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Abstract: 3D printing using fused deposition modeling (FDM) includes a multitude of control
parameters. It is difficult to predict a priori what surface finish will be achieved when certain values
are set for these parameters. The objective of this work is to compare the models generated by
decision tree algorithms (C4.5, random forest, and random tree) and to analyze which makes the best
prediction of the surface roughness in polyethylene terephthalate glycol (PETG) parts printed in 3D
using the FDM technique. The models have been created using a dataset of 27 instances with the
following attributes: layer height, extrusion temperature, print speed, print acceleration, and flow
rate. In addition, a dataset has been created to evaluate the models, consisting of 15 additional
instances. The models generated by the random tree algorithm achieve the best results for predicting
the surface roughness in FDM parts.

Keywords: fused deposition modeling (FDM); PETG; surface roughness; data mining; decision tree;
C4.5; random forest; random tree

1. Introduction

Additive manufacturing or 3D printing techniques allow small batches of parts to be produced
directly, economically, and flexibly [1]. There are different additive manufacturing techniques; however,
fused deposition modeling (FDM) printers are the most extended due to their low cost and the wide
variety of materials that can be used [2–4].

FDM printers offer a large number of print parameters: print temperature, layer height, print speed,
print acceleration, and flow rate, among others. When a part is printed, it is difficult to predict a priori
if it will receive an adequate surface finish [5,6].

Data mining techniques are used to improve the quality of processes and products based on
data gathered from previous experiences [7–9]: they are used to find out which parameters are most
influential in surface finishing in electrical discharge machining (EDM) processes [10]. They are also
used to predict the wear of a tool in milling processes [11] or to increase the accuracy of high-speed
machining of titanium alloys [12].

Data mining techniques can be classified into supervised (classification, regression) and
unsupervised (clustering, association rules, correlations). Classification techniques are widely
utilized [9]. To use these techniques, different classes must be established in which each instance in
the database must belong to a class; the rest of the attributes of the instance are used to predict that
class. The objective of these algorithms is to maximize the accuracy ratio of the classification of new
instances [13].

Decision trees are one of the most widely used classification techniques in data mining [13].
Tree nodes represent a condition relative to a given attribute. The leaves indicate the number of
instances that belong to a class and that satisfy the conditions imposed in the previous nodes. By means
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of this type of algorithms, it is possible to create models that allow for predictions such as whether
a register with certain attributes will belong to one class or another. There are several classification
algorithms: C4.5 [14], random forest [15], random tree [16].

Previous work has focused on the use of classification techniques in additive manufacturing
processes. Wu et al. [17,18] applied random forest, k-nearest neighbor, and anomaly detection techniques
to detect defects caused by a cyberattack on an FDM printer during part fabrication. Amini and
Chang [19] used classification techniques to reduce defects in metal parts manufacturing processes
using selective laser melting (SLM) printers. Recently, Li et al. [20] have generated and checked models
using different machine learning algorithms to predict the surface roughness of 3D printed parts
using FDM; in this case, the authors used a design of experiments with three variables (layer height,
print temperature, and print speed/flow rate) and measured the roughness in a unique direction.

The objective of this work is to analyze which decision tree algorithm (C4.5, random forest,
or random tree) is the best to predict the surface finish (Ra,0 and Ra,90) of a FDM printed part.
Data mining models have been developed from a training dataset consisting of 27 instances with
attributes of layer height, print temperature, flow rate, print speed, print acceleration, Ra,0 class,
and Ra,90 class. These models have been tested using a dataset with 15 additional instances.

2. Materials and Methods

Figure 1 shows the different stages that constitute the methodology followed in this work:
3D printing, surface roughness measurements, data mining, models generation, models testing,
and comparison between algorithms.

2.1. 3D Printing and Surface Roughness Measurements

To carry out the present study, 27 specimens of dimensions 25.0 mm × 25.0 mm × 2.4 mm were
printed, following a design of fractionated orthogonal experiments, with five factors and three levels.
The parameters used and the values assigned to each level are shown in Table 1.

