.0367 0.0464 0.1053
MixedGeneratorBT 0.0205 0.0027 0.0026 0.0001 0.0336 0.0071 1.7640 1.5534 0.0086 0.9761 0.0024 0.0052 0.0204
MixedGeneratorBF 0.0299 0.0024 0.0024 0.0001 0.0334 0.0065 1.1035 1.0924 0.0093 0.8971 0.0024 0.0058 0.0209
RandomRBFGeneratorC4A25 0.0200 0.0441 0.0407 0.0003 0.0358 0.0730 1.7831 1.6927 0.1245 13.9876 0.0395 0.0719 0.1580
RandomRBFGeneratorC4A50 0.0157 0.0333 0.0337 0.0007 0.0350 0.0909 2.8802 2.5559 0.1917 27.8456 0.0752 0.1432 0.2974
SineGeneratorF1BF 0.0122 0.0056 0.0056 0.0001 0.0334 0.0073 1.9301 2.9169 0.0127 1.3768 0.0034 0.0071 0.0235
SineGeneratoF2BF 0.0121 0.0051 0.0053 0.0001 0.0314 0.0077 5.0598 5.9477 0.0117 1.3996 0.0027 0.0074 0.0236
STAGGERGeneratorF1BF 0.0021 0.0006 0.0006 0.0001 0.0323 0.0005 0.0006 0.0005 0.0015 0.6175 0.0003 0.0022 0.0143
STAGGERGeneratorF2BF 0.0022 0.0010 0.0009 0.0001 0.0340 0.0006 0.0005 0.0005 0.0017 0.6752 0.0003 0.0020 0.0139
HyperplaneFasterAN5 0.0264 0.0200 0.0200 0.0440 0.0269 0.0115 0.2298 0.2417 0.0312 2.5014 0.0080 0.0147 0.0740
SEASuddenAN0 0.0208 0.0051 0.0052 0.0268 0.0312 0.0099 0.0370 0.0373 0.0176 1.3545 0.0032 0.0059 0.0335
SEASuddenAN05 0.0284 0.0055 0.0055 0.0257 0.0309 0.0095 0.0321 0.0334 0.0167 1.3365 0.0032 0.0061 0.0326

Average 0.0264 0.0252 0.0307 0.0043 0.0359 0.0441 0.8252 0.8721 0.0531 5.5690 0.0175 0.0269 0.0663
Rank 6.5833 4.7917 5.7917 1.8750 7.7500 6.0833 9.8333 9.5833 8.2917 12.6667 2.7917 5.5417 9.4167

1 2 3 4 5 6 7 8 9 10 11 12 13

OLLAWV

HOT

AdaHOTNB

k-NNPAWDDM

VFDR
VFDR-NB

SAE2

LearnNSEDWM DACC OCBoost

Fig. 6.3.: Bonferroni-Dunn test for Training Time

Table 6.8.: Testing Time (seconds) for Data Stream Classifiers

Dataset OLLAWV HOT AdaHOT NB k-NNPAW DDM VFDR VFDR-NB SAE2 LearnNSE DWM DACC OCBoost

CovType 0.0391 0.0256 0.0321 0.0089 1.3744 0.0041 0.0010 0.0304 0.0493 0.1896 0.0358 0.0170 0.0325
Census 0.0223 0.0082 0.0095 0.0033 2.2826 0.0014 0.0012 0.0082 0.0048 0.1052 0.0125 0.0076 0.0099
Shuttle 0.0072 0.0054 0.0060 0.0051 0.3265 0.0017 0.0012 0.0105 0.0092 0.1228 0.0096 0.0108 0.0176
RBFNoDrift 0.0372 0.0051 0.0065 0.0016 0.4792 0.0014 0.0196 0.0180 0.0168 0.0322 0.0084 0.0021 0.0102
LEDNoDrift 0.0927 0.0014 0.0021 0.0027 1.6070 0.0018 0.0010 0.0190 0.0302 0.0603 0.0148 0.0050 0.0105
HyperplaneSlow 0.0407 0.0029 0.0038 0.0016 0.5687 0.0020 0.0004 0.0048 0.0220 0.0814 0.0080 0.0037 0.0095
HyperplaneFaster 0.0273 0.0088 0.0113 0.0019 0.5691 0.0016 0.0020 0.0051 0.0164 0.0794 0.0085 0.0038 0.0083
RBFGradualRecurring 0.0436 0.0141 0.0154 0.0060 0.7791 0.0040 0.0067 0.0171 0.0485 0.2963 0.0301 0.0103 0.0448
RBFBlips 0.0370 0.0106 0.0127 0.0061 0.7407 0.0032 0.0039 0.0148 0.0464 0.5582 0.0312 0.0133 0.0457
WaveformGenerator 0.0604 0.0231 0.0291 0.0094 2.4650 0.0053 0.0033 0.0207 0.0671 0.3095 0.0454 0.0142 0.0400
STAGGERGeneratorF1 0.0018 0.0002 0.0003 0.0002 0.1834 0.0002 0.0004 0.0006 0.0004 0.2034 0.0002 0.0012 0.0005
HyperplaneFaster02 0.0272 0.0088 0.0118 0.0016 0.5671 0.0012 0.0019 0.0048 0.0174 0.0790 0.0081 0.0037 0.0085
RBFGradualRecurringv2 0.0551 0.0067 0.0078 0.0064 0.8919 0.0039 0.0035 0.0158 0.0259 0.0853 0.0322 0.0059 0.0452
MixedGeneratorBT 0.0202 0.0012 0.0012 0.0004 0.1348 0.0003 0.0008 0.0018 0.0029 0.0371 0.0018 0.0018 0.0028
MixedGeneratorBF 0.0330 0.0010 0.0011 0.0004 0.1372 0.0003 0.0017 0.0028 0.0032 0.0316 0.0019 0.0020 0.0030
RandomRBFGeneratorC4A25 0.0218 0.0153 0.0145 0.0072 0.6871 0.0030 0.0027 0.0158 0.0559 0.1909 0.0356 0.0135 0.0690
RandomRBFGeneratorC4A50 0.0204 0.0115 0.0117 0.0137 1.2234 0.0036 0.0015 0.0234 0.0848 1.0711 0.0687 0.0443 0.1373
SineGeneratorF1BF 0.0111 0.0025 0.0025 0.0006 0.1586 0.0003 0.0003 0.0016 0.0042 0.0938 0.0028 0.0027 0.0035
SineGeneratoF2BF 0.0111 0.0023 0.0025 0.0006 0.1500 0.0003 0.0003 0.0016 0.0041 0.0655 0.0022 0.0029 0.0036
STAGGERGeneratorF1BF 0.0018 0.0002 0.0003 0.0002 0.1150 0.0002 0.0002 0.0006 0.0004 0.1853 0.0002 0.0013 0.0007
STAGGERGeneratorF2BF 0.0019 0.0004 0.0004 0.0002 0.1232 0.0002 0.0001 0.0011 0.0004 0.2370 0.0002 0.0012 0.0011
HyperplaneFasterAN5 0.0290 0.0058 0.0059 0.0091 0.2602 0.0009 0.0016 0.0041 0.0129 0.0573 0.0068 0.0039 0.0153
SEASuddenAN0 0.0212 0.0009 0.0009 0.0044 0.1736 0.0004 0.0118 0.0129 0.0045 0.0326 0.0026 0.0021 0.0055
SEASuddenAN05 0.0325 0.0009 0.0009 0.0041 0.1673 0.0004 0.0106 0.0119 0.0044 0.0321 0.0025 0.0022 0.0053