The specimens were designed using SolidWorks software. The selection of values for print
parameters and numerical code (NC) generation was done using CURA software. The specimens were
manufactured using an Ender 3 printer, with a diameter nozzle equal to 0.4 mm.

Figure 1. Different stages that compose the methodology followed in the present work: 3D printing,
surface roughness measurements, data mining, models generation, models testing, and comparison
between algorithms.
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The polyethylene terephthalate glycol (PETG) filament was supplied by Smart Materials 3D
(Smart Materials 3D, Alcalá la Real, Spain). Although there are not many published works on PETG,
it is a filament increasingly used in the industry, having mechanical characteristics similar to ABS but
printed with the ease of a PLA [21].

Once printed, the roughness of the specimens was measured using a Mitutoyo perthometer model
SJ-201 (Mitutoyo, Kawasaki, Japan). Five measurements were made in each specimen and direction,
0◦ and 90◦, as seen in Figure 2. The representative value was calculated as the arithmetic mean of the
five measurements. The resulting values are shown in Table 2.

Table 1. Factors and levels used in design of the experiments (DOE).

Print Parameter Level 1 Level 2 Level 3

Layer height (LH), mm 0.16 0.20 0.24
Temperature (T), ◦C 240 245 250

Print speed (PS), mm/s 40 50 60
Print acceleration (PA), mm/s2 500 1000 1500

Flow rate (F), % 90 100 110

Table 2. Training dataset: design of experiment (L27), according to Taguchi method: layer height (LH),
print temperature (T), print speed (PS), print acceleration (PA), and flow rate (F).

No. LH (mm) T (◦C) PS (mm/s) PA (mm/s2) F (%)

1 0.16 240 40 500 90
2 0.16 240 40 500 100
3 0.16 240 40 500 110
4 0.16 245 50 1000 110
5 0.16 245 50 1000 90
6 0.16 245 50 1000 100
7 0.16 250 60 1500 100
8 0.16 250 60 1500 110
9 0.16 250 60 1500 90

10 0.20 240 50 1500 100
11 0.20 240 50 1500 110
12 0.20 240 50 1500 90
13 0.20 245 60 500 90
14 0.20 245 60 500 100
15 0.20 245 60 500 110
16 0.20 250 40 1000 110
17 0.20 250 40 1000 90
18 0.20 250 40 1000 100
19 0.24 240 60 1000 110
20 0.24 240 60 1000 90
21 0.24 240 60 1000 100
22 0.24 245 40 1500 100
23 0.24 245 40 1500 110
24 0.24 245 40 1500 90
25 0.24 250 50 500 90
26 0.24 250 50 500 100
27 0.24 250 50 500 110

The models were generated using the free software WEKA (Waikato Environment for Knowledge
Analysis). The roughness values were divided into two classes (class 1 and class 2) from the mean of
the values of Ra,0 and Ra,90. For Ra,0, class 1 includes 0–4.43 µm and class 2 is from 4.43 to 10.64 µm.
For Ra,90, class 1 includes 0–11.63 µm and class 2 includes 11.63–32.99 µm. To validate the model
obtained, 15 additional specimens were printed using random values for the parameters under study,
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as seen in Table 3. Likewise, five roughness measurements were performed on each specimen and
direction, obtaining the representative values by means of the arithmetic mean.

Figure 2. Measurement of surface roughness in the direction parallel to the direction of extrusion (a)
and in the direction perpendicular to the direction of extrusion (b).

Table 3. Test dataset: design of experiment (L27), according to Taguchi method: layer height (LH),
print temperature (T), print speed (PS), print acceleration (PA), and flow rate (F).

No. LH (mm) T (◦C) PS (mm/s) PA (mm/s2) F (%)

1 0.14 240 15 200 95
2 0.14 236 18 300 105
3 0.18 238 15 300 115
4 0.18 243 20 200 95
5 0.14 246 35 400 105
6 0.23 248 46 400 95
7 0.24 243 45 600 103
8 0.30 230 56 2000 100
9 0.30 250 60 1600 110

10 0.20 251 70 1500 102
11 0.20 249 85 1200 100
12 0.28 249 100 1200 98
13 0.28 237 25 1100 90
14 0.14 238 21 800 100
15 0.10 239 50 600 110

2.2. Data Mining and Decision Trees

The data mining process consists of several steps: (1) integration and data collection, which coincides
with the previous paragraph; (2) selection, cleaning and transformation, in which the data were
prepared in .arff format, which are files used by WEKA; (3) data mining, consisting of applying the
algorithms to the data and generating patterns and models; (4) evaluation and interpretation of the
information generated; (5) generation of knowledge and decision making.

In this work, three algorithms based on decision trees are compared: J48 (a variation of WEKA for
C4.5), random forest, and random tree. The algorithms are briefly presented below.

2.2.1. J48 (C4.5)

The J48 is WEKA’s version of the C4.5 algorithm. Algorithm C4.5, created by Quinlan [14],
allows the generation of decision trees. It is an iterative algorithm that consists of dividing the data
in each stage into two groups using the concept of information entropy. This partitioning process is
recursive and stops when all records of a sheet belong to the same class or category.

2.2.2. Random Forest

The random forest method was developed by Breiman [15]. It consists of constructing multiple
decision trees using random combinations and orders of variables before constructing a random tree
using bootstrap aggregating (also known as bagging). This highly accurate algorithm is capable of
handling hundreds of variables without excluding any [16].
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2.2.3. Random Tree

The random tree is an algorithm halfway between a simple decision tree and a random forest.
Random trees are a set of predictor trees called forest. The classification mechanisms are as follows:
the random tree classifier obtains the input characteristic vector, classifies it with each tree in the forest,
and produces the class label that received the most “votes” [13].

3. Results

This work proposes the use of decision trees and data mining techniques to predict which values
should be selected for the print parameters of PETG flat specimens, manufactured by FDM. The dataset
used as a training dataset to develop the models is shown in Table 4.

Table 4. Training dataset: results for surface roughness (Ra,0, Ra,90).

Test Ra,0 (µm) Ra,0 Class Ra,90 (µm) Ra,90 Class

1 10.648 Class2 12.240 Class2
2 0.916 Class1 6.464 Class1
3 1.126 Class1 9.160 Class1
4 2.428 Class1 32.994 Class2
5 1.800 Class1 5.504 Class1
6 8.814 Class2 10.922 Class1
7 4.552 Class2 23.650 Class2
8 1.370 Class1 14.458 Class2
9 0.954 Class1 5.414 Class1

10 1.462 Class1 23.470 Class2
11 1.666 Class1 9.050 Class1
12 1.554 Class1 10.074 Class1
13 6.258 Class2 20.088 Class2
14 7.788 Class2 15.368 Class2
15 10.172 Class2 12.560 Class2
16 9.744 Class2 10.186 Class2
17 4.696 Class2 5.462 Class1
18 5.112 Class2 5.330 Class1
19 4.274 Class2 10.668 Class1
20 6.994 Class1 8.214 Class1
21 5.868 Class2 6.056 Class1
22 3.796 Class2 8.680 Class1
23 3.054 Class1 5.720 Class1
24 3.702 Class1 6.804 Class1
25 4.124 Class1 19.654 Class1
26 4.682 Class1 8.964 Class2
27 2.256 Class2 7.122 Class1

Algorithm J48 (C4.5) generates decision trees that can be represented graphically. Figure 3 shows
the decision tree generated for Ra,0 from the corresponding training dataset. Figure 4 shows the decision
tree generated for Ra,90.