Average 0.0290 0.0068 0.0079 0.0040 0.6736 0.0017 0.0032 0.0103 0.0222 0.1765 0.0154 0.0074 0.0221
Rank 10.375 4.7500 5.6250 3.3125 12.875 1.6458 2.8333 7.0417 8.9583 11.958 7.0417 5.7917 8.7917

1 2 3 4 5 6 7 8 9 10 11 12 13

OLLAWV

HOT

AdaHOTNB kNNPAWDDM

VFDR

VFDR-NB

SAE2
LearnNSE

DWM
DACC

OCBoost

Fig. 6.4.: Bonferroni-Dunn test for Testing Time

123

6.4.3 Training & Testing Time

Tables 6.7 and 6.8 show the training and testing times in seconds for each algorithm.

The Näıve Bayes classifier has the fastest training time and is ranked first, while exhibiting

fast testing times. This is to be expected since it is the simplest algorithm out of the 13

compared. However, its accuracy and Cohen’s kappa rate results were far from competitive.

The DWM and HOT algorithms were ranked next in terms of training time, however, DWM’s

accuracy and Cohen’s kappa rate were also statistically significantly worse in comparison

to the competing methods. Fast execution times are insignificant without complementing

performance results, as in the case with the Näıve Bayes and VFDR.

Based on the previous metrics, the top performing algorithms were: OLLAWV, Ada-

HOT, DDM, k-NNPAW, and HOT. In terms of training time, OLLAWV showed better scal-

ability than AdaHOT, DDM, and k-NNPAW, despite having to rebuild the classifier with

every received batch of data. Additionally, OLLAWV performs 5-fold cross-validation for hy-

perparameter selection, and builds multiple pairwise models for the multi-class streams; both

of which as expensive procedures. Despite these traits, OLLAWV still obtains competitive

training times. This is due to OLLAWV’s early stopping capability.

In terms of testing time, OLLAWV performed notably better than k-NNPAW, which has

the lowest ranking testing time. However, in comparison to the HOT, AdaHOT, DDM and

DWM methods, OLLAWV’s testing times are slower. This is yet another trait of building

multiple pairwise models. The DDM method ranked first and had the fastest testing times

due to its wrapper drift detection method over the HOT classifier. HOT as a single classifier

was shown to have competitive testing times; therefore, in conjunction with a drift detector,

its run time performance is expected to increase. However, despite the slower testing times

exhibited by OLLAWV, it showed competitive performance concerning model training time.

124

6.5 Conclusions

This chapter proposed two novel support vector machines, OLLA-L2 and OLLAWV,

for the batch data stream problem. The algorithms are online, i.e. stochastic, solvers which

are naturally suited for operating in the data stream setting. The main aim of the study

was to design a competitive base-line algorithm that satisfied the performance constraints

posed by the data stream problem, without sacrificing classification accuracy. The interest-

ing properties of OLLA-L2, in the context of data streams, are its efficient model update

procedure, its unordered iterative nature, and its ability to produce sparse models. How-

ever, OLLA-L2 suffers from a lack of meaningful stopping criteria, which could lead to denser

models. The key features of OLLAWV (OLLA-L2’s successor) are its self-stopping condi-

tion and unique method of iterating over and selecting samples, as well as a distinct update

procedure. These characteristics result in faster training times and sparser models. These

algorithmic attributes are desirable for the data stream setting, where time and memory

constraints play an important role in classifier efficacy. A preliminary experimental study

was conducted to compare the performance of the two solutions, and the results showed the

better performance of OLLAWV.

The experimental study showed the better performance of OLLAWV against 12 popular

data stream classifiers. As a base-line algorithm, OLLAWV was shown through various

metrics and statistical analysis to be very attractive in the batch data stream setting, sharing

competitive run times with the top performing contemporary methods.

125

CHAPTER 7

CONCLUSIONS

This thesis introduced several novel SVM algorithms for learning from the following di-

verse machine learning paradigms: multi-target regression, multi-instance classification, tra-

ditional supervised classification, and data stream classification.

Three unique approaches for multi-target regression were proposed: the baseline problem

transformation support vector regressor SVR, an ensemble of randomly generated chains us-

ing this base model SVRRC, and a maximally correlated chained model SVRCC. The results

highlighted the better performance of SVR as a base model, however, because it generates

independent regressors, the possible correlations amongst the targets are lost on the final

model. SVRRC was designed to test whether taking these correlations into account would

benefit the final learning model, and the results showed a performance increase. However,

due to the random nature of SVRRC and its limit on the number of generated chains, cap-

turing target correlations is not guaranteed. SVRCC was designed to remedy this issue using

a maximum correlation chain and proved to capture target correlations accurately, providing

the best results among the contributions, as well as against the methods compared.

A novel multi-instance bag-level formulation and algorithm, MIRSVM, with a bag-

representative selector, are proposed. MIRSVM trains the model on bag-level information,

iteratively selecting the best representative instance for each positive and negative bag, while

finding the optimal separating hyperplane. This approach, unlike other existing ones, elimi-

nates possible class imbalance issues by allowing both positive and negative bags to be rep-

resented. The experimental and statistical study showed that bag-level learners outperform

instance-level learners and wrapper methods. MIRSVM outperformed current contemporary

multi-instance SVMs, as well as other algorithms of different classes over several metrics.

After the previous experimental studies, it was evident that the existing popular SVM

126

solvers that were used suffered from several disadvantages when used in traditional and non-

traditional settings. This prompted the design and implementation of a novel online, also

known as stochastic, learning algorithm for solving the primal L1-SVM problem, dubbed

OLLAWV. Unlike other online methods, OLLAWV eliminates the need for specifying the

number of iterations, as well as the use of a regularization term. The proposed algorithm

uses early stopping as its regularizer. OLLAWV also was designed to have a novel stopping

criteria, a trait that most stochastic methods do not have. The experimental study, involving

strict nested cross-validation, evaluated and compared the proposal with current popular

SVM kernel methods that have been shown to outperform the traditional and widely used

approaches for solving L1-SVMs, such as SMO and quadratic programming solvers. The

results of the experimental study, along with complementary statistical analysis, showed the

better performance of OLLAWV against the compared methods, along with 5 non-SVM

contemporary methods. OLLAWV was shown to produce sparse models at very fast speeds,

without sacrificing accuracy. This, along with the online nature of OLLAWV, prompted the

investigation of its performance in the data stream setting.

The final contribution of this thesis involved implementing OLLAWV in a batch data

stream classification setting due to its major success with traditional classification. However,

before OLLAWV’s implementation and experimentation was complete, its parent, OLLA-L2,

was the first contender for a data stream algorithm due to its online nature, competitive per-

formance against the popular SMO algorithm, as well as its ability to produce sparse models

at very fast rates. After preliminary experiments between the two algorithms, OLLAWV was

shown to outperform OLLA-L2 in terms of accuracy. The prequential experimental study

analyzed the performance of OLLAWV against 12 popular data stream algorithms, most

capable of adapting to drifts. The goal of the study was to assess OLLAWV’s performance

as a base-line model in the data stream (stationary or not) environment. The results high-

lighted OLLAWV’s better performance against the methods compared. They also indicated

that adaptive algorithms and methods with drift-detectors were superior to the rest.

127

CHAPTER 8

FUTURE WORK

Due to the diversity of the contributions of this thesis, there are a few paths that could be

explored for future work.

One development would be updating the base learners in the multi-target regression and

multi-instance classification contributions. The purpose of the design and implementation

of OLLAWV was to remedy the flaws of current popular SVM solvers and provide a useful

alternative. Therefore, a natural extension to this research would be to apply OLLAWV

to the contributions in Chapters 3 and 4, in the place of the SVM solvers currently used.

This, in turn, would lead to another opportunity, which would be to extend OLLAWV to

the regression case, thus enabling its use in the multi-target regression setting. Having

both the classification and regression OLLAWV solvers could also enable investigating their

performance in the multi-instance regression or multi-label classification setting.

Another possible improvement is to extend OLLAWV to the online stream setting.

The complexity in this task stems from one of OLLAWV’s unique attributes: it operates by

selecting and updating a worst violating sample per iteration. In an online setting, there is no

definitive way of knowing which samples are/will be worst-violators. Due to this, OLLAWV

(in its present condition) may not be able to be adapted to the online stream environment.

OLLA-L2, on the other hand, would fit nicely in the pure online setting, since it proceeds

sample by sample, with no sample order required. The main issue with OLLA-L2 is its lack

of meaningful stopping criteria, possibly resulting in a dense model, which would deteriorate

its run time and classification performance. However, one potential remedy could come from

investigating combining OLLAWV and the positive attributes possessed by OLLA-L2, as well

as implementing a novel decremental unlearning mechanism for the efficient handling non-

stationary streams. These possibilities would further improve this family of online algorithms

128

under the stationary and non-stationary data stream setting.

Although OLLAWV shows considerable performance against widely used SVM solvers

and other machine learning methods, it still has room for improvement. The biggest com-

putational bottleneck in the steps taken by OLLAWV is the kernel vector calculation step.

One remedy for this would be to develop a parallelized/distributed version of OLLAWV and

analyze the amount of improvement achieved.

129

REFERENCES

[1] C. Aggarwal. “A survey of stream classification algorithms”. In: Data Classification:

Algorithms and Applications. CRC Press, 2014.

[2] M. A. Aizerman, E. A. Braverman, and L. Rozonoer. “Theoretical foundations of

the potential function method in pattern recognition learning”. In: Automation and

Remote Control. 25. 1964, pp. 821–837.

[3] J. Alcalá-Fdez et al. “KEEL Data-mining software tool: data set repository, inte-

gration of algorithms and experimental analysis framework, analysis framework”. In:

Journal of Multiple-Valued Logic and Soft Computing 17 (2011), pp. 255–287.

[4] C. Alippi. Intelligence for embedded systems. Springer, 2014.

[5] C. Alippi, G. Boracchi, and M. Roveri. “Just in time classifiers: Managing the slow

drift case”. In: Proceedings of the International Joint Conference on Neural Networks.

IEEE, 2009, pp. 114–120.

[6] J. Amores. “Multiple instance classification: review, taxonomy, and comparative

study”. In: Artificial Intelligence 201 (2013), pp. 81–105.

[7] S. Andrews, I. Tsochantaridis, and T. Hofmann. “Support Vector Machines for

Multiple-Instance Learning”. In: Proceedings of the 15th International Conference

on Neural Information Processing Systems. 2002, pp. 577–584.

[8] A. Asuncion and D. Newman. UCI machine learning repository. 2007.

[9] P. Auer and R. Ortner. “A Boosting Approach to Multiple Instance Learning”. In:

European Conference on Machine Learning. Vol. 3201. Lecture Notes in Computer

Science. 2004, pp. 63–74.

130

[10] B. Babenko, M. H. Yang, and S. Belongie. “Visual tracking with online multiple in-

stance learning”. In: IEEE Conference on Computer Vision and Pattern Recognition.

IEEE. 2009, pp. 983–990.

[11] M. Baena-Garćıa et al. “Early drift detection method”. In: Proceedings of the 4th

International Workshop on Knowledge Discovery from Data Streams. 2006.

[12] J. Baxter. “A Bayesian/information theoretic model of learning to learn via multiple

task sampling”. In: Machine Learning 28 (1997), pp. 7–39.

[13] S. Ben-David and R. Schuller. “Exploiting task relatedness for multiple task learn-

ing”. In: Learning Theory and Kernel Machines. Springer, 2003, pp. 567–580.

[14] K. P. Bennett and E. J. Bredensteiner. “Duality and geometry in SVM classifiers”.

In: International Conference on Machine Learning. 2000, pp. 57–64.

[15] A. Bifet and R. Gavalda. “Learning from time-changing data with adaptive window-

ing”. In: Proceedings of the SIAM international conference on data mining. SIAM.

2007, pp. 443–448.

[16] A. Bifet et al. “Efficient data stream classification via probabilistic adaptive win-

dows”. In: Proceedings of the 28th annual symposium on applied computing. ACM.

2013, pp. 801–806.

[17] A. Bifet et al. “MOA: Massive Online Analysis”. In: Journal of Machine Learning

Research 11 (2010), pp. 1601–1604.

[18] A. Bifet et al. “New ensemble methods for evolving data streams”. In: Proceedings of

the 15th SIGKDD international conference on knowledge discovery and data mining.

ACM. 2009, pp. 139–148.