Once the models have been generated using the algorithms studied, they have been checked
using the dataset shown in Table 5. The results of each algorithm for the prediction of Ra,0 are shown in
Tables 6 and 7. Likewise, the results for the prediction of Ra,90 are presented in Tables 8 and 9. Table 10
shows the time used by each algorithm to construct and validate the models.
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Figure 3. J48 (C4.5) decision tree for Ra,0.

Figure 4. J48 (C4.5) decision tree for Ra,90.

Table 5. Testing dataset: results for surface roughness (Ra,0, Ra,90).

Test Ra,0 (µm) Ra,0 Class Ra,90 (µm) Ra,90 Class

1 1.026 Class1 4.462 Class1
2 1.178 Class1 2.656 Class1
3 2.064 Class1 3.97 Class1
4 1.126 Class1 7.192 Class1
5 1.984 Class1 9.24 Class1
6 1.252 Class1 8.276 Class1
7 1.026 Class1 4.462 Class1
8 1.744 Class1 7.732 Class1
9 5.906 Class2 11.408 Class1

10 3.99 Class1 12.082 Class2
11 1.182 Class1 6.392 Class1
12 1.008 Class1 6.622 Class1
13 6.466 Class2 14.002 Class2
14 0.606 Class1 6.828 Class1
15 1.846 Class1 4.758 Class1

Table 6. Indicators to compare the models generated by the studied algorithms to predict Ra,0.

Indicator J48 Random Forest Random Tree

Correctly Classified Instances 60.00% 66.67% 80.00%
Incorrectly Classified Instances 40.00% 33.33% 20.00%

Kappa statistic −0.2162 0.1176 0.2857
Mean absolute error 0.4926 0.429 0.2

Root mean squared error 0.595 0.474 0.4472
Relative absolute error 106.60% 92.84% 43.28%

Root relative squared error 128.39% 102.29% 96.50%
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Table 7. Detailed precision parameters achieved by each algorithm for the Ra,0 prediction model.

Detailed Accuracy (weighted av.) J48 Random Forest Random Tree

True Positive (TP) Rate 0.600 0.667 0.800
False Positive (FP) Rate 0.908 0.474 0.454

Precision 0.709 0.807 0.839
Recall 0.600 0.667 0.800

F-measure 0.650 0.716 0.816
MCC −0.237 0.139 0.294

ROC Area 0.154 0.692 0.673
PRC Area 0.697 0.868 0.819

Table 8. Indicators to compare the models generated by the studied algorithms to predict Ra,90.

Indicator J48 Random Forest Random Tree

Correctly Classified Instances 73.33% 80.00% 86.67%
Incorrectly Classified Instances 26.67% 20.00% 13.33%

Kappa statistic −0.1538 −0.0976 0.5946
Mean absolute error 0.2556 0.2888 0.1333

Root mean squared error 0.4645 0.3854 0.3651
Relative absolute error 66.17% 74.57% 34.52%

Root relative squared error 116.01% 96.26% 91.20%

Table 9. Detailed precision parameters achieved by each algorithm for the Ra,90 prediction model.

Detailed Accuracy (weighted av.) J48 Random Forest Random Tree

True Positive (TP) Rate 0.733 0.800 0.867
False Positive (FP) Rate 0.887 0.877 0.021

Precision 0.733 0.743 0.933
Recall 0.733 0.800 0.867

F-measure 0.733 0.770 0.883
MCC −0.154 −0.105 0.650

ROC Area 0.385 0.481 0.923
PRC Area 0.745 0.797 0.916

The J48 algorithm allows for the generation of simple trees that can be easily understood and
interpreted, as seen in Figures 3 and 4. In these trees, it is clear which parameters are most important
to reduce Ra,0 (PA, LH, F) and Ra,90 (F, PS, LH). However, the models created by means of the J48
algorithm are those that adjust the worst to the test data, as seen in Tables 6 and 8: a 60.00% success
rate for Ra,0; a 73.33% success rate for Ra,90; and a negative kappa statistic in both cases. Tables 7 and 9
show that the precision for the models created using the J48 algorithm is lower than that achieved by
the rest of the models, and that the value of the area under the ROC is very low.