[19] L. Bjerring and E. Frank. “Beyond trees: adopting MITI to learn rules and ensemble

classifiers for multi-instance data”. In: Proceedings of the Australasian Joint Confer-

ence on Artificial Intelligence. 2011, pp. 41–50.

131

[20] M. Blaschko and T. Hofmann. “Conformal Multi-instance Kernels”. In: Proceedings

of the 19th Conference on Advances in Neural Information Processing Systems. 2006,

pp. 1–6.

[21] H. Blockeel, L. De Raedt, and J. Ramon. “Top-down induction of clustering trees”.

In: Proceedings of the 15th International Conference of Machine Learning. 1998,

pp. 55–63.

[22] H. Blockeel, D. Page, and A. Srinivasan. “Multi-instance tree learning”. In: Proceed-

ings of the International Conference on Machine Learning. 2005, pp. 57–64.

[23] H. Borchani et al. “A survey on multi-output regression”. In: Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery 5.5 (2015), pp. 216–233.

[24] A. Bordes et al. “Fast kernel classifiers with online and active learning”. In: Journal

of Machine Learning Research 6 (2005), pp. 1579–1619.

[25] A. Bordes et al. “Solving multiclass support vector machines with LaRank”. In:

Proceedings of the 24th international conference on Machine learning. ACM. 2007,

pp. 89–96.

[26] B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A training algorithm for optimal

margin classifiers”. In: Proceedings of the 5th Annual Workshop on Computational

Learning Theory. 1992, pp. 144–152.

[27] L. Bottou. “Large-scale machine learning with stochastic gradient descent”. In: Pro-

ceedings of nineteenth International Conference on Computational Statistics. 2010,

pp. 177–186.

[28] L. Bottou and Y. L. Cun. “Large scale online learning”. In: Advances in neural

information processing systems. 2004, pp. 217–224.

[29] L. Bottou, F. E. Curtis, and J. Nocedal. “Optimization methods for large-scale ma-

chine learning”. In: Society for Industrial and Applied Mathematics Review 60.2

(2018), pp. 223–311.

132

[30] L. Bottou and N. Murata. Stochastic approximations and efficient learning. 2002.

[31] L. Bottou et al. Large-scale kernel machines. MIT press, 2007.

[32] O. Bousquet and L. Bottou. “The tradeoffs of large scale learning”. In: Advances in

Neural Information Processing Systems. 2008, pp. 161–168.

[33] S. Boyd and L. Vanderberghe. Convex Optimization. Cambridge University Press,

2004.

[34] L. Breiman. “Bagging predictors”. In: Machine Learning 24.2 (1996), pp. 123–140.

[35] L. Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[36] L. Breiman and J. H. Friedman. “Predicting multivariate responses in multiple linear

regression”. In: Journal of the Royal Statistical Society: Series B (Statistical Method-

ology) 59.1 (1997), pp. 3–54.

[37] L. Breiman et al. Classification and regression trees. Chapman & Hall, 1984.

[38] R. J. Brown and J. V. Zidek. “Adaptive multivariate ridge regression”. In: The

Annals of Statistics (1980), pp. 64–74.

[39] M. Brudnak. “Vector-valued support vector regression”. In: International Joint Con-

ference on Neural Networks. IEEE. 2006, pp. 1562–1569.

[40] M. C. Burl et al. “Diamond Eye: A distributed architecture for image data mining”.

In: Data Mining and Knowledge Discovery: Theory, Tools, and Technology. Vol. 3695.

International Society for Optics and Photonics. 1999, pp. 197–207.

[41] A. Cano and B. Krawczyk. “Learning classification rules with differential evolution

for high-speed data stream mining on GPUs”. In: IEEE Congress on Evolutionary

Computation. 2018, pp. 197–204.

[42] A. Cano, A. Zafra, and S. Ventura. “Speeding up multiple instance learning classifi-

cation rules on GPUs”. In: Knowledge and information systems 44.1 (2015), pp. 127–

145.

133

[43] M. A. Carbonneau et al. “Multiple instance learning: A survey of problem charac-

teristics and applications”. In: Pattern Recognition 77 (2018), pp. 329–353.

[44] M. A. Carbonneau et al. “Robust multiple-instance learning ensembles using random

subspace instance selection”. In: Pattern Recognition 58 (2016), pp. 83–99.

[45] R. Caruana. “Multitask learning”. In: (1998), pp. 95–133.

[46] G. Cauwenberghs and T. Poggio. “Incremental and decremental support vector

machine learning”. In: Advances in Neural Information Processing Systems. 2001,

pp. 409–415.

[47] C. C. Chang and C. J. Lin. “LIBSVM: A library for support vector machines”.

In: ACM Transactions on Intelligent Systems and Technology 2.3 (2011). Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, pp. 1–27.

[48] O. Chapelle. “Training a Support Vector Machine in the Primal”. In: Neural Com-

puting 19.5 (2007), pp. 1155–1178.

[49] Y. Chen, J. Bi, and J. Wang. “MILES: multiple-instance learning via embedded

instance selection”. In: IEEE Transactions on Pattern Analysis and Machine Intel-

ligence 28.12 (2006), pp. 1931–1947.

[50] Y. Chen and J. Wang. “Image categorization by learning and reasoning with regions”.

In: Journal of Machine Learning Research 5 (2004), pp. 913–939.

[51] Pak-Ming Cheung and James T Kwok. “A regularization framework for multiple-

instance learning”. In: Proceedings of the 23rd international conference on Machine

learning. ACM. 2006, pp. 193–200.

[52] J.-P. Chilès and P. Delfiner: Geostatistics: Modeling Spatial Uncertainty. Wiley Series

in Probability and Statistics, 1999.

134

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[53] R. Collobert and S. Bengio. “Links between perceptrons, MLPs and SVMs”. In:

Proceedings of the twenty first International Conference on Machine Learning. 2004,

p. 23.

[54] C. Cortes and V. Vapnik. “Support-vector networks”. In: Machine Learning 20.3

(1995), pp. 273–297.

[55] National Research Council. Frontiers in massive data analysis. National Academies

Press, 2013.

[56] G. De’Ath. “Multivariate regression trees: a new technique for modeling species–

environment relationships”. In: Ecology 83.4 (2002), pp. 1105–1117.

[57] J. Derrac et al. “A practical tutorial on the use of nonparametric statistical tests as

a methodology for comparing evolutionary and swarm intelligence algorithms”. In:

Swarm and Evolutionary Computation 1.1 (2011), pp. 3–18.

[58] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Perez. “Solving the multiple instance

problem with axis-parallel rectangles”. In: Artificial Intelligence 89 (1997), pp. 31–

71.

[59] G. Ditzler et al. “Learning in nonstationary environments: A survey”. In: Computa-

tional Intelligence Magazine 10.4 (2015), pp. 12–25.

[60] C. Domeniconi and D. Gunopulos. “Incremental support vector machine construc-

tion”. In: Proceedings of the IEEE International Conference on Data Mining. IEEE.

2001, pp. 589–592.

[61] P. Domingos and G. Hulten. “Mining high-speed data streams”. In: Proceedings of

the 6th SIGKDD international conference on Knowledge discovery and data mining.

ACM. 2000, pp. 71–80.

[62] L. Dong. “A comparison of multi-instance learning algorithms”. PhD thesis. The

University of Waikato, 2006.

135

[63] G. Doran and S. Ray. “A theoretical and empirical analysis of support vector machine

methods for multiple-instance classification”. In: Machine Learning 97.1-2 (2014),

pp. 79–102.

[64] H. Drucker et al. “Support vector regression machines”. In: Advances in neural in-

formation processing systems. 1997, pp. 155–161.

[65] O. J. Dunn. “Multiple comparisons among means”. In: Journal of the American

Statistical Association 56.293 (1961), pp. 52–64.

[66] F. Eibe et al. “The WEKA workbench”. In: Online Appendix for Data Mining:

Practical Machine Learning Tools and Techniques 4 (2016).

[67] R. Elwell and R. Polikar. “Incremental learning of concept drift in nonstationary

environments”. In: IEEE Transactions on Neural Networks 22.10 (2011), pp. 1517–

1531.

[68] T. Evgeniou, C.A. Micchelli, and M. Pontil. “Learning multiple tasks with kernel

methods”. In: Journal of Machine Learning Research 6 (2005), pp. 615–637.

[69] T. Evgeniou and M. Pontil. “Regularized multi–task learning”. In: Proceedings of

the tenth ACM SIGKDD international conference on Knowledge discovery and data

mining. 2004, pp. 109–117.

[70] J. Foulds and E. Frank. “A review of multi-instance learning assumptions”. In: The

Knowledge Engineering Review 25.1 (2010), pp. 1–24.

[71] E. T. Frank and X. Xu. Applying propositional learning algorithms to multi-instance

data. Tech. rep. University of Waikato, Department of Computer Science, 2003.

[72] Y. Freund and R. E. Schapire. “Experiments with a new boosting algorithm”. In: Pro-

ceedings of the 13th International Conference on Machine Learning. 1996, pp. 148–

156.

136

[73] Y. Freund and R. E. Schapire. “Large margin classification using the perceptron

algorithm”. In: Machine Learning 37.3 (1999), pp. 277–296.

[74] T. T. Frie, N. Cristianini, and C. Campbell. “The kernel-adatron algorithm: a fast

and simple learning procedure for support vector machines”. In: Proceedings of the

15th International Conference on Machine Learning. 1998, pp. 188–196.

[75] Z. Fu, A. Robles-Kelly, and J. Zhou. “MILIS: multiple instance learning with instance

selection”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 33.5

(2011), pp. 958–977.

[76] G. Fung and O. L. Mangasarian. “Incremental support vector machine classifica-

tion”. In: Proceedings of the International Conference on Data Mining. SIAM. 2002,

pp. 247–260.

[77] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. “A survey of classification meth-

ods in data streams”. In: Data streams. Springer, 2007, pp. 39–59.

[78] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. “Mining data streams: a review”.

In: ACM Sigmod Record 34.2 (2005), pp. 18–26.

[79] J. Gama, R. Fernandes, and R. Rocha. “Decision trees for mining data streams”. In:

Intelligent Data Analysis 10.1 (2006), pp. 23–45.

[80] J. Gama and P Kosina. “Learning decision rules from data streams”. In: Proceedings

of the 22nd International Joint Conference on Artificial Intelligence. Vol. 22. 1. 2011,

pp. 1255–1261.

[81] J. Gama, R. Sebastião, and P. P. Rodrigues. “On evaluating stream learning algo-

rithms”. In: Machine learning 90.3 (2013), pp. 317–346.

[82] J. Gama et al. “A survey on concept drift adaptation”. In: ACM computing surveys

(CSUR) 46.4 (2014), p. 44.

137

[83] J. Gama et al. “Learning with drift detection”. In: Proceedings of the 7th Brazil-

ian symposium on artificial intelligence, lecture notes in computer science. Springer.

2004, pp. 286–295.

[84] T. Gärtner et al. “Multi-Instance Kernels”. In: Proceedings of the 19th International

Conference on Machine Learning. 2002, pp. 179–186.

[85] S. Godbole and S. Sarawagi. “Discriminative methods for multi-labeled classifica-

tion”. In: Pacific-Asia conference on knowledge discovery and data mining. Springer.

2004, pp. 22–30.

[86] H. M. Gomes and F. Enembreck. “Sae: Social adaptive ensemble classifier for data

streams”. In: IEEE Symposium on Computational Intelligence and Data Mining.

IEEE. 2013, pp. 199–206.

[87] H. M. Gomes and F. Enembreck. “SAE2: advances on the social adaptive ensemble

classifier for data streams”. In: Proceedings of the 29th Annual ACM Symposium on

Applied Computing. ACM. 2014, pp. 798–804.

[88] M. Hall et al. “The WEKA data mining software: an update”. In: ACM SIGKDD

explorations newsletter 11.1 (2009), pp. 10–18.

[89] T. Hastie et al. “The entire regularization path for the support vector machine”. In:

Journal of Machine Learning Research 5 (2004), pp. 1391–1415.

[90] R. Herbrich. Learning kernel classifiers. MIT Press, 2016.

[91] G. Herman et al. “Region-based image categorization with reduced feature set”.

In: Proceedings of the 10th IEEE Workshop on Multimedia Signal Processing. 2008,

pp. 586–591.

[92] F. Herrera et al. Multiple Instance Learning: Foundations and Algorithms. Springer,

2016.

138

[93] A. E. Hoerl and R. W. Kennard. “Ridge regression: Biased estimation for nonorthog-

onal problems”. In: Technometrics 12.1 (1970), pp. 55–67.

[94] M. Hollander and D.A. Wolfe. Nonparametric statistical methods. John Wiley & Sons,

Inc., 1999.

[95] C. J. Hsieh et al. “A dual coordinate descent method for large-scale linear SVM”. In:

Proceedings of the 25th international conference on Machine learning. ACM. 2008,

pp. 408–415.

[96] T. M. Huang, V. Kecman, and I. Kopriva. Kernel based algorithms for mining huge

data sets, supervised, semi-supervised, and unsupervised learning. Springer-Verlag,

2006.

[97] G. Hulten, L. Spencer, and P. Domingos. “Mining time-changing data streams”. In:

Proceedings of the 7th International Conference on Knowledge Discovery and Data

Mining. ACM. 2001, pp. 97–106.