The random forest algorithm slightly improves the results of J48, as seen in Tables 6 and 8;
the model created using this algorithm provides 66.67% success for Ra,0 and 80.00% success for Ra,90.
In this case, the kappa statistic is close to zero for Ra,0 and negative for Ra,90. Tables 7 and 9 show that
the precision of both models increases, as does the area under ROC. This algorithm does not generate
trees that can be plotted.

The models generated by the random tree algorithm are the ones that obtain the best results in
this case, as seen in Tables 6 and 8, with an 80% success rate for Ra,0 and 86.67% success rate for Ra,90.
It obtains a positive kappa statistic in both cases: 0.2857 for Ra,0 and 0.5946 for Ra,90. These values can
be classified as fair and moderate according to Table 11. Tables 7 and 9 show that the precision of both
models is higher than in the cases analyzed above; the area under ROC is 0.673 for the Ra,0 model and
0.923 for the Ra,90 model. In addition, as can be seen in Table 10, this algorithm took the least time to
build the models.
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Table 10. Time used by each algorithm to build and validate the model.

Algorithm Computing Time for Ra,0 Model (s) Computing Time for Ra,90 Model (s)

J48 0.11 0.19
Random Forest 0.05 0.34
Random Tree 0.01 0.01

Table 11. Strength of concordance for kappa statistic.

Kappa Statistic Strength of Concordance

0.00 Poor
0.01–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substancial
0.81–1.00 Almost perfect

4. Discussion

In the present work, three classification tree algorithms were used to predict the surface finish of
FDM-printed PETG flat specimens. The algorithms used were J48, random forest, and random tree.
The software used to generate the models was WEKA [13].

The J48 algorithm has been widely used to study problems in the manufacturing area related
to quality improvement in production processes [10,22]. In this work, the J48 generated models that
classified training dataset data very well. Additionally, this algorithm made it possible to create trees
that can be plotted and that are easily understood [10,16,23,24]. This algorithm also allowed for the
identification of the most influential parameters in roughness: PA, LH, and F for Ra,0; F, PS, and LH
for Ra,90. These results coincide with those obtained by the authors in previous works [25]: PA is
the parameter with the greatest influence on Ra,0; F, PS, and LH are the parameters with the greatest
influence on Ra,90. However, in this case, the models created with J48 algorithm were not able to predict
the data used in the test. This may be related to overfitting problems [13,26].

In the problem addressed, the random forest algorithm obtained better results than J48, as could
be expected from the literature [27–29]. Although it does not generate a graphical model, this algorithm
is widely used by other authors in problems similar to the one studied [30].

In this work, the random tree algorithm generated the best models for Ra,0 and Ra,90. Previously,
other authors have also chosen this algorithm for its properties [31]. An additional advantage of this
algorithm is its calculation time, which is the fastest of those studied [32].

5. Conclusions

In the present work, three models were created and compared to predict the surface roughness of
flat pieces printed on PETG by FDM. For this purpose, data mining classification were used, such as
J48 (C4.5), random forest, and random tree. The software used to generate the models was the open
source software WEKA.

The model generated by random tree obtains better results. It correctly classifies a priori 80% of
the instances in the case of Ra,0 and 86.67% of the instances in the case of Ra,90. It is the only algorithm
of the three evaluated that achieves a positive kappa statistic, qualified as fair for Ra,0 and moderate
for Ra,90. It obtains the highest accuracy and area under ROC and is also the fastest algorithm of the
three analyzed.

In future works, we intend to study whether the decision trees can be used to generate models
that allow for the prediction of a better dimensional accuracy of the parts manufactured by FDM.
The impact of other print factors on the surface properties of printed parts, such as nozzle diameter,
will also be studied.
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