[98] A. J. Izenman. “Reduced-rank regression for the multivariate linear model”. In: Jour-

nal of multivariate analysis 5.2 (1975), pp. 248–264.

[99] G. Jaber, A. Cornuéjols, and P. Tarroux. “A new on-line learning method for cop-

ing with recurring concepts: the ADACC system”. In: International Conference on

Neural Information Processing. Springer. 2013, pp. 595–604.

[100] M. Jeong and G. G. Lee. “Multi-domain spoken language understanding with transfer

learning”. In: Speech Communication 51.5 (2009), pp. 412–424.

[101] T. Joachims. “Advances in Kernel Methods - Support Vector Learning”. In: ed. by

B. Schölkopf, C. J. C. Burges, and A. J. Smola. MIT Press, 1999. Chap. Making

Large-scale Support Vector Machine Learning Practical, pp. 169–184.

[102] T. Joachims. “Training linear SVMs in linear time”. In: Proceedings of the 12th

SIGKDD international conference on knowledge discovery and data mining. ACM.

2006, pp. 217–226.

139

[103] G. H. John and P. Langley. “Estimating continuous distributions in Bayesian classi-

fiers”. In: Proceedings of the 11th conference on uncertainty in artificial intelligence.

Morgan Kaufmann Publishers Inc. 1995, pp. 338–345.

[104] H. Kargupta et al. “MobiMine: Monitoring the stock market from a PDA”. In:

SIGKDD Explorations Newsletter 3.2 (2002), pp. 37–46.

[105] H. Kargupta et al. “VEDAS: A mobile and distributed data stream mining system for

real-time vehicle monitoring”. In: Proceedings of the SIAM International Conference

on Data Mining. SIAM. 2004, pp. 300–311.

[106] V. Kecman. “Fast online algorithm for nonlinear support vector machines and other

alike models”. In: Optical Memory and Neural Networks 25.4 (2016), pp. 203–218.

[107] V. Kecman. Learning and soft computing: support vector machines, neural networks,

and fuzzy logic models. MIT Press, 2001.

[108] V. Kecman, T. M Huang, and M. Vogt. “Iterative single data algorithm for train-

ing kernel machines from huge data sets: theory and performance”. In: Studies in

Computational Intelligence 177 (2005), pp. 255–274.

[109] V. Kecman and G. Melki. “Fast online algorithms for support vector machines”. In:

Proceedings of the IEEE Southeast Conference. 2016, pp. 1–6.

[110] V. Kecman and L. Zigic. “Algorithms for direct L2 support vector machines”. In:

Proceedings of the IEEE International Symposium on Innovations in Intelligent Sys-

tems and Applications. 2014, pp. 419–424.

[111] S. S. Keerthi et al. “Improvements to Platt’s SMO algorithm for SVM classifier

design”. In: Neural computation 13.3 (2001), pp. 637–649.

[112] J. Kivinen, A. J. Smola, and R. C. Williamson. “Large margin classification for mov-

ing targets”. In: International Conference on Algorithmic Learning Theory. Vol. 2.

2002, pp. 113–127.

140

[113] J. Kivinen, A. J. Smola, and R. C. Williamson. “Online learning with kernels”. In:

IEEE Transactions on Signal Processing 52.8 (2004), pp. 2165–2176.

[114] R. Klinkenberg and T. Joachims. “Detecting Concept Drift with Support Vector

Machines.” In: Proceedings of the 17th international conference on machine learning.

2000, pp. 487–494.

[115] D. Kocev et al. “Ensembles of multi-objective decision trees”. In: European Confer-

ence on Machine Learning. Springer. 2007, pp. 624–631.

[116] D. Kocev et al. “Tree ensembles for predicting structured outputs”. In: Pattern Recog-

nition 43 (3 2013), pp. 817–833.

[117] D. Kocev et al. “Using single-and multi-target regression trees and ensembles to

model a compound index of vegetation condition”. In: Ecological Modelling 220.8

(2009), pp. 1159–1168.

[118] J. Z. Kolter and M. A. Maloof. “Dynamic weighted majority: An ensemble method for

drifting concepts”. In: Journal of Machine Learning Research 8.Dec (2007), pp. 2755–

2790.

[119] B. Krawczyk and A. Cano. “Online Ensemble Learning with Abstaining Classifiers for

Drifting and Noisy Data Streams”. In: Applied Soft Computing 68 (2018), pp. 677–

692.

[120] B. Krawczyk and M. Woźniak. “One-class classifiers with incremental learning and

forgetting for data streams with concept drift”. In: Soft Computing 19.12 (2015),

pp. 3387–3400.

[121] B. Krawczyk et al. “Ensemble learning for data stream analysis: A survey”. In:

Information Fusion 37 (2017), pp. 132–156.

[122] I. A. Lawal and S. A. Abdulkarim. “Adaptive SVM for data stream classification”.

In: South African Computer Journal 29.1 (2017), pp. 27–42.

141

[123] X. Li and W. Yu. “Data stream classification for structural health monitoring via

on-line support vector machines”. In: Proceedings of the 1st international conference

on big data computing service and applications. IEEE. 2015, pp. 400–405.

[124] Q. Liu et al. “Multi-task learning for cross-platform siRNA efficacy prediction: an

in-silico study”. In: BMC Bioinformatics 11.1 (2010), pp. 181–196.

[125] O. L. Mangasarian and D. R. Musicant. “Successive overrelaxation for support vector

machines”. In: IEEE Transactions on Neural Networks 10.5 (1999), pp. 1032–1037.

[126] O. Maron and T. Lozano-Pérez. “A framework for multiple-instance learning”. In:

Neural Information Processing Systems 3201 (1998), pp. 570–576.

[127] G. Melki. Fast online training of L1 support vector machines. Virginia Common-

wealth University, 2016.

[128] G. Melki, A. Cano, and S. Ventura. “MIRSVM: Multi-Instance Support Vector Ma-

chine with Bag Representatives”. In: Pattern Recognition (2018).

[129] G. Melki and V. Kecman. “Speeding up online training of L1 Support Vector Ma-

chines”. In: SoutheastCon, 2016. IEEE. 2016, pp. 1–6.

[130] G. Melki et al. “Multi-target support vector regression via correlation regressor

chains”. In: Information Sciences 415 (2017), pp. 53–69.

[131] G. Melki et al. “OLLAWV: OnLine Learning Algorithm using Worst-Violators”. In:

Applied Soft Computing 66 (2018), pp. 384–393.

[132] E. Osuna, R. Freund, and F. Girosi. “An improved training algorithm for support

vector machines”. In: Proceedings of the IEEE Workshop on Neural Networks for

Signal Processing. IEEE. 1997, pp. 276–285.

[133] N. C. Oza and O. Russel. “Online bagging and boosting”. In: Proceedings of the 8th

international workshop on articial intelligence and statistics. Morgan Kaufmann,

2001, pp. 105–112.

142

[134] N. C. Oza and S. Russell. Online ensemble learning. University of California, Berke-

ley, 2001.

[135] C. Panagiotakopoulos and R. Tsampouka. “The stochastic gradient descent for the

primal L1-SVM optimization revisited”. In: Proceedings of the European Conference

on Machine Learning and Knowledge Discovery in Databases. 2013, pp. 65–80.

[136] R. Pelossof et al. “Online coordinate boosting”. In: IEEE 12th International Con-

ference on Computer Vision Workshops. IEEE. 2009, pp. 1354–1361.

[137] B. Pfahringer, G. Holmes, and R. Kirkby. “New options for hoeffding trees”. In:

Australasian Joint Conference on Artificial Intelligence. Springer. 2007, pp. 90–99.

[138] J. Platt. “Sequential minimal optimization: A fast algorithm for training support

vector machines”. In: Technical Report: MSR-TR-98-14 (1998).

[139] R. Polikar et al. “Learn++: An incremental learning algorithm for supervised neural

networks”. In: IEEE Transactions on systems, man, and cybernetics 31.4 (2001),

pp. 497–508.

[140] Z. Qi et al. “Online multiple instance boosting for object detection”. In: Neurocom-

puting 74.10 (2011), pp. 1769–1775.

[141] L. Ralaivola and F. dAlché Buc. “Incremental support vector machine learning: A lo-

cal approach”. In: International Conference on Artificial Neural Networks. Springer.

2001, pp. 322–330.

[142] S. Ray and M. Craven. “Supervised versus multiple instance learning: an empirical

comparison”. In: Proceeding of the International Conference on Machine Learning.

2005, pp. 697–704.

[143] J. Read et al. “Classifier chains for multi-label classification”. In: Machine learning

85.3 (2011), p. 333.

143

[144] H. Robbins and S. Monro. “A Stochastic Approximation Method”. In: The Annals

of Mathematical Statistics 22.3 (1951), pp. 400–407.

[145] F. Rosenblatt. “The perceptron: a probabilistic model for information storage and

organization in the brain.” In: Psychological Review 65.6 (1958), pp. 386–408.

[146] S. Ruping. “Incremental learning with support vector machines”. In: Proceedings of

the IEEE International Conference on Data Mining. IEEE. 2001, pp. 641–642.

[147] R. E. Schapire and Y. Singer. “Improved boosting algorithms using confidence-rated

predictions”. In: Machine learning 37.3 (1999), pp. 297–336.

[148] K. Scheinberg. “An efficient implementation of an active set method for SVMs”. In:

Journal of Machine Learning Research 7 (2006), pp. 2237–2257.

[149] B. Schölkopf, R. Herbrich, and A. J. Smola. “A generalized representer theorem”. In:

International conference on computational learning theory. Springer. 2001, pp. 416–

426.

[150] B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, reg-

ularization, optimization, and beyond. MIT press, 2002.

[151] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory

to algorithms. Cambridge university press, 2014.

[152] S. Shalev-Shwartz and N. Srebro. “SVM optimization: inverse dependence on training

set size”. In: Proceedings of the 25th International Conference on Machine learning.

ACM. 2008, pp. 928–935.

[153] S. Shalev-Shwartz et al. “Pegasos: Primal estimated sub-gradient solver for svm”.

In: Mathematical programming 127.1 (2011), pp. 3–30.

[154] J. Shawe-Taylor and S. Sun. “A review of optimization methodologies in support

vector machines”. In: Neurocomputing 74.17 (2011), pp. 3609–3618.

144

[155] A. Shilton et al. “Incremental training of support vector machines”. In: IEEE trans-

actions on neural networks 16.1 (2005), pp. 114–131.

[156] T. Similä and J. Tikka. “Input selection and shrinkage in multiresponse linear re-

gression”. In: Computational Statistics & Data Analysis 52.1 (2007), pp. 406–422.

[157] E. Spyromitros-Xioufis et al. “Multi-label classification methods for multi-target re-

gression”. In: ArXiv e-prints (2012).

[158] E. Spyromitros-Xioufis et al. “Multi-target regression via input space expansion:

treating targets as inputs”. In: Machine Learning 104.1 (2016), pp. 55–98.

[159] R. Strack. “Geometric approach to support vector machines learning for large

datasets”. PhD thesis. Virginia Commonwealth University, 2013.

[160] J. Struyf and S. Džeroski. “Constraint based induction of multi-objective regression

trees”. In: International Workshop on Knowledge Discovery in Inductive Databases.

Springer. 2005, pp. 222–233.

[161] J. A. K. Suykens and J. Vandewalle. “Least squares support vector machine classi-

fiers”. In: Neural processing letters 9.3 (1999), pp. 293–300.

[162] N. A. Syed, H. Liu, and K. K. Sung. “Handling concept drifts in incremental learning

with support vector machines”. In: Proceedings of the 5th SIGKDD international

conference on knowledge discovery and data mining. ACM. 1999, pp. 317–321.

[163] P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 2005. isbn: 0321321367.

[164] S. Thrun. “Is learning the n-th thing any easier than learning the first?” In: Advances

in Neural Information Processing Systems. 1996, pp. 640–646.

[165] D. Tomar and S. Agarwal. “Multiple Instance Learning Based on Twin Support

Vector Machine”. In: Advances in Computer and Computational Sciences. Springer,

2017, pp. 497–507.

145

[166] I. W. Tsang, A. Kocsor, and K. T. Kwok. “Simpler core vector machines with enclos-

ing balls”. In: Proceedings of the twenty fourth International Conference on Machine

Learning. 2007, pp. 911–918.

[167] I. W. Tsang, J. T. Kwok, and P. M. Cheung. “Core vector machines: Fast SVM

training on very large data sets”. In: Journal of Machine Learning Research 6 (2005),

pp. 363–392.

[168] I. Tsochantaridis et al. “Large margin methods for structured and interdependent

output variables”. In: Journal of machine learning research 6 (2005), pp. 1453–1484.

[169] G. Tsoumakas et al. “Mulan: A java library for multi-label learning”. In: Journal of

Machine Learning Research 12 (2011), pp. 2411–2414.

[170] G. Tsoumakas et al. “Multi-target regression via random linear target combinations”.

In: Machine Learning and Knowledge Discovery in Databases 8726 (2014), pp. 225–

240.

[171] V. Vapnik. The nature of statistical learning theory. Springer-Verlag, 1995.

[172] V. Vapnik, S. E. Golowich, and A. J. Smola. “Support vector method for function

approximation, regression estimation and signal processing”. In: Advances in neural

information processing systems. 1997, pp. 281–287.

[173] V. N. Vapnik and A. J. Chervonenkis. “On the uniform convergence of relative fre-

quencies of events to their probabilities”. In: Theory of Probability and its Applica-

tions. Vol. 16. Springer, 1971, pp. 264–280.

[174] E. Vazquez and E. Walter. “Multi-Output Suppport Vector Regression”. In: IFAC

Proceedings Volumes 36.16 (2003), pp. 1783–1788.

[175] J. S. Vitter. “Random sampling with a reservoir”. In: Transactions on Mathematical

Software 11.1 (1985), pp. 37–57.

146

[176] J. Wang and J. Zucker. “Solving the multiple-instance problem: a lazy learning ap-

proach.” In: Proceedings of the International Conference on Machine Learning. 2000,

pp. 1119–1126.

[177] G. I. Webb et al. “Characterizing concept drift”. In: Data Mining and Knowledge

Discovery 30.4 (2016), pp. 964–994.

[178] Nils Weidmann, Eibe Frank, and Bernhard Pfahringer. “A two-level learning method

for generalized multi-instance problems”. In: Fourteenth European Conference on

Machine Learning. Springer, 2003, pp. 468–479.

[179] B. Widrow and M. E. Hoff. Adaptive switching circuits. Tech. rep. University of

California, 1960.

[180] F. Wilcoxon. “Individual comparisons by ranking methods”. In: Biometrics bulletin

1.6 (1945), pp. 80–83.

[181] S. Wright and J. Nocedal. Numerical optimization. New York: Springer-Veralg, 1999.

[182] Q. Wu et al. “ML-TREE: A tree-structure-based approach to multilabel learning”. In:

IEEE Transactions on Neural Networks and Learning Systems 26.3 (2015), pp. 430–

443.

[183] Y. Xie et al. “Online multiple instance gradient feature selection for robust visual

tracking”. In: Pattern Recognition Letters 33.9 (2012), pp. 1075–1082.

[184] T. Xiong, Y. Bao, and Z. Hu. “Multiple-output support vector regression with a

firefly algorithm for interval-valued stock price index forecasting”. In: Knowledge-

Based Systems 55 (2014), pp. 87–100.

[185] S. Xu et al. “Multi-output least-squares support vector regression machines”. In:

Pattern Recognition 34.9 (2013), pp. 1078–1084.

[186] X. Xu. “Statistical learning in multiple instance problems”. PhD thesis. The Univer-

sity of Waikato, 2003.

147

[187] Y. Yi and M. Lin. “Human action recognition with graph-based multiple-instance

learning”. In: Pattern Recognition 53 (2016), pp. 148–162.

[188] A. Zafra, E. L. Gibaja, and S. Ventura. “Multiple instance learning with multiple

objective genetic programming for web mining”. In: Applied Soft Computing 11.1

(2011), pp. 93–102.

[189] A. Zafra, C. Romero, and S. Ventura. “Multiple instance learning for classifying

students in learning management systems”. In: Expert Systems with Applications

38.12 (2011), pp. 15020–15031.

[190] W. Zang et al. “Comparative study between incremental and ensemble learning on

data streams: Case study”. In: Journal Of Big Data 1.1 (2014), p. 5.

[191] C. Zhang, J. C. Platt, and P. A. Viola. “Multiple instance boosting for object detec-

tion”. In: Advances in neural information processing systems. 2006, pp. 1417–1424.

[192] M. L. Zhang and Z. H. Zhou. “A review on multi-label learning algorithms”. In: IEEE

Transactions on Knowledge and Data Engineering 26.8 (2014), pp. 1819–1837.

[193] Q. Zhang and S. Goldman. “Em-DD: an improved multiple-instance learning tech-

nique”. In: Advances in Neural Information Processing Systems. 2002, pp. 1073–

1080.

[194] T. Zhang. “Solving large scale linear prediction problems using stochastic gradient

descent algorithms”. In: Proceedings of the twenty first International Conference on

Machine Learning. ACM. 2004, p. 116.

[195] W. Zhang, X. Liu, and D. Shi. “Multi-output LS-SVR machine in extended feature

space”. In: Proceedings of the International Conference on Computational Intelli-

gence for Measurement Systems and Applications (2012), pp. 130–134.

[196] Z. H. Zhou, Y. Y. Sun, and Y. F. Li. “Multi-instance learning by treating instances

as non-iid samples”. In: Proceedings of the 26th annual international conference on

machine learning. ACM. 2009, pp. 1249–1256.

148

[197] Z. H. Zhou et al. “Big data opportunities and challenges: Discussions from data

analytics perspectives [discussion forum]”. In: Computational Intelligence Magazine

9.4 (2014), pp. 62–74.

[198] L. J. Zigic. “Direct L2 support vector machine”. PhD thesis. Virginia Commonwealth

University, 2016.

149

VITA

Gabriella Melki received her BSc. in Computer Science from the American University of

Beirut in 2011 and her MSc. in Computer Science from Virginia Commonwealth University

in 2016. As a full-time student in the dual Ph.D. program between Virginia Commonwealth

University and the University of Córdoba in Spain, her research is focused on machine

learning algorithms for large datasets and diverse data paradigms. Her more specialized

field of interest is support vector machines.

Publications:

- Melki G, Kecman V, Ventura S, Cano A, “OLLAWV: OnLine Learning using Worst-

Violators”, In: Applied Soft Computing 66, (2018), pp. 384–393

- Melki G, Cano A, Ventura S, “MIRSVM: Multi-Instance Support Vector Machine

with Bag Representatives”, In: Pattern Recognition 75, (2018), pp. 228–214

- Melki G, Cano A, Kecman V, Ventura S, “Multi-Target Support Vector Regression

Via Correlation Regressor Chains”, In: Information Sciences 415, (2017), pp. 53–69

- Melki G, “Fast Online Training of L1 Support Vector Machines”, Master’s Thesis,

Virginia Commonwealth University, (2016), pp. 1–64

- Melki G, Kecman V, “Speeding Up Online Training of L1 Support Vector Machines”,

In: Proceedings of the IEEE SoutheastCon, 2016, (2016), pp. 1–6

- Kecman V, Melki G, “Fast Online Algorithm for SVMs”, In: Proceedings of the IEEE

SoutheastCon, 2016. (2016), pp. 1–6

- Kecman V, Zigic L, Melki G, “Models and Algorithms for Support Vector Machines:

Direct L2 SVM”, Seminar at Max Planck Institute for Intelligent Systems, Empirical

Inference, Tübigen, Germany, 2015

150

